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Abstract 14 

 The effective population size is an important concept in population genetics. It 15 

corresponds to a measure of the speed at which genetic drift affects a given population. 16 

Moreover, this is most of the time the only kind of population size that empirical population 17 

genetics can give access to. Dioecious populations are expected to display excesses of 18 

heterozygosity as compared to monoecious panmictic populations, as measured by 19 

Wright's FIS. It can be shown that these excesses are negatively correlated with the 20 

population size. This is why FIS can be used to estimate the eigenvalue effective 21 

population size of dioecious populations. In this paper, we propose a new approximation 22 

that provides a very accurate estimate of the eigenvalue effective population size of a 23 

dioecious population as a function of the real population size. We then explore the 24 

accuracy of different FIS-based methods using the leading eigenvalue of transition matrices 25 

or coalescence. It appears that the eigenvalue-based method provides more accurate 26 

results in very small populations, probably due to approximations made by the 27 

coalescence approach that are less valid in such situations. We also discuss the 28 

applicability of this method in the field. 29 

 30 

 31 

  32 
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Introduction 33 

 A convenient way to measure the speed at which a given population loses its 34 

genetic diversity by genetic drift is to compute its effective population size Ne (Vitalis & 35 

Couvet, 2001b). Several formal definitions exist. They all refer to an ideal population that 36 

follows all Castle-Weinberg assumptions (Castle, 1903; Weinberg, 1908) (see (De Meeûs, 37 

Chan et al., 2021) for an explanation why this labelling is fairer than the more popular 38 

Hardy-Weinberg), except for the size of the population that is limited to Ne. It means a self-39 

compatible diploid monoecious and panmictic population of size Ne, with no selection, no 40 

migration, no mutation and discrete generations, and where alleles for the next generation 41 

are binomially sampled from the 2Ne available ones, which causes genetic drift at a 42 

specific speed, proportional to 1/(2Ne). Such a population is also known as following the 43 

Wright-Fisher (WF) model (Crow & Kimura, 1970) , as opposed to the Castle-Weinberg 44 

model, where the population is of infinite size, and thus without genetic drift. Some 45 

approaches focus on the rate of inbreeding increase, the rate of heterozygosity loss, the 46 

variation of allele frequencies from one generation to the other (Vitalis & Couvet, 2001b), 47 

or the coalescence time (Balloux & Lehmann, 2003; Balloux, Lehmann et al., 2003; 48 

Balloux, 2004; Nomura, 2008). This led authors to define the inbreeding effective 49 

population size, which refers to the speed at which inbreeding evolves, the eigenvalue 50 

effective population size (see appendices 1-3 to see the detailed analytical tools and 51 

Appendix 4 to see why it was named as such), the variance (of allele frequencies from one 52 

generation to the next) effective population size (Crow & Kimura, 1970; Vitalis & Couvet, 53 

2001b; Ewens, 2004) and the coalescence (or coancestry) effective population size 54 

(Balloux & Lehmann, 2003; Balloux et al., 2003; Balloux, 2004; Nomura, 2008) (see 55 

below), respectively. In all cases, the effective population size is computed for a given 56 

population of census size N, which deviates from an ideal population (following WF) at one 57 

or several of the properties defined above. Because of these deviations, genetic drift 58 
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operates at a faster rate, or sometimes at a slower rate, than the same population if it 59 

fulfilled the ideal conditions. The effective population size of such a non-ideal population is 60 

the ideal population of size Ne that would drift at the same speed as the non-ideal one, 61 

also known as the size of a population following WF and drifting at the same speed as the 62 

focal population (Vitalis & Couvet, 2001b).  63 

 Many species have separate sexes. Several authors have investigated the impact 64 

that dioecy and sex ratio have on effective population size. In this note, we review some of 65 

these results and we then derive a new and apparently more accurate approximation for 66 

the eigenvalue effective population size of a dioecious population. We also propose 67 

another estimator of Ne from Wright's FIS. We compare the relative performances of the 68 

different methods. Several appendices present the proofs of all equations used in the main 69 

text. These appendices are extremely detailed so that almost anybody willing to 70 

understand precisely how a given result was obtained, here and in the cited literature, can 71 

easily access this knowledge. Nevertheless, more skilled readers will probably not need to 72 

read any of those. 73 

 74 

Classic results from the literature 75 

 The effective population size of a dioecious population has been defined in different 76 

ways. In Wright's book (Wright, 1969) (page 197), the approximate (eigenvalue) effective 77 

size of a population of size N, with Nf females and Nm males is:  78 

𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

 79 

  (1) 80 

Nevertheless, in the same book (page 197 again), a better approximation is suggested, 81 

and a quick proof can be found in Felsenstein's book (pages 266-267) (Felsenstein, 2019) 82 

(see also below, equation 15), for the eigenvalue effective population size Ne: 83 
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𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

+
1
2
 84 

  (2) 85 

More recently, Balloux (Balloux, 2004), computed the coalescence effective population 86 

size as: 87 

𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

+
1
2

+
1

2𝑁𝑁
 88 

  (3) 89 

 From equations (2) and (3), and for sex-ratios (SR) that are not too female biased 90 

(e.g. 𝑁𝑁𝑓𝑓 − 𝑁𝑁𝑚𝑚 < �𝑁𝑁 2⁄ , for Equation 2), one can see that dioecy tends to slightly increase 91 

Ne. This is obviously a consequence of the supplementary delay required for two alleles to 92 

become identical by descent in the same individual, since selfing cannot occur. Another 93 

consequence is that dioecious populations are expected to display heterozygote excesses 94 

(Robertson, 1965). This led to formalizing the expected deviation of heterozygote 95 

frequency in dioecious populations, as measured by Wright's FIS (Wright, 1965), which 96 

may provide a simple tool to estimate the effective population size, assuming even sex 97 

ratios. Using simple algebra on observed and expected heterozygosity, Pudovkin et al. 98 

(Pudovkin, Zaykin et al., 1996) proposed the following equation (see Appendix 5 for a 99 

detailed proof) for the eigenvalue effective population size: 100 

𝑁𝑁𝑒𝑒 = −
1

2𝐹𝐹IS
 101 

  (4) 102 

They also proposed a supposedly more accurate approximation with their equation 4 (but 103 

see also Appendix 5): 104 

𝑁𝑁𝑒𝑒 = −
1

2𝐹𝐹IS
+

1
2(1 − 𝐹𝐹IS) 105 

  (5) 106 
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 Balloux (2004) proposed another solution, based on the coalescent effective 107 

population size and requiring quite cumbersome analytic treatments, which are detailed in 108 

Appendix 6: 109 

𝑁𝑁𝑒𝑒 = −
1

2𝐹𝐹IS
−

𝐹𝐹IS
(1 + 𝐹𝐹IS) 110 

  (6) 111 

 112 

The general model of a dioecious pangamic population 113 

 For now, and unless specified otherwise, we assume a dioecious diploid population 114 

of constant size and sex-ratio, with discrete generations, no mutation and no migration. At 115 

each generation, alleles that will be present in an individual of generation t were randomly 116 

drawn with replacement in the pool of gametes of their two parents (or from infinite pools 117 

of gametes), and females and males are polygamous and mate randomly. For a dioecious 118 

population with Nf females and Nm males, probabilities of identity within individuals QI(t) and 119 

between individuals within the subpopulation QS(t) at generation t respectively are (see for 120 

instance (Balloux, 2004), equation 14 or (Felsenstein, 2019) pages 266-267): 121 

𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1) 122 

  (7) 123 

and 124 

𝑄𝑄S(𝑡𝑡) =
1
4
�

1
𝑁𝑁𝑓𝑓
�

1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� + �1 −

1
𝑁𝑁𝑓𝑓
�𝑄𝑄S(𝑡𝑡−1)� 125 

          +
1
4
�

1
𝑁𝑁𝑚𝑚

�
1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� + �1 −

1
𝑁𝑁𝑚𝑚

�𝑄𝑄S(𝑡𝑡−1)� +
1
2
𝑄𝑄S(𝑡𝑡−1) 126 

  (8) 127 

Equation 7 is straightforward: inbreeding of individuals at any generation comes from the 128 

genetic similarity between their parents. Equation 8 is less intuitive. We want to compute 129 

the probabilities of identity by descent between two alleles of two different individuals 130 
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taken at random at generation t, and assuming random mating of parents and a great 131 

number of matings nM (i.e. nM→∞). This way, the probability of mating between two 132 

individuals remains independent of previous copulas these may have been involved in. 133 

The probability that two alleles of generation t come from two females of generation t-1 is 134 

¼, from two males is also ¼, and from one male and one female is ½. If both come from 135 

two females, the probability they came from the same mother is 1/Nf (i.e. found in full or 136 

half sibs) or two different females is 1-1/Nf. In the same diploid individual, the probability to 137 

sample twice the same allele is ½. Otherwise, two different alleles are sampled from the 138 

same individual with probability ½, but in that case they are identical by descent with 139 

probability QI(t-1). If the two alleles came from two different females, the probability that 140 

these two alleles are identical by descent is QS(t-1). The same reasoning applies to the two-141 

males case. For the one-female-one-male case, the probability that the two alleles are 142 

identical is also QS(t-1). 143 

Combining equations 7 and 8, we get: 144 

𝑄𝑄𝑠𝑠(𝑡𝑡) =
1
4
�

1
𝑁𝑁𝑓𝑓

�
1
2

+
1
2
𝑄𝑄S(𝑡𝑡−2)� + �1 −

1
𝑁𝑁𝑓𝑓
�𝑄𝑄S(𝑡𝑡−1)� 145 

          +
1
4
�

1
𝑁𝑁𝑚𝑚

�
1
2

+
1
2
𝑄𝑄S(𝑡𝑡−2)� + �1 −

1
𝑁𝑁𝑚𝑚

�𝑄𝑄S(𝑡𝑡−1)� +
1
2
𝑄𝑄S(𝑡𝑡−1) 146 

 147 

𝑄𝑄𝑠𝑠(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)
1
4
�1 −

1
𝑁𝑁𝑓𝑓

+ 1 −
1
𝑁𝑁𝑚𝑚

+ 2� + 𝑄𝑄S(𝑡𝑡−2)
1
4
�

1
2𝑁𝑁𝑓𝑓

+
1

2𝑁𝑁𝑚𝑚
� +

1
4
�

1
2𝑁𝑁𝑓𝑓

+
1

2𝑁𝑁𝑚𝑚
� 148 

 149 

𝑄𝑄S(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁𝑚𝑚 − 𝑁𝑁𝑓𝑓
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� + 𝑄𝑄S(𝑡𝑡−2)
1
8
�
𝑁𝑁𝑓𝑓 + 𝑁𝑁𝑚𝑚
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� +
1
8
�
𝑁𝑁𝑓𝑓 + 𝑁𝑁𝑚𝑚
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� 150 

 151 

𝑄𝑄S(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� + 𝑄𝑄S(𝑡𝑡−2)
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� +
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� 152 

Using the genetic diversity of the subpopulation Hs=1-Qs yields simpler expressions: 153 
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1 − 𝐻𝐻S(𝑡𝑡) = �1 − 𝐻𝐻S(𝑡𝑡−1)�
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� + �1 − 𝐻𝐻S(𝑡𝑡−2)�
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� +
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� 154 

𝐻𝐻S(𝑡𝑡) = 1 − �1 − 𝐻𝐻S(𝑡𝑡−1)�
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� − �1 − 𝐻𝐻S(𝑡𝑡−2)�
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� −
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� 155 

 156 

𝐻𝐻S(𝑡𝑡) = 1 −
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� +
1
4
𝐻𝐻S(𝑡𝑡−1) �

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� −
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� +
1
8
𝐻𝐻S(𝑡𝑡−2) �

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�157 

−
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� 158 

 159 

𝐻𝐻S(𝑡𝑡) = 𝐻𝐻S(𝑡𝑡−1)
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� + 𝐻𝐻S(𝑡𝑡−2)
1
8
�

𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� + 1 −
1
4
�

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁 + 𝑁𝑁
𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

� 160 

 161 

𝐻𝐻S(𝑡𝑡) = 𝐻𝐻S(𝑡𝑡−1)
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ 𝐻𝐻S(𝑡𝑡−2)

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 162 

  (9) 163 

Let λ be: 164 

𝜆𝜆 =
𝐻𝐻S(𝑡𝑡)

𝐻𝐻S(𝑡𝑡−1)
 165 

  (10) 166 

Assuming λ to be constant from one generation to the next, and dividing all terms by HS(t-1), 167 

Equation 10 writes: 168 

𝜆𝜆 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+

1
𝜆𝜆

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 169 

 170 

𝜆𝜆2 −
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝜆𝜆 =

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 171 

 172 
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𝜆𝜆2 − 2
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝜆𝜆 + �

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

=
𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 173 

 174 

�𝜆𝜆 −
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
�
2

=
𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 175 

 176 

𝜆𝜆 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
± � 𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 177 

As λ is positive, the single positive (leading) root of this equation is: 178 

𝜆𝜆 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ � 𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 179 

 180 

𝜆𝜆 =
1
2
−

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ � 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ �
1
2
−

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 181 

 182 

𝜆𝜆 =
1
2
−

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+
1
2
� 𝑁𝑁

2𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �1 −

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 183 

 184 

𝜆𝜆 =

1 − 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ � 𝑁𝑁
2𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ 1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2
− 2 𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

2
 185 

 186 

𝜆𝜆 =

1 − 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ �1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

