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 In practical applications, accurate floor determination in multi-building/floor 

environments is particularly useful and plays an increasingly crucial role in 

the performance of location-based services. An accurate and robust building 

and floor detection can reduce the location search space and ameliorate the 

positioning and wayfinding accuracy. As an efficient solution, this paper 

proposes a floor identification method that exploits statistical properties of 

wireless access point propagated signals to exponent received signal strength 

(RSS) in the radio map. Then, using single-layer extreme learning machine-

weighted autoencoder (ELM-WAE) main feature extraction and dimensional 

reduction is implemented. Finally, ELM based classifier is trained over a new 

feature space to determine floor level. For the efficiency evaluation of our 

proposed model, we utilized three different datasets captured in the real 

scenarios. The evaluation result shows that the proposed model can achieve 

state-of-art performance and improve the accuracy of floor detection 

compared with multiple recent techniques. In this way, the floor level can be 

identified with 97.30%, 95.32%, and 96.39% on UJIIndoorLoc, Tampere, and 

UTSIndoorLoc datasets, respectively. 
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1. INTRODUCTION 

The popularity of smart mobile devices and their ubiquitous use in daily life especially indoors has 

provided many location-based services such as emergency relief and rescue, location-based information arrival, 

marketing, advertisement, indoor wayfinding, and navigation. Awareness of location is a key prerequisite for 

providing these services [1]–[3]. In outdoor environments, global navigation satellite systems (GNSS) provide 

precise geospatial positioning. Due to attenuation of the received signal strength (RSS) either caused by 

missing the line-of-sight (LOS) between the satellite and user and also multipath effects, this technology does 

not carry out well indoors. Location estimation in huge multi-floor/store buildings is more challenging. In these 

complex environments, accurate floor identification as a prerequisite for success in providing these services is 

crucial. For example, in an emergency condition (e.g., fire in a multi-floor building), accurate floor 

identification is more crucial for the first responders. Although many studies have leaned towards positioning 

in two dimensions on a single floor, accurate floor identification, as a key prerequisite for indoor positioning 

and success in providing these services remains a big challenge. Current floor identification approaches exploit 

three techniques including wireless local area network (WLAN) technologies, inertial/pressure-based systems, 

and hybrid methods. Among these, motion detection-based systems, which utilize the inertial measurement 
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unit (IMU) in addition to the magnetic field and/or the barometer are particularly susceptible to noise and suffer 

from deviation over time, and need to initialize and calibrate. Furthermore, they are not available on all devices; 

which limits the efficiency of these types of systems. Again, due to the ubiquitous deployment and cost-

effectiveness of Wi-Fi technology in indoor environments, Wi-Fi-fingerprinting-based location estimation has 

attracted much attention in recent years [4]–[6]. 

The fingerprinting method is conducted in two separate phases. At first, the entire indoor space is 

divided into grid points, and the center of each grid is considered as an individual reference point (RP). Then, 

in the offline phase thru an operation named the survey process, the received signal strength (RSS) fingerprints 

from detected media access control (MAC) addresses in each RP are collected. Then, the RSS along with 

location information of each fingerprint are saved in a dataset known as a radio map. During the online phase, 

a pattern matching/learning algorithm compares the current Wi-Fi measurement with the radio map database 

to capture the information of the target location. This mechanism is shown in Figure 1.  

 

 

 
 

Figure 1. Wi-Fi fingerprinting based positioning process 

 

 

In practice, the following challenges related to Wi-Fi fingerprinting schemes must be handled to 

achieve the desired efficiency. i) The multipath effect is caused by non-line-of-sight (NLOS) propagation due 

to the presence of static and mobile obstacles between transmitter and user which lead to unstable RSS readings. 

ii) Device heterogeneity in both online and offline phases has a significant impact on the accuracy of position 

identification. Recently, the trend towards deep learning has been increased. Due to less parameter tuning, 

automatic feature extraction, and good scalability in complex indoor environments, deep learning-based 

procedures can achieve desirable solutions for fingerprint-based positioning [7]–[10]. The positioning accuracy 

of these schemes depends on network depth, and by increasing the number of layers, their fine-tuning process 

can be time-consuming, and computational complexity increases. 

