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Scalable and Efficient Clustering for
Fingerprint-Based Positioning

Joaquín Torres-Sospedra , Darwin P. Quezada Gaibor , Jari Nurmi , Senior Member, IEEE,
Yevgeni Koucheryavy , Elena Simona Lohan , Senior Member, IEEE, and Joaquín Huerta

Abstract—Indoor positioning based on IEEE 802.11 wireless
LAN (Wi-Fi) fingerprinting needs a reference data set, also
known as a radio map, in order to match the incoming finger-
print in the operational phase with the most similar fingerprint
in the data set and then estimate the device position indoors.
Scalability problems may arise when the radio map is large, e.g.,
providing positioning in large geographical areas or involving
crowdsourced data collection. Some researchers divide the radio
map into smaller independent clusters, such that the search area
is reduced to less dense groups than the initial database with simi-
lar features. Thus, the computational load in the operational stage
is reduced both at the user devices and on servers. Nevertheless,
the clustering models are machine-learning algorithms without
specific domain knowledge on indoor positioning or signal propa-
gation. This work proposes several clustering variants to optimize
the coarse and fine-grained search and evaluates them over dif-
ferent clustering models and data sets. Moreover, we provide
guidelines to obtain efficient and accurate positioning depending
on the data set features. Finally, we show that the proposed new
clustering variants reduce the execution time by half and the
positioning error by ≈ 7% with respect to fingerprinting with
the traditional clustering models.

Index Terms—k-means, Bluetooth low energy (BLE), received
signal strength (RSS), Wi-Fi, affinity propagation, clustering,
fingerprinting, indoor localization.

I. INTRODUCTION

NEW TECHNOLOGIES for indoor positioning have
emerged to provide Quality of Experience (QoE)

to the end-user by reducing the error in the position
estimation [1], covering large areas [2], and providing
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energy efficiency [3]. Thus, these new technologies (e.g.,
Ultrawideband, ZigBee, Li-Fi, and Augmented Reality) have
been used for positioning in universities, shopping malls, air-
ports [4], [5], [6], [7], [8], [9], and embedded in Internet of
Things (IoT) [10], [11], [12], [13] and wearable devices [14].
However, fingerprinting is a widely used technique despite its
limitations in accuracy and scalability [15], [16].

Fingerprinting is built on top of a basic principle, the
RSS values of a set of emitters—Wi-Fi access points (APs)
or BLE beacons—are representative of the location where
they were collected. It requires two stages to operate, the
offline stage and the online stage. In the offline phase, many
fingerprints are collected in the working area at different ref-
erence points, forming a radio map. In the online phase,
the operational fingerprint (whose location is not known) is
compared to all the reference fingerprints to estimate its posi-
tion. Due to its simplicity, it is also gaining relevance for
outdoor positioning in the IoT context using LoRaWAN or
SigFox [17], [18], [19], [20].

Generally, the scalability problems in fingerprinting arise
when the radio map contains thousands of fingerprints. The
matching algorithm may inefficiently compute the distance of
the operational fingerprint to all the reference samples [21].
This limitation has been addressed by means of data compres-
sion [22], integration of neighbor relative RSS and trajectory
estimation (historical data) [10], and clustering models [23].
Among them, k-Means clustering has been widely used in fin-
gerprinting to enhance accuracy and reduce search complexity
in the online phase [1], [24], [25].

Although clustering models are popular in fingerprint-
based positioning, they neither guarantee an equal distribution
between the clusters [26], [27] nor consider the RF signal
propagation features. In certain cases, the majority of sam-
ples may end up in a few clusters, generating oversized
clusters, and thus, increasing the search time in the online
phase. We proposed three variants for k-Means clustering that
improved distribution between the clusters, reduced the com-
putational load in the online phase of Wi-Fi fingerprinting,
and provided similar accuracy as traditional k-Means [28]. The
current work extends the analysis from [28] to seven cluster-
ing models and proposes four new variants to further improve
efficiency while keeping similar performance, being the main
contributions.

1) An extended analysis of three variants, namely, Variants
I–III introduced in [28], with multiple clustering
methods.
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2) Four new variants for fingerprint-based clustering,
Variants IV–VII, tested in traditional clustering models.

3) A comprehensive comparison between the seven variants
on 25 multitechnology (BLE and Wi-Fi) data sets with
recommendations on how to choose a certain variant and
clustering model among the available ones.

4) Final validation over a huge LoRaWAN data set.
5) Application guidelines based on the data set features to

obtain effective and efficient fingerprinting.

II. RELATED WORK

Clustering has been widely used to group fingerprints with
similar characteristics into classes [23], [29]. It helps to
reduce the search area in the online phase of fingerprinting
and the energy consumption in resource-constrained devices
(i.e., devices with low energy, storage, and computational
resources). However, not all the clustering models behave sim-
ilarly and their performance depends on the area where the
indoor positioning system (IPS) operates.

One of the most common clustering methods is k-Means,
which has been applied in several studies in order to divide
the data set into subdatasets, reduce the computational load
in the user’s device, and improve positioning accuracy. For
instance, Anuwatkun et al. [29] combined k-Means cluster-
ing with the difference of signal strength (DIFF) method to
improve the search time and accuracy in the position estima-
tion. Lee and Lee [30] developed an algorithm to find the best
k for k-Means, having the main objective to build an accurate
radio map and provide a better position estimation.

Other clustering algorithms based on k-Means have also
been tested for indoor positioning, as is the case of fuzzy
c-means (FCM). Nevertheless, in contrast with k-Means,
in FCM, one sample can belong to more than one clus-
ter [31], [32], giving rise to overlapped zones or clusters.
Moreover, FCM is not only used for its capability of dividing
the data sets into fuzzy clusters, but also for its capability to
model uncertainty in data [32]. For instance, Endo et al. [33]
introduced a new clustering algorithm based on FCM for
uncertain data. In this case, the authors used a quadratic regu-
larization of penalty vectors to reduce the uncertainty in data
and provide a better distribution of samples. It is essential
to highlight that the performance of k-Means and FCM may
vary according to the data set where they are applied and the
proposed modifications.

