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Abstract—Intrusion Detection Systems (IDS) are valuable tools
for the proper identification and the timely response to potential
security threats in a network, using traffic analysis and anoma-
lous activities detection. Traditional IDS rely on rule-based or
signature-based methods to detect known cyber attacks, but these
methods often fail to detect novel ones. There has been a growing
interest recently, in using Machine Learning (ML) algorithms to
enhance the detection capabilities of IDS. As a downturn, the
datasets used by ML algorithms for IDS applications refers to
network logs which may contain sensitive information, resulting
in privacy threats. To address this issue, Differential Privacy (DP)
can be used to preserve the privacy of network logs, while still
allowing the ML algorithm to extract useful information from the
data. In this work we test the performance of four popular ML
classifiers (Gaussian Naive Bayes, Logistic Regression, Support
Vector Machines, Random Forest Classifier) in the CIC-IDS2017
dataset when a DP mechanism is added to each algorithm in
comparison with the classical non-DP setting.

Index Terms—Intrusion Detection System, Differential Privacy,
Machine Learning

I. INTRODUCTION

Intrusion Detection Systems (IDS) [1] represent a critical
component of network security. IDS are designed to identify
and respond to potential security threats by analyzing net-
work traffic and identifying anomalous activities. With the
increasing complexity of network environments and the rise
of sophisticated cyber attacks, IDS are used for protection
against data breaches and cyber threats. Unauthorized access,
malware, phishing attacks, and other security threats that
can possibly compromise the confidentiality, integrity, and
availability of network resources are exposed by IDS. IDS are
the first line of defense in network security and are essential in
maintaining the confidentiality and integrity of sensitive data.

In recent years, there has been a growing interest in using
Machine Learning (ML) algorithms to enhance the detection
capabilities of IDS. Large volumes of network data can be
analyzed by ML algorithms to find patterns and anomalies

as indications of malicious activities [2]. Moreover, ML al-
gorithms can adapt to new attack patterns and learn from
new data, making them well-suited for the dynamic and ever-
changing nature of network security. The use of ML in IDS has
shown promising results, with studies reporting high detection
rates and low false positives [3], [4].

However, the demonstrated efficiency in detection often
comes at the cost of privacy, since ML algorithms for IDS use
datasets such as network logs which may contain sensitive
information. In a corporate network, the logs generated by
the network infrastructure contain sensitive information about
connected devices, IP addresses, port numbers, operating sys-
tems and network topology [3]. This presents a serious threat,
when considering the deployment or sharing of ML-based
IDS due to the numerous privacy attacks that are possible.
Membership Inference, Reconstruction and Property Inference
Attacks among others, can cause the disclosure of sensitive
information about a network [5].

To address this issue, various privacy-preserving mecha-
nisms such as Differential Privacy (DP) can be used. DP [6]
is a formal framework for ensuring privacy in queries and
calculations on a dataset. In the context of ML, by adding
random noise to model training, the privacy of network logs
can be preserved, while still allowing the ML algorithm to
extract useful information from the data. DP can be applied to
various ML algorithms, such as logistic regression or decision
trees, to enhance the privacy and security of the IDS. The main
advantage of DP over other privacy-preserving techniques is
the fact that it provides provable guarantees about individual’s
privacy.

II. BACKGROUND

A. Differential Privacy

Differential privacy [6] is a mathematical concept that
provides a rigorous framework for measuring the privacy of



data analysis. Formally, a randomized algorithm A satisfies ε-
DP if, for any two datasets D and D′, differing in the presence
or absence of a single individual’s data, and for any subset of
outputs S of the algorithm:

P (f(D) ∈ S) ≤ eεP (f(D′) ∈ S), (1)

where ε is a small positive constant. Intuitively, this means
that the output of the algorithm is roughly the same whether
or not a particular individual’s data is included in the dataset.
Lower values of ε correspond to stronger privacy.

DP can be used in ML algorithms to protect the privacy
of individuals whose data is used for training the algorithm.
This is achieved by the addition of artificial noise during the
training of the algorithm, such as Laplacian or Gaussian noise.

B. Gaussian Naive Bayes

The Gaussian Naive Bayes [7] algorithm is based on Bayes’
theorem, and assumes that the features of a dataset are inde-
pendent and identically distributed Gaussian random variables.
The algorithm calculates the conditional probability of a class
given a set of features using Bayes’ theorem and then predicts
the class with the highest probability: Due to its simplicity and
efficiency, the Gaussian Naive Bayes algorithm is widely used
in a variety of applications, such as text classification, spam
filtering, and image recognition. Despite its naive assumptions,
the algorithm often performs surprisingly well in practice and
can serve as a strong baseline for more complex ML models.

