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We investigate heat waves (HWs) affecting the valley of Grenoble in a future climate. In
this study, heat waves are defined as periods of at least 3 consecutive days of daily maxi-
mum and minimum temperature exceeding the 92nd historical percentile. This definition
has been chosen to select HWs that might impact human health. Even though only the
strongest HWs are potentialy harmful, the definition allows to identify a sufficient number
of events to perform a statistical study. The HWs are characterised by their duration, peak
temperature and mean daily maximum temperature. Additionally, each HW is studied per
year using a framework measuring heat wave number, duration, participating days, and
the peak and mean magnitudes. The HW characteristics are calculated with the results
of simulations from the regional climate model MAR. MAR was forced by reanalysis and
by a global model for the entire 21st century. The uncertainty of future anthropogenic
forcing is taken into account by analysing results for the shared socio-economic pathways
SSP2 and SSP5. The simulations are evaluated against in-situ measurements in the past
period. MAR captures well daily maximum and minimum temperatures as well as ob-
served HWs. Under future climate conditions, the increase in very hot daily maximum
and minimum temperatures is mainly due to the shift rather than the broadening of their
probability density functions. Additionally, the HWs become more frequent and have a
longer duration, higher peak temperature and mean daily maximum temperature. Finally,
a sensitivity analysis to the HW defining threshold is carried out.
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Chapter 1

Introduction

The global average temperature has increased by 0.89◦C since 1900, with most of the warming
due to anthropogenic activity (Hartmann et al. 2013). Climate science literature discusses
extensively that small changes in average temperature can result in disproportionally larger
changes in the intensity and frequency of extremes (Mearns et al. 1984; Boer et al. 2001).
For a given climatological period (i.e. a period of at least 30 years), the probability density
function (PDF) of air temperature is a Gaussian curve with center at the mean value, µ, and
standard deviation, σ, representing its variability. For the same σ, an increase in the mean of the
temperature PDF yields higher frequencies of hot weather, as well as hot extremes that were rare
in the original PDF. An increase in σ only results in the broadening of the PDF which results in
a higher probability of extremes in both hot and cold weather. A shift in mean temperature and
an increase in σ are reported to be occurring (Perkins 2015), thus having a combined influence
on the increase of hot temperature extremes. Changes in observed temperature extremes have
been detected since the turn of the millennium (e.g. Easterling et al. 2000), though with regional
variations. Further research is required to understand the relationship between changes in the
temperature PDF and changes in temperature extremes at the regional and local scale. This
thesis proposes a local study focused on a particular type of temperature extreme - heatwaves
(HWs). The temporal evolution of the main HW characteristics will be investigated during the
21st century.

Heatwaves are known to be associated with increased daily mortality (Pascal et al. 2006) and
thus, have impacts on human health. The effects of extreme hot temperature are mostly severe
when there is a lack of relief between hot days (Pezza et al. 2012). A number of major heat wave
events occurred over the past decade, many of which had devastating health effects (D’Ippoliti
et al. 2010). In 2003, a mega heatwave occurred over Western Europe and was responsible for
over 70,000 deaths (Coumou et al. 2013). In this study, we focus on HWs in connection with
their potential human health impacts.

There is no standardized definition of a heat wave. In the human health sector, the existing
definitions generally refer to a summer period of at least 3 consecutive days during which the daily
maximum and minimum air temperatures are above a certain threshold. We use a percentile-
based approach to define this threshold, making it dependant on the considered climatological
period. Further details on the HW definition are given in section 2.2. Additionally, we propose
a sensitivity analysis of this threshold in section 3.3.

Previous studies have investigated the changes of European HW characteristics at a regional
scale. Given their impacts on health, it is of interest to study HWs in areas of high population
density. We focus our study at the scale of an urban area namely, in the valley of Grenoble in
the Alps region. The measurements and the model data describing air temperature in Grenoble
and used in this study are presented in section 2.1.

The main objective of this thesis is to study the evolution of HW characteristics over this
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century and, thus, to address the local impact of climate change on HW events. This is done for
the summer period in the valley of Grenoble. For this study, a regional climate model (RCM)
forced by reanalysis and by a global climate model (GCM) is used. The climatological period
1985-2014 is used as reference to benchmark extreme events in the future. In chapter 2, we
compare the RCM forced by reanalysis against observations. Then, the percentile threshold for
HWs will be defined and evaluated. This is followed by the definition of HW characteristics
which allow to compare and quantify different HW events. In chapter 3, the results are put
forward and discussed. As a first step, the RCM forced by the GCM is evaluated. Then, the
characteristics of future heat waves are analysed. Additionally, a sensitivity analysis is carried
out for the threshold which defines a HW. Finally, conclusions are drawn and future progress in
the topic is proposed in chapter 4.
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Chapter 2

Data and heat wave definition

In this chapter, we present the data used in this study, consisting in field measurements and
model data. Additionally, the models under scope will be briefly presented. Then, the definition
of heat wave and heat wave characteristics will follow. Only summer heat waves are studied
where summer is defined as the months of May, June, July, August, September and October
(MJJASO months hereon).

2.1 Data

2.1.1 In-situ measurements

A data set of observations for the period 1985-2014 was provided by ATMO-AURA1, the air
quality agency for the Auvergne-Rhône-Alpes region. This data set consists of hourly in-situ
measurements of air temperature at 2m above the ground for the MJJASO months. These
observations were taken at the Pont de Claix (PodC) weather station located in the south of
the valley of Grenoble at an altitude of 237 meters (figure 2.1).

Figure 2.1: Sattelite map of the valley of Grenoble. In yellow, the location and altitude of three stations can
be seen: the station at the Institute Laue-Langevin (ILL), at Aérodrome Grenoble Le Versoud (Grenoble LVD)
and the Pont de Claix station (underlined). Additionally, the city center is shown in white.

1www.atmo-auvergnerhonealpes.fr
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For this study we are interested in the temperatures at the bottom of the valley where the
population density is highest, namely in the vicinity of the city center. However, measurements
at such location do not exist and weather stations close to this location did not perform mea-
surements during a period longer than 30 years. The Pont de Claix station provides the only
time series of measurements which allow a climatological study. In order to verify that the mea-
surements at this location are representative of the whole valley they are compared against two
other stations: Grenoble-LVD and the ILL. These other stations are also located at the bottom
of the valley (figure 2.1). Due to a constraint in access to a larger data set, only a period of
seven years between 2011-2017 is used for this comparison.

The Pont de Claix data is in agreement with that of the Grenoble-LVD and the ILL for the
period 2011-2017. Indeed, we find a mean absolute error (MAE) of 1.31 ◦C and 2.08 ◦C, a root
mean square error (RMSE) of 1.82 ◦C and 2.59 ◦C and finally a correlation of 0.98 and 0.96
with Grenoble LVD and ILL, respectively. Therefore, the Pont de Claix observations are deemed
representative of the valley bottom and will be used as a benchmark for the model output.

2.1.2 Post-processing of in-situ measurements

The raw data set must be processed due to missing values and the presence of outliers. Firstly,
the outliers above or below 4 standard deviations from the average for the MJJASO months are
removed. In figure A.1 in appendix A, the removed outliers can be seen. Secondly, a 3rd order
spline interpolation is applied to fill single missing values. This allows an increase in data points
without generating non-physical temperature fluctuations.