To address this problem, an extreme learning machine (ELM) and autoencoder-based ELM as a novel 

fast supervised and unsupervised learning technique, are employed in [11]. ELM does not need the iterative 

backpropagation process to fine-tune the weights, which leads to significant training time reduction and as an 

efficient classifier has been successfully exploited in many applications [12]–[14]. In this study, we use an 

extreme learning machine based weighted autoencoder to extract key features of Wi-Fi data. Then, to identify 

the floor, we train an extreme learning machine-based classifier. In addition, we have proposed a new scaling 

mechanism to overcome the effect of device heterogeneity on the received signal strength. The main 

contribution of this paper can be summarized: 

a. Due to the need to deal with the device diversity influence and signal fluctuations, we proposed a new 

representation of Wi-Fi data instead of raw data or normalized ones. We proposed the usage of novel 

access point adaptive exponential data for feature extraction and classifier training. 

b. We exploit single layer ELM-based weighted autoencoder for key feature extraction and input 

dimensional reduction. Then, we train ELM with new extracted features of the training set. 

c. We evaluate the performance of the proposed method on available three different datasets; UJIIndoorLoc 

(IPIN-2015 competition) [15], UTSIndoorLoc [16], and Tampere [17]. The training process in each 

testbed is done separately, and the experimental results demonstrate that our simple proposed scheme 

outperforms the state-of-the-art approaches on floor-level prediction. 
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The rest of this paper is organized: The relevant literature on floor positioning is described in  

section 2. The preliminaries including ELM theory and ELM-AE can be found in section 3. The proposed 

method is explained in section 4. The performance evaluation on different testbeds and experiment results are 

demonstrated in section 5, and finally, section 6 concludes this paper. 

 

 

2. RELATED WORKS 

With the growing popularity of smart mobile devices such as smartphones, tablets, and smartwatches, 

the need for cost-effective choices in providing location-based service is also felt more than ever [18]. Floor 

level determination using sensors embedded in a smart device can be divided into four categories: wireless 

signal based techniques (e.g. Wi-Fi and Bluetooth) [19]–[21], inertial measurement unit based systems (IMU, 

Magnetic Field) [22]–[24], barometric pressure-based methods and hybrid ones [25]–[27]. In this study, we 

focus on Wi-Fi based methods in multi-building/floor environments both for floor and coordinate estimation. 

The TrueStory system proposed in [19] consists of several weak learners. Floor level detection is 

implemented using Wi-Fi connectivity information and access point location. It utilizes a multilayer perceptron 

neural network to combine floor classifier learners. However, the results are not very satisfactory for complex 

environments. An access point and building-independent floor detection method, titled StoryTeller, is proposed 

in [20]. The authors harness generated images using Wi-Fi signals to train the convolutional neural network. 

Although this system is calibration-free and can be applied to any building, it does not have acceptable accuracy 

in complex environments with heterogeneous devices. 

ZeeFi system, based on deep learning, is proposed in [21]. After fingerprint construction using two 

smartphone measurements as GNSS, Wi-Fi, barometer, the light sensor in a crowdsourcing approach, they 

used two-layer stacked autoencoders with 500 and 200 units to determine the floor level based on only Wi-Fi 

measurements. ZeeFi system can achieve 98% accuracy in terms of floor identification with 3% better 

performance than k-nearest neighbors (KNN). However, there has been no significant improvement over the 

simple KNN method. In [23], a magnetic field fingerprint relative to smartphone attitude was utilized to 

determine the floor level in a multi-floor building. Due to improved accuracy of floor detection, they were able 

to employ three different classifiers to discriminate user’s walking activity on both stairs and plain surface 

based on gyroscope and accelerometer data. The foot-mounted IMU-based altitude estimation is studied in 

[24]. To recognize vertical changes including upstairs, downstairs, and horizontal movements, they exploited 

the adaptive network-based fuzzy inference system. 

In [25], a hybrid floor level detection method is proposed which utilizes Wi-Fi signals and a barometer 

on a floor. The authors exploit floor information obtained from Wi-Fi data to calibrate barometer pressure-

based floor detection. Another system that utilized barometric pressure data fused with Wi-Fi to determine the 

floor level is proposed in [26]. They used XGBoost to detect floor switching based on gyroscope and 

accelerometer signals. The authors combine the Wi-Fi-based floor positioning with the barometric pressure-

based floor positioning results using the hidden Markov model. The proposed framework in [27], involves two 

steps, namely RSS processing using Monte Carlo Bayesian inference followed by fusion of barometric pressure 

and Wi-Fi using a Kalman Filter technique. Although it has good accuracy, its computational complexity is 

relatively high. The authors in [28] utilized the hierarchical essence of the building/floor/coordinates prediction 

and obtained an accuracy of 91.18% for floor detection on the UJIIndoorLoc dataset. In [16], a classification-

based one-dimensional convolutional neural network (CNN) is incorporated with the feature extraction phase 

using stacked autoencoder (SAE). CNN based indoor localization system with WiFi fingerprints for multi-

building and multifloor localization (CNNLoc) was able to perform positioning tasks with 96.03% accuracy in 

terms of floor detection on UJIIndoorLoc dataset. 