2
 187 

  (11) 188 

Note that the same results can be obtained with the leading eigenvalue of the transition 189 

matrix describing the evolution of genetic identities (Appendix 7). 190 
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 For a monoecious panmictic population: 191 

𝐻𝐻S(𝑡𝑡) = 𝐻𝐻S(𝑡𝑡−1) �1 −
1

2𝑁𝑁𝑒𝑒
� 192 

and in that case: 193 

𝜆𝜆 = 1 −
1

2𝑁𝑁𝑒𝑒
 194 

  (12) 195 

We now need to combine Equations 11 and 12 to get: 196 

1 −
1

2𝑁𝑁𝑒𝑒
=

1 − 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ �1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

2
 197 

 198 

1
2𝑁𝑁𝑒𝑒

= 1 −

1 − 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+ �1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

2
 199 

 200 

1
2𝑁𝑁𝑒𝑒

=

2 − 1 + 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

− �1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

2
 201 

 202 

1
𝑁𝑁𝑒𝑒

= 1 +
𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
− �1 + �

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 203 

 204 

𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 + 𝑁𝑁 − 4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚�1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2
 205 

 206 



11 
 

𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 �1 −�1 + � 𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2
� + 𝑁𝑁

 207 

  (13) 208 

 209 

A new approximation 210 

 According to Taylor-MacLaurin's expansion series, √1 + 𝑋𝑋 ≈ 1 + 1
2
𝑋𝑋 − 1

8
𝑋𝑋2 (see 211 

Appendix 8 for a detailed proof). We can thus approximate the square root in equation 13 212 

with: 213 

�1 + �
𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
�
2

≈ 1 +
1
2
�

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

−
1
8
�

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
4

+ ⋯ 214 

The quantity 4NfNm is the lowest for the most uneven sex-ratios, like Nm=1 and Nf=N-1. In 215 

that case: 216 

−
1
8
�

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
4

+ ⋯ = −
1
8
�

𝑁𝑁
4(𝑁𝑁 − 1)�

4

+ ⋯ = −
1

32
�

𝑁𝑁
𝑁𝑁 − 1

�
4

+ ⋯ ≪ 1 +
1
2
�

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 217 

We can then consider that: 218 

 �1 + �
𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
�
2

≈ 1 +
1
2
�

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 219 

Eq 13 can thus write: 220 

𝑁𝑁𝑒𝑒 ≈
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 �1 − 1 − 1
2 �

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2
� + 𝑁𝑁

 221 

 222 

𝑁𝑁𝑒𝑒 ≈
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

−2𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 �
𝑁𝑁

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
�
2

+ 𝑁𝑁
 223 

 224 
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𝑁𝑁𝑒𝑒 ≈
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

𝑁𝑁 − 𝑁𝑁2

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 225 

 226 

𝑁𝑁𝑒𝑒 ≈
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

×
1

1 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 227 

  (14) 228 

UsingTaylor-MacLaurin again we can see that: 1/(1-X)=1+X+X²+X3+… (Appendix 8). 229 

We can thus rewrite the second term of the denominator of equation 14: 230 

1

1 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

≈ 1 +
𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

+ �
𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
�
3

+ ⋯ 231 

Using this in equation 14 yields: 232 

𝑁𝑁𝑒𝑒 ≈
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

×
1

1 − 𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

=
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

�1 +
𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
+ �

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

+ �
𝑁𝑁

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
�
3

+ ⋯� 233 

 234 

𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

+
1
2

+
1
2

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+
1
2
�

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

+
1
2
�

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
3

+ ⋯ 235 

For the same reasons as those given above, in this equation, terms that are squared, 236 

cubed etc… can be neglected, and we then get: 237 

𝑁𝑁𝑒𝑒 ≈
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

+
1
2

+
1
4

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 238 

  (15) 239 

Note that if we neglect N/(16NfNm), we obtain equation 2. 240 

For an even sex ratio, we get: 241 

𝑁𝑁𝑒𝑒 ≈ 𝑁𝑁 +
1
2

+
1

4𝑁𝑁
 242 

  (16) 243 
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Equations 15 and 16 are a little different from Balloux's equations 18 and 10 (Balloux, 244 

2004), respectively: 245 

�
𝑁𝑁𝑒𝑒 =

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

+
1
2

+
1

2𝑁𝑁

𝑁𝑁𝑒𝑒 ≈ 𝑁𝑁 +
1
2

+
1

2𝑁𝑁

 246 

The reasons for this discrepancy between these two sets of equations are unclear due to 247 

the lack of details in Balloux' paper. For his equation 10, Balloux simply cites Wright's book 248 

(Wright, 1969) without mentioning the page or the equation number. A glance at Wright's 249 

book only provided a stronger approximation (page 212, equation 8.4): Ne=N+1/2, without 250 

giving much details (but see Felsenstein's book page 266-267 (Felsenstein, 2019)). 251 

Appendix 6 provides a detailed proof for Balloux's equation 10 in the (simpler) case of 252 

even sex-ratios. 253 

 In Figure 1, it can be seen that the first approximation found in Wright's book 254 

(Equation 1), as in all population genetics textbooks, strongly underestimates Ne, except 255 

for very big populations (as expected), as compared to other approximations. Wright's 256 

second equation and Balloux's one seem to display an equivalently small bias, though in 257 

varying directions for Balloux's equation, depending on the sex-ratio. This can be seen 258 

with a study of the sign of ΔNe_B=Ne_Eq3-Ne_Eq13 (see appendix 9), where we notice that 259 

with the unique valid root of ΔNe (SR2), Balloux's equation will provide an over-estimate 260 

when SR>SR2, an under-estimate when SR<SR2 and will be accurate when SR=SR2=3-261 

2√2≈0.1716 (e.g.SR≈1/6; SR≈4/23). From there, it is easily deduced that, in Figure 1, 262 

positive values of ΔNe_B correspond to SR>SR2, negative ones to SR<SR2, and close or 263 

very close to accuracy around this threshold (for instance 35/204 is very close to SR2). 264 

This bias is very small when Ne>10 (Figure 1). Finally, the new simplified estimate 265 

proposed in Equation 15 perfectly fits to Equation 13, except for very small Ne<4 where a 266 

very small overestimate can be noticed (Figure 1). 267 

 268 
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 269 

Figure 1: Comparisons of the performances of different approximations of effective 270 

population size (Ne_a) in dioecious populations with uneven (left) and even (right) sex-271 

ratios, as compared to equation 13 (Eq 13) (Ne). Performance was measured as Δe=(Ne_a-272 

Ne)/Ne, with Wright's equations 1 and 2 (Eq1 and Eq2 respectively), Balloux (Eq3), and the 273 

new simplified estimate of the present paper (Eq15). 274 

 275 

Estimating the effective population size from Wright's FIS 276 

 As seen above with equations 4, 5 and 6, heterozygote excesses expected in 277 

pangamic dioecious populations as computed by Wright's FIS, can give access to an 278 

estimate of Ne from genotypic data. In the following, we propose other FIS based 279 

estimates.  280 

 Let Hexp and Hobs be the expected (under Castle-Weinberg expectations) and the 281 

observed proportion of heterozygotes in the population, respectively. We can express 282 

these proportions as the probabilities of drawing at random two different alleles in the 283 

population HS(t) and in an individual HI(t) respectively at any generation t: Hexp=HS(t) and 284 
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Hobs=HI(t). Finally, from equation 7, we can see that HI(t)= HS(t-1). If we take Nei's parametric 285 

definition of FIS (Nei & Chesser, 1983): 286 

𝐹𝐹IS =
𝐻𝐻exp − 𝐻𝐻obs

𝐻𝐻exp
 287 

 288 

𝐹𝐹IS = 1 −
𝐻𝐻obs
𝐻𝐻exp

 289 

 290 

𝐹𝐹IS = 1 −
𝐻𝐻S(𝑡𝑡−1)

𝐻𝐻S(𝑡𝑡)
 291 

  (17) 292 

We can combine equations 10 and 17 to obtain: 293 

𝐹𝐹IS = 1 −
1
𝜆𝜆
 294 

  (18) 295 

Now, combining equation 18 with equation 12 yields: 296 

𝐹𝐹IS = 1 −
1

1 − 1
2𝑁𝑁𝑒𝑒

 297 

 298 

𝐹𝐹IS =
1 − 1

2𝑁𝑁𝑒𝑒
− 1

1 − 1
2𝑁𝑁𝑒𝑒

 299 

 300 

𝐹𝐹IS =
− 1

2𝑁𝑁𝑒𝑒
1 − 1

2𝑁𝑁𝑒𝑒

 301 

 302 

𝐹𝐹IS = −
1

2𝑁𝑁𝑒𝑒 − 1
 303 
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 304 

2𝑁𝑁𝑒𝑒𝐹𝐹IS − 𝐹𝐹IS = −1 305 

 306 

𝑁𝑁𝑒𝑒 =
𝐹𝐹IS − 1

2𝐹𝐹IS
 307 

 308 

𝑁𝑁𝑒𝑒 =
1
2
−

1
2𝐹𝐹IS

 309 

  (19) 310 

This result is the same as Equation 4 plus one half of an individual. 311 

 We can also express N as a function of FIS in a dioecious population with an even 312 

sex-ratio (Appendix 10): 313 

𝑁𝑁 = −
1 + 𝐹𝐹IS

2𝐹𝐹IS
 314 

  (20) 315 

Here, N can be called the effective number of breeders, which must not be confused with 316 

the effective population size. Notice that equation 20 differs from equation 4 by the 317 

subtraction of half an individual. 318 

If we use Equation 20 in Equation 16 and rearrange the formula we get (Appendix 9): 319 

𝑁𝑁𝑒𝑒 ≈ −
1

2𝐹𝐹IS
−

𝐹𝐹IS
2(1 + 𝐹𝐹IS) 320 

  (21)  321 

We can here note that, if we use equation 20 in equation 2 ((Wright, 1969), page 197), 322 

with an even sex-ratio, we obtain equation 4 (first FIS based estimate of Pudovkin et al 323 

(Pudovkin et al., 1996)). 324 

 We have estimated FIS based Ne under various population sizes and sex-ratios, 325 

using the expected FIS computed in Appendix 11: 326 
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𝐹𝐹IS ≈ −
𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓

𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓 + 8𝑁𝑁𝑚𝑚𝑁𝑁𝑓𝑓
 327 

  (22) 328 

In the Figure 2, it can be seen that, as compared to expected values (Equation 13) 329 

Equations 5 (Pudovkin et al second equation) and 19 (simple equation of the present 330 

paper) tend to over-estimate Ne as compared to other estimates, unless population size 331 

becomes big enough. Equations 4 (Pudovkin et al first equation) and 6 (Balloux) present 332 

an equivalent bias but in the opposite direction (under-estimate and over-estimate, 333 

respectively). This bias is only visible for small Ne's (i.e. Ne<10). Interestingly, the average 334 

of these two is exactly equation 21 of the present study, which fits perfectly with the 335 

expected one, with an extremely small over-estimate for the smallest Ne<3. 336 

 337 
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 338 

Figure 2: Comparisons of the performances of different FIS based (Equation 22)  estimates 339 

of effective population size (Ne_a) in dioecious populations, as compared to equation 13 340 

(Eq 13) (Ne), measured as Δe=(Ne_a-Ne)/Ne, with Pudovkin et al. equations 1 and 2 (Eq 4 341 

and Eq 5 respectively), Balloux (Eq 6), and the new simplified estimates of the present 342 

paper: the most simple (Eq 19), and the final one (Eq 21). 343 

 344 

 345 

Discussion 346 

 Genetic drift can be influenced by several factors other than dioecy, population size 347 

and sex-ratio: reproductive variance, non-overlapping generations, changes in population 348 

size and/or sex ratio, subdivision and selection. Such complications may lead to very 349 

cumbersome algebra if one wanted to present a more general expression for the effective 350 

population size.  351 

 The main goals of the present study were, in decreasing order of importance. 1) to 352 

present an improved approximation of the classic case where only dioecy and/or uneven 353 

sex-ratio have an effect and compare it to previous approximations; 2) to present detailed 354 

derivations of both the old and new results that would be accessible to most readers; and 355 
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3) to provide an improved FIS estimate deriving from this new approximation, to be used in 356 

empirical population genetics studies instead of the two most often used methods: 357 

Pudovkin et al. (Pudovkin et al., 1996) and Balloux (Balloux, 2004) (11 and 8 citations per 358 

year respectively according to Google scholar's based research in the computer program 359 

Publish and Perish 8.8.4275.8412 (Harzing, 2007)).  360 

 We do not expect any natural population to closely follow the model we explored in 361 

the present work. Nevertheless, excluding reproductive system variation and selection, 362 

any combination of the factors mentioned above will tend to reduce Ne and FIS accordingly, 363 

and most probably their variance, with not much harm to the average expectations. Partial 364 

selfing (e.g. deriving from some kinds of automictic parthenogenesis of females (De 365 

Meeûs, Prugnolle et al., 2007)), or partial sib-mating, should be easily detected, produce 366 

generalized heterozygote deficits and thus exclude our method. Clonal propagation (e.g. 367 

through a special kind of endomitotic automixis of females (De Meeûs et al., 2007)) should 368 

also be easy to detect (De Meeûs, Lehmann et al., 2006) and again the FIS based method 369 

would be dismissed. Selection is locus specific and should only affect one or two of the loci 370 

used, which consequently should be easy to detect and exclude. Subdivision can have two 371 

effects: if there is a Wahlund effect, this should be easy to detect (Manangwa, De Meeûs 372 

et al., 2019); and if not, highly subdivided populations should exhibit effective sub-373 

population sizes that are very close to the one that these would exhibit if totally isolated 374 