As will be discussed in section 2.2, daily maximum (Tmax) and minimum (Tmin) temperatures
are needed to define a heat wave. Thus, one needs to compute Tmin and Tmax from hourly
observations. In order to do so, days with missing values must be carefully handled. One would
find unrealistic values for Tmin and Tmax if the missing values occur in the crucial period of
the day where these extremes take place. Therefore, an investigation of the time periods where
these temperatures occur is required. We find that Tmin occurs between 2 and 7 a.m. and
Tmax between 11 a.m. and 4 p.m. (figure A.2 in appendix A). Therefore, if a day presents
missing values within these periods it is fully discarded, whereas if a day presents missing values
outside of these periods it is kept. Following this procedure, we extracted time series for Tmin
and Tmax from the raw measurements.

For the period 1984-2014, the Tmin and Tmax series show a mean of 12.6◦C and of 25.1◦C,
respectively. The Tmin series shows a lower variability than the Tmax series with standard
deviation of 3.9◦C and 6.2◦C, respectively. Histograms of Tmin and Tmax as well as their
respective Gaussian fit and statistical information can be found in figure A.3 in appendix A.

2.1.3 Model output

In this study, the output from the regional climate model MAR2 (Modèle Atmosphéric Régional)
is used. The model data of MAR is the result of simulations run with boundary forcings pro-
vided by the reanalysis ERA5 from the European Centre for Medium-Range Weather Forecasts
(ECMWF) and by the global climate model MPI Earth System Model (MPI) from the Max-
Planck Institute for Meteorology. The reanalysis ERA5 contains a detailed record of the global

2www.mar.cnrs.fr
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atmosphere, land surface and ocean from 1950 until present (Hersbach et al. 2020). Thus, the
most realistic historical simulation that can be obtained with MAR is when it is forced by ERA5
(MAR-ERA5 for short). In order to use MAR to simulate future periods the GCM MPI is used as
lateral forcing (referred to as MAR-MPI). MPI is a global coupled atmosphere–land–ocean–sea
ice biogeochemistry model (Keeble et al. 2021). To estimate changes in HW characteristics
from 1985 to 2100, this study makes use of two types of MAR-MPI simulations: an historical
simulation run from 1985 to 2014 and a future simulation from 2014 to 2100. The historical
simulation is used as reference to evaluate changes in HW characteristics in the future. Within
the future simulation, three 30-year periods are selected: around 2030 (2016-2045), 2050 (2036-
2065) and 2070 (2066-2085). The length of these periods is chosen to correspond to the time
scale of climate variability given that we are interested in the climatological evolution of heat
wave events. The future simulations follow the newly developed shared socio-economic pathways
(SSPs), which provide future emissions and land use changes based on scenarios directly relevant
to societal concerns regarding climate change impacts, adaptation, and mitigation (Riahi et al.
2017). Overall, the SSPs follow five categories: sustainability (SSP1), middle of the road (SSP2),
regional rivalry (SSP3), inequality (SSP4), and fossil-fuelled development (SSP5). Further, each
scenario is associated with a radiative forcing pathway which is the radiative forcing at the top
of the atmosphere at the end of the century, in W/m2. In this thesis, two SSPs are considered:

i) the SSP2 scenario assumes a “middle of the road” development with medium challenges
in the mitigation and adaptation to climate change (Fricko et al. 2017) associated with a
radiative forcing of 4.5W/m2. This scenario was chosen since it reflects a plausible outcome
given current policies (Hausfather et al. 2020).

ii) the SSP5 scenario assumes a development path that is dominated by extensive fossil-fuel
use comprising high challenges to mitigation combined with low challenges to adaptation
(Riahi et al. 2017). This scenario is associated with a radiative forcing of 8.5W/m2. This
SSP was chosen to quantify the implications of a worst-case climate scenario in HW events.

Table 2.1: The simulations of the MAR model used in this analysis.

Forcing Scenario Period Short Name

ERA5 - 1985-2014 MAR-ERA5

MPI

- 1985-2014 MAR-MPI-HIST

SSP5

2016-2045 MAR-MPI-530

2036-2065 MAR-MPI-550

2066-2085 MAR-MPI-570

SSP2

2016-2045 MAR-MPI-230

2036-2065 MAR-MPI-250

2066-2085 MAR-MPI-270

The MAR model is a RCM that was developed by Hubert Gallée (Gallée et al. 1994) and is
particularly suited to simulate the atmospheric dynamics over mountain ranges (Ménégoz et al.
2020). The output of the MAR model applied with a 7-km resolution over the European Alps
is used to investigate changes in HW characteristics. In figure 2.3, the valley of Grenoble, as
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represented in the MAR model, can be found. The MAR simulations considered in this work
are summarized in Table 2.1. The short names presented in this table are built based on their
forcing, SSP scenario and 30-year period. For instance, MAR forced by MPI under SSP5 for
the period around 2030 is referred to as ”MAR-MPI-530”. For this project, we look at the daily
maximum and minimum temperatures at 2 meters above the ground. The Tmin and Tmax
model data used for this project was provided by the Climat-Cryosphère-Hydrosphère team at
the Institut des Géosciences de l’Environment3 (IGE).

2.1.4 Model validation

In order to study the ability of the MAR model to represent the air temperature at the valley
bottom a validation of its output has to be conducted. To this extent, the output MAR-ERA5
is compared to the observations at the Pont de Claix station for the period 1985-2014. The
valley bottom is represented by six grid points in the MAR domain (see figure 2.3). Temporal
series of Tmin and Tmax are associated with each grid point. The PDFs of Tmin and Tmax
provided by the model are compared with the PDFs of the observations (figure 2.2). Further-
more, the MAE between model output and observations is computed. The results for each of
these points are relatively similar and only the results for the point with lowest MAE and with
PDF characteristics close to the PDF of observations, referred to as P∗, are shown.
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Figure 2.2: Gaussian fits of the histograms of the MAR-ERA5 output (pink) and of the Pont de Claix data
(black) for the historical period (1985-2014). On the left, the PDFs for Tmin and on the right, for Tmax.

For P∗, we find a MAE of 2.12◦C and 2.41◦C for Tmin and Tmax, respectively. The Gaussian
fit of the PDFs of Tmin and Tmax for P∗ in MAR-ERA5 and of the observations are displayed
in figure 2.2. Additionally, the respective histograms and Gaussian fit are shown in figure A.4
in appendix A.

As can be seen in figure 2.2, the MAR-ERA5 model is able to represent the mean Tmin and
Tmax temperatures to an accuracy of less than 1◦C. Further, the variability of the model is

3www.ige-grenoble.fr

8



A climatological study of heat waves in Grenoble Master Thesis

representative of the observations with differences in standard deviation of less than 1◦C. For
Tmin, the model presents a higher variability (figure 2.2a) whereas for Tmax a lower variability
is seen (figure 2.2b). Additionally, the left tails of the PDFs for the model match closely to the
observations. This indicates that MAR-ERA5 depicts well the lower temperature extremes of
both Tmax and Tmin. On the other hand, it can be seen that the right tails of the PDFs do
not match: the model is slightly overestimating Tmin and underestimating Tmax. Therefore,
this inaccuracy in the higher extremes of the PDF should be accounted for when interpreting
the results. The overestimation of MAR-ERA5 for Tmin might be explained by the fact that
MAR overestimates temperature at low altitudes (Beaumet et al. 2021). Furthermore, the
underestimation of Tmax might be explained by the altitude difference between P∗ (422 m) and
the measurement station (237 m).
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Figure 2.3: MAR model representation of the valley of Grenoble with a resolution of 7 km. In yellow, the
location (denoted with a cross) and altitude of three stations can be seen: the station at the Institute Laue-
Langevin (ILL T2), the one at Aérodrome Grenoble Le Versoud (Grenoble LVD) and the Pont de Claix station
(bold). Points in yellow, represent the six grid points under study as well as their altitude in MAR. Additionally,
the best grid point, P∗, can be found in the center of the image with an altitude of 422 m. Finally, the city center
is shown in white.
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2.2 Heat wave definition and characteristics

