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Introduction
The awareness that transmission dynamics of infectious diseases, the preventive and 

treatment strategies that are administered follow certain laws that could be modeled 
mathematically have been a beautiful child to the human conscience since the first incidence 
of epidemic outbreak [1].

The awakened consciousness that preventive and treatment strategies which are 
administered in the approach to finding solution to an epidemic outbreak require some 
mathematical calculations have contributed immensely in removing the subterfuge mist 
that has surrounded the elucidating of the transmission dynamics of infectious disease, the 
control strategies and the prevention of epidemic from invading a population of susceptible 
and has led us out into the light of strategic epidemiological control measures [2].

The mathematical computations which have been involved in the study of the dynamics 
of infectious diseases have brought a great surge of excitement in the hearts of modelers, 
governments, public health workers and all stakeholders as it has created awareness with 
regards to transmission dynamics and control measures of infectious diseases [3].

Concerning the malaria disease, (WHO, 2016) reported a global estimate of 212 million 
cases, of which the most occurred in Africa, 429000 malaria deaths, of which 303000 
occurred in children under 5 years of age. These estimates rank malaria to be virulent 
disease and one of the top two killers among vector borne diseases. The disease is caused 
by parasites 

that are transmitted through the bites of a host mosquito. An infected person with the 
disease may experience loss of appetite, headache, fever and fatigue. The disease has an 
adverse effect on the well-being of infected person and the task of achieving 

malaria-free world throws a challenge to the public health organization which 
requires a strenuous and strategic efforts. The burden of the disease includes; fertility loss, 
premature mortality and loss of savings through treatment and medical cost, loss in worker 
productivity due to weakness in body. Malaria recede growth in population by means of 
morbidity and mortality in especially children. The disease poses threat to the development 
of fetal in the early stages of pregnancy in women as a result of loss of immunity. Control 
measures of the disease include the preventive intervention of sleeping under insecticide 
treated nets and spraying the breeding environments of the vector by insecticide spray and 
the treatment measure of seeking medical attention in the early stage of the disease [4].

Notwithstanding, there is an urgent need for better understanding of the disease 
transmission and development of effective optimal therapeutic strategies for the prevention 
and control of the disease due to drug and insecticide resistance challenges posed by the 
parasite [5].

Mathematical modeling has been a fruitful ground out of which have grown control 
therapeutic strategies for the malaria control into fruition. The contributions of mathematical 
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modeling to public health organizations in their intervention strategic 
measures of controlling malaria disease have been overwhelming 
[6]. Abdullahi et al [7], proposed a deterministic malaria model that 
explains the dynamics of the disease and measures the effectiveness 
of anti malaria drugs in the infected compartment. Mandal et al [8], 
presented a review of existing mathematical models on malaria 
disease and their contributions with regards to the explanations of 
the transmission dynamics. Their work elaborates the evolution of 
modeling strategies to describe malaria incidence with the inclusion 
of critical features of host-vector-parasite interactions, by using an 
already existing mathematical model. Pariyaporn et al [9], used two 
malaria models: malaria model with standard incidence rate and 
malaria model with nonlinear incidence rate to explain the effect of 
choice of incidence function that results in occurrence of backwards 
bifurcation in these models. Feng et al [10], presented a deterministic 
model of malaria transmission with standard incidence rate and 
treatment, which was used to numerically stimulate the human data 
of the disease reported by the Chinese ministry of health from 2002 
to 2013.