(because rare immigrants are not expected to display much influence), and if not, 375 

subsamples should all converge toward the total effective population size, which should be 376 

easily detected too (Ravel, Mahamat et al., 2023) (see also (Waples & Do, 2010; Waples 377 

& England, 2011)). Additionally, in most situation, empiricists have no idea of the effective 378 

sex-ratio, of the scenarios regarding how generations overlap, or how population size 379 

fluctuates across generations. Consequently, complication of estimates will neither allow 380 

an easy understanding of the mathematical developments, which was an important goal of 381 



20 
 

the present work, nor take into account with certainty the real scenarios that occurred in 382 

the population under investigation. This is why, even if the new estimate will hardly give 383 

significantly different values as compared to the previous ones, we think it is still better 384 

using the theoretical one that is closer to the exact expected value (equation 21) and 385 

interpretable on more sound biological means (see below). 386 

 The new approximation proposed in Equation 15 is equivalent to what is expected 387 

in large dioecious populations (Equation 1), plus half an individual, plus half of a coalesced 388 

individual in a large dioecious population. As far as we know, such added quantities were 389 

never discussed before (but see Felsenstein 2019, page 266). We can here try to provide 390 

some biological interpretation of such quantities. One half of heterozygosity is lost when an 391 

individual reproduces by selfing. In a panmictic population (i.e. monoecious) of size N, a 392 

proportion 1/N of gametes are produced by selfing (Rousset, 1996), in which case half the 393 

genes coalesce in the progeny (PCM=1/2N). This can happen in the N individuals. Hence 394 

(1/N)×(1/2)×N=1/2 individuals are produced with coalesced genes per generation through 395 

selfing in a WF population. This means that one half of such coalescent event does not 396 

happen when random selfing is forbidden, as it is necessarily the case in dioecious 397 

populations. Additionally, in very big dioecious populations, Ne≈4NfNm/N (Equation 1). For 398 

any diploid population, the instantaneous probability of coalescence is PC=1/(2Ne) (see 399 

(Laporte & Charlesworth, 2002), Equation 7; or (Nomura, 2008) Equation 3). 400 

Consequently, for a very big dioecious population, this probability becomes (Equation 1) 401 

PCBD=(1/2)×N/(4NfNm). The number of individuals concerned are those that inherited twice 402 

the same allele from their grand-parents, which is (1/Nf)×(1/4)×Nf for females and 403 

(1/Nm)×(1/4)×Nm for males, hence ½ individuals. This yields PCBD×(1/2) individuals. In 404 

small dioecious populations, such coalescent events hardly happen, because as long as 405 

polymorphism is kept, male and female parents that mate randomly can only rarely have 406 

sampled twice the same alleles from the same grand-parent. These two differences with 1) 407 
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panmictic populations, and 2) big dioecious populations, may explain Equation 15. In other 408 

words, if we call Ne_BD the effective population size of a very big dioecious population, 409 

NNCNS the number of individuals that cannot be coalescent due to the absence of selfing 410 

and NNCSD the number of individuals that cannot be coalescent in a dioecious population 411 

due to the limited number of possible mates, then, in small dioecious populations, the 412 

effective population size is Ne_SD = Ne_BD + NNCNS + NNCSD. 413 

 Interestingly, the highly sophisticated, and fairly complicated to compute, Balloux's 414 

equation (Balloux, 2004), Equation 3 in the present paper, did not perform better than 415 

Wright's second equation (Equation 2), and worse than our Equation 15. As shown in 416 

Appendix 6, the coalescence effective population size was obtained after neglecting 417 

different terms at several successive steps of the analytical process. To be as accurate as 418 

Equation 21, Equation 2 indeed requires Ne > 10 and/or a sufficient number of generations 419 

(e.g. 10). As seen from the Figure 1, this seems to indeed apply as long as Ne>12. No 420 

explanations were provided for the abstract notion of the coalescence effective population 421 

size and the way used to weight approximated coalescent times computed at different 422 

hierarchical levels (e.g. individuals, subpopulations, etc…). What we were interested in, in 423 

this paper, was to compute the local effective population size, i.e. the one that affects the 424 

speed of polymorphism loss within subpopulations. In that case, the eigenvalue effective 425 

population size may be the most accurate. 426 

 Regarding FIS-based estimates, the fact that Pudovkin et al 2nd equation ((Pudovkin 427 

et al., 1996), equation 5) did not perform well, probably comes from the confusion between 428 

effective population size and the number of individuals (or of breeders), at different steps 429 

of the analytical procedure. Equation 19 provided similar results as equation 5, though with 430 

a slightly stronger bias and is thus too biased also. Pudovkin et al's second equation 431 

(equation 5 of the present manuscript), is quite popular in empirical population genetics 432 

studies, and is the one implemented in NeEstimator (Do, Waples et al., 2014). It presented 433 
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underestimates, even when Ne>20. Balloux's equation (equation 6), also popular, suffered 434 

from an overestimation of Ne, in a symmetric position as compared to underestimations of 435 

Equation 4 (Pudovkin et al. first equation). For both, the biases are small, particularly so 436 

when Ne>4. Interestingly, following the steps described in Balloux's paper (Balloux, 2004), 437 

but replacing the coalescence approach by the leading eigenvalue approach, provided the 438 

most accurate FIS-based estimate of the effective population size in dioecious populations 439 

(Equation 21). It appeared to exactly correspond to the average between Equations 4 440 

(Pudovkin et al first equation) and 6 (Balloux). 441 

 It is worth recalling that the FIS-based estimates given in Equation 21 assumes an 442 

even sex ratio. Nevertheless, strongly biased sex-ratios will affect FIS accordingly and 443 

should not have strong consequences on the estimate of effective population sizes, as 444 

suggested by the Figure 2.  445 

 We may also bear in mind that although random mating was assumed, we did not 446 

specify any reproductive strategy (mono or polygamy). Indeed, Equation 8 assumes 447 

polygamy, but monogamy is known to lead to the same result as polygamy, as 448 

demonstrated pages 267-268 in Felsenstein's book (Felsenstein, 2019), and in Appendix 449 

12. The only difference is that, in monogamous populations, the sex-ratio of individuals 450 

that reproduce is necessarily even. Consequently, monogamy can prevent a possible high 451 

variance in male mating success, which would reduce Ne. But monogamy cannot produce 452 

an increase of Ne as compared to pangamic polygamy. In that sense, and everything else 453 

being equal, gibbons (which are monogamous) should preserve better their genetic 454 

diversity than gorillas, but not better than bonobos (assuming bonobos are pangamous). 455 

 It is worth mentioning that these computations were based on accurate (exact) 456 

measures of FIS. Unbiased estimators of F-statistics (Weir & Cockerham, 1984) suffer from 457 

large variances (Robertson & Hill, 1984). It is thus likely that deviation from the real value 458 

will have a large impact on FIS-based estimates of  Ne, especially for small expected 459 
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("real") values. It can be seen that Ne_Eq4<Ne_Eq21<Ne_Eq6<Ne_Eq5<Ne_Eq19. From there, it can 460 

be expected that with small underestimations of FIS, Ne_Eq6 will be closer to the real value; 461 

then Ne_Eq5 for bigger underestimations, and finally Ne_Eq19 for the strongest 462 

underestimations. On the contrary, overestimations of FIS will necessarily lead Ne_Eq4 to 463 

stay closer to the real Ne. However, the differences are expected to be quite small, 464 

particularly so as compared to Pudovkin 1 (Equation 4) and Balloux (Equation 6), 465 

especially for the highest values (e.g. Ne>6): Nevertheless, not knowing what the real FIS 466 

should be, it is probably wiser using the less biased estimate, i.e. Ne_Eq21.  467 

 It is also worth mentioning that FIS should be estimated from adults, as the genetic 468 

structure in immature individuals may considerably differ from the one they would display 469 

in the pool of adults that survived. 470 

 The fact that our equation 21 outperformed other equations for Ne<4-6 may suggest 471 

strong limitations in the practical applicability of this performance since such systems may 472 

be expected to quickly undergo extinction. In addition to the fact that it is generally 473 

preferable to work with the most accurate equation, these results are likely to be especially 474 

pertinent for certain types of biological systems that are able to persist for extended 475 

periods despite having very small effective population sizes. For instance, the populations 476 

of the parasitoid wasp Nasonia vitripenis, depending on the distribution of its host 477 

(parasitic flies), often display systematic mating of females with their brothers (Werren, 478 

1980). For the mite Varroa destructor, a female enters a brood cell, which she caps, where 479 

she feeds on the bee larva and then gives birth to a haploid male, which later mates with 480 

its diploid sisters, laid by the mother from fertilized eggs from a previous mating that 481 

occurred before the colonization of the brood cell, or after mating with her son (which may 482 

happen for 30% of females) (Beaurepaire, Krieger et al., 2017; Häußermann, Giacobino et 483 

al., 2020). In both cases, males are produced by arrhenotokous parthenogenesis 484 

(unfertilized haploid eggs), meaning that many populations of these organisms probably 485 
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display very small Ne, and even smaller than 1 in some instances. We did not undertake 486 

an extensive review of similar cases, as it is not in the scope of the present paper, but 487 

such kind of situations may not be rare in dioecious parasitic organisms like parasitoid 488 

hymenoptera, mites or nematodes. 489 

 According to recent papers based on simulations (i.e. perfect data), FIS-based 490 

single sample (or subsample) estimates of Ne are not the most accurate (Wang, 2009; Do 491 

et al., 2014; Wang, 2016). According to Do et al (2014), the linkage disequilibrium (LD) 492 

based estimate (Waples, 2006), appeared to perform better than the co-ancestry method 493 

(CoA) (Nomura, 2008) and the FIS-based method (Equation 5) (Pudovkin et al., 1996). 494 

According to more recent simulation studies (Wang, 2016), the sibship frequency based 495 

estimate (SF) (Wang, 2009) seemed to provide more accurate results than the previous 496 

ones. No comparison was ever made with an alternative method based on one and two 497 

locus identity measures (1&2LI) (Vitalis & Couvet, 2001c, b), implemented by the software 498 

Estim 1.2.2 (Vitalis, 2002), updated from Estim 1 (Vitalis & Couvet, 2001a). Based on 499 

simulations, the 1&2LI method provided accurate (though slightly underestimated) results, 500 

especially when more than four loci were used (Vitalis & Couvet, 2001b). Again, no 501 

simulation study exhaustively compared all available one-sample estimates. This would 502 

require replicated simulations of different scenarios of population structure (Island or 503 

stepping stone models with varying subpopulation number, sub-population sizes and 504 

immigration rates), different kinds of loci (microsatellite like or SNP like loci) with varying 505 

number of loci, number of alleles and mutation rates, and with or without amplification 506 

problems (null alleles, stuttering, short allele dominance or allelic dropouts), and varying 507 

sampling strategies. A comparison with temporal methods (Nei & Tajima, 1981; Pollak, 508 

1983; Wang & Whitlock, 2003; Jorde & Ryman, 2007) might also prove interesting, though 509 

the number of generations between two samples of the same site will add another relevant 510 
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parameter to explore (Waples & Do, 2010). This will obviously require much more work to 511 

undertake, which is beyond the scope of the present paper. 512 

 We nevertheless undertook a quick simulation study with Easypop (Balloux, 2001). 513 

We simulated single isolated and randomly mating dioecious populations, with varying 514 

sex-ratio, at 100 independent loci with a KAM model of mutation with K=100 possible 515 

allelic states and a mutation rate of u=0.00001, and 100 generations. All simulations 516 

started with maximum diversity. We then computed effective population sizes. We 517 

computed FIS with Fstat (Goudet, 1995). For these simulations, most of the averaged FIS 518 

across loci were positive and therefore could not be used to estimate Ne. We then 519 

preferred computing the average across loci displaying a negative FIS. For NeEstimator 520 

analyses (LD and Coancestries), we assumed polygamy and kept estimates excluding 521 

alleles less frequent than 5% (LD method). For Estim (1&2LI), we assumed panmixia. For 522 

Colony (SF), we generated data using Create (Coombs, Letcher et al., 2008) and 523 

assumed polygamy and some inbreeding, as this may occur at unknown level in real data. 524 

Figure 3 illustrates what kind of variations could be observed from one parameter set to 525 

the other and from one method to the other. It suggests that some kind of average across 526 

methods may allow grasping the range of actual effective population sizes of sub-527 

populations from genotyped sub-samples.  528 

 529 
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 530 

Figure 3: Effective population size estimates (Ne) with five different methods as compared 531 

to the expected value (Equation 22), for different simulated populations with varying 532 

numbers of females (N_f) and males (N_m). 533 

 534 

 Regarding real data, quoting Nomura, "combined estimate of several independent 535 

estimates is expected to improve the precision of separate estimates" (Nomura, 2008). For 536 

each method, one could compute the average Ne across subsamples of the same 537 

population, ignoring undefined values (negative or infinite), note the maximum and 538 

minimum values obtained and keep the number of usable values as a weight. Finally, the 539 

grand average (across methods) and average minimum and maximum, all weighted by the 540 

number of usable values obtained in each method, could be computed. For more clarity, a 541 

template of this method can be found in the file 542 

"TemplateRhipicephalusFstatResNeFiveMethods.xlsx", coming from the analysis of cattle 543 

tick populations from New-Caledonia (De Meeûs, Koffi et al., 2010). With all data, average 544 