2.2.1 Heat wave definition

A heat wave (HW) is a period of extremely high temperature. A universal definition of a heat
wave cannot be made because it depends on the sector of interest which could be human health,
electricity supply, transportation, agriculture and so on (Perkins et al. 2013; Perkins 2015). A
range of meteorological variables can be used to define a heat wave. In this work, the interest lies
on the impacts of these extreme events on human health and mortality. Since the health effects
of HWs are mostly severe when there is a lack of relief between hot days (Pezza et al. 2012),
the definition of HW must include thresholds for both maximum and minimum temperature.
The combination of the minimum and maximum temperature above specific thresholds has
been shown to out perform other meteorological indicators by presenting a clear relationship
with excess mortality (Pascal et al. 2006). Generally, HWs are defined using either an absolute
threshold (a fixed value of temperature) or a relative threshold such as a percentile-based value
of temperature. The latter is the most interesting since it relates the definition of HW to the
considered time period and location. This is an advantage because it allows for the detection
of heatwaves across different locations. For HWs related to human health impacts, the period
of at least 3 consecutive days combined with percentile-based thresholds for Tmin and Tmax is
widely used in literature (e.g. Perkins et al. 2013; Antics et al. 2013; Cowan et al. 2014; Russo
et al. 2015). Hence, for this project, a HW is defined as a period of at least 3 consecutive days for
which both the maximum and minimum temperatures are above or equal to the respective 92nd
percentile in the historical MJJASO months. The choice of this percentile will be explained in
section 2.2.3.

2.2.2 Heat wave characteristics

Most of the impacts of temperature extremes on human health relate not only to individual hot
days but also to other factors such as heat wave duration and peak temperatures (Fischer et al.
2010). Thus, for an event-based analysis we focus on the following HW characteristics:

• The duration of a heat wave.

• The maximum temperature reached during a heat wave, Tpeak.

• The mean daily maximum temperature anomaly of a heat wave, Tmax
′
. The specific

computation of this anomaly is explained in the last paragraph of this section.

Furthermore, in order to explore the temporal evolution and quantify climatological changes
in heatwave characteristics, a similar methodology to Perkins et al. 2013 is adopted. Thus,
the focus is on yearly values of heat wave characteristics. Moreover, we include characteristics
related to Tmin which was not done in Perkins et al. 2013. The following HW characteristics
are studied:

• HWN (“Heat Wave Number”): the number of HWs per year.

• HWdays (“Heat Wave days”): the number of HW days per year.

• HWD (“Heat Wave Duration”): the duration of the longest yearly heat wave.

10
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• HWMm and HWMx (“Heat Wave Mean”): the mean value of Tmin and Tmax of the
hottest yearly heat wave, respectively. For a given year, the hottest heat wave is taken as
the heat wave which presents the hottest mean value of Tmax.

• HWAm and HWAx (“Heat Wave Amplitude”): the maximum Tmin and Tmax of the
hottest yearly heat wave, respectively. The hottest heat wave is defined as in the previous
point.

The calculations of Tmax
′
, HWAm, HWAx, HWMm and HWMx are anomaly-based. These

anomalies are computed by subtracting the 92nd percentile for the historical MJJASO months
from the value of the HW characteristic, depicting how much hotter heat wave peaks and
means are when compared against the HW defining threshold. All of these characteristics
are expected to become more severe, already for the period around the year 2030 and to an
increasingly stronger extent by around 2050 and 2070. For this work, using the aforementioned
HW definition, each HW characteristic is calculated yearly for the time span 1985-2100 and
their time evolution is studied. Additionally, each characteristic is analyzed for the 30-year time
periods considered in this work (table 2.1).

2.2.3 Validation of heat wave definition

The percentile threshold must be defined taking into account that one should recover a large
enough number of HWs for a statistically relevant analysis. On the other hand, the HWs must
remain realistic both in quantity and duration. The 92nd percentile is chosen because it allows
to recover a significant population of HW events in the output of MAR-ERA5. We find (not
shown) that using a smaller percentile results in too many or too long events whereas using a
larger percentile yields too few HWs. This percentile comes as the result of an iterative approach
for selecting the optimal threshold by comparing HWs in MAR-ERA5 to real, documented HWs.

The historical 92nd percentiles in MAR-ERA5 are 17.8◦C for Tmin and 33.8◦C for Tmax.
The HWs detected in MAR-ERA5 are shown in figure 2.4 where their maximum temperature,
duration and Tmax

′
are depicted. The HW of August 2003 can be easily found on the right

side of the plot given its abnormally long duration. However, its maximum temperature is not
captured by the model (during this HW temperatures surpassed 40◦C). This is expected since,
as seen in section 2.1.4, the MAR model is underestimating the upper tail of maximum daily
temperatures. In figure 2.4, one can also easily identify a HW occurring in Grenoble in August
2011. The only matching HW that could be found in documentation was located in Puy-de-
Dôme (CIRE Auvergne 2011) reaching a maximum temperature of about 40◦C and during 5
days. However, it is not unrealistic to consider that a HW could have also occurred in Grenoble
around that time given the synoptic length scale of high-pressure systems that give rise to this
type of extreme events (Perkins 2015).

In appendix A, a table with documented HWs in and around Grenoble and their corresponding
representation in the MAR-ERA5 output is exhibited (table A.1). This table summarizes the
literature review on documented heatwaves and compares them to the events found in MAR-
ERA5. The documented locations vary greatly amongst papers (e.g. western Europe as in
Schoetter et al. 2015, France as in Fouillet et al. 2007 or Lyon as in Antics et al. 2013) and
thus, for some locations this table serves solely as an indication that an extreme event occurred
either in the vicinity of Grenoble or in an extended area encompassing Grenoble. Nonetheless,
using our definition of HW in the MAR-ERA5 model allows us to identify most of the HWs
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documented between 1985 and 2014. More precisely, the HWs in MAR-ERA5 either exactly
match the documented period, match the period but differ in duration by 1 to 3 days (both
longer or shorter duration), or are shifted by 1 to 2 days.
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Figure 2.4: Heat waves detected during the 1985–2014 period with MAR-ERA5. Each bubble gives the duration
(x axis), peak temperature (y axis) and mean daily temperature anomaly (bubble color). This anomaly is
computed with respect to the 92nd percentile calculated for MAR-ERA5 (the threshold is indicated by the
horizontal blackline).
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Chapter 3

Results and discussion

3.1 Probability density functions of Tmin and Tmax

3.1.1 Historical period

In section 2.1.4, the PDFs for Tmin and Tmax for MAR-ERA5 were found to be similar to the
PDFs of the observations and therefore, the temperature output of MAR-ERA5 was deemed
representative of the valley bottom’s temperature. In this section, the MAR-ERA5 PDFs are
compared to the PDFs of MAR-MPI-HIST. This allows the quantification of the biases intro-
duced by the forcing given by the MPI model.

5 0 5 10 15 20 25 30 35
Temperature [°C]

0.00

0.02

0.04

0.06

0.08

0.10

0.12 a) Tmin

0 5 10 15 20 25 30 35 40 45 50
Temperature [°C]

0.00

0.02

0.04

0.06

0.08

0.10

0.12 b) Tmax
Pond-de-Claix
MAR-ERA5
MAR-MPI-HIST

Figure 3.1: Gaussian fits of the histograms of the MAR-ERA5 output (pink), of the MAR-MPI-HIST output
(green) and of the Pont de Claix observations (black) for the period 1985-2014. On the left, the PDFs for Tmin
and on the right, the PDFs for Tmax.