Besides, optimal controls models have come up with astonishing 
models coupled with various explanations of the transmission 
dynamics of the vector-parasite-host and have induced control 
therapeutic preventive strategies which could be administered for 
the prevention of the disease as well as treatment strategies for the 
treatment of the disease at a minimal cost [11-13]. Kim et al [14], 
presented a Plasmodium Vivax malaria transmission model that 
includes control terms by using a deterministic system of differential 
equations to analyze the model mathematically and numerically. 
Okosun et al [15], examined the conditions under which it is 
optimal to eradicate malaria disease by proposing and analyzing a 
deterministic model for the transmission of malaria disease that 
includes mass action. Fatmawati and Tasman [16], formulated an 
optimal control model of malaria transmission that considers the 
resistance of malaria parasite to the anti- malaria drugs. The model 
examined the impact of vaccination and treatment strategies on the 
disease transmission. Okosun et al [17], investigated the effectiveness 
and cost-effectiveness of malaria model with three preventive 
measures: the use of treated bednets, spraying of insecticide and a 
possible treatment of infective humans that blocks transmission to 
mosquitoes. Okosun and Makinde [18], examined the synergistic 
relationship between malaria and cholera disease in the presence 
of treatment by formulating a co-infection mathematical model of 
malaria-cholera. Mwanga et al [19], studied the optimal control 
practices of malaria. The model addresses the implementation of a 
catalog of optimal control strategies in the presence of uncertainties 
of parameter, which is generally a typical problem of infectious 
disease data. Rafikov et al [20], investigated the development of 
transgenic mosquitoes which may provide a new challenge and 
serve as an effective weapon of diseases control as a result of their 
resistant to diseases. Lashari et al [21], assessed the impact of some 
antimalaria control measures by reformulating an existing model 
as an optimal control problem. Agusto et al [22], applied optimal 
control theory to a deterministic system of differential equations to 
investigate an effective optimal strategy for controlling the spread 
of malaria disease using treatment, insecticide treated bednets and 
spray of mosquito insecticide as the system control variables.

Enlisted in these models are useful and successful companions 
and comrades in elucidating the transmission dynamics of the disease, 
deducing of control intervention measures to be embarked on by all 
stakeholders as well as insinuating  imperative therapeutic strategies 
for medical decision making, yet there has not been a model that has 
been able to answer all clinical and biological information that are 
empirically observed regarding the disease as well as incorporating 
all important factors and variables in the model due to the complexity 
of the disease. In this research article, we consider the malaria 
model with standard incidence rate as proposed by [9], as studied 
in section 2. The section 3 deduces an optimal control problem that 
assesses the impact of some control strategies: prevention, treatment 
and application of insecticide spray on the vector by incorporating 

time dependent control functions. The necessary conditions for an 
optimal and the corresponding states are then derived by employing 
the Pontryagin’s Maximum Principle. Finally, in section 4, the 
resulting optimality system is numerically solved and computed to 
investigate the optimum control strategy that would be efficacious 
to be implemented in reducing the number of exposed and infected 
humans. Further, in section 6-7, Stochastic version of system (1) is 
obtained by introducing a random perturbation to the equations 
of the systems. In section 8, stochastic numerical method-Euler-
Maruyama is discussed. Section 9 gives numerical examples to show 
the dynamics of the deterministic, control and the stochastic systems, 
and to illustrate the differences in the dynamics of the models.

Model Framework
This section presents a malaria model with standard incidence 

rate. The human population at time t is categorized into four 
classes: susceptible human SH(t), exposed human EH(t), infectious 
human IH(t), recovered human RH(t), respectively. The mosquito 
population is divided into three classes: susceptible mosquito Sv(t), 
exposed mosquito Ev(t) and infectious mosquito Iv(t), respectively. 
The total populations of human and mosquito at any time are given 
by NH(t) = SH(t) + EH(t)+ IH(t)+ RH(t) and  Nv(t)=  Sv(t)+ Ev(t)+ Iv(t) 
respectively. The mosquito population does not include immune class 
as mosquitoes never recover from infection, that is, their infective 
period ends with their death due to their short life-cycle. Further, it 
is accepted that the recovered human have some level of immunity to 
the disease and do not get clinically ill, but still harbor low levels of 
parasite in their blood streams which are transmitted to a susceptible 
mosquitoes during bites [9]. The mathematical differential equations 
of the dynamics of the malaria model as proposed by Pariyaporn et 
al [9] are:

vH
H H H v H H H H

H

IdS R S S
dt N

π ρ σ β µ= + − −

( )vH
v H H H H H

H

IdE S E
dt N

σ β ν µ= − +

( )H
H H H H H H

dI E I
dt

ν γ µ δ= − + +

( )H
H H H H H

dR I R
dt

γ ρ µ= − +  (1)