Similarly, affinity propagation clustering (APC) has been
applied to Wi-Fi fingerprinting radio maps, in order to divide
the data set into multiple clusters. For example, Li et al. [34]
proposed a two-level positioning algorithm, which uses
APC to split the radio map into several subsets. However,
Li et al. [34] used the Shepard similarity instead of the
Euclidean distance to form the clusters. Unlike the Euclidean
distance, Shepard similarity satisfies the logarithmic relation-
ship between RSS and the distance, allowing a better compu-
tation of the similarity between fingerprints. Likewise, APC
is applied for real-time positioning applications, according to
the analysis done by [35] where the authors also determined
that APC has a better performance than traditional clustering

algorithms with less number of features. Additionally, some
authors have proposed some modifications to this algorithm,
testing different metrics in order to robustness of the algo-
rithm [36]. e.g., Caso et al. [36] provided a novel mixed
similarity metric, which improved the performance of APC
in terms of computational time and positioning accuracy.

The k-Medoids method is widely used, given its capabil-
ity to detect and exclude outliers [37]. For this reason, it is
used to divide the Wi-Fi fingerprinting data set, providing a
better data set partition, and a more accurate cluster centroid
selection [38] than k-Means.

Clustering models based on density-based spatial cluster-
ing of applications with noise (DBSCAN) are more robust to
noisy samples (outliers) present in radio maps than k-Means
or c-Means. For instance, Wang et al. [39] introduced two
new approaches to reduce the error in the position estimation
when the Wi-Fi fingerprinting technique is used. One of these
approaches is based on DBSCAN, namely, DBSCAN-KRF.
The proposed algorithm (DBSCAN-KRF), thus, was capa-
ble of removing outliers and detecting insensitive areas that
other algorithms cannot easily identify. Zhou et al. [40] used
DBSCAN to achieve a better position estimation, along with
F-test and T-test models.

In the literature, clustering has been mostly applied as a
mere black box that tries to solve a problem without knowl-
edge of signal propagation. In some works, authors have
successfully modified traditional clustering models in order to
introduce domain knowledge about signal propagation, such
as using RSS differences [29] or a better distance metric [34],
improving the accuracy as a result. Lin et al. [10] used the
neighbor relative RSS to build the fingerprint database, adopt-
ing a Markov-chain model to predict the trajectory, assist
positioning, and reduce energy consumption.

Instead of modifying a specific algorithm, using relative
measurements or integrating previous predictions, we propose
four new variants to better integrate the clusters generated by
any traditional clustering model in fingerprinting. These vari-
ants can reduce positioning errors and/or improve execution
time.

III. MATERIALS AND METHODS

A. Implemented Clustering Models for Fingerprinting

All the clustering models have in common one key input,
the radio map. The clustering models are usually unsuper-
vised learning methods that process a set of samples in order
to group them. In fingerprinting, this set of samples is the
radio map. As output, they may provide either a centroid per
cluster (a vector of mean/median RSS values); a represen-
tative per cluster (a single fingerprint that represents all the
fingerprints in that cluster); or the cluster index per reference
fingerprint. In the latter case, we computed the centroids for
all the clusters if the clustering model did not provide them.
Once the centroids or representatives are computed, the online
search for the nearest neighbors in fingerprinting can be done
in two stages: the first one is to select the most relevant cluster
(namely, coarse search); and the second stage is to select the
most relevant fingerprints within the winning cluster (namely,
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Fig. 1. Fingerprinting with clustering.

fine-grained search) to provide the position estimate. Fig. 1
provides an overview of fingerprinting with clustering, where
the process to generate the clusters is often seen as a black box
in the offline phase, i.e., the output of the clustering models
from Sections III-A1–III-A7. The main issues of clustering in
fingerprinting are shown in Section III-B.

In the figure, three main components are numbered 1–3.
Those are the modules where the clustering integration can
be improved, enhancing the efficiency of fingerprinting. The
modifications introduced in [28] (Variants I–III) are described
in Section III-D, whereas the four new modifications (Variants
IV–VII) are introduced in Section III-E.

1) k-Means: k-Means is an unsupervised algorithm devoted
to splitting the data sets into n nonoverlapping zones or classes,
which can be represented in terms of a Voronoi diagram. Due
to its simplicity, it has been widely used in multiple domains,
including indoor positioning and localization. The k-Means
method requires the number of clusters as an input parameter,
whereas it provides as output the cluster centroids and the clus-
ter indexes for all reference fingerprints. In this work, we use
the centroid initialization proposed in [41] and the Manhattan
distance as suggested in [15] as this approach is more robust,
reducing the variability in the evaluation metrics over different
runs.

2) k-Medoids: k-Medoids is a variant of k-Means, which
is more robust to noisy samples (outliers) [38], and uses
a representative fingerprint of the cluster (sample medoid)
instead of the centroid (averaged sample) [37]. Both, k-
Means and k-Medoids, have the same input and output
parameters.

3) Fuzzy c-Means: Fuzzy c-Means, or simply c-Means, is
another variant of k-Means. It introduces the concept of degree
of association, allowing one sample to belong to more than
one cluster [31]. As output, it also provides the matrix with
the degree of membership between samples and clusters.

4) APC: APC bases its functionality on the level of sim-
ilarity between fingerprints to form the clusters. In this case,
the samples share two messages, the first one to determine
whether a data point is suitable to be part of a cluster and the
second message to indicate how appropriate is a data point
as an examplar [42]. During this procedure, it is not required
to establish any specific parameter related to the number of

clusters. APC returns the cluster indexes and a representative
fingerprint as the centroid.

5) DBSCAN: In contrast to k-Means, DBSCAN splits the
data set into high-density and low-density classes, enabling
outliers detection. It requires two parameters, Eps and MinPts,
which determine the distance to form the neighborhood and the
minimum number of samples to form a cluster [43]. DBSCAN
only provides the cluster indexes as output.

6) Hierarchical Density-Based Spatial Clustering
of Applications With Noise (HDBSCAN): Hierarchical
density-based spatial clustering of applications with noise
(HDBSCAN) is a variation of DBSCAN capable of adapting
to clusters of different shapes and densities with only the
MinPts parameter.

7) Model-Based Clustering: This method is also known as
a mixture model as it combines different statistical models
(e.g., Gaussian or Markov Mixture models). It determines the
models and clusters based on the Bayesian information cri-
terion (BIC). As a result, it provides the cluster indexes and
other useful information [44], [45].

B. Common Issues of Clustering in Fingerprinting

In general, clustering models share the same objectives
and they are considered general-purpose algorithms. Thus,
we present some challenges that may affect their accuracy in
fingerprint-based problems.

1) The RSS values may indicate the distance between the
receiver and the emitter. However, the emitters’ coverage
area may not reach all the operational sites. In addition,
the receivers’ sensitivity depends on the device, hav-
ing different cut-off thresholds. When an emitter is not
detected, its RSS is filled with a default weak value,
which represents any large emitter–receiver distance,
a temporal interference or signal blockage, as well as
a hardware limitation (e.g., unable to scan the 5-GHz
band). Most of RSS values in the radio maps –97% in
UJIIndoorLoc [46] are missing data which should not
be used as geometric distance indicators.