The proposed system in [8] is based on a deep neural network. The extracted importance features 

using stacked denoising autoencoder is exploited to reconstruct radio map. They achieved 94.60% accuracy on 

the UJIIndoorLoc dataset. In [29], a semi-supervised deep extreme learning machine for two-dimensional 

positioning is proposed to ameliorate the classification accuracy with the help of unlabeled data. Due to the 

calculation of the Laplacian matrix, the time consumption of their method is high. The deep structure of ELM 

for two-dimensional positioning is proposed in [14]. They train our proposed network with normalized data 

after high level feature extraction by autoencoder. The constraint online sequential extreme learning machine 

(COSELM) classifier is proposed [30]. They exploited KNN and weighted sparse representation classification 

for Wi-Fi-based positioning, and 95.4% floor hit rate is obtained for floor detection on UJIIndoorLoc dataset. 

In [31], we utilized two layers ELM-sparse-autoencoder for feature extraction of raw RSS of radio map. We 

then exploited a single-layer ELM for floor classification. 

In this paper, we propose an approach capable of handling device heterogeneity and signal attenuation 

that improves floor detection accuracy using Wi-Fi signals in complex multi-floor environments. 
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3. PRELIMINARIES  

In this section, we will briefly review the ELM and ELM-AE theory. 
 

3.1.  ELM theory 

An ELM is a single hidden layer feedforward network (SLFN) where hidden-node parameters are 

adjusted randomly and the output weights are analytically determined. Given 𝑁𝑠 d-dimensional samples {𝑿} ∈
ℜ𝑁𝑠×𝑑 along with their targets {𝑻} ∈ ℜ𝑁𝑠×𝑑, ELM theory aims to minimize the error between training target 

and network output (𝑯𝜷), and obtains the smallest norm of output weights (𝜷) [11]:  

 

𝐿𝑒𝑙𝑚 = argmin
𝛽

𝐶

2
‖𝑯𝜷 − 𝑻‖2

2 +
1

2
‖𝜷‖2

2 , 𝑯 = [𝒉(𝒙𝟏), … , 𝒉(𝒙𝑁𝑠
)]

𝑻
∈ ℜ𝑁𝑠×𝑁ℎ 

𝒉(𝒙𝒊) = [𝒈(𝒙𝒊, 𝒘1, 𝑏1), … ,𝒈(𝒙𝑁ℎ
, 𝒘𝑁ℎ

, 𝑏𝑁ℎ
)]

𝑻
∈ ℜ1×𝑁ℎ , 𝜷 ∈ ℜ𝑁ℎ×𝑁𝑐 (1) 

 

Where the number of hidden neurons is denoted with 𝑁ℎ. The 𝒉(𝒙𝒊) indicates the output of hidden neurons for 

i-th input sample. 𝑤𝑗 , 𝑗 = 1: 𝑁ℎ is the input weight vector connecting the input layer to the j-th hidden neuron, 

𝑏𝑗is the bias weight of the j-th hidden neuron, and (.)g denotes the activation function of the hidden layer. 

Then, by setting the gradient of (1) -with respect to 𝜷- to zero, calculation of least square solution with smallest-

norm can be summarized: 
 

𝜷 = 𝑯†𝑻 = {
(𝑯𝑻𝑯 +

𝑰

𝐶
)−1 𝑯𝑻𝑻       𝑁𝑠 > 𝑁ℎ

𝑯𝑻(𝑯𝑯𝑻 +
𝑰

𝐶
)−1 𝑻       𝑁𝑠 < 𝑁ℎ

 (2) 

 

3.2.  ELM-AE 

The main goal of extreme learning machine-based auto-encoder (ELM-AE) is to learn new meaningful 

data representation. Different from ELM classifier, ELM-AE aims to minimize the reconstruction error of input 

data. In this way, the loss function of ELM-AE can be formulated [32]: 

 

𝐿𝑒𝑙𝑚−𝑎𝑒 = argmin
𝜷𝑎𝑒

1

2
‖𝑯𝜷𝑎𝑒 − 𝑿‖2

2 +
1

2
‖𝜷𝑎𝑒‖2

2 (3) 

 

The output weights aeβ  can be calculated similarly to the ELM method mentioned earlier,  

 

 

4. PROPOSED SYSTEM 

In this section, the proposed scheme is presented. We first explain the data preparation and proposed 

representation process. Then, we introduce the detailed model design for building/ floor detection 

simultaneously using ELM-WAE. 

 

4.1.  Access point adaptive data scaling 

Let us assume that the received signal strength of j-th access point in i-th reference point is indicated 

with 𝑟𝑠𝑠𝑖,𝑟
𝑗

. Our proposed data preparation process consists of three steps:  

a. Convert RSSs to non-negative values 

 

𝑟𝑠𝑠𝑖,𝑝
𝑗

= 𝑟𝑠𝑠𝑖,𝑟
𝑗

− 𝑚𝑖𝑛 (4) 

 

The lowest RSS value considering RSSs of radio map is indicated with 𝑚𝑖𝑛 parameter. 

b. Min-max normalization of non-negative RSSs of each reference point 

 

𝑟𝑠𝑠𝑖,𝑛
𝑗

=
𝑟𝑠𝑠𝑖,𝑝

𝑗
−min (𝑟𝑠𝑠𝑝

𝑗
)

max (𝑟𝑠𝑠𝑝
𝑗
)−min (𝑟𝑠𝑠𝑝

𝑗
)
 (5) 

 

c. Exponentiation of min-max normalized data according to the statistical characteristics of each access 

point in the radio map. 