V V H VH H
V V V V V

H

dS I R S S
dt N

β βπ σ µ
 +

= − − 
 

( )V V H VH H
V V V V

H

dE I R S E
dt N ν

β βσ ν µ
 +

= − + 
 

1 3V V
dI E I I
dt
ν

ν ν νν µ δ ω= − −

The model assumed that people enter the susceptible class either 
through birth or immigration at a recruitment rate v

v H
H

I
N

σ β . When an 
infectious mosquito bites a susceptible human, there is some finite 
probability that the malaria parasite will be passed on to the human 
at the rate of v

v H
H

I
N

σ β , and the person will move to the exposed class. 
Individuals from the exposed class enter the infectious class at a rate,  
that is the reciprocal of the duration of the latent period. Recovered 
infectious humans move to the recovery class at a rate and die from 
the infection at a rate. It is assumed that recovered individuals have 
temporary immunity that can be lost and are again susceptible to 
re infection at a rate Hρ . All human classes leave the population 
through the same natural death rate Hµ . The infectious human 
leaves the population at a per capita disease-induced death rate. For 
the mosquito population, susceptible mosquitoes are recruited by 
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birth at a constant rate, independent of the actual number of adult 
mosquitoes. This assumption reflects reality, since only a fraction of a 
large reservoir of eggs and larvae matures to the adult stage, and this 
process does not depend directly on the size of the adult mosquito 
population. All mosquito populations die due to their finite life span 
at the same rate of. Susceptible mosquitoes are infected by biting 
the infectious human and recovered human at the infection rate 

V H VH H
V

H

I R
N

β βσ
 +
 
 

. Susceptible mosquitoes which are infected move to 

the exposed mosquito class and progress to the infectious mosquito 
class at a rate νν .

Optimal Control Strategies
In this section, the state system (1) is modified to assess the 

impact of some control strategies: prevention, treatment and 
application of insecticide spray on vector. In the human population, 
the associated force of infection is reduced by a factor of (1 − 1ω (t) 
) where 1ω (t) represents the use of preventive control of sleeping 
under treated mosquito net to prevent direct contact and bite from 
infected mosquito. 

2 ( )tω represents an application of insecticide 
spray on the bleeding grounds of the vector. It is undeniable fact that 
mosquito bleeds and flourish under a favorable climate conditions 
such as rainy seasons and hot climatic conditions [23]. Therefore, 
strenuous effort is required in application of insecticide at the 
bleeding fields of the vector at these times. Thus, the reproduction 
rate of the mosquito population is reduced by a factor of (1 −

2 ( )tω
). The control function 3 ( )tω measures the rate at which infected 
individuals are treated at each time with malaria drugs for the 
control of the disease. We assume that 

3 HIω  individuals at any time 
(t) are removed from the infective class and added to the removed 
class. Further, we assume that the mortality rate of the vector 
population increases at a rate proportional 1 3( )I tνδ ω , where 

1δ> 0 is a constant rate. With regards to these underlying assumptions, 
an optimal control model for malaria disease is formulated that 
deduces prevention and treatment strategies with a minimal cost of 
implementation. Hence, the dynamics of system (1) are modified to 
the following system of equations:

1(1 ) vH
H H H v H H H H

H

IdS R S S
dt N

π ρ ω σ β µ= + − − −

1(1 ) ( )vH
v H H H H H

H

IdE S E
dt N

ω σ β ν µ= − − +

3( )H
H H H H H H

dI E I
dt

ν γ µ δ ω= − + + +

2(1 )V V H VH H
V V V V V

H

dS I R S S
dt N

β βπ ω σ µ
 +

= − − − 
   (2)

2(1 )V V H VH H
V V V V V

H

dS I R S S
dt N

β βπ ω σ µ
 +

= − − − 
 

2(1 ) ( )V V H VH H
V V V V

H

dE I R S E
dt N ν

β βω σ ν µ
 +

= − − + 
 

1 3V V
dI E I I
dt ν ν νν µ δ ω= − −

The objective of our work is to minimize the number of exposed 
and infected human individuals and the infected vector population 
and maximizes the total number of recovered individuals through 
preventive and treatment strategies, by employing feasible minimal 
time dependent control variables 1ω (𝑡), 2ω (𝑡) and 3ω (𝑡) 
respectively. 