In figure 3.1, the PDFs for the PodC observations, MAR-ERA5 and MAR-MPI-HIST data are
shown. For Tmin (figure 3.1a), the average values for the two MAR simulations are the same,
equal to 13.7◦C. For Tmax (figure 3.1b), MAR-MPI-HIST has an average value of 25.4◦C which
is larger by 0.6◦C when compared to MAR-ERA5. We observe that the PDFs for MAR-MPI-
HIST are closer to the PDFs of the observations than to the PDFs for MAR-ERA5. However,
this close match does not mean that the MAR-MPI model will be as representative of the future
PDFs as it is for the historical PDF. This similarity between the two curves might be the net
product of a bias compensation from the forcing provided by MPI and the MAR model.
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The MAR-MPI-HIST shows a higher variability than the MAR-ERA5 for both Tmin and
Tmax. This can be easily seen by looking at the standard deviation and the increase in the
92nd percentile. For Tmin, the standard deviation is larger than for MAR-ERA5 by 1.1◦C
leading to a 1.2◦C increase in the 92nd percentile. This increase in percentile value is solely due
to the increase in variability since the average value matches for both PDFs. For Tmax, the
increase in standard deviation is stronger than for Tmin. This quantity has a standard deviation
1.3◦C larger than for the MAR-ERA5 model. This together with the rightward shift of the PDF
translates to a 1.9◦C increase in the 92nd percentile. Therefore, MAR forced by the MPI model
is comparable to MAR-ERA5 in terms of average temperature values but overestimates the
probability of temperature extremes.

3.1.2 Future periods

The PDFs of all future 30-year periods (table 2.1) present a shift to the right for both Tmax
(figure 3.2) and Tmin (appendix B; figure B.2). This is the case regardless of the SSP scenario.
However, the rate at which the rightward shift occurs differs between SSP2 and SSP5. The
Tmax output of MAR-MPI for the historical period presents an average value of 25.4◦C. By
comparison, the average Tmax for the period around 2030 under the SSP2 scenario increases by
1.3◦C (figure 3.2a). This increase is 0.4◦C higher than in the SSP5 scenario (figure 3.2a) which
leads to a stronger shift to the right for the milder scenario. This is clearly illustrated by figure
B.1 in appendix B where the full time series of Tmin and Tmax are plotted. It can be seen that
the SSP2 scenario yields higher Tmin and Tmax than SSP5 until around 2030. Then, the Tmin
and Tmax are similar for both scenarios until around 2050. Hence, the disparity between the
PDFs of the two SSP scenarios in the first half of the century can be explained by the fact that
Tmax and Tmin only start diverging significantly at around 2050. At first glance, this difference
in the two scenarios is not expected since the global temperature in SSP5 is usually higher than
in SSP2 from about 2030 as shown in Cook et al. 2020 and Sung et al. 2021. However, these
studies consider global means and ensemble means whereas here we consider a single grid point
and a single run of a single GCM. Thus, this disparity in the earlier future periods might be
possible. Nonetheless, for periods after 2050, the SSP5 scenario predicts a faster increasing
trend for both quantities than the SSP2 scenario, with Tmin and Tmax about 2.5◦C higher on
average for SSP5 than for SSP2, towards the end of the century (figure B.1 in appendix B).

For the 30-year periods around 2050 and 2070 the rightward shift is more prominent for the
SSP5 scenario, especially for the latter period. Hence, the PDFs in the SSP2 scenario exhibit
a faster shift in the earlier period followed by an increasingly slower shift as it approaches the
end of the century. On the contrary, the PDFs of teh SSP5 scenario display a slower shift in
the earlier period succeeded by an increasingly faster shift towards the end of the century. The
discussion for Tmin is similar and therefore, will be omitted in the text. The PDFs for Tmin
for both scenarios can be found in figure B.2 in appendix B.

Throughout all periods, MAR-MPI predicts a nearly constant standard deviation for the SSP2
scenario whereas, for the SSP5 scenario, the most significant increase in standard deviation
occurs for the period around 2050 with a value of 0.4◦C above the historical reference. The
differences in standard deviation for both scenarios with respect to the historical period are
much smaller than the differences in the mean values. Further, when looking at the 92nd
percentile values we note that these are always about 8◦C above the means. Thus, the increase
in very hot maximum temperatures in the future is mainly due to the shift of the PDF towards
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Figure 3.2: Gaussian fits of the histograms of the MAR-MPI-HIST daily Tmax output (green) and for the
MAR-MPI daily Tmax outputs for the future periods around 2030, 2050 and 2070 (yellow, brown and red,
respectively). On the left, the PDFs for the SSP2 scenario and on the right, the PDFs for the SSP5 scenario.

higher temperatures, rather than its broadening. Additionally, these changes in the future PDFs
of Tmax might lead to an increase in the number and duration of extreme events.

Concluding, the rightward shift of the PDFs is the result of a predicted future increase in
mean maximum temperature in Grenoble. For instance, with respect to the historical period,
the SSP2 and SSP5 scenarios read, respectively a 2.5◦C and 3.4◦C increase for around 2070.
It is thus expected that the Grenoble valley will suffer an increase in mean daily maximum
summer temperatures as well as an increasing probability of extreme temperature events. This
conclusion can be generalized to the mean daily minimum summer temperatures for which the
discussion is similar (see appendix B; figure B.2).

3.2 Heat wave events in Grenoble

In this section, we analyze the HW events that are found using the MAR-MPI output. We
introduce the notation <> to denote the average of a quantity taken over a 30-year period. For
the sake of brevity, we use the acronyms found in table 2.1 to refer to the data associated with
each model run.

3.2.1 Event-based analysis

The HW events detected in MAR simulations are analysed, considering the HW characteristics
described in section 2.2.2. First, we check if HWs in MAR-MPI are statistically comparable to
HWs found in MAR-ERA5. For this purpose, we use a bubble plot (figure 3.3a) to depict HWs
in the historical period of MAR-MPI. This figure is analogous to figure 2.4 where HW events
found in MAR-ERA5 are represented. MAR-MPI-HIST and MAR-ERA5 provide comparable
total number of HWs, average duration and < Tpeak > but HWs in MAR-MPI have a 20.8%

15



A climatological study of heat waves in Grenoble Master Thesis

higher < Tmax
′
> (table 3.1). This increase with respect to MAR-ERA5 seems to be caused by

the larger variability intrinsic to MAR-MPI (section 3.1.1).

Table 3.1: Heat wave characteristics averaged per 30-year period. The value within parenthesis is the percent-
age increase in relation to MAR-MPI-HIST. The mean Tmax anomaly is computed against the 92nd historical
percentile threshold for daily maximum temperature (Tmax). This threshold corresponds to 33.8◦C for MAR-
MPI-HIST and 31.9◦C for MAR-ERA5.