 

𝑟𝑠𝑠𝑖
𝑗
= (𝑟𝑠𝑠𝑖,𝑛

𝑗
)𝛽𝑗 (6) 



                ISSN: 2302-9285 

Comput Sci Inf Technol, Vol. 3, No. 2, July 2022: 104-115 

108 

Following the result reported in [26], how Wi-Fi data is displayed affects the positioning accuracy 

rate. The authors indicated that powered representation of RSS (6) is more effective than linear and exponential 

representations. The 𝛼 is set to a constant value of 𝑒. 
 

𝑃𝑜𝑤𝑒𝑑𝑖 = (
𝑟𝑠𝑠𝑖,𝑝

𝑗
−𝑚𝑖𝑛

−𝑚𝑖𝑛
)𝛼 (7) 

 

In this study rather than a constant value, we set 𝛽𝑗 according to statistical characteristics of each 

access point. We formulate it based on the confidence interval rule: 

 

𝛽𝑗 = (𝜇𝑗 − 2𝜎𝑗 √𝑛𝑗⁄ )−1 (8) 

 

𝜇𝑗  , 𝜎𝑗  are average and standard deviation of RSS received from j-th access point in radio map, respectively. 

The number of times the j-th access point is heard is indicated by 𝑛𝑗. These parameters can be calculated from 

training data in the offline phase. As indicated in Table 1, as a consequence of this scaling, RSS values received 

from the access point with a higher confidence interval are less penalized. The classification results show that 

by using our proposed data representation, the RSS space can be better separated and described more 

realistically. 

 

 

Table 1. Transformed raw RSSs of five access points in accordance to (6) with 𝛽 = 1 and the proposed 

scaling function 

Raw (dBm) 𝛽 = 1 𝛽𝑗 = (𝜇𝑗 − 2𝜎𝑗 √𝑛𝑗⁄ )−1 𝜇𝑗 𝜎𝑗  𝑛𝑗 

-90 0.28 0.12 0.6 0.24 4750 
-61 0.93 0.88 

-77 0.67 0.51 

-90 0.31 0.06 0.43 0.2 4673 
-61 0.89 0.76 

-77 0.45 0.15 

-90 0.24 0.11 0.66 0.24 2073 
-60 0.95 0.92 

-77 0.65 0.51 

-90 0.24 0.02 0.39 0.20 1278 
-61 0.82 0.59 

-77 0.62 0.28 

-61 0.74 0.54 0.50 0.23 798 
-77 0.50 0.24 

-90 0.33 0.10 

 

 

4.2.  Classification using ELM-WAE 

Our proposed floor detection approach has two separate feature extraction and features classification 

phases. A detailed explanation of these two phases is provided:  

A. Feature encoding with ELM-WAE 

Let us assume that the radio map consists of 𝑁𝑠 samples and 𝑁𝑚𝑎𝑐detected access points. 𝚽, is 

represented by the following format where, 𝑟𝑠𝑠𝑖
𝑗
, represents the signal strength of the j-th access point on the 

i-th reference. 

 

𝚽 =

[
 
 
 
 𝑟𝑠𝑠1

1 𝑟𝑠𝑠1
2  …     𝑟𝑠𝑠1

𝑁𝑚𝑎𝑐

𝑟𝑠𝑠1
2 𝑟𝑠𝑠1

2     …  𝑟𝑠𝑠2
𝑁𝑚𝑎𝑐

⋮       ⋮    ⋱        ⋮ 

𝑟𝑠𝑠1
2 𝑟𝑠𝑠1

2      …  𝑟𝑠𝑠𝑁𝑠

𝑁𝑚𝑎𝑐
]
 
 
 
 

 (9) 

 

According to (3), the feature extraction with dimension reduction can be formulated: 

 

𝐿𝑎𝑒 = argmin
𝜷𝑎𝑒

𝑫

2
‖𝑯𝜷𝑎𝑒 − 𝚽‖2

2 +
𝑐𝑎𝑒

2
‖𝜷𝑎𝑒‖2

2 (10) 

 



Comput Sci Inf Technol  ISSN: 2722-3221  

 

Wi-Fi fingerprinting-based floor detection using adaptive scaling and … (Atefe Alitaleshi) 