2) The centroids usually correspond to the average or
median RSS values of all the fingerprints in a cluster,
which involves mixing real and arbitrary RSS values for
nondetected emitters. The resulting centroid might not
be representative for those APs/beacons that are close
to the receiver (thus, having a strong RSS) but, simul-
taneously, having intermittent detection at the receiver
side.

3) Averaging fingerprints may not be recommended when
they are at significantly different locations/orientations,
they are collected by different devices (with differ-
ent antenna gains) or when the noise component in
the signal propagation is high. Those measurable fea-
tures are not explicitly considered by any clustering
model.

4) Some clustering models do not provide centroids or
representatives, just cluster indexes for all reference
samples. In such a case, we have additionally computed
the centroids for each cluster.
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5) When searching for the most relevant centroid, the
coarse search computes the distance of the operational
fingerprint to all the centroids. This search may involve
unrelated centroids, being inefficient [21].

6) The number of clusters is a key parameter. In some mod-
els, the number of clusters must be explicitly set (e.g.,
k in k-Means) whereas in other models it is obtained by
the method itself (e.g., APC). Having a few clusters may
not significantly reduce the computational load, whereas
having a very large number of clusters may lead to a
heavy selection of the most appropriate cluster.

7) The clustering models do not ensure that the finger-
prints are equally distributed over the clusters, resulting
in clusters much larger than the others. That is, the exe-
cution time depends on the operational fingerprint. In
an ideal case, the clusters should be equally distributed,
ensuring a similar computational cost for all operational
fingerprints.

8) Splitting the whole radio map in disjoint subsets lim-
its the information available near the cluster boundaries.
As similar fingerprints may end up in different clus-
ters, the information available for estimating the position
will be limited to the fingerprints of the most relevant
cluster, especially, in those cases where the operational
fingerprint lies near the boundary between multiple
clusters.

The previous issues can be addressed by acting on the three
points highlighted in Fig. 1 by: 1) restricting the cluster search
to relevant centroids; 2) improving the selection of the closest
centroid(s); and 3) improving the selection of relevant finger-
prints within the cluster(s). However, those actions should also
be efficient. In the operational phase, any complex procedure
to select relevant centroids/fingerprints may have a computa-
tional cost similar to or higher than the traditional fingerprint
model without clustering. We introduce variants to the clus-
tering workflow which can be integrated into any clustering
model for fingerprinting, where the strongest AP is used as a
discriminator due to its linear cost.

C. Terminology

For the k-nearest neighbors (k-NNs) model, we use two
configurations: 1) simple configuration and 2) best configu-
ration (see [15], [28]). In the former case, the plain 1-NN
model is applied. In the latter, the k-NNs model with optimal
hyperparameters (k, similarity function between fingerprints
and data representation) is applied.

For those clustering models where the number of clusters
must be defined, we have used three values: 1) 25; 2) rfp1;
and 3) rfp2 (see [15], [28], [47]). rfp1 stands for the squared
root of the number of samples in the radio map, whereas rfp2
stands for the number of samples in the radio map divided
by 25.

Ideally, the samples should be equally distributed in the
clusters. However, we have realized that clusters are of het-
erogeneous sizes. We, thus, say that a cluster is oversized if it
has much more samples (factor depending on the variant) than
expected, being expected size defined as (nrfp/c). That is, the

number of samples in the radio map divided by the number
of clusters.

We say that a cluster is relevant to the AP i, if the cluster
has at least one relevant fingerprint to that AP. We define
as relevant fingerprints to the AP i, those samples where the
RSS value for AP i is among the strongest RSSs values in
the sample. That is, a cluster is relevant to AP i if it has at
least one reference fingerprint fp = (r1, . . . , rna) for which
|rmax − ri| ≤ ρ, where na is the number of detected APs, rmax
is the strongest RSS value of the reference fingerprint, and ρ is
a threshold. Finally, we define as operative APs the set of APs
that have, at least, one relevant cluster. This set is introduced
to ensure any operational fingerprint will find relevant clusters
to it.

As evaluation metrics, we use the positioning error ε and
the execution time τ . As we are working with a set of data
sets, we use the normalized metrics to the baseline (the plain
k-NNs with simple configuration) for each data set as done
in [47].

D. Previously Proposed Algorithms and Their Shortcomings

This section introduces the variants proposed in [28].
1) Variant I—Improved Coarse Search: The first variant is

devoted to only limiting the coarse search to those clusters that
are relevant to the strongest operative AP in the operational
fingerprint. This limits the first search to those clusters with
samples “near” the strongest operative AP (see Section III-C).

2) Variant II—Soft-Filtered Fine-Grained Search: Unlike
Variant I, Variant II not only limits the coarse search to rele-
vant clusters but also constrains the fine-grained search if the
cluster size exceeds its expected size.

A cluster is oversized if it is four times the expected
size, being the expected size defined as (nrfp/c) (see
Section III-C). In the fine-grained search, if the cluster is over-
sized (4 × (nrfp/c)), all fingerprints that do not contain a valid
RSS value for the strongest AP in the operational fingerprint
are ignored.

3) Variant III—Hard-Filtered Fine-Grained Search: This
variant is very similar to Variant II. However, the main dif-
ference between Variant II and III is the way the clusters are
post-processed for the fine-grained search.

In the fine-grained search, if the cluster is oversized, all the
samples that are not relevant (see Section III-C) are ignored.
That is, only relevant fingerprints are used in the second
search. In Variants I–III, the relevant clusters, before and after
post-processing if they were oversized, were precomputed for
all APs in the offline phase of fingerprinting, finding the map-
ping functions f1 and f2 for the coarse-search and fine-grained
search, respectively.

4) Variants I–III Assessment: An initial assessment of those
variants over the k-Means algorithm was performed in [28]
with 16 Wi-Fi data sets and using k-Means as the main clus-
tering model, showing that the proposed variants have a better
performance than the original model in terms of positioning
error and/or execution time. In this case, Variants II and III
with ρ = 3 provided the best tradeoff between normalized
positioning error and normalized execution time (see Fig. 2).
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Fig. 2. Excerpt of the results provided in [28]. The color indicates k and
configuration, and the shape indicates the variant.

