

Coupled chemistry and structure of hydrogensilane-water sub-Neptune atmospheres

	indii Winnoonor@gradia.oda		
	Motivation	Ma	air
•	Sub-Neptunes are thought to consist of	-	Ur
	Earth-like interiors surrounded by		an
	hydrogen atmospheres		va
•	Substantial silicate vapor is expected at		sp
	the base of sub-Neptune atmospheres [1]	-	Re
•	This silicate vapor can alter the structure		atr
	of sub-Neptune envelopes by inhibiting		int
	deep convection [2,3]		(e.
•	What are the effects of chemical	-	F
	equilibrium between the outgassed	-	Ab
	oxidized silicate and the reducing		ter
	background hydrogen?	-	Sig
•	Are there detectable signals of typical		int
	interior composition, vital for		up
	characterizing formation and habitability,	-	S
	in sub-Neptune atmospheres?		ł

Atmospheric structure and composition methods

<u>Figure 1</u>: Sub-Neptune structure. The silicate interior (gray) is overlain by a hydrogendominated atmosphere, which is divided into non-convective (red) and convective (blue) regions. The inner non-convective region is caused by the silicate vapor.

- Structure:

William Misener, Hilke Schlichting, and Edward Young

University of California, Los Angeles

Takeaways

nder chemical equilibrium between melt nd atmosphere, silane (SiH₄) and water apor (H₂O) are the dominant secondary **becies** throughout most of the envelope eaction of silicate melt with hydrogen mosphere **pulls more silicon out of the** terior than captured in previous models .g. [2])

Results in larger non-convective region bundances decrease with decreasing emperature (i.e. increasing altitude) gnatures of interior-atmosphere teractions **potentially observable in** oper atmosphere

SiO/SiH₄ balance reverses to favor SiO at high altitudes due to decreasing H₂

 $SiO_{2 (liq.)} \rightleftharpoons SiO_{(g)} + 0.5 O_{2 (g)}$ $H_{2(g)} + 0.5 O_{2(g)} \rightleftharpoons H_2 O_{(g)}$ $3 H_{2(g)} + SiO_{(g)} \rightleftharpoons SiH_{4(g)} + H_2O_{(g)}$

Fiducial planet is a typical sub-Neptune Mass: 4 M_F, equilibrium temperature: 1000 K, hydrogen mass: 2.5% of the core mass, 5000 K at core-atmosphere interface (appropriate for young sub-Neptune [4])

Allow chemical equilibrium between melt and gaseous species at all levels of atmosphere,

described by three reactions above

Radiative, isothermal outer region Convective, adiabatic interior until mass mixing ratio q exceeds critical value that inhibits convection [5]:

 $q_{\rm crit} = \frac{1}{\left(1 - \frac{\mu_{\rm H}}{\mu_{\rm sv}}\right) \frac{\partial \ln P_{\rm svp}}{\partial \ln T}}$

If convection becomes inhibited, energy transported by radiation and conduction

Results: SiH₄ as the dominant outgassed Si-bearing species

to resume could take longer than previously estimated [2]

<u>Figure 3</u>: Number fraction of species considered in outer isothermal region as functions of total pressure.

Future directions

- interactions?
- evolution?

References

[1] Schlichting & Yo 3, 127 [2] Misener & Schlic MNRAS, 514 (4):602 [3] Markham et al. 2 665, A12 [4] Ginzburg et al. 2016, ApJ, 825,

Full paper: Misener et al. (2023), MNRAS, in review, arxiv: 2303.0965

Website: willmisener.com

Switch between SiO and SiH₄ as favored Si-bearing species occurs near 1 bar in fiducial planet **Predicted abundances testable with JWST**

Abundances and elemental ratios are non-solar Observations would probe whether composition is primordial or set by equilibrium with interior

More realistic melt species, especially Mg **Can elemental ratios in atmosphere probe** interior composition? Sub-Neptune parameter space survey

Which sub-Neptunes are most amenable to

detection of the products of interior-atmosphere

Combination with mass loss and thermal evolution How does mantle outgassing affect planetary

oung 2022, PSJ,	[5] Guillot 1995, Science, 269, 1697
	[6] Young et al. 2023, Nature, 616,
chting 2022,	306
25	[7] Visscher & Fegley, 2013, ApJ,
2022, A&A,	767, L1