109 

𝑫 and 𝑐𝑎𝑒  are balancing weights and regularization parameters, respectively. where 𝑫 is an 𝑁𝑠 × 𝑁𝑠 diagonal 

matrix and their diagonal elements are the weights assigned to the training samples [11]. In this study we use 

the following weights: 

𝑫 = 𝑑𝑖𝑎𝑔(𝐷𝑖𝑖),   𝐷𝑖𝑖 =
1

𝑁𝑓𝑖

 (11) 

 

Where 𝑁𝑓𝑖
is the number of samples belonging to the floor of i-th sample. The optimized output weight 

matrix, 𝜷𝑎𝑒 , is given by equating the derivative of the 𝐿𝑎𝑒  -with respect to 𝜷𝑎𝑒- to zero: 

 

𝜷𝑎𝑒 = (𝑯𝑻𝑫𝑯 + 𝑐𝑎𝑒𝐈)
−1 𝑯𝑻𝑫𝚽       𝑰 ∈ ℜ𝑁ℎ

𝑎𝑒×𝑁ℎ
𝑎𝑒

 (12) 

 

Then, according to [32] the new data representation can be obtained:  

 

𝚽𝑛𝑒𝑤 = 𝑔(𝚽𝜷𝒂𝒆
𝑻 )  ∈ ℜ𝑁𝑠×𝑁ℎ

𝑎𝑒
 (13) 

 

Where g(.) is the activation function. In this study that for simplicity, 𝚽𝑛𝑒𝑤 = 𝚽𝜷𝒂𝒆
𝑻  is used. The proposed 

process follows in Algorithm 1. 

 

Algorithm 1: ELM-WAE 
Input: Scaled radio map 𝚽 ∈ ℜ𝑁𝑠×𝑁𝑚𝑎𝑐, Target matrix  𝐓 ∈ ℜ𝑁𝑠×𝑁𝐶, and 𝑐𝑎𝑒 

Output: Optimal autoencoder weight, 𝜷𝒂𝒆
𝑻 ∈ ℜ𝑁𝑚𝑎𝑐×𝑁𝑎𝑒 and new data representation 𝚽𝑛𝑒𝑤 ∈ ℜ𝑁𝑠×𝑁𝑎𝑒  

Training Steps: 

1. Random assignment of input weights and biases {𝑾𝑟𝑛𝑑
𝑎𝑒 , 𝒃} 

2. Weight Determination (10) 𝑫 = 𝑑𝑖𝑎𝑔(𝐷𝑖𝑖) ∈ ℜ𝑁𝑠×𝑁𝑠 

3. Hidden layer output matrix calculation,  

[𝑯, . ] = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥( 𝚽 × {𝑾𝑟𝑛𝑑
𝑎𝑒 , 𝒃}, [0,1]) ∈ ℜ𝑁𝑠×𝑁𝑎𝑒 

4. Optimal output weight estimation   

𝜷𝑎𝑒 = (𝑯𝑻𝑫𝑯 + 𝑐𝑎𝑒𝐈)
−1 𝑯𝑻𝑫𝚽 

5. Calculation of new data 𝚽𝑛𝑒𝑤 = 𝚽𝜷𝒂𝒆
𝑻  

Test Step: 

Input: Scaled test data 𝑿𝑡𝑠𝑡 ∈ ℜ𝑁𝑡𝑠𝑡×𝑁𝑚𝑎𝑐, 𝜷𝑎𝑒 

Output: New test data 𝑿𝑛𝑒𝑤
𝑡𝑠𝑡  

1. Calculate new test representation 

𝑿𝑛𝑒𝑤
𝑡𝑠𝑡 = 𝑿𝑡𝑠𝑡 × 𝜷𝒂𝒆

𝑻 ∈ ℜ𝑁𝑡𝑠𝑡×𝑁𝑎𝑒 

𝑿𝑛𝑒𝑤
𝑡𝑠𝑡 =  𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥( . , 𝑿𝑛𝑒𝑤

𝑡𝑠𝑡  , . ) 

 

B. Supervised classification with ELM 

The ELM classifier is trained with training data with new feature space, 𝚽𝑛𝑒𝑤, similar to Section 3.1. 

Then, in the test phase, the class of each real-time RSS instance can be specified by applying an argmax(.) 

function to the classifier output. This process is summarized in Algorithm 2. The ELM-AE and ELM-classifier 

structures utilized in this study are depicted in Figure 2. 