1985-2014 2016-2045 2036-2065 2056-2085

ERA5 MPI MPI MPI MPI

Total number
26 28

SSP2 56 (+100%) 77 (+175%) 77 (+175%)

of HWs [-] SSP5 53 (+89%) 94 (+236%) 125 (+346%)

< Tpeak > [°C] 35.8 38.0
SSP2 38.6 (+1.6%) 38.7 (+1.8%) 38.8 (+2.1%)

SSP5 38.9 (+2.4%) 38.8 (+2.1%) 39.4 (+3.7%)

Average Duration [days] 4.4 4.5
SSP2 4.5 (+0%) 5.1 (+13.3%) 5.2 (+15.6%)

SSP5 5.2 (+15.6%) 5.7 (+26.7%) 6.3 (+40%)

< Tmax
′
> [°C] 2.4 2.9

SSP2 3.0 (+3.4%) 3.0 (+3.4%) 3.1 (+6.8%)

SSP5 3.1 (+6.8%) 3.1 (+6.8%) 3.4 (+13.6%)

The values for MAR-MPI-HIST in table 3.1 are used to quantify the percentage increase for
the future periods. For both SSP scenarios, an increasing trend for all metrics is seen when
departing from the historical period towards future periods, especially in the total number of
HWs (table 3.1). Around 2030, we find two times more total number of HWs with respect to
the period 1985-2014 in both scenarios. For the other two 30-year periods, the two scenarios
diverge. For the SSP2 scenario, we find 175% more HWs around 2050 and around 2070. On
the other hand, the SSP5 scenario shows a continuous increase with respect to the reference of
236% and 346% more HWs around 2050 and 2070, respectively.

Not only HWs seem to become more frequent, their < Tpeak > and < Tmax
′
> as well as their

average duration increase as we move towards the end of the century (figure 3.3). For the SSP2
scenario (figures 3.3b, 3.3d, 3.3f), these increments are subtle but present, while for the SSP5
scenario (figures 3.3c, 3.3e, 3.3g), they are more prominent.

For both scenarios in figure 3.3, one can see multiple HW events with Tpeak well above 40◦C, in
some occasions HWs can get as hot as 45◦C for the future periods. However, as was discussed in
section 3.1.1, MAR-MPI overestimates the probability of extreme Tmax. Thus, these absolute
values of temperature must be interpreted with care.

16



A climatological study of heat waves in Grenoble Master Thesis

0 5 10 15 20 2532

35

38

41

44

47

T p
ea

k  
[°

C]

a) 1985 2014
threshold

0 5 10 15 20 2532

35

38

41

44

47

T p
ea

k  
[°

C]

b) 2016 2045

0 5 10 15 20 2532

35

38

41

44

47 c) 2016 2045

0 5 10 15 20 2532

35

38

41

44

47

T p
ea

k  
[°

C]

d) 2036 2065

0 5 10 15 20 2532

35

38

41

44

47 e) 2036 2065

0 5 10 15 20 25
Duration [days]

32

35

38

41

44

47

T p
ea

k  
[°

C]

f) 2056 2085

0 5 10 15 20 25
Duration [days]

32

35

38

41

44

47 g) 2056 2085

0

1

2

3

4

5

6

7

8

9

10

T m
ax

' [
°C

]

Figure 3.3: Heat wave events detected in MAR-MPI for all 30-year periods. Plot a) shows MAR-MPI-HIST
results, plots b), d) and f) belong to the SSP2 scenario and plots c), e) and g) to the SSP5 scenario. Each
bubble gives the duration (x-axis), peak temperature (y-axis) and mean daily maximum temperature anomaly
(color). This anomaly is computed against the 92nd historical percentile for Tmax in MAR-MPI. This threshold
is indicated by the horizontal black line. The number of displayed bubbles corresponds to the total number of
heatwaves (table 3.1).
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3.2.2 Yearly-based analysis

In this section, the yearly HW characteristics described in section 2.2.2 and their 30-year means
are studied. For this purpose, the boxplot for each HW metric is computed in figure B.3 in
appendix B. These plots provide information on the spread, interquartile range, median and
mean of the characteristics per period. We observe that the HWN, HWD and HWdays found
in MAR-MPI-HIST are comparable to the ones found in MAR-ERA5. Thus, these HW metrics
might be well represented in MAR-MPI for future periods. On the other hand, the HWA and
HWM for both Tmin and Tmax differ between these two simulations: MAR-MPI-HIST shows
both a larger mean and wider interquartile range as well as a larger spread. The larger mean
values show that in MAR-MPI-HIST the HWA and HWM are further away from the historical
92nd percentile than in MAR-ERA5. Moreover, the larger spread is an indicator of the higher
variability in the MAR-MPI model. This in agreement with the discussion in section 3.2.1 where
it was found that the HW events in MAR-MPI-HIST had higher < Tpeak > and < Tmax

′
> than

in MAR-ERA5.

As observed in section 3.2.1, the overall trend across the metrics and SSP scenarios shows an
increase in the mean values and in the spread (figure B.3). For SSP2, we find a slower increase
in the mean from period to period than for SSP5. For the milder scenario the two last periods
show similar mean value and differ slightly in interquartile range and spread. This demonstrates
that HW characteristics around 2070 with SSP2 will remain comparable to around 2050 on the
mean, but the later period will show higher variability.
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Figure 3.4: Time evolution of a) HWN (yearly number of HWs), b) HWdays (total number of HW days per
year) and c) HWD (duration of longest HW per year) for the period 1985-2100. The solid lines are obtained with
a 10-year moving average. The blue dot represents the year 2003 obtained with MAR-ERA5.

We now focus on the time evolution of the yearly HW characteristics. Figure 3.4 illustrates the
progression over the century of the HWN (figure 3.4a), HWdays (figure 3.4b) and HWD (figure
3.4c) for both SSP scenarios. MAR-MPI-HIST and MAR-ERA5 display similar resultss during
the reference period. Furthermore, MAR-MPI for both future scenarios shows an increasing
tendency for all metrics, especially for HWN and HWdays.

In accordance with the results of previous sections, the two scenarios are similar for the 2030
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period (figure 3.4). In particular, we find that on average both simulate an additional HW
per year than in the historical period (HIST: <HWN> = 1), about 6 more HW days per year
(HIST: <HWdays> = 4) and with the longest HW per year lasting about 1 day longer than
in the reference period (HIST: <HWD> = 5). After the year 2050, the two scenarios start to
diverge with a rapid increase in HWN and HWdays for SSP5 and a slower increase of the same
quantities for SSP2. In the latter, the increase stops in the last three decades of the century.
For HWD, it seems that both scenarios increase during the first half of the century and then
display an oscillation-like behaviour for the second half with the SSP2 scenario fluctuating about
6 days and the SSP5 at about 11 days. It seems that, with respect to the historical period, the
number of HWs per year and the number of HW days per year in Grenoble doubles around 2030
and increases 4-fold (SSP2) and 6-fold (SSP5) in the second half of the century. However, the
duration of the longest yearly event seems to be bounded from the second half of the century.
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Figure 3.5: Time evolution of a) HWAx and c) HWAm (“Heat Wave Amplitude”: the maximum Tmax and
Tmin of the hottest yearly event) and of b)HWMx and d) HWMm (“Heat Wave Mean”: the mean Tmax and
Tmin across the hottest yearly eventy) for the period 1985-2100. The solid lines are obtained with a 10-year
moving average.

In figure 3.5, the time evolution of HWA and HWM for Tmax and Tmin can be found. The
results of MAR-MPI-HIST are in agreement with MAR-ERA5 for these metrics in the reference
period. As the century progresses, HWA and HWM show a slowly increasing trend for both
scenarios. At the end of the century, the peak Tmax and Tmin of the hottest HW per year will
increase by about 2◦C (SSP2) and 5◦C (SSP5) with respect to the period around 2000. For the
mean Tmax and Tmin of the hottest HW per year the increase is smaller, of about 1◦C (SSP2)
and 3◦C (SSP5).

Overall, climate change seems to impact to a greater extent the amount and duration of HWs
than the peak (HWAx and HWAm) and daily mean temperature (HWMx and HWMm) of the
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hottest heat waves. However, this conclusion is only valid locally, for Grenoble.