With appropriate initial conditions, we consider an optimal 
control problem to minimize the objective functional given by 

( )2 2 2
1 2 3 1 2 3 1 1 2 2 3 3

1( , , )
2

f

o

t

H H
t

J w w w A E A I A I a w a w a w dtν
 = + + + + + 
 ∫

           

(3)

The quantities 𝐴1, 𝐴2 and 𝐴3 denote the weight constant of 

the exposed and infected human individuals and the infected 
vector population. Again, the quantities 𝑤1, 𝑤2 and 𝑤3 are weight 
constants for minimizing the number of exposed and infected human 
individuals and treatment of infected human individuals. Further, the 
terms 2

1 1
1
2

a w , 2
2 2

1
2

a w  and 2
3 3

1
2

a w
 
represent the cost associated with 

the minimizing the exposed and infected and treatment of infected 
human individuals. 

We choose a quadratic cost on the controls as a reflection of what 
is in other literature on epidemic control models [24]. Here, we seek 

an optimal control *
1w , *

2w , *
3w such that

* * *
1 2 3 1 2 3 1 2 3( , , ) min{ ( , , , , )}J w w w J w w w w w w W= ∈│  (4)

Where

1 2 3{ , , ( )iw w w w t│ is lebesgue measurable with, 0 ≤ ( )iw t ≤ 1, i=1,2,3}  (5)

Applying the Pontryagin’s Maximum Principle [25], the system 
(2) and (3) are converted into minimizing the Hamiltonian H, with 
respect to 𝑤1, 𝑤2 and 𝑤3 
Where

1 2 3 4 5 6 7 1 2 3

2 2 2
1 1 2 2 3 3 1 2

3 4 5 6 7

( , , , , , , , , , , , , , , , )
1 1 1
2 2 2

H H H H V V V H H

H H

v v vH H

H S E I R S E I W t A E A I A I
dS dEa w a w a w
dt dt

dS dE dIdI dR
dt dt dt dt dt

νλ λ λ λ λ λ λ

λ λ

λ λ λ λ λ

= + +

+ + + + +

+ + + + +

    (6)

Where iλ for 𝑖=1,………,7 are adjoint variables to be determined

Theorem 3.2: There exists an optimal control 𝑊∗ = ( *
1w , *

3w , *
3w

)∈𝑊 such that 

       * * *
1 2 3( , , )J w w w =

1 2 3( , , ) 1 2 3min ( , , )w w w W J w w w∈

subject to the control system (2) with initial conditions at 𝑡=0 . 
Proof: The existence of an optimal control is proved by employing 
the result in [26]. We note that the control and state variables 
are nonnegative values. Hence, the necessary convexity of the 
objective functional in 𝑤1, 𝑤2 and 𝑤3 are satisfied in this minimizing 
problem. The set of all control variables 

* * *
1 2 3( , , )w w w ∈𝑤 is also 

convex and closed by definition. The optimal system is bounded 
which determines the compactness needed for the existence of the 
optimal control. In addition, the integrand in the functional (3), 

( )2 2 2
1 2 3 1 1 2 2 3 3

1
2H HA E A I A I a w a w a wν+ + + + + is convex on the control 

set 𝑉. Also we can easily see that, there exist a constant 𝑉>1 and 
positive numbers 𝑉1, 𝑉2 such that 

2 2 2 2
1 2 3 1 1 2 3 2( , , ) ( )

p

J w w w V w w w V≥ + + −

because, the state variables are bounded, which completes the 
existence of an optimal control. In order to find the optimal solution, 
we apply Pontryagin’s Maximum Principle [27] as follows: 

Given that (𝑥,𝑤) is an optimal solution of an optimal control 
problem, then there exists a non trivial vector function ⋋=(⋋1, ⋋2, 
⋋3……….⋋𝑛) which satisfies the inequalities

( , , , )dx H t x w
dt

λ
λ

∂
=

∂
( , , , )0 H t x w

w
λ∂

=
∂

   (7)

' ( , , , )H t x w
x

λλ ∂
=

∂

Now we apply the necessary conditions to the Hamiltonian 𝐻 in (6). 