 

 

 
 

Figure 2. ELM-AE and ELM-classifier structures utilized in this study (For simplicity, biases are ignored in 

this figure) 
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Algorithm 2: ELM-Classification 
Input:       𝚽𝑛𝑒𝑤 ∈ ℜ𝑁𝑠×𝑁𝑎𝑒, 𝑐𝑐𝑙𝑠 

Output:    𝜷𝑐𝑙𝑠 ∈ ℜ𝑁𝑎𝑒×𝑁𝐶 

Training Steps: 

1. Random assignment of weights and biases {𝑾𝑟𝑛𝑑
𝑐𝑙𝑠 , 𝒃} 

2.  Hidden layer output matrix calculation 

𝐻 = 𝑙𝑜𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝚽𝑛𝑒𝑤 × {𝑾𝑟𝑛𝑑
𝑐𝑙𝑠 , 𝒃}) 

3. Optimal output weight estimation, 𝜷𝑐𝑙𝑠, as (2) 

Test Step: 

Input: 𝑿𝑛𝑒𝑤
𝑡𝑠𝑡 ,  𝜷𝑐𝑙𝑠 

Output: Estimated label of 𝑿𝑛𝑒𝑤
𝑡𝑠𝑡  

1. Random Hidden layer output calculation  

𝐻 = 𝑙𝑜𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑿𝑛𝑒𝑤
𝑡𝑠𝑡 × {𝑾𝑟𝑛𝑑

𝑐𝑙𝑠 , 𝒃}) ∈ ℜ𝑁𝑡𝑠𝑡×𝑁𝑎𝑒 

2. Label determination 𝐿𝑎𝑏𝑙𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑯 × 𝜷𝑐𝑙𝑠) 

 

 

5. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the proposed floor detection method. At first, we 

describe our selected testbeds and parameters. Then, we evaluate the accuracy of our solution by comparing it 

with multiple approaches. 

 

5.1.  Data description and model adjustment 

We used three different datasets to evaluate the performance or our proposed model. The 

UJIIndoorLoc Wi-Fi fingerprinting dataset is collected in three 4-5 floor buildings from 933 reference points, 

and with different Android devices and users. The database is divided into two training and test parts, which 

are collected four months apart [15]. The introduced UTSIndoorLoc data set in [16], was collected in 1840 

locations on the 18-floor FEIT Building at Sydney University of Technology. The last used dataset, Tampere, 

is crowdsourced [17] collected from 4651 locations with 21 mobile devices in 5-floors of Tampere university 

(TU) building, Finland. The main features and details of these three datasets are compared in Table 2. 

 

 

Table 2. Three different dataset features (include of five separate buildings) 
Features UJIIndoorLoc Tampere UTS 

Building ID Building 0 Building 1 Building 2 Building 3 Building 4 

Number of floors 4 4 5 5 16 

Number of train RPs 259 265 409 697 1466 
Number of train samples 5249 5196 9492 697 9108 

Number of test RPs 536 307 268 3951 388 

Number of whole Aps 520 520 520 992 589 

 

 

In the proposed model generation, there are four tuning parameters, i.e., the number of hidden nodes 

of the classification layer, regularization parameters, and the number of hidden nodes of the autoencoder layer. 

We adjusted these parameters in a hierarchical process somewhat similar to [11]. 

First, assuming 𝑐𝑐𝑙𝑠 = 0.01 and regardless of the encoder layers, we compute the accuracy of the ELM 

classifier for the various number of neurons in the range of [100:50:400]. Table 3, shows the results of our 

experiments in three datasets. As a good trade-off between accuracy and computational cost, we choose 300 

and 200 values for (UJIIndoorLoc, UTS), and TU datasets. Since the value of the parameter, 𝑐𝑎𝑒 , does not have 

much effect in our experiments, we set it to 0.001, where reaches an acceptable amount of accuracy. Then, to 

adjust the number of autoencoder neurons, simultaneously with the change of the classification parameter in 

the range of 0.1 to 10-7, we change the number of neurons in the range of [20:10:100], evaluating the model's 

accuracy. The accuracy of obtained models on the UJIIndoorLoc training dataset is reported in Table 4. 

According to the obtained results, 60 neurons with a generalization parameter equal to 10-6 is a desirable trade-

off between accuracy and computational cost. This process was performed in two other datasets and the 

adjusted parameters are summarized in Table 5. In the UJIIndoorLoc consist of the three-building dataset with 

respective (4, 4, 5) floors, each row of the target matrix, T, that indicates sample label, is adjusted as a 13-

dimensional vector consisting of {1, -1}. This way, for example, if the seventh element is equal to one, it means 

that the sample belongs to the third floor of the second building. 
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Table 3. Comparison of training accuracy of ELM in terms of different neuron numbers (𝑐𝑐𝑙𝑠 = 0.01) 

Neuron Numbers 
Accuracy (%) 

UJIIndoorLoc Tampere UTSIndoorLoc 

100 86.31 85.06 89.47 
150 93.46 91.81 96.76 

200 96.86 95.67 97.27 
300 97.62 95.91 98.89 

350 98.17 95.96 99.59 

400 98.38 96.70 99.48 

 

 