3.2.3 Seasonal distribution of heat wave days

The probability of the occurrence of a heat wave is investigated during the MJJASO months.
For this purpose we calculate the probability that a given day is part of a HW event (figure
3.6). For each 30-year period, we take the total number of HW days for a given date. Then,
we divide this value by the total number of available dates (which is always equal to 30). For
example, the probability of a HW day on the 1st of August, (P01/08), is computed as

P01/08 =
HW01/08

30
· 100, (3.1)

where HW01/08 is the number of 1st of August days where a HW was simulated.

For MAR-ERA5, heat waves occur between the 1st of June and the 1st of September. For
MAR-MPI-HIST, heat waves are simulated with a lag of about 2 weeks from around the 15th
of June to the 15th of September. The highest probabilities of a heat wave day (between 6%
and 8%) are simulated for MAR-MPI-HIST between the 20th of July and the 26th of August.
This is in agreement with MAR-ERA5 results.
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Figure 3.6: Probability of a heatwave day. The full lines are the results of a 15-day moving average.

For the future periods, heat waves occur during a larger part of the summer. For the period
around 2030, a probability for a HW day similar or higher than the maximum probability for
MAR-MPI-HIST (6-8%) is simulated between the 20th of June and the 15th of August (SSP2)
and the 18th of June and the 26th of August (SSP5). For SSP2, the periods around 2050 and
2070 both show similar probability curves. For these periods, a probability of a HW day above
the historical probability is found between the 10th of June and the 1st of September. For
SSP5, this is seen for dates between the 15th of June and the 10th of September (around 2050)
and between the 20th of May and the 15th of September (around 2070). It should therefore be
anticipated that HWs might also occur in the months of May and September, especially for the
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SSP5 scenario during the second half of the century. The maximum probability of a heat wave
day affecting Grenoble is increasing from 6%-8% in MAR-MPI-HIST to about 20% around 2030
for both scenarios. For around 2050, this increase goes up to 28% (SSP2) and 36% (SSP5). At
the later part of the century (around 2070) we find the maximum probability increasing to 30%
(SSP2) and 46% (SSP5). For all the three future 30-year periods, a heat wave day will become
a rather normal situation in July and August.

3.3 Sensitivity analysis to HW defining threshold

In this section, a sensitivity analysis will be performed on the heat wave defining threshold. Two
different thresholds will be considered: the 98th historical percentile and the 98th percentile of
each 30-year period for Tmin and Tmax. Defining HWs using a very high percentile threshold
is common in epidemiological studies (Pascal et al. 2006; Antics et al. 2013). This is due to
the fact that excess mortality starts to steeply increase from the 98th temperature percentile
(Pascal et al. 2013). Thus, the 98th percentile is more relevant in terms of prediction of HWs
with adverse health effects than the 92nd percentile. As will be seen in this section, this choice
of percentile drastically lowers the population of HWs simulated with the MAR model. Hence, a
statistical analysis of HWs using such percentile would not be informative. The study presented
in this section is a sensitivity analysis that provides further insights on the role of the threshold
choice.

3.3.1 Definition of HW based on the historical 98th percentile

A total of 3 HWs are detected in MAR-ERA5 (figure 3.7) using the 98th percentile as a threshold.
All of these HWs have a duration of 3 days which corresponds to the minimum requirement of
our definition. Two of them were found in literature (see table A.1 in appendix A): the 2003
heat wave between the 11th-13th of August and a HW in 2012 between the 19th-21st of August.
Hence, using such a threshold to find HWs in MAR-ERA5 does not seem to be effective for a
statistically relevant analysis.
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Figure 3.7: Same as in figure 2.4 but using the 98th percentile of Tmax and Tmin in MAR-ERA5 to define a
heat wave event. This threshold is indicated by the horizontal blackline.
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In figure 3.8a, a bubble plot similar to the one in figure 3.3a is displayed for MAR-MPI-HIST.
This figure is complemented by table 3.2. HWs in MAR-MPI-HIST are comparable with MAR-
ERA5 in amount and duration but they present higher temperatures. In MAR-MPI-HIST, a
total of 5 HWs are found with an average duration of 3.2 days, a < Tpeak > of 39.9◦C and a Tmax

′

of 2.9◦C. This shows that this definition of HWs, when compared to the definition introduced
in section 2.2, yields less HWs. Additionally, these HWs are shorter and have higher average
peak temperature, < Tpeak >.

Table 3.2: Same as in table 3.1 but using the 98th percentile of Tmax and Tmin in MAR-MPI-HIST to define
a heat wave event in MAR-MPI.

1985-2014 2016-2045 2036-2065 2056-2085

ERA5 MPI MPI MPI MPI

Total number
3 5

SSP2 9 (+80%) 9 (+80%) 16 (+220%)

of HWs [-] SSP5 15 (+200%) 26 (+420%) 58 (+1060%)

< Tpeak > [°C] 36.4 39.9
SSP2 40.7 (+2%) 41.5 (+4%) 41.3 (+3.5%)

SSP5 40.5 (+1.5%) 40.7 (+2%) 40.9 (+2.5%)

Average Duration [days] 3 3.2
SSP2 3.4 (+6.2%) 4.3 (+34.4%) 4.2 (+31.3%)

SSP5 3.3 (+3.1%) 4.2 (+31.3%) 4.3 (+34.4%)

< Tmax
′
> [°C] 1.4 2.2

SSP2 2.8 (+27.3%) 3.3 (+50%) 3.0 (+36.4%)

SSP5 2.7 (+22.7%) 2.7 (+22.7%) 2.7 (+22.7%)

For this HW definition, the discussion of the HW characteristics and their change from the
historical to future periods differs from the definition using the 92nd percentile. For SSP2, an
increasing trend for the periods around 2030 and 2050 followed by a decrease around 2070 is
seen for all characteristics, except for total number of HWs and their duration. On average,
these HWs will become warmer and longer towards the mid-century. Then, towards the end of
the century, their < Tpeak > and < Tmax

′
> seem to slightly decrease whereas their duration

remains similar and their frequency increases (figure 3.8). For SSP5, all metrics seem to increase
as the century evolves, especially the amount of HWs which increases by 1060% by the end of
the century, with respect to the historical period. However, the bubbles in figure 3.8 for this
scenario increase at around the same duration, indicating that the duration of HWs will remain
identical. Furthermore, the increase in < Tpeak > and < Tmax

′
> also remains similar throughout

the periods. Hence, this type of HW seems to increase in quantity as the century evolves but
remain similar in terms of < Tpeak > and < Tmax

′
>.
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Figure 3.8: Same as figure 3.3 but using the 98th percentile of Tmax and Tmin in MAR-MPI-HIST to define a
heat wave event. This threshold is indicated by the horizontal black line.

3.3.2 Definition of HW using the 98th percentile for each 30-year period

Another HW defining threshold that is of interest is the 98th percentile of the same 30-year period
where HWs are being searched for. Instead of using the historical climate as a benchmark, this
percentile threshold varies in accordance to the considered 30-year period. This is an interesting
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study if one assumes that society will find solutions to mitigate the impact of HWs on human
health. This definition of HW will correspond to events that are the most extreme, even for the
warmer climate of the future.

In figure 3.9, a bubbles plot similar to the one in figure 3.3 can be found. This figure is
complemented by table 3.3 where the total amount of HWs per period as well as the average
Tpeak and average mean Tmax anomaly are detailed. However, given the small amount of
detected HWs, the values in this table must be interpreted with caution.