Ne≈120 in minimax≈[80, 200]. When excluding the two most extreme values Ne≈50 in 545 
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minimax≈[10, 110]. Using the harmonic mean, as suggested by Nomura (Nomura, 2008), 546 

Ne≈20 in minimax=[10, 30]. Simulation studies could be used to identify an estimator that 547 

more accurately approximates the eigenvalue effective population size of genotyped 548 

populations. 549 

 Temporal data are rarely available (but see (Palstra & Ruzzante, 2008)), but when 550 

these are, they give access to different estimates, which may be usefully included in the 551 

computations of averages and magnitude of variations. 552 

 Undefined Ne may correspond to very big values. Thus, ignoring these may lead to 553 

underestimates. They may also correspond to the variance of estimate of the parameter 554 

used, like FIS, as mentioned above. This possible flaw may be attenuated by the use of 555 

repeated subsamples and independent loci. Waples and Do proposed to include negative 556 

Ne as such in the computation of an harmonic mean, with weights proportional to 557 

reciprocals of variances (Waples & Do, 2010). Nevertheless, on the tick data set, this 558 

strategy ended with globally negative (and then unsound) values for these populations (not 559 

shown), which are expected to display important population sizes (i.e. 120 ≤ Ne ≤ 1200 560 

(Koffi, De Meeûs et al., 2006)). As already discussed, this will require a more thorough 561 

exploration through simulations of various kinds of populations. 562 

 To conclude, even if the differences with some other equations are not very big, the 563 

new approximation proposed here appeared almost perfect and biologically relatively 564 

sound, and, wherever it is used for, we suggest to use it instead of the previous and more 565 

biased estimates found in the literature. 566 
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Appendices 738 

 739 

Appendix 1: Matrix multiplication, identity matrix, matrix determinant and matrix 740 

inversion. 741 

 By convention, matrices and vectors appear in bold, while scalars write in italics, 742 

and matrix multiplication is noted by a point. 743 

 Let matrix A and vector x be: 744 

A = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� and x = �

𝑥𝑥1
𝑥𝑥2�. 745 

Multiplying A by x yields a new vector: 746 

A.x = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� . �

𝑥𝑥1
𝑥𝑥2� = �

𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑥𝑥2
𝑐𝑐𝑥𝑥1 + 𝑑𝑑𝑥𝑥2

� 747 

  (A1-1) 748 

With B=�𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ�, then: 749 

A.B = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� . �𝑒𝑒 𝑓𝑓

𝑔𝑔 ℎ� = �𝑎𝑎𝑒𝑒 + 𝑏𝑏𝑔𝑔 𝑎𝑎𝑓𝑓 + 𝑏𝑏ℎ
𝑐𝑐𝑒𝑒 + 𝑑𝑑𝑔𝑔 𝑐𝑐𝑓𝑓 + 𝑑𝑑ℎ� 750 

  (A1-2) 751 

Please, note that most of the time A.B≠B.A, since: 752 

B.A = �𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ� . �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� = �𝑎𝑎𝑒𝑒 + 𝑐𝑐𝑓𝑓 𝑑𝑑𝑒𝑒 + 𝑑𝑑𝑓𝑓
𝑎𝑎𝑔𝑔 + 𝑐𝑐ℎ 𝑐𝑐𝑔𝑔 + 𝑑𝑑ℎ�. 753 

 754 

 The identity matrix I must verify: 755 

�𝐀𝐀. 𝐈𝐈 = 𝐈𝐈.𝐀𝐀 = 𝐀𝐀
𝐈𝐈. 𝐱𝐱 = 𝐱𝐱            756 

  (A1-3) 757 

Let I = �𝐼𝐼11 𝐼𝐼12
𝐼𝐼21 𝐼𝐼22

�. 758 

Then: 759 
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�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� . �𝐼𝐼11 𝐼𝐼12

𝐼𝐼21 𝐼𝐼22
� = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� 760 

 761 

�𝑎𝑎𝐼𝐼11 + 𝑏𝑏𝐼𝐼21 𝑎𝑎𝐼𝐼12 + 𝑏𝑏𝐼𝐼22
𝑐𝑐𝐼𝐼11 + 𝑑𝑑𝐼𝐼21 𝑐𝑐𝐼𝐼12 + 𝑑𝑑𝐼𝐼22

� = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� 762 

 763 

�

𝑎𝑎𝐼𝐼11 + 𝑏𝑏𝐼𝐼21 = 𝑎𝑎
𝑎𝑎𝐼𝐼12 + 𝑏𝑏𝐼𝐼22 = 𝑏𝑏
𝑐𝑐𝐼𝐼11 + 𝑑𝑑𝐼𝐼21 = 𝑐𝑐
𝑐𝑐𝐼𝐼12 + 𝑑𝑑𝐼𝐼22 = 𝑑𝑑

 764 

 765 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐼𝐼11 =

𝑎𝑎 − 𝑏𝑏𝐼𝐼21
𝑎𝑎

                 

𝐼𝐼12 =
𝑏𝑏(1 − 𝐼𝐼22)

𝑎𝑎
             

𝑐𝑐
𝑎𝑎 − 𝑏𝑏𝐼𝐼21

𝑎𝑎
+ 𝑑𝑑𝐼𝐼21 = 𝑐𝑐    

𝑐𝑐
𝑏𝑏(1 − 𝐼𝐼22)

𝑎𝑎
+ 𝑑𝑑𝐼𝐼22 = 𝑑𝑑

 766 

 767 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐼𝐼11 =

𝑎𝑎 − 𝑏𝑏𝐼𝐼21
𝑎𝑎

                

𝐼𝐼12 =
𝑏𝑏(1 − 𝐼𝐼22)

𝑎𝑎
            

𝐼𝐼21 �𝑑𝑑 −
𝑏𝑏𝑐𝑐
𝑎𝑎
� = 𝑐𝑐 −

𝑐𝑐𝑎𝑎
𝑎𝑎

𝐼𝐼22 �𝑑𝑑 −
𝑏𝑏𝑐𝑐
𝑎𝑎
� = 𝑑𝑑 −

𝑏𝑏𝑐𝑐
𝑎𝑎

 768 

  (A1-4) 769 

For a≠0, then equation A1-4 writes: 770 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐼𝐼11 =

𝑎𝑎 − 𝑏𝑏𝐼𝐼21
𝑎𝑎

                     

𝐼𝐼12 =
𝑏𝑏(1 − 𝐼𝐼22)

𝑎𝑎
                

𝐼𝐼21 �
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝑎𝑎
� = 0            

𝐼𝐼22 �
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝑎𝑎
� =

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝑎𝑎

 771 

 772 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝐼𝐼11 =

𝑎𝑎 − 𝑏𝑏𝐼𝐼21
𝑎𝑎

     

𝐼𝐼12 =
𝑏𝑏(1 − 𝐼𝐼22)

𝑎𝑎
 

𝐼𝐼21(𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐) = 0

𝐼𝐼22 =
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

     

 773 

  (A1-5) 774 

Expression ad-bc is the determinant of matrix A, Det(A). Equation A1-5 has a solution only 775 

if Det(A)≠0, in which case A1-5 writes: 776 

�

𝐼𝐼11 = 1
𝐼𝐼12 = 0
𝐼𝐼21 = 0
𝐼𝐼22 = 1

 777 

 778 

𝐈𝐈 = �1 0
0 1� 779 

From there, it is easy to understand that the identity matrix of any dimension n is a 780 

squared matrix with diagonal numbers equal to 1 and others to 0: 781 

𝐈𝐈𝒏𝒏 = �
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

� 782 

 For n=3, I3=�
1 0 0
0 1 0
0 0 1

�. 783 

 We now have the tools to find the inverse of matrix A, A-1, which must verify  784 

A-1.A=I. If we set A-1=�𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿�, we can write: 785 

�𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿� . �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� = �1 0
0 1� 786 

 787 

�

𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑐𝑐 = 1
𝛼𝛼𝑏𝑏 + 𝛽𝛽𝑑𝑑 = 0
𝛾𝛾𝑎𝑎 + 𝛿𝛿𝑐𝑐 = 0
𝛾𝛾𝑏𝑏 + 𝛿𝛿𝑑𝑑 = 1

 788 

 789 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛼𝛼 =

1 − 𝛽𝛽𝑐𝑐
𝑎𝑎

             

1 − 𝛽𝛽𝑐𝑐
𝑎𝑎

𝑏𝑏 + 𝛽𝛽𝑑𝑑 = 0

𝛾𝛾 = −
𝛿𝛿𝑐𝑐
𝑎𝑎

−
𝛿𝛿𝑐𝑐
𝑎𝑎
𝑏𝑏 + 𝛿𝛿𝑑𝑑 = 1   

 790 

 791 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝛼𝛼 =

1 − 𝛽𝛽𝑐𝑐
𝑎𝑎

            

𝛽𝛽 �𝑑𝑑 −
𝑏𝑏𝑐𝑐
𝑎𝑎
� = −

𝑏𝑏
𝑎𝑎

𝛾𝛾 = −
𝛿𝛿𝑐𝑐
𝑎𝑎

𝛿𝛿 �𝑑𝑑 −
𝑐𝑐𝑏𝑏
𝑎𝑎
� = 1    

 792 

 793 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝛼𝛼 =

1 − 𝛽𝛽𝑐𝑐
𝑎𝑎

                     

𝛽𝛽 �𝑑𝑑 −
𝑏𝑏𝑐𝑐
𝑎𝑎
� =

−𝑏𝑏𝑎𝑎
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝑎𝑎

𝛾𝛾 = −
𝛿𝛿𝑐𝑐
𝑎𝑎

𝛿𝛿 �𝑑𝑑 −
𝑐𝑐𝑏𝑏
𝑎𝑎
� =

1
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝑎𝑎

 794 

 795 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝛼𝛼 =

1 − 𝛽𝛽𝑐𝑐
𝑎𝑎

   

𝛽𝛽 =
−𝑏𝑏𝑎𝑎

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝑎𝑎

𝛾𝛾 = −
𝛿𝛿𝑐𝑐
𝑎𝑎

       

𝛿𝛿 =
1

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝑎𝑎

 796 

  (A1-6) 797 

For a≠0, equation A1-6 becomes: 798 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛼𝛼 =

1 − 𝛽𝛽𝑐𝑐
𝑎𝑎

   

𝛽𝛽 =
−𝑏𝑏

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝛾𝛾 = −
𝛿𝛿𝑐𝑐
𝑎𝑎

       

𝛿𝛿 =
𝑎𝑎

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

 799 

 800 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝛼𝛼 =

1 + 𝑏𝑏
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 𝑐𝑐
𝑎𝑎

𝛽𝛽 =
−𝑏𝑏

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
          

𝛾𝛾 = −
𝑎𝑎

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 𝑐𝑐
𝑎𝑎

    

𝛿𝛿 =
𝑎𝑎

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
           

 801 

 802 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝛼𝛼 =

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝑎𝑎

𝛽𝛽 =
−𝑏𝑏

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
           

𝛾𝛾 = −
𝑎𝑎𝑐𝑐

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝑎𝑎

      

𝛿𝛿 =
𝑎𝑎

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
           

 803 

 804 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛼𝛼 =

𝑑𝑑
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝛽𝛽 =
−𝑏𝑏

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝛾𝛾 =

−𝑐𝑐
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

𝛿𝛿 =
𝑎𝑎

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐

 805 

Consequently, the reverse of matrix A is: 806 

A−1 =
1

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
� 𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎 � 807 

We know that ad-bc=Det(A), thus: 808 
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A−1 =
1

Det(A) �
𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎 � 809 

  (A1-7) 810 

 When Det(A)=0, A is singular. When Det(A)≠0, A is nonsingular. A nonsingular 811 

matrix is necessarily squared. 812 

 To compute the inverse of a 3×3 matrix, it is easier using a mathematical software 813 

as Maxima (Vodopivec, 2017) (command invert(A)). 814 

 815 

Appendix 2: eigenvalues and eigenvectors 816 

 For the sake of space saving and simplicity, we will take the example of a 2×2 817 

matrix X and a two lines column vector e: 818 

�
𝐗𝐗 = �

𝑥𝑥11 𝑥𝑥12
𝑥𝑥21 𝑥𝑥22�

𝐞𝐞 = �
𝑒𝑒1
𝑒𝑒2�

 819 

If λi is an eigenvalue and ei the corresponding eigenvector of matrix X, then they must 820 

satisfy the equation: X.ei=λi.ei. We can translate this into the system of equations: 821 

�𝑥𝑥11 × 𝑒𝑒1 + 𝑥𝑥12 × 𝑒𝑒2 = 𝜆𝜆𝑒𝑒1
𝑥𝑥21 × 𝑒𝑒1 + 𝑥𝑥22 × 𝑒𝑒2 = 𝜆𝜆𝑒𝑒2

 822 

Excluding the trivial solution where e1=e2=0, we can rewrite the preceding equations as: 823 