Fig. 3. Histograms of the number of cluster’s centroid comparisons, finger-
print comparisons, and cluster size ratio with respect to equally distributed
clusters for traditional k-Means (k = rfp1) and with Variant II (ρ = 3) using
the experimental setup from [28]. In red are samples belonging to the last bin
and beyond (percentage of total samples indicated).

k-Means with the proposed variants (ρ = 3) provides
good general results in terms of normalized execution time
(τ̃3D) for both configurations. However, it performs signifi-
cantly worse than the baseline model for the best configuration
(ε̃3D = 0.74). Future work should envisage keeping low com-
putational costs while reaching the positioning accuracy of
the baseline model, especially, for the best configuration.
Additionally, the threshold for considering a cluster “over-
sized” was random and need to be explored.

E. Proposed New Algorithms to Enhance Fingerprinting

Before proposing the new variants, we analyze in Fig. 3
the traditional k-Means with k = rfp1 and the Variant II with
k = rfp1 and ρ = 3, as it was pointed as optimal in [28].

According to the results reported in [28] (see Fig. 3), the
coarse search in the original k-Means with k = rfp1 involved
more than 150 distance computations in the largest data set,
being above 50 in moderate-size data sets. With the sug-
gested variant, the coarse search was below 20 in 95% of
cases, which is a significant improvement with respect to

the traditional k-Means. In terms of fine-grained search, the
traditional k-Means clustering required more than 200 finger-
print comparisons in the fine-grained search in 15% of cases,
whereas with the proposed variant it is reduced to just 5%.
The presence of very large clusters was successfully mitigated
with Variants II–III and most of the clusters are around their
expected size. Despite this improvement, the cluster size was
two times higher than expected in 10% of cases and contained
less than half of the expected samples in 12% of cases. The
applied variants reduced both, execution time and positioning
error, with respect to traditional k-Means.

The 10.8% of operational fingerprints in [28] belong to an
over-sized cluster. However, more than half of the cases belong
to clusters above the expected size, suggesting that we should
have defined more conservative rules about oversized clusters.

Given those results, we explore new variants with two objec-
tives, ensuring an upper bound limit in the absolute execution
time and reaching the performance provided by the baseline
without clustering.

1) Variant IV—Soft-Filtered Fine-Grained Search in n
Clusters: Variant IV is built on top of Variant II with a
few minor changes that may improve efficiency and accu-
racy. As the variants we introduced in [28], it requires
extracting the strongest operative AP of the operational
fingerprint.

In the offline phase, Variant IV finds a function f1 that maps
each AP to the set of clusters that are relevant for it, storing
all the mappings. A cluster is said to be relevant for the ith AP
if the cluster has at least one fingerprint where AP i is among
the strongest RSSs in the sample, as defined in Section III-C.
Variant IV also finds a function f2 that maps each AP and each
cluster to the fingerprints that will be used in the fine-grained
search. If the cluster is not oversized, all the fingerprints within
the cluster will be used. If the cluster is oversized, only the
fingerprints that contain a valid RSS value for that AP will be
used. In Variant IV, a cluster is considered over sized if it has
more than (nrfp/c) samples, being nrfp the number of samples
in the radio map and c the number of clusters. That is, it is
oversized if it has more samples than expected in an equally
distributed clustering.

In the online phase, the coarse search consists in computing
the distance between the relevant centroids and the operational
fingerprint (step 1 in Fig. 1). The strongest operative AP in
the operational fingerprint is used to select the relevant cen-
troids. Then, we select the n clusters whose centroids reported
the lowest distance to the operational fingerprint (step 2 in
Fig. 1). Finally, the fine-grained search is done over the fin-
gerprints belonging to the n selected clusters (step 3 in Fig. 1).
If the clusters are oversized, all fingerprints that do not con-
tain a valid RSS value for the strongest operative AP in the
operational fingerprint are ignored.

The procedure to select the relevant clusters and fingerprints
in Variant IV, f1 (coarse), and f2 (fine-grained) mappings, is
very fast as getting the strongest AP is O(na) and the threshold
for the oversized cluster is small. Given the RSS variability,
an alternative would be to look at the set of common [21] or
strongest APs [48]. However, these alternatives would reduce
the efficiency as more distance calculations are needed (more
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TABLE I
MAIN FEATURES OF THE SELECTED DATABASES AND RESULTS USING THE 1-NN MODEL AND THE k-NNS WITH OPTIMAL HYPERPARAMETERS

APs involved) and the computational cost of sorting APs in
fingerprints is O(na · log na).

This variant requires two parameters, ρ and n. The for-
mer controls when a fingerprint is relevant to an AP, being
ρ = 0 the most strict but also the most efficient in terms
of computational time. The latter controls how many clus-
ters are included in the fine-grained search. The larger n, the
more clusters are involved and the higher the computational
cost.

2) Variant V—Hard-Filtered Fine-Grained Search in n
Clusters: Variant V applies the same steps as Variant IV, but
has a more restrictive f2 mapping equation.

The only difference with respect to Variant IV is in the fine-
grained search. Suppose a cluster is oversized in Variant IV.
In this case, all the fingerprints in that cluster that are not
relevant for the strongest AP in the operational fingerprint (as
defined in Section III-C) are ignored, and therefore, not used
in the fine-grained search.

3) Variant VI—Soft-Filtered Fine-Grained Search With
O(1): Despite the efforts introduced in Variants I–V, none of
them can guarantee a constant computational cost for any oper-
ational fingerprint, as some clusters may be much larger than
others. Variant VI limits the centroids distance computations
to n and the fingerprint distance computations to m, ensuring
a cost of O(1) across all data sets.

In the offline phase, the number of relevant fingerprints (see
Section III-C) is computed for each AP and each cluster. For
a particular AP, its f1 mapping function includes only the top
n clusters. That is, those clusters with the highest number
of relevant fingerprints within. Clusters without any relevant
fingerprint are ignored, ensuring that the coarse search will
mostly consist of n distance computations.

The f2 mapping function considers all fingerprints of the
cluster if it is not oversized. If the cluster is oversized, only m
random relevant fingerprints from all fingerprints that contain a
valid RSS value for the strongest AP in the operational finger-
print are included in f2. In Variant VI, a cluster is considered
oversized if it has more than m samples.

Variant VI requires three parameters, ρ, n, and m. ρ controls
when a fingerprint is relevant to an AP as in the previous vari-
ants, whereas n and m limit the number of distance calculations
in the coarse and fine-grained searches.

4) Variant VII—Hard-Filtered Fine-Grained Search With
O(1): Variant VII applies the same steps as Variant VI with
a more restrictive f2 mapping function in the offline stage.