Table 3.3: Same as in table 3.1 but using the 98th percentile of Tmax and Tmin for the corresponding period.

1985-2014 2016-2045 2036-2065 2056-2085

ERA5 MPI MPI MPI MPI

Total number
3 5

SSP2 2 (-60%) 4 (-20%) 4 (-20%)

of HWs [-] SSP5 3 (-40%) 6 (+20%) 4 (-20%)

< Tpeak > [°C] 36.4 39.9
SSP2 43.0 (+7.8%) 42.5 (+6.5%) 43.1 (+8.0%)

SSP5 41.8 (+4.8%) 41.7 (+4.5%) 43.5 (+9.0%)

Average Duration [days] 3 3.2
SSP2 3.0 (-6.3%) 3.2 (+0%) 3.8 (+18.7%)

SSP5 3.0 (-6.3%) 3.3 (+3.1%) 3.2 (+0%)

< Tmax
′
> [°C] 1.4 2.2

SSP2 3.9 (+77%) 2.7 (+22.7%) 2.5 (+13.6%)

SSP5 3.1 (+40.9%) 1.9 (-13.6%) 2.4 (+9.1%)

As seen in the previous section, the choice of the 98th percentile drastically lowers the popu-
lation of HWs found in the MAR model. For this HW definition, a few, very hot heat waves are
detected for each period. With respect to the historical period, the HWs become shorter but
with higher peak temperature. The < Tmax

′
> also increases despite the increasing threshold.

The main difference between the two scenarios is the higher and faster increasing threshold
shown by SSP5. However, the effect on Tpeak and Tmax

′
is small. The duration and peak tem-

perature of these HWs seem to remain similar as the century evolves for both SSPs but also
across the periods.

Choice of dates for local HW simulations in Grenoble

The dates corresponding to the heat waves found using the 98th percentile for each period serve
as an indicator of a time period for which a very extreme event was simulated by MAR. These
dates are used to identify the HWs to be modelled numerically for a posterior work. Such
work will entail simulating these HWs at high resolution over the city of Grenoble. For this
purpose, another model will be used with MAR-MPI as boundary forcing. The dates in table
C.1 (appendix C) correspond to the HWs defined using the 92nd percentile of that period which
comprise the dates of the hotter HWs defined in this section.
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Figure 3.9: Same as figure 3.3 but using the 98th percentile of Tmax and Tmin for the corresponding period to
define a heat wave event. This threshold is indicated by the horizontal black line. For a given period, the mean
daily Tmax anomaly is computed as the difference to the corresponding threshold.
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Chapter 4

Conclusions and outlook

This study provides a comprehensive characterisation of future summer heat waves in the valley
of Grenoble under two alternative socio-economic pathways. These were the SSP2 scenario,
a plausible scenario given the trajectory of today’s society, and the SSP5 scenario, a worst-
case premise. A climatological study was achieved using the regional climate model MAR with
boundary forcings provided by the reanalysis ERA5 (MAR-ERA5) and by the global climate
model MPI (MAR-MPI). We focused on heat waves defined with relation to health impacts
given that heat waves can cause a significant impact on population health, including a rise in
mortality.

The first part of this work was to validate the capability of the MAR model to reproduce the
temperature over Grenoble. Indeed, it was found that MAR-ERA5 is able to represent the mean
value and variability of Tmin and Tmax for the historical period (1985-2014). However, for the
warmer extremes MAR-ERA5 shows a small overestimation for Tmin and an underestimation for
Tmax with respect to the observations. The projections were made using MAR-MPI. This model
was compared to MAR-ERA5 during the same past period and we found that MAR-MPI matches
the climatological average of Tmin and overestimates the one for Tmax, albeit not significantly.
MAR-MPI however, overestimates the climatological standard deviation, indicating a simulated
climate which is more variable.

MAR-MPI was considered for three 30-year periods around 2030, 2050 and 2070. The PDFs
of Tmin and Tmax shift towards the right due to an increase in mean temperature with respect
to the historical period. However, the variability remains similar for all periods. Hence, the
increase in very hot daily maximum and minimum temperatures in the future is mainly due to
the shift rather than the broadening of the PDF. It was found that the SSP2 scenario exhibits a
faster shift in the 2030 period followed by an increasingly slower shift as it approaches the end
of the century. On the contrary, the SSP5 scenario displays a slower shift in the 2030 period
succeeded by an increasingly faster shift towards the later periods.

Heat waves were defined as periods of at least 3 consecutive days for which Tmax and Tmin
are above the 92nd historical percentile. Based on this definition, MAR-ERA5 simulates HW
periods which either exactly match documented HWs, match the period but differ in duration
by 1 to 3 days or are shifted by 1 to 2 days. Additionally, the MAR-MPI simulates HW
characteristics for the historical period in agreement with MAR-ERA5.

It was found that HW events become longer and more common in future periods. They also
show increasing trends in their peak and mean daily maximum temperature with respect to the
historical period (see table 3.1). Both scenarios simulate twice as many HWs for 2030, about 3
times more in 2050 and 3 (SSP2) and 4 (SSP5) times more for 2070. Additionally, we compute
statistics for yearly quantities considering each 30-year period. We find that the yearly HW
characteristics present an increase in the mean value and in the spread across SSP scenarios.
For SSP2, we find a slower increase in the mean from period to period than in the SSP5.
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Furthermore, it was shown that for SSP2 HW characteristics around 2070 remain comparable
to around 2050 on average, but the latter period shows higher variability.

The daily probability of the occurrence of a heat wave has also been investigated. For this
purpose we calculated the probability that a given day is part of a HW event during the MJJASO
months. The probability of a HW day in the future was found to be higher than in the historical
period during longer time intervals throughout summer. From 2050 onwards, HW days are 20%
more likely to happen from June to September for SSP2, and 30% more likely for SSP5.

A sensitivity analysis to the HW defining threshold has been carried out. This is due to
the fact that excess mortality starts to steeply increase from the 98th temperature percentile.
Many less HWs are detected using this percentile threshold. For both SSPs, these HWs will
become warmer and longer towards the mid-century. Then, towards the end of the century,
their duration remains similar and their frequency increases for SSP2. For SSP5 however, HWs
keep increasing in duration and temperature until the end of the century. Additionally, the 98th
percentile of each 30-year period was used to define HWs. This definition of HW corresponds
to events that are the most extreme, even for the warmer climate of the future. With respect
to the historical period, the HWs become shorter but with higher maximum temperature. For
this definition, the main difference between the two scenarios is the higher and faster increasing
threshold shown by SSP5.

For future studies, it would be interesting to quantify the temperature bias of MAR-MPI.
Additionally, in order to obtain a more statistically significant study an ensemble of GCMs could
be used to force MAR. Then, the HW characteristics could be studied for all runs. Further, if
HWs were to be studied from a climate science perspective, the whole domain over the Alps
could be taken into account. This would then provide a different study on temperature extremes
in high mountain areas and their effect on the melting of glaciers, for example.
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Appendix A

Data

Figure A.1: Observations from the Pont de Claix weather station sorted by temperature value. The horizontal
axis is the data point index in the sorted sequence and the vertical axis is the temperature in degrees Celsius.
Data points in red are the outliers that were removed from the data set.

Figure A.2: Counts per hour of daily minimum and maximum temperatures in the observations from the Pont
de Claix station. Tmin occurs in the early morning before sunrise and Tmax around 3 hours after midday. For
Tmin, a peak is seen at 23h which is an artifact of missing values in the dataset (not shown).
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Table A.1: Information about documented heat waves close to Grenoble and of heat waves found in the MAR-
ERA5 simulation for the grid point (P∗) above Grenoble.