�
𝑥𝑥11 + 𝑥𝑥12 ×

𝑒𝑒2
𝑒𝑒1

= 𝜆𝜆

𝑥𝑥21 + 𝑥𝑥22 ×
𝑒𝑒2
𝑒𝑒1

= 𝜆𝜆
𝑒𝑒2
𝑒𝑒1

 824 

 825 

�
𝑥𝑥11 + 𝑥𝑥12 ×

𝑒𝑒2
𝑒𝑒1

= 𝜆𝜆

𝑥𝑥21 =
𝑒𝑒2
𝑒𝑒1

(𝜆𝜆 − 𝑥𝑥22)
 826 

 827 
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�
𝑥𝑥11 + 𝑥𝑥12 ×

𝑒𝑒2
𝑒𝑒1

= 𝜆𝜆

𝑥𝑥21
𝜆𝜆 − 𝑥𝑥22

=
𝑒𝑒2
𝑒𝑒1

 828 

 829 

�
𝑥𝑥11 + 𝑥𝑥12 ×

𝑥𝑥21
𝜆𝜆 − 𝑥𝑥22

= 𝜆𝜆

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 830 

 831 

⎩
⎨

⎧
(𝜆𝜆 − 𝑥𝑥22)𝑥𝑥11 + 𝑥𝑥12 × 𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22
= 𝜆𝜆

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 832 

 833 

�
𝑥𝑥11 × 𝜆𝜆 − 𝑥𝑥11𝑥𝑥22 + 𝑥𝑥12 × 𝑥𝑥21 = 𝜆𝜆2 − 𝑥𝑥22 × 𝜆𝜆

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22
 834 

 835 

�
𝜆𝜆2 − (𝑥𝑥11 + 𝑥𝑥22) × 𝜆𝜆 = −𝑥𝑥11𝑥𝑥22 + 𝑥𝑥12 × 𝑥𝑥21

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22
 836 

 837 

�
𝜆𝜆2 − 𝑥𝑥11 × 𝜆𝜆 − 𝑥𝑥22 × 𝜆𝜆 + 𝑥𝑥11𝑥𝑥22 − 𝑥𝑥12 × 𝑥𝑥21 = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22
 838 

 839 

�
−𝜆𝜆(𝑥𝑥11 − 𝜆𝜆) + 𝑥𝑥22(𝑥𝑥11 − 𝜆𝜆) − 𝑥𝑥21 × 𝑥𝑥12 = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22
 840 

 841 

�
(𝑥𝑥11 − 𝜆𝜆)(𝑥𝑥22 − 𝜆𝜆) − 𝑥𝑥21 × 𝑥𝑥12 = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22
 842 

  (A2-1) 843 
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Knowing that the determinant of a matrix A Det(A)=Det �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�=ad-cd, Eq A2-1 writes: 844 

⎩
⎪
⎨

⎪
⎧Det �𝑥𝑥11 − 𝜆𝜆 𝑥𝑥12

𝑥𝑥21 𝑥𝑥22 − 𝜆𝜆� = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 845 

 846 

⎩
⎪
⎨

⎪
⎧Det��

𝑥𝑥11 𝑥𝑥12
𝑥𝑥21 𝑥𝑥22� − �𝜆𝜆 0

0 𝜆𝜆�� = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 847 

 848 

⎩
⎪
⎨

⎪
⎧Det��

𝑥𝑥11 𝑥𝑥12
𝑥𝑥21 𝑥𝑥22� − 𝜆𝜆 �1 0

0 1�� = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 849 

  (A2-2) 850 

The matrix I=�1 0
0 1� is called the identity matrix (Appendix 1). 851 

The first line of EqA2-2 writes Det(A)-λ.I=0 and corresponds to the so called characteristic 852 

equation of matrix A. We can solve EqA2-2: 853 

⎩
⎪
⎨

⎪
⎧Det��𝑥𝑥11 − 𝜆𝜆 𝑥𝑥12

𝑥𝑥21 𝑥𝑥22 − 𝜆𝜆�� = 0

𝑥𝑥2
𝑥𝑥1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 854 

 855 

�

(𝑥𝑥11 − 𝜆𝜆)(𝑥𝑥22 − 𝜆𝜆) − 𝑥𝑥21𝑥𝑥12 = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 856 

 857 
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�

−𝜆𝜆𝑥𝑥11 − 𝜆𝜆𝑥𝑥22 + 𝜆𝜆2 + 𝑥𝑥11𝑥𝑥22 − 𝑥𝑥21𝑥𝑥12 = 0

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 858 

 859 

⎩
⎪
⎨

⎪
⎧𝜆𝜆2 − 2𝜆𝜆

1
2

(𝑥𝑥11 + 𝑥𝑥22) + �
1
2

(𝑥𝑥11 + 𝑥𝑥22)�
2

= −(𝑥𝑥11𝑥𝑥22 − 𝑥𝑥21𝑥𝑥12) + �
1
2

(𝑥𝑥11 + 𝑥𝑥22)�
2

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 860 

 861 

⎩
⎪
⎨

⎪
⎧�𝜆𝜆 −

1
2

(𝑥𝑥11 + 𝑥𝑥22)�
2

= −Det(𝐴𝐴) + �
1
2

(𝑥𝑥11 + 𝑥𝑥22)�
2

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 862 

 863 

⎩
⎪
⎨

⎪
⎧
𝜆𝜆 −

1
2

(𝑥𝑥11 + 𝑥𝑥22) = ∓�−Det(𝐴𝐴) + �
1
2

(𝑥𝑥11 + 𝑥𝑥22)�
2

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 864 

 865 

⎩
⎪
⎨

⎪
⎧
𝜆𝜆 =

1
2

(𝑥𝑥11 + 𝑥𝑥22) ∓�−Det(𝐴𝐴) + �
1
2

(𝑥𝑥11 + 𝑥𝑥22)�
2

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 866 

 867 

⎩
⎪
⎨

⎪
⎧
𝜆𝜆 =

1
2

(𝑥𝑥11 + 𝑥𝑥22) ∓�−𝑥𝑥11𝑥𝑥22 + 𝑥𝑥21𝑥𝑥12 +
1
4

(𝑥𝑥112 + 𝑥𝑥222 + 2𝑥𝑥11𝑥𝑥22)

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 868 

 869 
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⎩
⎪
⎨

⎪
⎧𝜆𝜆 =

(𝑥𝑥11 + 𝑥𝑥22) ∓�𝑥𝑥112 + 𝑥𝑥222 + 4𝑥𝑥21𝑥𝑥12 − 2𝑥𝑥11𝑥𝑥22
2

𝑒𝑒2
𝑒𝑒1

=
𝑥𝑥21

𝜆𝜆 − 𝑥𝑥22

 870 

  (A2-3) 871 

We have two eigenvalues: 872 

⎩
⎪
⎨

⎪
⎧𝜆𝜆1 =

𝑥𝑥11 + 𝑥𝑥22 + �𝑥𝑥112 + 𝑥𝑥222 + 4𝑥𝑥21𝑥𝑥12 − 2𝑥𝑥11𝑥𝑥22
2

𝜆𝜆2 =
𝑥𝑥11 + 𝑥𝑥22 − �𝑥𝑥112 + 𝑥𝑥222 + 4𝑥𝑥21𝑥𝑥12 − 2𝑥𝑥11𝑥𝑥22

2

 873 

  (A2-4) 874 

Note that a solution exists only if λ≠xii (i=1 or 2), and if e1≠0 or e2≠0. For a 2×2 matrix, if a 875 

solution exists for its characteristic equation, it has two eigenvalues, i.e. the same number 876 

as the dimension of the matrix: λ1 and λ2. For each eigenvalue, we can find an infinite 877 

collection of of eigenvectors that all satisfy: 878 

�𝑥𝑥11 × 𝑒𝑒1 + 𝑥𝑥12 × 𝑒𝑒2 = 𝜆𝜆𝑒𝑒1
𝑥𝑥21 × 𝑒𝑒1 + 𝑥𝑥22 × 𝑒𝑒2 = 𝜆𝜆𝑒𝑒2

 879 

 880 

�
(𝑥𝑥11 − 𝜆𝜆) × 𝑒𝑒1 = −𝑥𝑥12 × 𝑒𝑒2
(𝑥𝑥22 − 𝜆𝜆) × 𝑒𝑒2 = −𝑥𝑥21 × 𝑒𝑒1

 881 

 882 

� 𝑒𝑒2 = −
(𝑥𝑥11 − 𝜆𝜆)

𝑥𝑥12
× 𝑒𝑒1

(𝑥𝑥22 − 𝜆𝜆) × 𝑒𝑒2 = −𝑥𝑥21 × 𝑒𝑒1
 883 

Then, for e1=1, a first pair of eigenvectors would be: 884 

⎩
⎪
⎨

⎪
⎧𝐞𝐞1 = �

1
𝜆𝜆1 − 𝑥𝑥11
𝑥𝑥12

�

𝐞𝐞2 = �
1

𝜆𝜆2 − 𝑥𝑥11
𝑥𝑥12

�

 885 

  (A2-5) 886 



45 
 

We can go back to EqA2-2 to obtain eigenvalues as function of x21 (as is the case in 887 

certain textbooks), this leads to: 888 

⎩
⎪
⎨

⎪
⎧𝐞𝐞1 = �

𝜆𝜆1 − 𝑥𝑥22
𝑥𝑥21
1

�

𝐞𝐞2 = �
𝜆𝜆2 − 𝑥𝑥22
𝑥𝑥21
1

�

 889 

 890 

Appendix 3: Matrix power and diagonalization 891 

 Computing matrix powers is difficult, except for diagonal matrices. Indeed, using 892 

equation A1-2, it is easy to see that: 893 

�𝑎𝑎 0
0 𝑑𝑑�

2
= �𝑎𝑎 0

0 𝑑𝑑� �
𝑎𝑎 0
0 𝑑𝑑� = �𝑎𝑎

2 + 0 0 + 0
0 + 0 0 + 𝑑𝑑2

� 894 

 895 

�𝑎𝑎 0
0 𝑑𝑑�

𝑡𝑡
= �𝑎𝑎

𝑡𝑡 0
0 𝑑𝑑𝑡𝑡

� 896 

  (A3-1) 897 

 For any other squared matrix A, it may thus be useful to diagonalize it, if one wants 898 

to compute any power of it. In Horn and Johnson's book, page 59 (Horn & Johnson, 2013), 899 

we are invited to solve the equation:  900 

P-1.A.P=D, 901 

  (A3-2) 902 

where P is an invertible matrix and D a diagonal matrix. 903 

 Let A, P and D, v1 and v2 be: 904 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐀𝐀 = �

𝑥𝑥11 𝑥𝑥12
𝑥𝑥21 𝑥𝑥22�

𝐏𝐏 = �
𝑝𝑝11 𝑝𝑝12
𝑝𝑝21 𝑝𝑝22�

𝐃𝐃 = �𝜆𝜆1 0
0 𝜆𝜆2

�

𝐯𝐯1 = �
𝑝𝑝11
𝑝𝑝21

�

𝐯𝐯2 = �
𝑝𝑝12
𝑝𝑝22

�

 905 

We can also write P=(v1 v2). We can thus rewrite equation A(3.2) as: 906 

𝐏𝐏−1.𝐀𝐀. (𝐯𝐯1 𝐯𝐯2) = �𝜆𝜆1 0
0 𝜆𝜆2

� 907 

 908 

𝐏𝐏.𝐏𝐏−1.𝐀𝐀. (𝐯𝐯1 𝐯𝐯2) = 𝐏𝐏. �𝜆𝜆1 0
0 𝜆𝜆2

� 909 

 910 

𝐏𝐏.𝐏𝐏−1.𝐀𝐀. (𝐯𝐯1 𝐯𝐯2) = �
𝑝𝑝11 𝑝𝑝12
𝑝𝑝21 𝑝𝑝22� . �𝜆𝜆1 0

0 𝜆𝜆2
� 911 

 912 

(𝐀𝐀. 𝐯𝐯1 𝐀𝐀. 𝐯𝐯2) = �𝜆𝜆1.𝑝𝑝11 𝜆𝜆2.𝑝𝑝12
𝜆𝜆1.𝑝𝑝21 𝜆𝜆2.𝑝𝑝22

� 913 

 914 

(𝐀𝐀. 𝐯𝐯1 𝐀𝐀. 𝐯𝐯2) = (𝜆𝜆1.𝐯𝐯1 𝜆𝜆2. 𝐯𝐯2) 915 

 916 

�𝐀𝐀. 𝐯𝐯1 = 𝜆𝜆1. 𝐯𝐯1
𝐀𝐀. 𝐯𝐯2 = 𝜆𝜆2. 𝐯𝐯2

 917 

 We recognize what we saw about eigenvalues and eigenvectors in Appendix 2, 918 

meaning that matrix S is a combination of eigenvectors of A, and D is a diagonal matrix 919 

with matrix A's eigenvalues on the diagonal from the bigger (top left) to the smallest 920 

(bottom right). 921 
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 From there, computing the power of any matrix A is relatively easy. Indeed, if we 922 

have P-1.A.P=D, then this also writes P.P-1.A.P.P-1=P.D.P-1  A=P.D.P-1. From there, 923 

computing At is easy: 924 

At=(P.D.P-1).(P.D.P-1).(P.D.P-1).(P.D.P-1)……(P.D.P-1) 925 

 926 

At=P.D.(P-1.P).D.(P-1.P).D.(P-1.P).D.(P-1.P)……(P-1P).D.P-1 927 

 928 

At=P.D.I.D.I.D.I.D.I ……I.D.P-1 929 

where I is the identity matrix. From there, we can compute: 930 

At=P.Dt.P-1 931 

  (A3-3) 932 

Consequently, we can use equation (A3-3) to calculate the power of any diagonalizable 933 

square matrix. 934 

 We can now derive some other properties of eigenvalue-eigenvector pairs 935 

(eigenpairs).  936 

 For the 2×2 matrix A, with the eigenpairs λi and ei, where i stands for 1 or 2, 937 