Theorem 3.3: Given that * * * * * * *( , , , , , , )H H H H V V VS E I R S E I  are optimal 

state solutions and * * *
1 2 3( , , )w w w  are associated optimal control 

variable for the optimal control problem (2)-(3), then , there exists 
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( )

{ }{ }( )

2
* *

* 2 1
1 2 3 1

1

2
* * *

6 5
2

2

2
* *

3 7 1 3 4

1 2

( )1 max min ,1 ,0
2

( )1 max min ,1 ,0
2

1 max min ( ) ,1 ,0
2

V V H V
H H v

H

V V H VH H V

H

V H

H H

S IH A E A I A I a
a N

I R S
a

a N

a I I

dS dE
dt dt

σ β λ λ

σ λ λ β β

λ δ λ λ

λ λ

   − = + + + +         

   − +     +          

+ − +

+ 3 4 5 6 7
V V VH H dS dE dIdI dR

dt dt dt dt dt
λ λ λ λ λ+ + + + +

 (14)

Solving numerically the above systems (13) and (14) gives the 
optimal control and the state.

Numerical examples and Discussion
In this section, we asses by means of numerical approach 

the effect of the control strategies on the transmission dynamics 
of malaria model. In order to achieve this, an iterative scheme is 
applied in solving the optimality system: state system and adjoint 
system. First, the state system of equations is solved with arbitrary 
guess for the controls over a simulated time frame by employing 
fourth order Runge-kutta scheme. As a result of the presence of 
boundary conditions, the adjoint system is solved by backwards 
fourth order Runge-kutta using the immediate iterative solutions of 
the state equation. The controls are updated by means of a convex 
combination of the previous controls as well as the characterizations 
(10), (11) and (12). The entire process is repeated until the values of 
the unknowns at the previous itearations are closed to the one at the 
current iteration.

The models assess the impact of control strategies on the 
transmission dynamics of Malaria disease with standard incidence 
rate. We investigate the effect of control strategies: prevention, 
treatment and application of insecticide spray on vector. This is done 
by numerically simulating the results of the dynamics of the disease 
to ascertain the stated scenarios of the strategies with parameter 
values HS (0) = 950000, HE (0) = 500000, HI (0) = 25000, HR (0) = 
10, VS (0) = 850000, VE (0) = 300000, VI (0) = 850000, a1 = 500, a2 
= 30, a3 = 10, A1 = 10, A2 = 10 and A3 = 10 from [9].

We further assumed that the weight factor, a1, associated with 
control w1 is greater than A1, A2, A3, a2 and a3 respectively, which are 
association of controls w2 and w3. This holds on the ground that the 
cost of implementing w1 includes, educational campaign programs in 
our public institutions such as schools, health centres and churches 
and media advertisements such as Television and radio educational 
campaigns to educate the public on the use of mosquito nets and the 
danger of exposing oneself to the mercy of the vector especially in 
pregnant women and infants. The cost of applying insecticide spray 
includes the insecticide cost and labour cost while treatment cost 
includes hospitalization, medical examination and the administration 
of malaria drugs in the infected persons.

The parameter values used in the simulations are estimated based 
on the malaria disease as provided in Table 1. Other parameters were 
chosen arbitrary for the purpose of the numerical simulation.

Figures 1-2 represent the number of susceptible Human ( HS  ) 
without and with controls for a1 = 500. In the absence of control, the 
susceptible (solid curve) decreases gradually in the first 30 days and 
then rises slowly until almost the susceptible population is preserved. 
This is due to the fact that in the absence of control, more susceptible 
become infected with the disease and lose their status of being 
susceptible, until medical treatment has been sought. In the presence 
of controls, the susceptible (dashed curve) decreases sharply in the 
first 15 days and then experience a swift rise in the population, until 
almost their population are maintained in about 100days of the 
infection. This is possible due to the negligence, errors and difficulty 
of implementing these control measures, thereby exposing more 
susceptible to the vector, causing a lot of casualties in the early stages 
of the pandemic. But when these measures are properly instituted 
and monitored, the situation is reversed, thereby experiencing a swift 
rise in the curve.