The only difference with respect to Variant VI is in the fine-
grained search. If the cluster contains more than m fingerprints,
just m random relevant fingerprints for the strongest AP in the
operational fingerprint are selected.

F. Wi-Fi and BLE Fingerprinting Data Sets

The fingerprint-based models are commonly assessed in a
controlled environment using a private data set. The new trends
approach the machine-learning assessment using multiple
diverse data sets. In this work, we have extended the 16 data
sets used in [15], [28], and [62] by adding four Wi-Fi and five
BLE data sets.

Table I introduces the main features of the 25 data sets
used in this work. The table includes the number of reference
and evaluation samples (|T |, |V|), the number of APs detected
(|A|), the number of reference locations (|P|), the number of
samples in each reference location (δfp), the size of the oper-
ational area, the number of floors considered in multistorey
locations, and the density of samples around every reference



3490 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 4, 15 FEBRUARY 2023

Fig. 4. Diagram with the distribution of the empirical experiments performed.

location (δT2D). This density indicates the average and standard
deviation of the number of fingerprints per m2 that are around
the reference points [15].

Additionally, Table I includes the results with the plain 1-
NN model (simple configuration) and an optimized k-NNs
model (best configuration) are provided. The results are nor-
malized for each data set to the baseline. In this article, the
baseline corresponds to the results obtained with k-NNs with
simple configuration. That is, using k = 1, the Manhattan
distance and positive data representation [28].

IV. EXPERIMENTS AND RESULTS

This section is devoted to describing the experiments done
and reporting the empirical results we have obtained. As
the number of clustering models, variants, and parameters
explodes, we distributed them in four rounds (see Fig. 4).
For Variants I–III the results with 16 data sets and k-Means
were published in [28] and updated for all 25 data sets in
Sections IV-B and IV-C. For Variants IV–VII, the results with
the 25 data sets and k-Means are shown in Sections IV-B
and IV-C. The feasibility of traditional clustering models is
analyzed in Section IV-D. The final results on the best clus-
tering models and best variants are reported in Section IV-E.

A. Experimental Setup

We have used the experimental setup defined in [28]. It has
the k-NNs algorithm as core IPS, two sets of hyperparameters
for k-NNs (simple configuration and best configuration), the
seven clustering models, 25 data sets and 10 execution runs.
The clusters have been randomly generated ensuring that the
implemented clustering models and all the proposed variants
share the same initialization for each data set and execution
run. The experiments were performed in a computer with Intel
Core i7-8700 CPU, 16 GB of RAM, and Octave 4.0.3.

The hyperparameters for k-NNs are the RSS representa-
tion, and the k value and the distance function for k-NNs.
Simple configuration stands for k = 1, Manhattan distance and
positive data representation. Best configuration stands for the
hyperparameter configuration that reported the lowest position-
ing error for a data set after evaluating 144 alternatives [15].

For k-Means, k-Medoids, and c-Means, we used three
different values (25, rfp1, and rfp2) for the number of gener-
ated clusters (k or c). With the first value, the model generates
25 clusters, whereas rfp1 and rfp2 refer to heuristics based on
the number of reference fingerprints in the radio map (see
Section III-C). In DBSCAN and HDBSCAN, we selected the
optimal values for MinPts and Eps.

The results collected for this article are the mean 3-D posi-
tioning error (ε3D) and the computational time (τDB) resulting
from processing all the operational fingerprints. As some clus-
tering models (e.g., k-Means) rely on random initialization, the
positioning error and the execution time might vary among
runs. Therefore, the empirical evaluation was repeated ten
times. We summarize the results by providing the averaged
values, ¯ε3D and ¯τDB, over the ten runs.

Due to the data set heterogeneity, we report the normal-
ized values, ˆε3D and ˆτDB, against the results from a baseline
method, the plain 1-nearest neighbor (NN) with the simple
configuration for each data set (see Table I). Then, the nor-
malized values are averaged across all data sets to obtain the
general normalized metrics,

∼
ε3D and

∼
τDB, as described in [47].

Thus, 25×10 absolute values are summarized into just 1 value
per evaluation metric.

B. First Assessment of Variants IV and V

First, we assess Variants IV and V. We have used all the
25 data sets and the clusters have been generated with k-Means
clustering. The experiments have been repeated ten times.
The results for Variants I–III also considers the 25 data sets,
updating the results published in [28].

As the number of variants and parameters (5ρ values and
3n values) is considerably high, we restrict the assessment to
visual analysis. Fig. 5 shows a scatter plot where the normal-
ized error is compared to the normalized execution time for
the extreme values ρ = 3 and ρ = 12 as the results reported
on [28] showed that the former provided the best tradeoff and
the latter provided the best general positioning accuracy. The
results of the original k-Means model as well as the results
for Variants I–III are also included for reference.

Several conclusions can be drawn from the scatter plots.
First, most of the variants improve the traditional k-Means
clustering in both dimensions (

∼
ε3D and

∼
τDB). However, the new

Variant IV provides worse execution times than the traditional
clustering when n = 3. As the value of n increases, the finger-
prints from more clusters are considered in the fine-grained
search, and therefore, the execution time increases. Variant V
shows a similar behavior, but the cluster post-processing is
more aggressive when it is over-sized than Variant IV. Thus,
it provides better execution time at the expense of a worse
positioning error.

For both new variants, n = 1 is providing similar results
to Variant II and Variant III, respectively. For n > 2 both
new variants provide excellent accuracy, but at the expense
of high computational costs. Balancing positioning error and
execution time, n = 2 seems to provide optimal results.

The election of the optimal value of ρ is a critical step in
Variants IV and V. The lower the threshold, the more strict
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Fig. 5. Excerpt of the results provided by Variants IV and V. The color
indicates k and configuration, and the shape indicates the variant.

the election of relevant fingerprints, and therefore, the lower
number of reference fingerprints analyzed in the fine-grained
search. However, execution time is decreased at the expense
of increasing the error. Applying the rule of the elbow, a ρ

value between 3 and 6 provides a good tradeoff between both
metrics,

∼
ε3D and

∼
τDB.

Comparing Variants IV and V, we cannot foresee a clear
winner. Variant IV is providing a better positioning error at
the expense of a higher execution time, whereas Variant V is
computationally better at the expense of a worse positioning
error. Considering all the possible combinations, Fig. 5 shows
that

∼
ε3D and

∼
τDB may have a strong negative correlation. We

confirmed our assumption with Pearson’s correlation for both
variants, which reported a correlation coefficient of −0.91 for
Variant IV and −0.87 for Variant V. Thus, we can conclude
that our new proposed variants provide a wide range of solu-
tions, from a computationally efficient one to an accurate one,
that improve the traditional k-Means clustering.