A.ei=λi.ei. Then A².ei=A.(A.ei)=A.(λi.ei)=λi.A.ei= λi².ei. It follows that: 938 

𝐀𝐀𝑡𝑡. 𝐞𝐞𝑖𝑖 = 𝜆𝜆𝑖𝑖
𝑡𝑡. 𝐞𝐞𝑖𝑖 939 

  (A3-4) 940 

Let v be a vector composed of a combination of eigenvectors of matrix A so that 941 

v=∑ 𝑥𝑥𝑖𝑖. 𝐞𝐞𝑖𝑖𝑖𝑖 , where the xi's are scalars that can be computed. We can then write: 942 

𝐀𝐀. 𝐯𝐯 = 𝐀𝐀.�𝑥𝑥𝑖𝑖. 𝐞𝐞𝑖𝑖
𝑖𝑖

 943 

 944 

𝐀𝐀. 𝐯𝐯 =  � 𝑥𝑥𝑖𝑖 .𝐀𝐀. 𝐞𝐞𝑖𝑖 = �𝑥𝑥𝑖𝑖 . 𝜆𝜆𝑖𝑖. 𝐞𝐞𝑖𝑖
𝑖𝑖𝑖𝑖

 945 

 946 
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𝐀𝐀.𝐀𝐀. 𝐯𝐯 =  𝐀𝐀.�𝑥𝑥𝑖𝑖 . 𝜆𝜆𝑖𝑖. 𝐞𝐞𝑖𝑖
𝑖𝑖

 947 

 948 

𝐀𝐀𝟐𝟐. 𝐯𝐯 = �𝑥𝑥𝑖𝑖. 𝜆𝜆𝑖𝑖
2. 𝐞𝐞𝑖𝑖

𝑖𝑖
 949 

 950 

𝐀𝐀𝒕𝒕. 𝐯𝐯 = �𝑥𝑥𝑖𝑖 . 𝜆𝜆𝑖𝑖
𝑡𝑡 . 𝐞𝐞𝑖𝑖

𝑖𝑖
 951 

  (A3-5) 952 

 This property can be used to any power function of matrices. In particular, for the 953 

matrix S=(I-γ.A), which should be invertible, it is easy to see that the eigenpairs of S are (in 954 

decreasing order of the hierarchy) λ1'=1-γλ2, e1'=e2 and λ2'=1-γλ1, e2'=e1. Indeed, if we take 955 

the eigenvector ei, then: S.ei=ei-γ.A.ei  S.ei=ei-γ.λi.ei  S.ei = (I-γ.λi).ei (QED). 956 

 Using equation A3-5, we can write: 957 

𝐒𝐒𝒕𝒕. 𝐯𝐯 = �𝑥𝑥𝑖𝑖 . (1 − 𝛾𝛾𝜆𝜆𝑖𝑖)𝑡𝑡. 𝐞𝐞𝑖𝑖
𝑖𝑖

 958 

This logically yields: 959 

(𝐈𝐈 − 𝛾𝛾𝐀𝐀)−1.𝐯𝐯 = �𝑥𝑥𝑖𝑖 . (1 − 𝛾𝛾𝜆𝜆𝑖𝑖)−1. 𝐞𝐞𝑖𝑖
𝑖𝑖

 960 

 961 

(𝐈𝐈 − 𝛾𝛾𝐀𝐀)−1.𝐯𝐯 = �
1

1 − 𝛾𝛾𝜆𝜆𝑖𝑖
. 𝑥𝑥𝑖𝑖. 𝐞𝐞𝑖𝑖

𝑖𝑖
 962 

  (A3-6) 963 

 Equation A3-6 corresponds to equation A.10 of Rousset's book (page 219), which 964 

was given without any detailed proof. 965 

 966 

Appendix 4: eigenvalue effective population size 967 

 This notion refers to the evolution of heterozygosity, or more exactly genetic 968 

diversity, defined as the probability, at generation t, to draw randomly two alleles that are 969 
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not identical by descent, from one generation to the other, and labelled Ht-1 and Ht. If the 970 

evolution of a population by genetic drift has reached a steady state, the ratio of Ht/Ht-1 971 

remains constant generation after generation and has been shown to correspond to the 972 

leading eigenvalue of the transition matrix for the evolution of vectors of genetic identity 973 

probabilities (see below). 974 

 Let QI be the probability of identity within diploid individuals, and QS, the probability 975 

of identity between two alleles from two individuals of the same population. In an ideal 976 

population of size N, and thus under panmixia (thus here QI=QS), we can set the system of 977 

equations: 978 

�
𝑄𝑄I𝑡𝑡 =

1
𝑁𝑁
�

1
2

+
1
2
𝑄𝑄I𝑡𝑡−1� + �1 −

1
𝑁𝑁
�𝑄𝑄S𝑡𝑡−1

𝑄𝑄S𝑡𝑡 =
1
𝑁𝑁
�

1
2

+
1
2
𝑄𝑄I𝑡𝑡−1� + �1 −

1
𝑁𝑁
�𝑄𝑄S𝑡𝑡−1

 979 

 980 

�
𝑄𝑄I𝑡𝑡 =

1
2𝑁𝑁

𝑄𝑄S𝑡𝑡−1 + �1 −
1
𝑁𝑁
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁

𝑄𝑄S𝑡𝑡 =
1

2𝑁𝑁
𝑄𝑄S𝑡𝑡−1 + �1 −

1
𝑁𝑁
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁

 981 

 982 

�
𝑄𝑄I𝑡𝑡 = �1 −

1
2𝑁𝑁

�𝑄𝑄S𝑡𝑡−1 +
1

2𝑁𝑁

𝑄𝑄S𝑡𝑡 = �1 −
1

2𝑁𝑁
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁

 983 

If we replace identities with their corresponding values in terms of genetic non-identity 984 

(hence diversity), we obtain: 985 

�
1 − 𝐻𝐻I𝑡𝑡 = �1 −

1
2𝑁𝑁

� �1 − 𝐻𝐻S𝑡𝑡−1� +
1

2𝑁𝑁

1 − 𝐻𝐻S𝑡𝑡 = �1 −
1

2𝑁𝑁
� �1 − 𝐻𝐻S𝑡𝑡−1� +

1
2𝑁𝑁

 986 

 987 
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�
𝐻𝐻I𝑡𝑡 = �1 −

1
2𝑁𝑁

�𝐻𝐻S𝑡𝑡−1

𝐻𝐻S𝑡𝑡 = �1 −
1

2𝑁𝑁
�𝐻𝐻S𝑡𝑡−1

 988 

  (A4-1) 989 

Assuming a steady state, so that HSt/HSt-1=HSt-1/HSt-2=λ, we can set: 990 

𝜆𝜆 = 1 −
1

2𝑁𝑁
 991 

 Let us now define the vector Ht and transition matrix A, as: 992 

𝐇𝐇𝒕𝒕 = �
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� 993 

𝐀𝐀 = �
0 1 −

1
2𝑁𝑁

0 1 −
1

2𝑁𝑁

� 994 

Using these, equation A1-1 also writes: Ht=A.Ht-1  Ht=A2.Ht-2  Ht=At.H0. 995 

This also writes: 996 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� = �
0 1 −

1
2𝑁𝑁

0 1 −
1

2𝑁𝑁

�

𝑡𝑡

. �𝐻𝐻I𝐻𝐻S
� 997 

  (A4-2) 998 

were HI and HS  are genetic diversities at time 0. 999 

We can decompose H0 as a function of eigenvectors of A (e1 and e2) (see appendix 3) and 1000 

scalars c1 and c2 such as: 1001 

�𝐻𝐻I𝐻𝐻S
� = 𝑐𝑐1. 𝐞𝐞1 + 𝑐𝑐2. 𝐞𝐞2 1002 

  (A4-3) 1003 

Combining Equations A4-2 and A4-3 yields: 1004 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� = �
0 1 −

1
2𝑁𝑁

0 1 −
1

2𝑁𝑁

�

𝑡𝑡

. (𝑐𝑐1. 𝐞𝐞1 + 𝑐𝑐2𝐞𝐞2) 1005 
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 1006 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� = 𝑐𝑐1.�
0 1 −

1
2𝑁𝑁

0 1 −
1

2𝑁𝑁

�

𝑡𝑡

. 𝐞𝐞1 + 𝑐𝑐2.�
0 1 −

1
2𝑁𝑁

0 1 −
1

2𝑁𝑁

�

𝑡𝑡

. 𝐞𝐞2 1007 

  (A4-4) 1008 

Following what we know from the properties of eigenpairs (see Appendices 2 and 3), using 1009 

equation A3-5, we can rewrite equation A4-4 as: 1010 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� = 𝑐𝑐1. 𝜆𝜆1
𝑡𝑡. 𝐞𝐞1 + 𝑐𝑐2. 𝜆𝜆2

𝑡𝑡. 𝐞𝐞2 1011 

  (A4-5) 1012 

With eigenpairs λi and ei of matrix A= �
0 1 − 1

2𝑁𝑁

0 1 − 1
2𝑁𝑁

�, using EqA2-4, we can compute the 1013 

two eigenvalues of matrix A: 1014 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜆𝜆1 =

0 + 1 − 1
2𝑁𝑁 + �02 + �1 − 1

2𝑁𝑁�
2

+ 4 × 0 × �1 − 1
2𝑁𝑁� − 2 × 0 × �1 − 1

2𝑁𝑁�

2

𝜆𝜆2 =
0 + 1 − 1

2𝑁𝑁 −�02 + �1 − 1
2𝑁𝑁�

2
+ 4 × 0 × �1 − 1

2𝑁𝑁� − 2 × 0 × �1 − 1
2𝑁𝑁�

2

 1015 

 1016 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜆𝜆1 =

1 − 1
2𝑁𝑁 + ��1 − 1

2𝑁𝑁�
2

2

𝜆𝜆2 =
1 − 1

2𝑁𝑁 −��1 − 1
2𝑁𝑁�

2

2

 1017 

 1018 

�
𝜆𝜆1 = 1 −

1
2𝑁𝑁

𝜆𝜆2 = 0

 1019 

  (A4-6) 1020 
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For the eigenvectors of A, using equation A2-5, we have: 1021 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝐞𝐞1 =

⎝

⎛

1
1 − 1

2𝑁𝑁 − 0

1 − 1
2𝑁𝑁 ⎠

⎞

𝐞𝐞2 = �
1

0 − 0

1 − 1
2𝑁𝑁

�

 1022 

 1023 

�
𝐞𝐞1 = �1

1�

𝐞𝐞2 = �1
0�

 1024 

  (A4-7) 1025 

Combining A4-7 and A4-6 with A1-5 we can write: 1026 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� = 𝑐𝑐1. �1 −
1

2𝑁𝑁
�
𝑡𝑡

. �1
1� 1027 

 1028 

⎩
⎪
⎨

⎪
⎧𝐻𝐻I𝑡𝑡 = 𝑐𝑐1. �1 −

1
2𝑁𝑁

�
𝑡𝑡

𝐻𝐻S𝑡𝑡 = 𝑐𝑐1. �1 −
1

2𝑁𝑁
�
𝑡𝑡 1029 

  (A4-8) 1030 

From there, we can also easily see that, for any c1≠0:  1031 

𝐻𝐻S𝑡𝑡
𝐻𝐻S𝑡𝑡−1

=
𝑐𝑐1. �1 − 1

2𝑁𝑁�
𝑡𝑡

𝑐𝑐1. �1 − 1
2𝑁𝑁�

𝑡𝑡−1 = �1 −
1

2𝑁𝑁
� = 𝜆𝜆1 1032 

  (A4-9) 1033 

The ratio of genetic diversities of generation t and t-1 is indeed the leading eigenvalue of 1034 

the transition matrix describing the evolution of genetic diversities (and of genetic identities 1035 

as well) (QED). 1036 
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 We can also determine c1 and c2, if genetic diversities at time 0 are known. From 1037 

equations A4-3 and A4-7, we know that: 1038 

�𝐻𝐻I = 𝑐𝑐1 + 𝑐𝑐2
𝐻𝐻S = 𝑐𝑐1

 1039 

 1040 

� 𝑐𝑐1 = 𝐻𝐻S
𝑐𝑐2 = 𝐻𝐻I − 𝐻𝐻S

 1041 

  (A4-10) 1042 

Now if we combine equations A1-8 and A1-10 we can compute, for HS (which is here the 1043 

same as HI): 1044 

⎩
⎪
⎨

⎪
⎧𝐻𝐻I𝑡𝑡 = 𝐻𝐻S. �1 −

1
2𝑁𝑁

�
𝑡𝑡

𝐻𝐻S𝑡𝑡 = 𝐻𝐻S. �1 −
1

2𝑁𝑁
�
𝑡𝑡 1045 

This results confirms that, at any generation HI=HS, and hence c2=0. We can then simply 1046 

write, for the Wright-Fisher model: 1047 

𝐻𝐻I𝑡𝑡 = 𝐻𝐻S. �1 −
1

2𝑁𝑁
�
𝑡𝑡

 1048 

 1049 

𝐻𝐻S𝑡𝑡 = 𝐻𝐻S. 𝜆𝜆1
𝑡𝑡 1050 

  (A4-11) 1051 

where HS is the local genetic diversity at time 0, and λ1 id the leading eigenvalue of the 1052 

transition matrix A. 1053 

 Now, for any transition matrix 𝐀𝐀 = �
𝑥𝑥11 𝑥𝑥12
𝑥𝑥21 𝑥𝑥22�, where the xij are probabilities (e.g. of 1054 

identity), with eigenvalues λ1 and λ2 and corresponding eigenvectors e1 and e2 (Appendix 1055 