Similarly, figures 3-4 represent the number of Susceptible 
Mosquito ( VS ) without and with controls for a1 = 500. When there 
are no controls, the Susceptible Mosquito (solid curve) decreases 

adjoint variables ⋋𝑖, for 𝑖=1,2,……7, which satisfies 
( ) ( )

( )

'
1 1 1 1 2 2 6 52 2

6 5' 2 1
2 1 2 3 2 22 2

' 1 2 1
3 2 3 3 42
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H H

H V H
H H H H

H

E I R I R
I w S w
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λ λ σ β βλ σ βλ λ λ λ µ
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− +−
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− −
= − + + + + + − +
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5 6
2 2

' 2 1
4 1 1 42

5 6
2 2
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5 2 5
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6 6

)
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( )(1 ) ( )

( )
1

( )
(1 ) .............. (8)

(

H H H H v H H

H

H V H
H H H

H

H H H H H H V V

H

H H H
v

H

w

S S E I R S I R
w

N
I Sw

N

S E I R I R S
w

N
I R

w
N

ν ν ν ν ν ν ν

ν

ν ν ν

ν ν

λ λ β σ σ β β

λ λ σ βλ λ ρ λ ρ µ

λ λ β β β σ

λ λ β β
λ λ µ

λ λ λ

− + + + − +
+ −

−
= − − + + +

− + + + − +
−

− +
= − + >

= − 7 6

' 1 2
7 3 1 7 17 3

)
((1 ) ( )

V v

H H
v

H

V
SA w w

N
ν

λ µ
λ λ σ βλ λ µ λδ

+
−

= − + − + +

with transversality conditions (or boundary conditions),
( )i ftλ =0, i=1,2,…….,7        (9)

Furthermore, optimal control *
1w , *

3w , *
3w are given by

( )

{ }{ }

* *
* 2 1
1

1

* * *
6 5*

2
1

* * *
3 7 1 3 4

( )max min ,1 ,0

( )
max min ,1 ,0

max min ( ) ,1 ,0

V V H V

H

V H H H V

H

V H

S Iw
a N

I R S
w

a N

w I I

ν ν

σ β λ λ

σ λ λ β β

λ δ λ λ

  − =    
   
  − +   =    
     

= + −

(10)             

 (11)

(12)

Proof: The adjoint equations and the transversality conditions are 

determined by employing the Hamiltonian (6). By putting 𝑆𝐻= *
HS  

(𝑡), 𝐸𝐻= *
HE (𝑡) , 𝐼𝐻= *

HI (𝑡), 𝑅𝐻= *
HR (𝑡), 𝑆𝑉= *

VS (𝑡), 𝐸𝑉= *
VE (𝑡) and 

𝐼𝑉= *
VI  and differentiating the Hamiltonian with respect to 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 

𝑅𝐻, 𝑆𝑉, 𝐸𝑉 and 𝐼𝑉 respectively, we obtain (8). By solving the equations 
𝜕𝐻

1

0H
w
∂

=
∂

, 
2

0H
w
∂

=
∂

, 
3

0H
w
∂

=
∂

on the interior of the control set and 

using the optimality conditions and the property of the control space 
𝑊 , we obtain (10)-(12). Here, we empty the formulas (10)-(12) for 
𝑤∗= * * *

1 2 3( , , )w w w  the characteristic of the optimal control. The 
optimal control and the state are found by solving the optimality 
system, which consists of the state system (2), the adjoint (8), initial 
conditions at 𝑡=0, boundary conditions (9), and the characterization 
of the optimal control (10)-(12). To solve the optimality system, 
we use the initial and transversality conditions together with the 
characterization of the optimal control * * *

1 2 3( , , )w w w  given by 
(10)-(12). In addition, the second derivative of the Langragian with 
respect to 𝑤1, 𝑤2 and 𝑤3, respectively, are positive , which shows 
that the optimal problem is minimum at controls *

1w , *
2w  and *

3w . 
By substituting the values of *

1w , *
2w  and *

3w into the control 
system, we deduce the following system of equations.
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more people to be infected with the disease. However, in the presence 
of controls, the mosquito-human contact is minimized to some extent 
causing fewer people to be infected with the disease. Hence, there is 
a gradual decrease in the control susceptible mosquito curve (dashed 
curve) for the first 70 days until all the population gets infected with 
the disease.