Table 4. Comparison of training accuracy of the proposed model in terms of different neuron numbers along 

with the change of 𝑐𝑐𝑙𝑠 on UJIIndoorLoc training dataset, (𝑐𝑎𝑒 = 0.001) 

Autoencoder Neuron Numbers 

Accuracy (%) 

Classifier regularization parameter, 𝑐𝑐𝑙𝑠 

10-1 10-2 10-3 10-4 10-5 10-6 10-7 

20 74.19 

86.47 
90.79 

92.69 

95.21 
96.22 

96.51 

97.28 
97.42 

75.52 

86.71 
90.99 

93.29 

95.53 
96.63 

97.08 

97.48 
97.57 

77.31 

87.70 
91.88 

94.70 

96.81 
97.36 

97.71 

97.94 
98.05 

85.67    

91.16 
95.57    

97.48 

98.07   
98.43 

98.56 

98.77 
98.88 

92.180 

96.24 
98.06 

98.64 

98.90 
99.09 

99.14 

99.15 
99.21 

97.34 

98.50 
98.76 

98.86 

99.25 
99.19 

99.17 

99.23 
99.29 

98.21 

98.96 
99.01 

99.06 

99.22 
99.24 

99.17 

99.24 
99.29 

30 

40 
50 

60 

70 
80 

90 

100 

 

 

Table 5. Training parameters of autoencoder and classifier tuned in three datasets 
Paremeters UJIIndoorLoc Tampere UTSIndoorLoc 

Number of autoencoders hidden neurons 60 90 90 

Number of Classifier hidden neurons 300 200 300 

Autoencoder regularization parameter, 𝑐𝑎𝑒 10-3 10-3 10-3 

Classifier regularization parameter, 𝑐𝑐𝑙𝑠 10-6 10-5 10-6 

Activation function sigmoid sigmoid sigmoid 

 

 

5.2.  Classification performance 

We first evaluate the impact of the new data scaling on ELM performance without autoencoder layer 

applying. We evaluated the classification performance separately on the three buildings in the UJIIndoorLoc 

dataset increasing the number of hidden layer neurons from 100 to 2,000. The optimal regularization parameter 

is set to 0.001. Simulation results for two proposed scales and 𝛽 = 1 (equal with min-max normalization) are 

illustrated in Figure 3. The simulation results confirm that the representation of the RSS data in the proposed 

method is independent of the hidden neuron numbers which improve classification accuracy. The highest 

accuracy is related to the use of the proposed scale, per 1000, 900, 500, and 2000 neurons, with 95.76%, 

96.26%, 94.11% accuracy respectively on building 2, building 1, and building 0 (2.8%, 4.03%, and 7.016% 

better than 𝛽 = 1 in same neurons). 

The efficiency of our proposed ELM-WAE-based approach on the three testbeds and for different 

scales is compared in Table 6. We utilized 𝛽 = 1, 𝑒 , proposed, and powed scale (7) proposed in [33]. The 

results show that the proposed ELM-WAE-based classification with a new scale can achieve 98.32, 97.04, 

95.89, 95.32, and 96.39 percentage accuracy in floor localization on five buildings, respectively that are better 

than other scale performances. 

The confusion matrix of testing data in the UJIIndoorloc dataset is presented in Table 7. As shown, 

all three buildings are identified without error and only one case has a two-floor error (in the third building) 

and the rest have a single-floor detection error. We evaluate the performance of the proposed floor/building 

detection scheme by comparing it with the state-of-the-art methods on the three mentioned datasets. 

 
 

Table 6. Comparison of floor success rate on five buildings in terms of different scales-based ELM-WAE 
Scaling factor Floor hit rate (%) 

Building 0 Building 1 Building 2 Building 3 Building 4 

𝛽 = 1 97.01 89.18 94.03 94.51 94.33 

𝛽 = 𝑒 97.76 94.13 95.52 94.43 94.07 

Powed (7) 98.13 95.11 95.14 94.46 94.85 

𝛽

= (𝜇𝑗 − 2𝜎𝑗 √𝑛𝑗⁄ )−1 
98.32 97.05 95.89 95.32 96.39 
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(b) 

 

 
(c) 

 

Figure 3. Comparison of ELM accuracy based two proposed scale and 𝛽 = 1 on UJIIndoorloc in terms of 

neuron numbers (a) Building 0, (b) Building 1, and (c) Building 2 

 

 

Table 7. Confusion matrix (ELM-WAE) on UJIIndoorLoc test dataset 
  Building 0 Building 1 Building 2 

P
re

d
ic

te
d
 C

la
ss

 