2), we can use the same approach and obtain: 1056 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� = 𝑐𝑐1. 𝜆𝜆1
𝑡𝑡. 𝐞𝐞1 + 𝑐𝑐2. 𝜆𝜆2

𝑡𝑡. 𝐞𝐞2 1057 

  (A4-12) 1058 
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 From equation A2-4, it is very easy to see that λ1+λ2=x11+x22, and that λ1>λ2. From 1059 

matrix A defined for the WF model, we can see that all xij are probabilities that only sum to 1060 

1 for the Castle-Weinberg model and hence x11+x22≤1. In the case of WF, the difference 1061 

between λ1 and λ2 is even very big (equation A4-6). Consequently, when t becomes big 1062 

enough λ1t>>λ2t and equation A1-12 can be approximated as: 1063 

�
𝐻𝐻I𝑡𝑡
𝐻𝐻S𝑡𝑡

� ≈ 𝑐𝑐1. 𝜆𝜆1
𝑡𝑡. 𝐞𝐞1 1064 

  (A4-13) 1065 

Combining A4-13 with A2-5 yields: 1066 

�
𝐻𝐻I𝑡𝑡 ≈ 𝑐𝑐1. 𝜆𝜆1

𝑡𝑡

𝐻𝐻S𝑡𝑡 ≈ 𝑐𝑐1.𝜆𝜆1
𝑡𝑡 𝜆𝜆1 − 𝑥𝑥11

𝑥𝑥12

 1067 

  (A1-14) 1068 

From there, and for any HX (X=I or S), it is straightforward that the ratio Ht/Ht-1=λ1. From 1069 

equation A4-6, we know that the leading eigenvalue of the transition matrix of a fully 1070 

panmictic model (i.e. WF) is λe=1-1/(2Ne) and thus, the effective population size of any 1071 

non-reference population will follow λ1=1-1/(2Ne), which is equivalent to: 1072 

1 − 𝜆𝜆1 ≈
1

2𝑁𝑁𝑒𝑒
 1073 

Consequently, the eigenvalue effective population size of any population will be: 1074 

𝑁𝑁𝑒𝑒 ≈
1

2(1 − 𝜆𝜆1) 1075 

  (A4-15) 1076 

where λ1 is the leading eigenvalue of the transition matrix, describing the evolution of 1077 

genetic diversities (or same wise of genetic identities) from one generation to the other, for 1078 

that population.  1079 
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 All these detailed explanations leading to equation A4-15 provide the same result as 1080 

equation 3.105 in Ewen's book (page 120) (Ewens, 2004), which was given with much 1081 

more elliptic explanations. 1082 

 It is also worth noting that equation A4-15 is only accurate when t is big enough, or 1083 

when the population has reached a steady state so that the ratio Ht/Ht-1 becomes constant 1084 

and equal to λ1. 1085 

 1086 

Appendix 5: Pudovkin et al.'s methods to compute Ne 1087 

 Let pf and pm be allele frequencies of one of two alleles at a given locus in females 1088 

and males respectively, in a population with an even sex-ratio. Then, in the progeny, the 1089 

proportion of heterozygotes observed should be Hexp-dio=pf(1-pm)+(1-pf)pm. In this 1090 

population, the frequency of this allele will be (pf+pm)/2. Consequently, the expected 1091 

frequency of heterozygotes under the panmictic (monoecious) model in the progeny 1092 

(Hexpmon) would be: 1093 

𝐻𝐻exp−mon = 2 �
𝑝𝑝𝑓𝑓 + 𝑝𝑝𝑚𝑚

2
� �1 −

𝑝𝑝𝑓𝑓 + 𝑝𝑝𝑚𝑚
2

� 1094 

 1095 

𝐻𝐻exp−mon = �𝑝𝑝𝑓𝑓 + 𝑝𝑝𝑚𝑚� �
2 − 𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑚𝑚

2
� 1096 

 1097 

𝐻𝐻exp−mon =
2𝑝𝑝𝑓𝑓 + 2𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑓𝑓2 − 𝑝𝑝𝑚𝑚2 − 2𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚

2
 1098 

 1099 

𝐻𝐻exp−on = 𝑝𝑝𝑓𝑓 + 𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚 −
𝑝𝑝𝑓𝑓2 + 𝑝𝑝𝑚𝑚2

2
 1100 

 1101 

𝐻𝐻exp−mon = 𝑝𝑝𝑓𝑓(1− 𝑝𝑝𝑚𝑚) + 𝑝𝑝𝑚𝑚�1 − 𝑝𝑝𝑓𝑓� −
𝑝𝑝𝑓𝑓2 + 𝑝𝑝𝑚𝑚2 − 2𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚

2
 1102 

 1103 
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𝐻𝐻exp−mon = 𝐻𝐻exp−dio −
�𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑚𝑚�

2

2
 1104 

 1105 

𝐻𝐻exp−dio = 𝐻𝐻exp−mon +
�𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑚𝑚�

2

2
 1106 

  (A5-1) 1107 

 Please note that Hexp-dio and Hexp-mon here correspond to Hobs and Hexp respectively 1108 

in (Pudovkin et al., 1996). There is thus an observed heterozygote excess in the progeny. 1109 

 The quantity pf-pm can be considered as a random variable with average 0 over all 1110 

possible parental groups. If we consider that the frequency of the first allele was p in the 1111 

parental population, then the average of (pf-pm)² is the variance of a difference in allele 1112 

frequencies between two binomial samples of size N for each gender (N alleles in females 1113 

and N in males=2N alleles in total). The variance of frequency of a given allele randomly 1114 

taken in a population of size N, is p(1-p)/N, where p is the frequency of the allele in the 1115 

parents. The variance of a difference between two uncorrelated (e.g. independent) random 1116 

variables is the sum of individual variances (see the file VarDif.pdf), here p(1-p)/(N)+p(1-1117 

p)/(N)=2p(1-p)/N. Equation (A5-1), for the entire space of possible outcomes can thus 1118 

write: 1119 

𝐻𝐻exp−dio = 𝐻𝐻exp−mon +
𝑝𝑝(1 − 𝑝𝑝)

𝑁𝑁
 1120 

  (A5-2) 1121 

If we replace p(1-p) as Hexp-mon/2, N by Ne and rearrange equation (A5-2), one obtains: 1122 

𝐻𝐻exp−dio = 𝐻𝐻exp−mon +

𝐻𝐻exp−mon
2
𝑁𝑁𝑒𝑒

 1123 

−
𝐻𝐻exp−mon

2𝑁𝑁𝑒𝑒
= 𝐻𝐻exp−mon − 𝐻𝐻exp−dio 1124 

 1125 
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𝑁𝑁𝑒𝑒 = −
1
2

𝐻𝐻exp−mon
𝐻𝐻exp−mon − 𝐻𝐻obsexp−dio

 1126 

  (A5-3) 1127 

The parametric formula of Wright's FIS can be written as (Nei & Chesser, 1983): 1128 

𝐹𝐹IS =
𝐻𝐻exp − 𝐻𝐻obs

𝐻𝐻exp
 1129 

  (A5-4) 1130 

If we combine equations (A5-3) and (A5-4), replacing Hexp with Hexp-mon and Hobs with Hexp-1131 

dio, we obtain the same result (with FIS) as equation (3) in Pudovkin et al.'s paper (if we 1132 

replace FIS by –D): 1133 

𝑁𝑁𝑒𝑒 = −
1

2𝐹𝐹IS
 1134 

  (A5-5) 1135 

In their appendix, Pudovkin et al. then used a sleight of hand. They set N=Ne again, 2p(1-1136 

p)=Ht-1 and Hexp-mon=Ht, and used the equation λ= Ht/Ht-1, citing Kimura and Crow's book 1137 

(Crow & Kimura, 1970). Then, with p(1-p)=Ht-1/2, Ht-1=Ht/λ and Hexp=Ht, we can rewrite A5-1138 

2: 1139 

𝐻𝐻exp−dio = 𝐻𝐻𝑡𝑡 +
𝐻𝐻𝑡𝑡−1
2𝑁𝑁𝑒𝑒

 1140 

 1141 

𝐻𝐻exp−dio = 𝐻𝐻𝑡𝑡 + 𝐻𝐻𝑡𝑡
1

2𝜆𝜆𝑁𝑁𝑒𝑒
 1142 

 1143 

𝐻𝐻exp−dio = 𝐻𝐻𝑡𝑡 �1 +
1

2𝜆𝜆𝑁𝑁𝑒𝑒
� 1144 

  (A5-6) 1145 

Pudovkin et al. used another sleight of hand from equation 3.11.8 (page 104) from Crow 1146 

and Kimura's book (Crow & Kimura, 1970), replacing subpopulation sizes N by Ne (again) 1147 

and obtained: 1148 
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𝜆𝜆 =
𝑁𝑁𝑒𝑒 − 1 + �𝑁𝑁𝑒𝑒2 + 1

2𝑁𝑁𝑒𝑒
 1149 

  (A5-7) 1150 

 The way Pudovkin et al used this equation may be inaccurate because Crow and 1151 

Kimura's equation refers to the number of individuals, not the effective population size. 1152 

Nevertheless, if we combine equations A5-6 and A5-7 we obtain: 1153 

𝐻𝐻exp−dio = 𝐻𝐻𝑡𝑡

⎝

⎜
⎜
⎛

1 +
1

2
𝑁𝑁𝑒𝑒 − 1 + �𝑁𝑁𝑒𝑒2 + 1

2𝑁𝑁𝑒𝑒
𝑁𝑁𝑒𝑒⎠

⎟
⎟
⎞

 1154 

 1155 

𝐻𝐻exp−dio = 𝐻𝐻𝑡𝑡

⎝

⎛1 +
1

𝑁𝑁𝑒𝑒 − 1 + �𝑁𝑁𝑒𝑒2 + 1⎠

⎞ 1156 

 1157 

𝐻𝐻exp−dio − 𝐻𝐻𝑡𝑡 = 𝐻𝐻𝑡𝑡

⎝

⎛1 +
1

𝑁𝑁𝑒𝑒 − 1 + �𝑁𝑁𝑒𝑒2 + 1
− 1

⎠

⎞ 1158 

 1159 

𝐻𝐻exp−dio − 𝐻𝐻𝑡𝑡
𝐻𝐻𝑡𝑡

=
1

2𝑁𝑁𝑒𝑒 − 1 + �𝑁𝑁𝑒𝑒2 + 1
 1160 

  (A5-8) 1161 

From equation A5-4, and setting that Ht is the expected heterozygote frequency in the 1162 

progeny, hence Hexp-mon, we can rewrite equation A5-8 as: 1163 

−𝐹𝐹IS =
1

𝑁𝑁𝑒𝑒 − 1 + �𝑁𝑁𝑒𝑒2 + 1
 1164 

 1165 
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−𝐹𝐹IS𝑁𝑁𝑒𝑒 + 𝐹𝐹IS − 𝐹𝐹IS�𝑁𝑁𝑒𝑒2 + 1 = 1 1166 

 1167 

−𝐹𝐹IS𝑁𝑁𝑒𝑒 + 𝐹𝐹IS − 1 = 𝐹𝐹IS�𝑁𝑁𝑒𝑒2 + 1 1168 

 1169 

(−𝐹𝐹IS𝑁𝑁𝑒𝑒 + 𝐹𝐹IS − 1)(−𝐹𝐹IS𝑁𝑁𝑒𝑒 + 𝐹𝐹IS − 1) = 𝐹𝐹IS2�𝑁𝑁𝑒𝑒2 + 1� 1170 

 1171 

𝐹𝐹IS2𝑁𝑁𝑒𝑒2 − 𝐹𝐹IS2𝑁𝑁𝑒𝑒 + 𝐹𝐹IS𝑁𝑁𝑒𝑒 − 𝐹𝐹IS2𝑁𝑁𝑒𝑒 + 𝐹𝐹IS2 − 𝐹𝐹IS + 𝐹𝐹IS𝑁𝑁𝑒𝑒 − 𝐹𝐹IS + 1 − 𝐹𝐹IS2𝑁𝑁𝑒𝑒2 − 𝐹𝐹IS2 = 0 1172 

 1173 

−2𝐹𝐹IS2𝑁𝑁𝑒𝑒 + 2𝐹𝐹IS𝑁𝑁𝑒𝑒 − 2𝐹𝐹IS + 1 = 0 1174 

 1175 

2𝐹𝐹IS𝑁𝑁𝑒𝑒(1 − 𝐹𝐹IS) = 2𝐹𝐹IS − 1 1176 

 1177 

𝑁𝑁𝑒𝑒 = −
1 − 2𝐹𝐹IS

2𝐹𝐹IS(1 − 𝐹𝐹IS) 1178 

 1179 

𝑁𝑁𝑒𝑒 = −
1 − 𝐹𝐹IS − 𝐹𝐹IS
2𝐹𝐹IS(1 − 𝐹𝐹IS) 1180 

 1181 

𝑁𝑁𝑒𝑒 = −
1 − 𝐹𝐹IS

2𝐹𝐹IS(1 − 𝐹𝐹IS) +
𝐹𝐹IS

2𝐹𝐹IS(1− 𝐹𝐹IS) 1182 

 1183 

𝑁𝑁𝑒𝑒 = −
1

2𝐹𝐹IS
+

1
2(1 − 𝐹𝐹IS) 1184 

  (A5-9) 1185 

Considering that FIS=-D, we get: 1186 

𝑁𝑁𝑒𝑒 =
1

2𝐷𝐷
+

1
2(𝐷𝐷 + 1) 1187 
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  (A5-10) 1188 