Figures 5-6 represent the number of Exposed Human ( HE ) 
without and with controls for a1 = 500. Evidently, in the absence of 
control, the mosquito-human contact is not prevented. Hence, more 
people are expected to be exposed to the disease. This is shown in 
the sudden rise of the exposed curve without control (solid curve) in 
the early stages of 20 days and rises until almost all the population 
becomes exposed to the malaria disease. In the presence of controls, 
the mosquito-human contact is minimized drastically and people 
exposed to the disease eventually gain immunity through treatment 
or stronger immune system. Hence, the curve with control (dashed 
curve) experiences a gradual decrease for the first 60 days and 
decreases until all the exposed human leaves the population.

Further, Figures 7-8 represent the number of Exposed Mosquito 
( VE ) without and with controls for a1 = 500. In the absence of 
control, the exposed mosquito (solid curve) decreases gradually for 
the first 50 days until all the exposed population is infected and leaves 
no population of exposed. In the presence of controls, the exposed 
mosquito (dashed curve) decreases sharply, and their population 
are maintained until about 30 days where all their population 
degenerated due to being infected. This is due to the fact that in the 
presence of controls, the mosquito- human contact is minimized and 
this prevent more mosquitoes from getting exposed, and enhance the 
exposed mosquitoes from leaving the population at a faster rate.

Figures 9-10 represent the number of Infected Human ( HI ) 
without and with controls for a1 = 500. It can be ascertained that, in 
the absence of controls, the mosquito-human contact is not prevented. 
More humans would be infected when they are bitten by mosquitoes. 
This is reflected in the infected human curve (solid curve). In the 
absence of controls, the curve rises sharply in the first 10 days and 
rises until it maintains its level for the rest of the days, until almost 
all the population becomes infected. The presence of controls is 

Figure 1: The plot represents population of susceptible Human 
without control

Figure 2: The plot represents population of susceptible Human 
with control

Parameter Description Estimated value Reference

Hπ Recruitment rate of human 2.5 [9]

Hβ
Transmission probability from an infectious 

mosquito to a susceptible human 0.9 [9]

vβ
Transmission probability from an infectious

human to a susceptible mosquito 0.8 [9]

vHβ Transmission probability from a recovered
human to a susceptible mosquito 0.009 [9]

Hµ Natural death rate of human 0.00004 [9

Death rate from the disease 0.00354 [9]

Hγ Infectious human recovery rate 0.003704 [9]

HV Progression rate from EH to IH class 0.08333 [9]

vV Progression rate from EV to IV class 0.1 [9]

Hρ Rate of loss immunity in human 0.0146 [9]

vπ Recruitment rate of mosquitoes 500 [9]

vσ Biting rate of vector 2.9 [9]

vµ Natural death rate of vector 0.071 4 [9]

,H vα α The level at which the force of infection saturates (0,1) [9]

Hδ

Table 1: Description of variables and parameters of the Malaria Model (1)

sharply in the first 50 days until all the susceptible population are 
infected with the disease and leaves no population of susceptible. This 
is due to the fact that in the absence of any effective control measure, 
the mosquito-human contact is not prevented and the vector gets 
contact with human easily and feeds on his blood, thereby causing 
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Figure 5: The plot represents population of Exposed Human 
without control

Figure 9: The plot represents population of Infected Human 
without control

Figure 10: The plot represents population of Infected Human 
with control

Figure 6: The plot represents population of Exposed Human with 
control

Figure 7: The plot represents population of Exposed Mosquito 
without control

Figure 8: The plot represents population of Exposed Mosquito 
with control

Figure 3: The plot represents population of susceptible Mosquito 
without control

Figure 4: The plot represents population of susceptible Mosquito 
with control
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witnessed by an unprecedented rise in the infected human curve 
(dashed curve) which however reverse within 5 days and decreases 
sharply for the next 55 days where the infected human degenerates 
and leaves no population of infected. This suggests that the control 
strategies proposed were effective in minimizing the infected human 
population drastically.

Similarly, figures 11-12 represent the number of Infected 
Mosquito ( VI ) without and with controls for a1 = 500. In the absence 
of controls, the infected mosquito curve (solid curve) decreases 
slowly and the infected mosquitoes are not completely removed from 
the population at the end of 100 days.