Finally, the new proposed Variants IV and V are reporting
the best overall alternatives. Variant V with n = 1 and ρ ≤ 3
would fit better for applications requiring low latency and a
good position estimation, whereas Variant IV with n = 3 and
ρ = 12 would fit better in those applications requiring the best
positioning without a significant delay. Variant V with n = 2
and ρ = 6 presents good balance between

∼
ε3D and

∼
τDB.

C. First Assessment of Variants VI and VII

Similarly, we assess Variants VI and VII using visual analy-
sis. Fig. 6 shows an scatter plot where

∼
ε3D is compared against∼

τDB for the ρ values 3 and 12. We set the values n = 5 and
m = 100 in the new variants. This means that the proposed

Fig. 6. Excerpt of the results provided by Variants VI and VII. The color
indicates k and configuration, and the shape indicates the variant.

variants restrict the coarse search to the five most relevant
clusters and the fine-grained search to 100 random relevant
reference fingerprints in both new variants, being the concept
of relevant fingerprint for the fine-grained search the main
difference between both.

At first sight, we can see that the new Variants VI and VII
are the worst-performing variants. Reducing the searches to 5
centroids and 100 fingerprints is not appropriate. In fact, the
normalized error for the new variants (k = rfp2 and simple
configuration) is over 1.15, and therefore, not plotted.

Regarding k, the number of clusters generated with
k-Means, the performance degrades as k increases having a
strong negative impact on the new Variants VI and VII. Only
k = 25 reports results in phase with the traditional k-Means
and Variants I-III, Variants VI and VII provide very poor posi-
tioning for k = rfp1 and k = rfp2. As the larger the value
of k the smaller the clusters, this finding would suggest that
restricting to just five relevant clusters is not enough or that
the relevance function is failing when k is large.

The relation between the accuracy and ρ is inverse in the
variants presenting an O(1). That makes sense as larger val-
ues of ρ result in larger clusters and less relevant reference
fingerprints are kept within the cluster. As the selection of the
m (m = 100) reference samples is random, the probability of
having a less related reference fingerprint in the reduced clus-
ter is much higher as ρ increases. The optimal parameter for
ρ is between 0 (strongly related fingerprints) and 3.

On the positive side, we can conclude that the results pro-
vided by Variants VI and VII are promising when the number
of clusters is reduced (i.e., k = 25) and ρ = 3. They pro-
vide slightly worse normalized positioning accuracy to the
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TABLE II
RESULTS REPORTED BY THE SELECTED CLUSTERING METHODS

traditional k-Means with k = rfp2 and similar normalized exe-
cution time than Variants II and III also with k = rfp2. Despite
that selected new variants do not stand out in the plot, they
are the only solutions reporting results in phase to traditional
k-Means ensuring a constant computational complexity in the
operational phase across all data sets. None of the operational
fingerprints involved more than 105 vector comparisons, which
was not guaranteed by Variants I–III.

Anyway, despite the low number of comparisons involved in
both searches, 100 + 5, the computational overload is not sig-
nificantly lower with respect to Variants II and III. This shows
that the computational cost of fingerprinting also depends
on other factors that are external to fingerprint matching.
Probably, we could have set slightly higher values for n and m,
still ensuring a constant upper bound in the number of com-
parisons (O(1)), and therefore, a good τ̃DB without decreasing
the accuracy.

D. Assessment of the Clustering Models

Before assessing the proposed variants in all the clustering
models, we evaluate them first on the original implementa-
tion as depicted in Fig. 1 without any modification/variant.
Table II shows the results for the baseline method as well as
the original clustering models applied to fingerprinting.

According to the results reported in Table II, k-Means,
k-Medoids, and APC are providing the best results consid-
ering the two metrics. For those models, the accuracy is
slightly worse than the baseline but the computational burden
is significantly reduced (around ten times lower).

The other clustering models, namely, fuzzy c-Means,
DBSCAN, HDBSCAN, and model-based, perform quite worse
than the baseline in terms of positioning error without pro-
viding an extraordinary reduction of the computational costs.
DBSCAN, HDBSCAN, and model-based did not successfully
cluster all data sets, providing a unique cluster in a few cases.
Moreover, DBSCAN and HDBSCAN labeled a significant
number of reference fingerprints as noise in some data sets.
Therefore, they are excluded in forthcoming analyses.

TABLE III
PROPOSED ALTERNATIVES TO IMPROVE CLUSTERING METHODS

E. Assessment of Selected Variants and Clustering Models

So far, the results have been presented for k-Means clus-
tering, which resulted in complex tables/plots. As the number
of parameters in the proposed variants adds complexity to the
comparison, we focus the final assessment on the five cases
detailed in Table III.

We selected those five configurations as they provide,
respectively, the best general positioning accuracy, the best
execution time, a good tradeoff between the two evalua-
tion metrics and a constant computational cost (O(1)) for
the fingerprints comparisons. For the last two selected vari-
ants, we considered that five relevant clusters and 100 rel-
evant fingerprints per cluster was reasonable. None of the
variants proposed in [28] (i.e., Variants I–III) has been
included, as the new variants have shown more promising
results.

1) Database Analysis: First, we independently analyze the
results for each data set. As they are of different nature (loca-
tion, collection strategy, and/or positioning technology) and
they report different ranges on the positioning error and exe-
cution time, we have used the normalized values with respect
to the baseline (the plain k-NNs algorithm) in the compari-
son shown in Fig. 7. In contrast to the previous section, the
reported normalized values and baselines stand for the par-
ticular data set, i.e., we use ˆε3D and ˆτDB as main evaluation
metrics for the comparisons.

According to Fig. 7, there are seven data sets (MAN1,
SAH1, SIM, TUT6, UTS, UJI1, and UJI2) where clustering
has considerably reduced the computational load. Clustering
methods can reach the positioning error of the baseline with
a significant execution time reduction of around 98%–99%,
except in TUT6. It is worth noticing that the data sets in this
first group have either a very large number of reference sam-
ples or they covered a large area (e.g., multistorey buildings)
with a moderate/high density (δT2D in Table I) of fingerprints.
Thus, the number of samples in the reduced radio maps is
diverse enough even when the clustering model is generating
a large number of clusters.