In order for the Gaussian Naive Bayes algorithm to be
DP, the authors in [8] first calculate the sensitivity of each
feature. The sensitivity is the maximum value of difference
between any pair of features. Then, according to the sensitivity
values that were calculated, Laplacian noise is added to the
parameters of the model. Thus, the algorithm achieves DP.

C. Logistic Regression

Logistic regression [9] is widely used in statistics and in
classification tasks. It consists of the fitting of a linear model
that assumes a logistic function of the input features in order
to derive the binary outcome. The logistic function maps real-
valued inputs to (0, 1), which can then be interpreted as the
probability that the input sample belongs to the positive class.
The model is trained using maximum likelihood estimation.
The coefficients can be interpreted as the weights assigned to
each feature in the model. Logistic regression is widely used
in a variety of applications, such as medical diagnosis, credit
scoring, risk prediction, etc.

The authors in [10] show that the addition of Laplacian
noise to the output of the minimization of the objective
function of the Logistic Regression algorithm outputs a DP
version of the original algorithm.

D. Support Vector Machines

Support Vector Machines (SVM) [11] is a supervised learn-
ing model based on statistical learning theory. The intended
result is to find the farthest border in the classes that it
separates. SVM combine an optimisation theory algorithm

with statistical learning theory for training, and use linear
functions for data classification, after transforming the data
into a higher-dimensional space where it is more easily sepa-
rable. SVM maximize predictive accuracy while automatically
avoiding over-fit to the data [12]. There are a number of
known advantages of SVM, including their high performance
when there is a clear margin of separation between classes.
SVM are also more effective in high dimensional spaces and
with small datasets. They perform well on out-of-sample data,
which makes them fast and efficient.

In [10], it is highlighted that the output hyperplane of the
original SVM algorithm can cause leakage of information
about the training data. In order to alleviate this liability, the
objection function is perturbed with the addition of a term that
contains a carefully calculated random vector and a different
normalization term that depends on the choice of ε. This
creates a DP-SVM algorithm.

E. Random Forest Classifier

Random forest classifier [13] is a powerful and widely
used ML algorithm for classification tasks. It is an ensemble
method that combines multiple decision trees to improve the
accuracy and stability of the model. The algorithm constructs
a set of decision trees by randomly selecting a subset of
features and data points, and then averaging the predictions
of the individual trees to obtain the final prediction. This
approach reduces overfitting and improves the generalization
performance of the model. Random forests are capable of han-
dling both categorical and continuous features, and can capture
complex nonlinear relationships between the features and the
target variable. They are also robust to noise and outliers,
making them suitable for dealing with noisy or incomplete
data. Random forests are widely used in various applications,
such as credit scoring, customer churn prediction, and image
classification. However, they can be computationally expensive
and require a large amount of memory for training and predic-
tion. To address these issues, various optimization techniques,
such as parallelization or feature selection, can be applied to
improve the efficiency of the algorithm.

In [14], a DP Random Forest Classifier is constructed by
using queries that return class labels by the Exponential Mech-
anism instead of a count query. The Exponential Mechanism
works by sampling a distribution centered around the true
value for the output of a query.

III. DATA AND METHODS

A. Dataset

The CIC-IDS2017 dataset [15] is a recent and widely used
benchmark dataset for evaluating IDS. It contains network
traffic data produced by a variety of network attacks and
benign network activities. The dataset is labeled with different
types of attacks, including brute force, denial of service, and
heartbleed, among others. The dataset is composed of both
raw packet data and flow data, and it includes over 2.5 million
records. It includes a wide range of network traffic features
that can be used to develop and evaluate IDS. These features



Average Packet Size Flow Bytes/s Max Packet Length
Subflow Fwd Bytes Fwd IAT Min Avg Fwd Segment Size
Fwd Packet Length Max Flow IAT Mean Fwd Header Length
Fwd IAT Mean Fwd IAT Total Fwd Packets/s
Packet Length Mean Total Length of Fwd Packets Fwd Packet Length Mean
Flow Duration Flow IAT Std Fwd IAT Std
Flow Packets/s Fwd IAT Max

TABLE I
DATASET FEATURES

are extracted from raw network packet data and flow data, and
include both basic and advanced features. Some of the basic
features include packet and byte counts, inter-arrival times, and
protocol type. Advanced features include statistical features
such as mean, variance, and standard deviation of packet and
byte counts, as well as more complex features such as entropy,
total number of packets and bytes, and number of unique IP
addresses. Additionally, the dataset includes features related
to network port numbers, network flow direction, and network
flow duration. These features provide a comprehensive view
of network traffic and allow for the development of effective
IDS. Nevertheless, they include valuable private information
about the network and its structure, so we will apply DP in
our effort to preserve their privacy and protect them. In our
work we follow a data processing methodology found in [16].
As such we used a version of the dataset that contains 170366
records and has the features found in table I. It consists of a
subset of the original dataset with samples labeled as Benign
or Malicious.