However, with the introduction of controls, the infected mosquito 
curve (dashed curve) decreases sharply and the infected mosquitoes 
are wiped out from the population before 70 days. This insinuates 
that the control strategies proposed have been effective in minimizing 
the infected mosquito population drastically.

Figures 13-15, present an optimal control effort to educate the 
public of the use and importance of implementing the preventive 
control of sleeping under treated mosquito net to prevent direct 
contact and bite from infected mosquito, w1, the application of 
insecticide spray on the bleeding grounds of the vector, w2 and the 
rate at which infected human seeks medical treatment, w3. The plots 
indicates that the preventive control w1 was at the upper bound 
for = 72, before it decreases gradually to the lower bound at = 100, 
while the optimal preventive control w2 and treatment control 3 both 
maintain the maximum of 100% for = 99 before they drop sharply to 
the lower bound at = 100. This implies that minimum effort would 
be required for implementing the application of the insecticide spray 
on the bleeding grounds of the vector and treatment of the infected 
human than implementation of the preventive control of sleeping 
under mosquito net at a1 = 10000.

Similarly, figures 16-18 represent the control effort of 
implementing the preventive control of sleeping under treated 

Figure 13: The plot represents Optimal control w1 with a1=10000

Figure 14: The plot represents Optimal control w2 with a1=10000

Figure 15: The plot represents Optimal control w3 with a1=10000

Figure 11: The plot represents population of Infected Mosquito 
without control

Figure 12: The plot represents population of Infected Mosquito 
with control

mosquito net, w1, the application of insecticide spray, w2 and the 
rate at which infected human seeks medical treatment, w3. Here, 
we observed that the preventive control w1 was at the upper bound 
for = 98, dropping gradually to the lower bound at = 100, while the 
optimal preventive control w2 and treatment control 3 both maintain 
the maximum of 100% for = 99 before they drop sharply to the lower 
bound at = 100.

This suggests that minimal effort is required to implement the 
application of the insecticide spray on the bleeding grounds of the 
vector and treatment of the infected human than implementation of 
the preventive control of sleeping under mosquito net at a2 = 10000.
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Figure 18: The plot represents Optimal control w3 with a2=10000

Figure 19: The plot represents Optimal control w1 with a3=10000

Figure 20: The plot represents Optimal control w2 with a3=10000

Figure 21: The plot represents Optimal control w3 with a3=10000 

Finally, figures 19-21 represent the control effort of implementing 
the preventive control of sleeping under treated mosquito net, w1, 
the application of insecticide spray, w2 and the rate at which infected 
human seeks medical treatment, w3. Again, we see that the preventive 
control w1 was at the upper bound for = 98, dropping gradually to 
the lower bound at = 100, while the optimal preventive control w2 
and treatment control w3 both maintain the maximum of 100% for 
= 99 before they drop sharply to the lower bound at = 100. Hence, 
this suggests that minimal effort is required to implement the 
application of the insecticide spray on the bleeding grounds of the 
vector and treatment of the infected human than implementation of 
the preventive control of sleeping under mosquito net at a3 = 10000.

Conclusion

Figure 16: The plot represents Optimal control w1 with a2=10000

Figure 17: The plot represents Optimal control w2 with a2=10000

In this research article, an optimal control model of malaria 
disease with standard incidence rate was mathematically formulated 
to study the transmission dynamics of the disease in order to 
analyze the optimum control strategy that would be efficacious to be 
implemented to control the disease at a minimal cost. Three control 
functions were introduced to assess and measure empirically the 
efficacy of the use of sleeping under treated mosquito net to prevent 
direct contact and bite from infected mosquito, the application of 
insecticide spray on the bleeding grounds of the vector and the rate at 
which infected humans are treated at each time of the infection. The 
analysis proved that the optimal control strategies considered have 
an optimum and incomparable results on the reduction of the number 
of exposed and infected humans and mosquitoes as compared to the 
model without control as illustrated in the plot of figures for the 
models with and without controls. The numerical examples depict 
that despite the standard incidence rate, the proposed strategies are 
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effective in the reduction of the number of the exposed and infected 
human and mosquito of the disease.
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