Reference Location Real MAR-ERA5

Year Month Days Days

1986 6 - 26-30

1987 8 - 14-16

1987 9 - 13-18

Antics et al. 2013 Lyon 1989 7 21-26 21-24

Schoetter et al. 2015 Western Europe 1990 8 2-4 3-5

1992 7 - 27-29

Schoetter et al. 2015 Western Europe 1992 8 7-9 6-8

1994 7 - 2-4

Schoetter et al. 2015 Western Europe 1994 8 4-6 4-9

Antics et al. 2013 Lyon 1995 7 20-25 19-21

Schoetter et al. 2015 Western Europe
1998

8 8-12
8-12

Antics et al. 2013 Lyon 8 10-15

2000 8 - 18-20

2001
7-8 - 31-2

8 - 24-26

2002 6 - 15-20

Antics et al. 2013

Lyon

2003

6 10-17 -

Lyon 6 21-29 20-25

Lyon 7 13-19 12-15

Chaxel et al. 2004 Grenoble 8 1-15

2-14Schoetter et al. 2015 Western Europe 8 2-13

Antics et al. 2013

Lyon 8 3-18

Lyon
2005

6-7 26-2 -

Lyon 7 14-20 -

Lyon

2006

7 18-31

19-22Schoetter et al. 2015 Western Europe 7 18-27

Fouillet et al. 2007 France 7 11-28

2009
5 - 23-25

8 - 18-20

Ung et al. 2013 Isère 2010 7 9-17

CIRE Auvergne 2011 Puy-de-Dome
2011

7 26-28 -

CIRE Auvergne 2011 Puy-de-Dome 8 19-23 18-24

2012

6 - 28-30

7 - 25-27

Ung et al. 2013 Isère 8 20-26 19-24

2014 6 - 8-10
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Figure A.3: Histograms of Tmin and Tmax computed for the observations taken at the Pont de Claix station
for the historical period (1985-2014) and corresponding gaussian fit to the data (black curve).
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Figure A.4: Histograms of Tmin and Tmax for the MAR-ERA5 output for the period 1985-2014 and
corresponding gaussian fit to the data (black curve).
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Results
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Figure B.1: Time evolution of Tmin and Tmax for MAR-MPI under the SSP2 (orange) and SSP5 (red) scenarios.
The solid, bolded lines correspond to a 5 year moving average.
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Figure B.2: Gaussian fits of the histograms of MAR-MPI-HIST daily Tmin output (green) and for the MAR-
MPI daily Tmin outputs for the future periods around 2030, 2050 and 2070 (yellow, brown and red, respectively).
On the left, the PDFs for the SSP2 scenario and on the right, the PDFs for the SSP5 scenario.
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Figure B.3: Yearly HW characteristics averaged over the 30-year periods. The results for MAR-ERA5 (grey)
and MAR-MPI (other colors) are displayed as boxplots. The streak indicates the median, the box the interquartile
range (i.e. 25th and 75th percentiles), the whisker the full spread (i.e. minimum and maximum values) and the
triangle the mean value. Plots on the left column refer to the SSP2 scenario and plots on the right column to the
SSP5 scenario.
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Appendix C

HWs to be modelled

Table C.1: Dates of hottest HWs found for each scenario found as explained at the end of section 3.3.2. The
column ”Pct98” indicates the dates of HW defined using the 98th percentile.

SSP2 SSP5

Year-Month Days Pct98 Year-Month Days Pct98

2038-07 19-24 20-22 2033-06 26-28 26-28

2040-07 12-14 12-14 2037-08 07-09 07-09

2052-07 05-14 10-13 2043-07 16-19 17-19

2058-07 11-17 12-14 2062-07 14-18 14-16

2069-07 23-25 23-25 2062-07/08 20-03 31-03

2078-07/08 18-02 27-30 2063-07 20-24 22-24

2081-06/07 26-04 29-03 2063-08 13-17 14-17

2073-07 23-27 24-27

2084-06 14-18 15-17
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Appendix D

Gaussian fits

In tables D.1 and D.2, the statistical information for all the data involved in this report and re-
spective Gaussian fits can be found. For the data, the mean, standard deviation and percentiles
are computed directly. For the Gaussian fits the mean and standard deviation are parameters in-
trinsic to the curve fit. These are computed using the Python function scipy.optimize.curve fit1

with a Gaussian function. The percentiles are computed as in the following example. Let
µ = 25.6◦C and σ = 6.5◦C be the mean and standard deviation of a Gaussian fit, respectively.
We have to compute the 92nd percentile. First, we need to find the z-score associated to this
percentile. The z-score is the value zp that solves the equation:

P (Z < zp) = 0.92. (D.1)

The value of zp that solves the equation above cannot be found directly, it is solved either by
looking at a standard normal distribution table or by approximation. We find that the solution
is zp = 1.405, because from the normal table we see that

P (Z < 1.405) = 0.92. (D.2)

Then, the percentile we are looking for is computed using the following formula:

P92 = µ+ zp · σ, (D.3)

which yields P92 = 34.733◦C.

1https : //docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curvef it.html
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Table D.1: Statistical information for all data involved in this project and respective Gaussian fits for Tmin.

Mean Standard deviation Percentile 92 Percentile 98

Pont de Claix 12.6 3.9 17.8 19.7

Gaussian fit 13.0 3.9 18.5 21.0

MAR-ERA5 13.5 4.1 19.2 21.2

Gaussian fit 13.7 4.2 19.6 22.3

MAR-MPI-HIST 13.4 5.1 20.4 22.7

Gaussian fit 13.7 5.3 21.1 24.6

MAR-MPI-230 14.3 5.2 21.3 23.9

Gaussian fit 14.8 5.4 22.4 25.9

MAR-MPI-250 14.8 5.2 22.0 24.3

Gaussian fit 15.2 5.5 22.9 26.5

MAR-MPI-270 15.3 5.2 22.2 24.7

Gaussian fit 15.9 5.4 23.5 27.0

MAR-MPI-530 14.1 5.2 21.2 23.9

Gaussian fit 14.5 5.4 22.1 25.6

MAR-MPI-550 15.1 5.5 22.5 25.0

Gaussian fit 15.5 5.8 23.6 27.4

MAR-MPI-570 16.2 5.6 23.8 26.0

Gaussian fit 16.8 5.8 25.0 28.7

Table D.2: Statistical information for all data involved in this project and respective Gaussian fits for Tmax.

Mean Standard deviation Percentile 92 Percentile 98

Pont de Claix 25.1 6.2 33.8 36.9

Gaussian fit 25.6 6.5 34.7 38.9

MAR-ERA5 24.4 5.6 31.9 34.6

Gaussian fit 24.8 5.7 32.8 36.5

MAR-MPI-HIST 24.8 6.6 33.8 36.6

Gaussian fit 25.4 7 35.2 39.8

MAR-MPI-230 25.9 6.7 34.9 37.8

Gaussian fit 26.7 7 36.5 41.1

MAR-MPI-250 26.5 6.7 35.6 38.4

Gaussian fit 27.1 7.1 37.1 41.7

MAR-MPI-270 27 6.7 35.7 38.8

Gaussian fit 27.9 6.9 37.6 42.1

MAR-MPI-530 25.7 6.7 34.8 37.8

Gaussian fit 26.3 7.1 36.3 40.9

MAR-MPI-550 26.7 7 36.1 39

Gaussian fit 27.4 7.4 37.8 42.6

MAR-MPI-570 27.9 7 37.3 40

Gaussian fit 28.8 7.3 39.1 43.8
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