The second group is formed by DSI1, DSI2, LIB1, MAN2,
TUT2, TUT3, TUT7, UEXB1–3, and UJIB1. The proposed
alternatives present similar results to the first group but the
execution time reduction 85%–95%, despite being significant,
it was slightly lower than for the first group. Here, two data
sets, TUT7 and UJI2, present a high difference in the execution
time reduction of the proposed variants with respect to the
traditional clustering methods without any optimization. Also,
DSI2 presents interesting results as it is a clean version of
DSI1, but the accuracy in the best case is not as good as
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Fig. 7. Normalized results— ˆε3D and ˆτDB—for the 25 data sets. The color indicates the clustering method (including parameters) whereas the shape indicates
the clustering implementation (original method and the five selected variants). Results report a clear tradeoff between ˆε3D and ˆτDB.

expected. DSI2 uses the Probabilistic Log-Gaussian Distance
in the k-NNs model for the best configuration, so the clusters
might probably not correctly mimic the related fingerprints as

clustering models are usually based on Euclidean distance. We
need to integrate advanced vector distances representing better
the relation of two fingerprints.
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Fig. 8. General normalized results for the clustering models, including the original method and the proposed variants.

The third and last group involves data sets LIB2, MINT1,
TIE1, TUT1, TUT4, TUT5, and UJIB2 all of them adopting
a Log-Gaussian Distance in the best configuration. The com-
putational cost of that distance metric is considerably higher
(around ×3 times according to [15]) than traditional distance
functions (e.g., Euclidean or Manhattan). This makes the best
configuration computationally much more demanding in those
data sets. Clustering has partially solved the problem at the
expense of a worse positioning, probably because the clusters
are generated by means of traditional distance metrics instead
of the advanced ones. That is, the distance metrics used to
compute the dissimilarity between the operational fingerprints
and the centroids are not optimized for fingerprinting. Our
variants, especially, those related to better positioning accu-
racy, almost reach the positioning accuracy of the baseline for
the best configuration.

2) General Analysis: The general results, considering all
data sets, for the proposed variants in the four selected cluster-
ing models are provided in Fig. 8, zooming the most promising
ones in the bottom part of the figure.

First, k-Means and k-Medoids provide similar general
results, k-Means being slightly better. Second, c-Means is
providing good accuracy when combined with Variant IV
(ρ = 12, n = 3) and Variant V (ρ = 6, n = 2) despite the
bad results provided by the traditional version. However, the
positioning error still remains slightly high because of data set
TUT6. Third, APC has also been significantly improved with
Variant IV (ρ = 12, n = 3) and Variant V (ρ = 6, n = 2),
reaching very good results in both dimensions with the former.

Applying the rule of the elbow on the results reported in
Fig. 8, k-Means with Variant V (ρ = 6, n = 2) and APC
with Variant IV (ρ = 12, n = 3) are the best solutions for
fingerprint-based positioning. However, both clustering meth-
ods have drawbacks as the k-Means requires to set k and APC
is computationally demanding.

F. Discussion

The results have shown that not all the clustering models
may be of relevance to fingerprint-based indoor positioning.
The diversity on available data sets, the data representations
available to linearize the RSS values, and the strategies to

collect the data made some clustering models discouraging
for the purpose of radio-map clustering. Despite the fact that
k-Means, k-Medoids, and APC are providing a good trade-
off between accuracy and efficiency, our previous work [28]
showed that there may be still room to improve these three
clustering methods by introducing domain-specific knowledge.
In general, the novel variants proposed in this article have
significantly improved the traditional models.

Regarding the results reported for each data set, the best
model depends on the data set and application requirements.
Nevertheless, we identified the following trends.

1) There is a tradeoff between execution time and position-
ing error. Metrics based on the Pareto efficiency may
cope with multiple goals in IPS [63], [64].

2) For radio maps covering a small/medium size area
with few fingerprints per reference point, k-Means with
Variant V (k = rfp1, ρ = 6, n = 2) and APC with
Variant IV (ρ = 12, n = 3) showed to be the most suit-
able models; the former providing better efficiency and
the latter providing better accuracy among the two.

3) For radio maps covering large areas (including sev-
eral floors in multistorey buildings) with few/several
fingerprints per reference point, all the proposed vari-
ants significantly reduced the computational costs with
respect to the baseline. In particular, the k-Means with
Variant IV (k = rfp1, ρ = 12, n = 3) presents a
very good tradeoff between efficiency and positioning
accuracy.

4) For radio maps covering large areas with only one
fingerprint per reference point, all the proposed vari-
ants significantly reduced the computational costs with
respect to the baseline. In particular, APC with Variant IV
(ρ = 12, n = 3) presents a very good tradeoff between
efficiency and positioning accuracy in all data sets.

5) c-Means fails when the reference points have just one
fingerprint and the distance between points is high.

To demonstrate the feasibility of the proposed cluster-
ing approaches with knowledge-based rules, we introduce
Table IV. For each database, we have selected one of the
previously suggested approaches based on the area size and
density of fingerprints. For small/medium size environments,
we apply k-Means and Variant V (k = rfp1, ρ = 6, n = 2).
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TABLE IV
RESULTS OF THE PROPOSED VARIANTS DEPENDING THE DATABASE FEATURES. RESULTS INCLUDE THE MIN, AVERAGE, AND MAX POSITIONING

ERROR OVER THE TEN RUN, AND THE MIN, AVERAGE, AND MAX EXECUTION TIME FOR ALL THE FINGERPRINTS EVALUATED OVER THE TEN RUNS

For large areas with one fingerprint per reference point, we
apply Affinity Propagation and Variant IV (ρ = 12, n = 3).
For large areas with multiple fingerprints per reference point,
we apply k-Means and Variant IV (k = rfp1, ρ = 12, n = 2).

As the clusters may not be equally distributed, we provide

the minimum (
�
τfp), average ( ¯τfp), and maximum (

�
τfp) compu-

tational time to process one fingerprint for each data set in the
ten runs. For example, estimating the position for UJI 2 may
take 0.29 to 50.24 ms, being 16.87 ms on average. In most
of the cases, positioning takes a few ms on average and the
range of values is reasonable, whereas the maximum overall
time, 50.24 ms, is a major achievement for the upper bound
limit.

In terms of positioning, we provide the minimum (
�

ε3D),

average ( ¯ε3D), and maximum (
�

ε3D) mean positioning error
over the ten runs. The positioning accuracy is, in general, sim-
ilar to the traditional k-NNs model without any optimization.
One collateral effect of k-Means clustering is that the accu-
racy depends on the random centroid initialization, being the
average accuracy in phase to the traditional k-NNs. Anyway,
the variability between runs is not high.