 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F5 

F1 75 1 0 0 0 0 0 0 0 0 0 0 0 

F2 3 207 3 0 0 0 0 0 0 0 0 0 0 

F3 0 0 162 2 0 0 0 0 0 0 0 0 0 
F4 0 0 0 83 0 0 0 0 0 0 0 0 0 

F1 0 0 0 0 24 0 0 0 0 0 0 0 0 

F2 0 0 0 0 5 142 2 0 0 0 0 0 0 
F3 0 0 0 0 0 1 85 1 0 0 0 0 0 

F4 0 0 0 0 0 0 0 46 0 0 0 0 0 

F1 0 0 0 0 0 0 0 0 22 0 0 0 0 
F2 0 0 0 0 0 0 0 0 2 109 0 0 0 

F3 0 0 0 0 0 0 0 0 0 2 52 0 0 

F4 0 0 0 0 0 0 0 0 0 0 1 39 4 
F5 0 0 0 0 0 0 0 0 0 0 1 1 35 

Actual Class 

 

 

Although three different datasets have different feature spaces and targets, the optimal 

hyperparameters in different testbeds do not differ significantly, as shown in Table 5. To evaluate how each 

local optimal model performs on other datasets, we train the optimal model of each dataset on two other 

datasets. As shown in Table 8, accuracy although is not optimally global, but is not far from optimal results. 
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Table 8. Accuracy of a designed optimal model for each dataset when is applied to others for three datasets 

Dataset 

Accuracy (%) 

Number of Classes Number of Aps  Optimal hyperparameters: 𝑁𝑎𝑒 / 𝑁𝐶  / 𝑐𝑐𝑙𝑠 
60/300/10-6 90/200/10-5 90/300/10-6 

UJIIndoorLoc 97.30 * 95.94 96.12 13 520 
TU 94.66 95.32* 95.12 5 992 

UTS 95.36 95.88 96.39* 16 589 

The star sign indicates the optimal model belongs to the relevant database.  

 

 

The benchmark approaches and the comparison results are illustrated in Table 9 in terms of building 

and floor success rates. Our proposed approach and most of the compared methods achieve almost 100% 

accuracy in building prediction, showing that our proposed system can satisfyingly handle building 

classification. Meanwhile, the proposed method outperforms compared approaches with the highest floor 

success rate of 97.21%, 95.32% and, 96.39% on UJIIndoorLoc, Tampere, and, UTSIndoorLoc datasets, 

respectively. The values listed in this table are based on the results reported in the related papers, except for 

the following three methods which are based on our experimental results: ADELM [14], H-ELM [31], KNN, 

and ELM. In H-ELM, we set two layers of ELM-sparse-autoencoder with both 60 neurons, and 300 neurons 

set for the classification step. A dash, “- “, in Table 9 means the results are not mentioned in the relevant article. 

 

 

Table 9. Comparison of proposed method accuracy and state and the art methods on the same testbed 

Method 
Dataset 

UJIIndoorLoc Tampere UTSIndoorLoc 

Ref. Name Building hit rate Floor hit rate Floor hit rate Floor hit rate 
[30] AFARLS 100 95.41 94.76 - 

[28] ScalableDNN 99.82 91.27 - - 

[34] DeepL. 92 92 - - 
[35] Mosaic 98.65 93.86 - - 

[20] Storyteller - - 92 - 

[36] SIMO-DNN - - 94.13 - 

[16] CNNLoc 100 96.03 94.22 94.57 

[37] RTLS 100 94 - - 

[38] HF-RF 99 96 - - 
[8] RDL - 94.60 - - 

[14] ADELM 100 93.61 94.61 95.10 

[31] H-ELM  100 94.14 94.50 95.61 
- KNN (k=1) 100 91.26 90.26 - 

- ELM (𝛽 = 1) 99.91 91.53 88.8 90.97 

Proposed 

ELM 100 94.59 91.11 92.52 

ELM-WAE (𝛽 = 1) 100 93.97 94.51 94.33 

ELM-WAE* 100 97.30 95.32 96.39 

 

 

6. CONCLUSION 

This paper presents an effective method for floor/building identification in complex environments. 

This paper presents an effective method for floor/building identification in complex environments. The 

proposed building and floor detection methods in this study, consisting of three main steps; data preprocessing, 

feature extraction, and classification. In the first step, a new RSS scaling is proposed to deal with device 

heterogeneity and signal attenuation. In the second step, input dimension reduction and importance features 

extraction are implemented by ELM-WAE, and in the final step, floor level determination is carried out using 

ELM. The performance of the proposed building/floor identification is compared with state-of-the-art 

positioning methods based on three different available datasets. The experimental results demonstrate that our 

approach outperforms the existing techniques when is evaluated individually on UJIIndoorLoc, 

UTSIndoorLoc, and Tampere datasets by achieving an accuracy of 97.30%, 96.39%, and 95.32% respectively. 

In future work, we focus on using ensembles of our model to estimate the three-dimensional position, and how 

to achieve an optimal universal model exploiting transfer learning. 
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