B. Evaluation Framework

To evaluate the impact of DP on the performance of ML
algorithms for IDS, we conducted an experiment in which we
trained and tested Gaussian Naive Bayes, Logistic Regression,
Support Vector Machines and Random Forest Classifier algo-
rithms. For each algorithm, we trained both a DP version and
a non-private version as a baseline, and evaluated their perfor-
mance using the F1 score metric with 5-fold cross-validation
on each run. The choice of F1 score metric is motivated by
the need to balance precision and recall in the detection of
security threats. By comparing the F1 scores of DP and non-
private versions of each algorithm, we aim to determine the
impact of DP on the accuracy and generalization performance
of IDS. We chose to test 50 values of ε between 0.01 to 1 and
train the classifiers with baseline hyperparameters that can be
found in the scikit-learn [17] python library implementations
of the algorithms. The DP versions of the algorithms were
implemented from scratch. Due to the imbalanced nature of
the dataset, a random undersampling were conducted in each
of the train sets of the 5-fold cross validation procedure.

IV. RESULTS

By comparing the F1 scores of each classifier with and
without DP, it is expected that the scores increase as the ε
value increases. Intuitively, as a larger ε value represents a
weaker privacy guarantee, leading to a higher degree of noise
added, which in turn affects the classifier’s performance. The
baseline scores can be seen in Table II. The charts with ε on

the x-axis and F1 score on the y-axis for each classifier can
be found in Figures 1 to 5.

For Gaussian Naive Bayes, the highest F1 score of 0.825
was achieved when ε was set to 0.072. This score is 0.017
lower than the baseline score of 0.842, indicating that DP has
a low negative impact on the performance of Gaussian Naive
Bayes for a relatively low value of ε.

For Logistic Regression, the highest F1 score of 0.908 was
achieved when ε was set to 0.829. Again, this score is slightly
lower than the baseline score of 0.921 (with a gap of 0.013),
indicating that DP has a negative impact on the performance of
Logistic Regression as well. Also, the best score was achieved
with a relatively high ε value.

For Random Forest, the highest F1 score of 0.907 was
achieved when ε was set to 0.0282. This score is 0.045 lower
than the baseline score of 0.952. Nevertheless, we can observe
that a good F1-score was achieved for a relatively low ε value.

For SVM, the highest F1 score of 0.896 was achieved when
ε was set to 0.0543. This score is still lower than the baseline
score of 0.92, but a also high score of 0.895 was achieved
when ε was set to 0.01.

Among the four classifiers, Random Forest has the best
overall performance without DP, but SVM has the lowest gaps
as ε varies, indicating that behaves better under DP. For lower
values of ε, SVM clearly performs best. The Gaussian Naive
Bayes and Logistic Regression Classifiers follow the expected
behavior of higher-ε/better-performance while the Random
Forest and SVM dont. For the second case, this is not an
expected behavior. For instance, the scores of Random Forest
on the experiments conducted in [14] follow the general rule
but ours don’t. Also, as a general observation, all classifiers
give fluctuating results. This gives us an insight on the complex
nature of the DP noise addition mechanisms. The author’s take
on this is that the CIC-IDS2017 dataset presents a challenging
feature space that is very sensitive to noise and algorithm
choice. However, it is worth noting that the performance of
all classifiers is impacted negatively to some degree by the
addition of DP, but we can observe acceptable F1-scores for
low ε values in all the classifiers.

As a final note, since (to our knowledge) there is no prior
work that compares the performance of ML algorithms with
and without DP in a IDS dataset, we have no baseline for the
comparison of our results.

Algorithm F1 score

Gaussian NB 0.842
Logistic Regression 0.921

Random Forest 0.952
Support Vector Machines 0.92

TABLE II
BASELINE ALGORITHMS AVERAGE F1 SCORE

V. CONCLUSION

This work presents a comparison between some ML classi-
fiers when trained under a DP setting in the CIC-IDS2017



Fig. 1. Gaussian NB Results

Fig. 2. Logistic Regression Results

Fig. 3. Random Forest Results

Fig. 4. Support Vector Machines Results

dataset. The classifiers under investigation were Gaussian
Naive Bayes, Logistic Regression, Support Vector Machines
and Random Forest. Our experiments show that we can find
ε values that provide good privacy guarantees while not
burdening the overall classifier performance in a substantial
degree. As a future work, we plan to extend our experiments
to more popular ML algorithms such as k-Nearest Neighbours,
Multilayer Perceptrons, Graph Neural Networks, etc. Also,
we want to perform extensive hyperparameter search to the
aforementioned algorithms and to the ones used in our work.
Finally we ought to include more IDS datasets in order to
have a better picture about the use of DP in the context of
ML-based IDS. We hope that this will help us have a clearer
view on some of the problematic results from the experiments,
as discussed in Section IV.
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