V. FINAL VALIDATION ON HUGE LORAWAN DATA SET

We have assessed the new variants on k-Means
(Sections IV-B and IV-C) and the selected variants on
selected clustering models (Section IV-E) using 25 data
sets, reaching general discussion (Section IV-F). However, a
question still remains open, Would our results generalize to
any fingerprint problem?

In an attempt to answer that question, we validate our pro-
posal on the huge LoRaWAN for outdoor positioning data

TABLE V
FINAL VALIDATION OVER THE LORAWAN FINGERPRINT DATA SET

set (Antwerp, Belgium) [65], [66]. It has 123 528 fingerprints,
which were sorted according to the timestamp and then split
into training and test sets (ratio ≈ 80 : 20) so that samples
collected in the first days were used for training and the sam-
ples collected in the last days were used for evaluation. For
the k-NNs model, we use the hyperparameters set in [67].

Table V introduces the results of k-NNs, optimization rules,
and variants based on k-Means. APC was not explored as the
required resources to generate the clusters were prohibitive.
The median and 95th percentile errors, εmedian

3D and ε
95prc
3D , are

also included as suggested in the ISO18305 standard.
As expected, the plain k-NNs is not computationally effi-

cient. With our implementation run in Octave, processing one
evaluation fingerprint takes, on average, 2.46 s to provide a
position estimate. This is not practical neither for real-time
positioning nor for hyperparameter selection.

The clustering model based on common APs [21] [here base
stations (BS)] reduces the computational cost to ≈ 18.5%,
as some LoRaWAN BS have been detected in a significant
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Fig. 9. CDF for execution time and positioning error for all the evaluation
fingerprints using the original k-Means and the selected variants.

number of fingerprints. The model based on the strongest
AP [48] only reduces the computational burden to, around, the
tenth part in both data sets. Despite the original k-Means pro-
viding an excellent execution time, it also provides the worst
positioning accuracy among all compared methods in terms of
mean, median, and 95th percentile positioning errors.

The methods based on k-Means have been run ten times
because of its random initialization, and therefore, the average
and standard deviation over the ten runs are reported for the
positioning errors (mean, median, and 95th percentile) and
mean execution time for a fingerprint.

We have assessed the proposed variants providing the best
computational time, the best tradeoff between the two evalua-
tion metrics and the best positioning error (see Table III). The
results are coherent to Section IV-E and the proposed alter-
natives provide better positioning accuracy than the original
k-Means. Depending on the strategy to filter the centroids and
clusters, the accuracy is similar to the plain k-NNs. The most
permissive variant provides slightly better accuracy than plain
k-NNs, while reducing its computational cost 63 times. The
most conservative variant provides similar performance as tra-
ditional k-Means being ≈ 2 times faster (237 times faster than
plain k-NNs).

The individual execution time and positioning errors for
all the operational fingerprints in the ten runs are reported in
Fig. 9 as a CDF plot (top). Although the LoRaWAN data set
is challenging, the proposed variants can significantly reduce
computational cost or almost keep it with similar positioning
accuracy, showing that the proposed variants also work for
outdoor positioning with significantly different technology.

VI. CONCLUSION

This article significantly extends the work in [28] by intro-
ducing four novel ways to modify clustering in fingerprinting
and assessing them over seven clustering models and 26 open-
source data sets. The data sets and code are available in [68],
allowing the community to validate this work (reproducibility

and replicability), and also to extend it by adding other data
sets or clustering models.

First, we have performed an analysis of the new proposed
clustering variants with k-Means. The number of variants and
parameters is so high, that makes unfeasible a full compari-
son with all the clustering models. Based on the results with
k-Means, we have selected the five most promising Variants
(including parameters), all of them belonging to the ones that
we propose in this article.

Second, our analysis showed that not all the clustering mod-
els are good for fingerprint-based indoor positioning. This is
because most of RSS values in the radio maps usually corre-
spond to undetected values (missing data) which may degrade
the accuracy of clustering methods in generating the groups
or detecting outliers. Among the seven considered clustering
methods, only k-Means, k-Medoids, and affinity propagation
clustering (APC) succeed in the context of fingerprint-based
indoor positioning, by reducing the computational costs at
the expense of slightly worse positioning accuracy compared
to methods which do not rely on clustering. Additionally,
c-Means is also working well for a few data sets if the number
of clusters, k, is high (k = rfp2).

Third, a full analysis has been performed on the selected
clustering methods (k-Means, k-Medoids, c-Means, and APC)
and the selected five configurations with Variants IV–VII. The
results showed that Variant V (ρ = 6, n = 2), the one with the
best balance between positioning error and execution time in
k-Means clustering, works well with all the considered clus-
tering methods, providing good results for c-Means. For APC,
Variant IV (ρ = 12, n = 3) also significantly improves the
original model in terms of efficiency ad accuracy. However,
cluster generation in APC is demanding and not scalable. All
these findings were validated on a huge LoRaWAN data set.

Despite the differences between positioning technologies,
our results show that the most relevant features to select a
particular clustering model and a particular variant mainly
depend on the geographical-area size and on the density of
fingerprints collected in that area. Our analysis has shown that
k-Means with Variant V (k = rfp1, ρ = 6, n = 2) is good and
efficient for radio maps covering a small/medium-sized oper-
ational area. Variant IV (ρ = 12, n = 3) is the best variant for
those radio-maps covering very large areas, where k-Means is
probably better suited for those data sets with multiple fin-
gerprints per reference point and APC is better suited for
those data sets with only one fingerprint per reference point.
However, any choices based on the rule of the elbow may
be subjective as there is a negative correlation between the
efficiency of an algorithm and its positioning accuracy. The
final choice depends on the application. For example, wear-
ables might favor an efficient variant, while applications for
high-end devices might prefer a variant with low positioning
error.

In summary, the best traditional clustering models have
improved the efficiency of fingerprinting at the expense of a
higher positioning error compared to fingerprinting without
clustering. Our proposed modifications to clustering algo-
rithms not only have improved their efficiency but also
they have significantly improved their positioning accuracy,
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even in very large deployments. Thus, the proposed variants
offer higher efficiency than the traditional methods without
clustering as well as the same or better positioning accuracy.

Finally, most of the clustering models still rely on traditional
distance metrics. We recommend revisiting clustering models
to introduce signal propagation knowledge in the cluster-
generation process. For real-time navigation, we will explore
the concepts of neighbor relative RSS and trajectory analysis
proposed in [10].
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