 Equation A5-10 is the same Pudovkin et al's (Pudovkin et al., 1996) equation 4: 1189 

 1190 

Appendix 6: Coalescent effective population size in a dioecious pangamic 1191 

population 1192 

 Let QI and QS be the probabilities that the same allele is sampled twice, either in 1193 

one individual or in two distinct individuals from the same population. Let u be the mutation 1194 

rate per generation in an infinite allele model where each  mutation event producesa new 1195 

allele that never existed before (no homoplasy). Then, for a dioecious population with an 1196 

even sex-ratio and random mating, we can set the following recurrences between 1197 

generation t and t-1 (Equations 7 and 8 with an even sex-ratio and mutation rate u) (see 1198 

equations 7 and 8 with Nf=Nm). 1199 

�
𝑄𝑄I(𝑡𝑡) = (1 − 𝑢𝑢)2𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = (1 − 𝑢𝑢)2 �
1
𝑁𝑁
�

1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� + �1 −

1
𝑁𝑁
�𝑄𝑄S(𝑡𝑡−1)�

 1200 

 1201 

�
𝑄𝑄I(𝑡𝑡) = (1 − 𝑢𝑢)2𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = (1 − 𝑢𝑢)2
1

2𝑁𝑁
𝑄𝑄I(𝑡𝑡−1) + (1 − 𝑢𝑢)2 �1 −

1
𝑁𝑁
�𝑄𝑄S(𝑡𝑡−1) + (1 − 𝑢𝑢)2

1
2𝑁𝑁

 1202 

  (A6-1) 1203 

Let Qt the vector of genetic identities at time t and A be the squared matrix of transition for 1204 

genetic identities, v the corresponding vector of residuals, and I the identity matrix. If γ=(1-1205 

u)² is the probability that two alleles taken at random did not mutate, then we can write: 1206 

𝐐𝐐𝑡𝑡 = 𝛾𝛾𝐀𝐀𝐐𝐐𝑡𝑡−1 + 𝛾𝛾𝐯𝐯 1207 

  (A6-2) 1208 

 For the example of a dioecious population with even sex ratio this would yield (see 1209 

equation A6-1): 1210 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐐𝐐𝑡𝑡 = �

𝑄𝑄I(𝑡𝑡)
𝑄𝑄S(𝑡𝑡)

�

𝐀𝐀 = �
0 1
1

2𝑁𝑁
�1 −

1
𝑁𝑁
��

𝐯𝐯 = �
0
1

2𝑁𝑁
�

 1211 

  (A6-3) 1212 

Equation A6-2 is equivalent to: 1213 

𝐐𝐐𝑡𝑡 = 𝛾𝛾𝐀𝐀(𝛾𝛾𝐀𝐀𝐐𝐐𝑡𝑡−2 + 𝛾𝛾𝐯𝐯) + 𝛾𝛾𝐯𝐯 1214 

 1215 

𝐐𝐐𝑡𝑡 = 𝛾𝛾2𝐀𝐀2𝐐𝐐𝑡𝑡−2 + 𝛾𝛾2𝐀𝐀𝐯𝐯 + 𝛾𝛾𝐯𝐯 1216 

 1217 

𝐐𝐐𝑡𝑡 = 𝛾𝛾2𝐀𝐀2(𝛾𝛾𝐀𝐀𝐐𝐐𝑡𝑡−3 + 𝛾𝛾𝐯𝐯) + 𝛾𝛾2𝐀𝐀𝐯𝐯+ 𝛾𝛾𝐯𝐯 1218 

 1219 

𝐐𝐐𝑡𝑡 = 𝛾𝛾3𝐀𝐀3𝐐𝐐𝑡𝑡−3 + 𝛾𝛾3𝐀𝐀2𝐯𝐯 + 𝛾𝛾2𝐀𝐀𝐯𝐯 + 𝛾𝛾𝐯𝐯 1220 

 1221 

𝐐𝐐𝑡𝑡 = 𝛾𝛾(𝑡𝑡−1)𝐀𝐀(𝑡𝑡−1)𝐐𝐐1 + 𝛾𝛾(𝑡𝑡−1)𝐀𝐀(𝑡𝑡−2)𝐯𝐯 + 𝛾𝛾(𝑡𝑡−2)𝐀𝐀(𝑡𝑡−3)𝐯𝐯 + ⋯+ 𝛾𝛾2𝐀𝐀1𝐯𝐯 + 𝛾𝛾1𝐀𝐀0𝐯𝐯 1222 

Assuming that equilibrium values has been reached at time t (t→∞): 1223 

𝐐𝐐 = 𝛾𝛾(𝑡𝑡−1)𝐀𝐀(𝑡𝑡−1)𝐐𝐐1 + �� 𝛾𝛾𝑡𝑡𝐀𝐀(𝑡𝑡−1)𝐯𝐯
∞

𝑡𝑡=1
� 1224 

  (A6-4) 1225 

 We can see that the second term in these equations will increase with t, albeit at a 1226 

diminishing rate, while the first term will decrease with t.. Hence, if inbreeding within 1227 

individuals and within subpopulation are small enough at time t=1, after a sufficient 1228 

number of generations, and using equation A3-5 and decomposing v as v=∑ 𝑥𝑥𝑖𝑖 . 𝐞𝐞𝑖𝑖𝑖𝑖 , where 1229 

the xi's are scalars that can be computed and ei are eigenvectors of A, we can 1230 

approximate equation A6-4 as: 1231 
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𝐐𝐐 ≈� 𝛾𝛾𝑡𝑡� 𝜆𝜆𝑖𝑖
(𝑡𝑡−1)𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖

𝑖𝑖

∞

𝑡𝑡=1
 1232 

  (A6-5) 1233 

This is the same as the second part of equation 4.10 in Rousset's book, page 56 (Rousset, 1234 

2004). It is worthy of note that such an approximation is invalid in populations with poor 1235 

levels of genetic diversity in the first generations. 1236 

 We can also compute Q at equilibrium. For this we set equation A6-2 as: 1237 

𝐐𝐐 = 𝛾𝛾𝐀𝐀𝐐𝐐 + 𝛾𝛾𝐯𝐯 1238 

 1239 

𝐐𝐐(𝐈𝐈 − 𝛾𝛾𝐀𝐀) = 𝛾𝛾𝐯𝐯 1240 

 1241 

𝐐𝐐 = 𝛾𝛾(𝐈𝐈 − 𝛾𝛾𝐀𝐀)−𝟏𝟏𝐯𝐯 1242 

  (A6-6) 1243 

We can use equation A3-6 to obtain: 1244 

𝐐𝐐 = 𝛾𝛾�
1

1 − 𝛾𝛾𝜆𝜆𝑖𝑖
. 𝑥𝑥𝑖𝑖. 𝐞𝐞𝑖𝑖

𝑖𝑖
 1245 

  (A6-7) 1246 

This equation corresponds to the first part of equation 4.10 given in Rousset's book. 1247 

 We can also express Q as a function of probability of pairwise coalescence at time 1248 

t. If we define a vector Ct of such probabilities within individuals and between individuals 1249 

(to stick to our framework with two hierarchies), we can write: 1250 

𝐂𝐂𝑡𝑡 = �
𝐶𝐶I(𝑡𝑡)

𝐶𝐶S(𝑡𝑡)
� 1251 

  (A6-8) 1252 

In equation A6-8, CI(t) and CS(t) are the probabilities, at time t, that two alleles of one 1253 

individual (I) or of different individuals in the subpopulation (S), respectively, all randomly 1254 

chosen, had coalesced somewhere in the past. At equilibrium, or after a lot of generations, 1255 
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identities will correspond to the sum of all coalescent events that occurred in the past, and 1256 

if no mutation ever occurred, and hence: 1257 

𝐐𝐐 = � 𝐂𝐂𝑡𝑡𝛾𝛾𝑡𝑡
∞

𝑡𝑡=1
 1258 

  (A6-9) 1259 

Combining equations A6-5 and A6-9 provides the following equality: 1260 

� 𝛾𝛾𝑡𝑡� 𝜆𝜆𝑖𝑖
(𝑡𝑡−1)𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖

𝑖𝑖

∞

𝑡𝑡=1
≈� 𝛾𝛾𝑡𝑡𝐂𝐂𝑡𝑡

∞

𝑡𝑡=1
 1261 

This means that: 1262 

𝐂𝐂𝑡𝑡 ≈� 𝜆𝜆𝑖𝑖
(𝑡𝑡−1)𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖

𝑖𝑖
 1263 

  (A6-10) 1264 

This equation meets with equation 4.11 page 56 in Rousset's book (Rousset, 2004). 1265 

 The mean coalescent time between two alleles in hierarchy J TJ(t) (J=I or S for the 1266 

example treated in the present paper) at time t, can be computed as the sum of the products 1267 

of the time of each event of coalescence by the probability of coalescence at that time for 1268 

these two alleles of J (Rousset, 2004) (page 59), in vector format: 1269 

𝐓𝐓𝑛𝑛 = � 𝑡𝑡𝐂𝐂𝑡𝑡
𝑛𝑛

𝑡𝑡=1
 1270 

  (A6-11) 1271 

Please note that in Rousset's book or other papers n=∞. 1272 

Using the result of equation A6-10 we get: 1273 

𝐓𝐓𝑛𝑛 = � 𝑡𝑡� 𝜆𝜆𝑖𝑖
(𝑡𝑡−1)𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖

𝑖𝑖

𝑛𝑛

𝑡𝑡=1
 1274 

  (A6-12) 1275 

 1276 

𝐓𝐓𝑛𝑛 = � 𝑡𝑡𝜆𝜆1
(𝑡𝑡−1)𝑥𝑥1𝐞𝐞1

𝑛𝑛

𝑡𝑡=1
+ � 𝑡𝑡𝜆𝜆2

(𝑡𝑡−1)𝑥𝑥2𝐞𝐞2
𝑛𝑛

𝑡𝑡=1
+ � 𝑡𝑡𝜆𝜆3

(𝑡𝑡−1)𝑥𝑥3𝐞𝐞3
𝑛𝑛

𝑡𝑡=1
+ ⋯+ � 𝑡𝑡𝜆𝜆𝑖𝑖

(𝑡𝑡−1)𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖
𝑛𝑛

𝑡𝑡=1
 1277 
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for the general case of any squared transition matrices (for the present case this sum 1278 

stops at λ2). 1279 

 The eigenpairs and scalars are constant through time and we can for now focus on 1280 

the different sums, Si of each eigenpair of order i: 1281 

 1282 

𝑆𝑆𝑖𝑖 = � 𝑡𝑡𝜆𝜆𝑖𝑖
(𝑡𝑡−1)

𝑛𝑛

𝑡𝑡=1
= 1𝜆𝜆𝑖𝑖

0 + 2𝜆𝜆𝑖𝑖
1 + 3𝜆𝜆𝑖𝑖

2 + ⋯+ 𝑛𝑛𝜆𝜆𝑖𝑖
(𝑛𝑛−1) 1283 

 1284 

𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖 = 𝜆𝜆𝑖𝑖
1 + 2𝜆𝜆𝑖𝑖

2 + ⋯+ (𝑡𝑡 − 1)𝜆𝜆𝑖𝑖
𝑡𝑡−1 + 𝑛𝑛𝜆𝜆𝑖𝑖

𝑛𝑛 1285 

We can then set: 1286 

𝑆𝑆𝑖𝑖 − 𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖 = 1 + 𝜆𝜆𝑖𝑖
1 + 𝜆𝜆𝑖𝑖

2 + ⋯+ 𝜆𝜆𝑖𝑖
(𝑛𝑛−1) − 𝑛𝑛𝜆𝜆𝑖𝑖

𝑛𝑛 1287 

 1288 

𝑆𝑆𝑖𝑖(1 − 𝜆𝜆𝑖𝑖) = 1 + 𝜆𝜆𝑖𝑖
1 + 𝜆𝜆𝑖𝑖

2 + ⋯+ 𝜆𝜆𝑖𝑖
(𝑛𝑛−1) − 𝑛𝑛𝜆𝜆𝑖𝑖

𝑛𝑛 1289 

 1290 

𝑆𝑆𝑖𝑖(1 − 𝜆𝜆𝑖𝑖) = 𝑆𝑆𝑖𝑖′ − 𝑛𝑛𝜆𝜆𝑖𝑖
𝑛𝑛 1291 

 1292 

𝑆𝑆𝑖𝑖 =
𝑆𝑆𝑖𝑖′ − 𝑛𝑛𝜆𝜆𝑖𝑖

𝑛𝑛

1 − 𝜆𝜆𝑖𝑖
 1293 

where 1294 

𝑆𝑆𝑖𝑖′ = 1 + 𝜆𝜆𝑖𝑖
1 + 𝜆𝜆𝑖𝑖

2 + ⋯+ 𝜆𝜆𝑖𝑖
(𝑛𝑛−1) 1295 

 1296 

𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖′ = 𝜆𝜆𝑖𝑖
1 + 𝜆𝜆𝑖𝑖

2 + ⋯+ 𝜆𝜆𝑖𝑖
(𝑛𝑛−1) + 𝜆𝜆𝑖𝑖

𝑛𝑛 1297 

We can again use the fact that: 1298 

𝑆𝑆𝑖𝑖′ − 𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖′ = 1 − 𝜆𝜆𝑖𝑖
𝑛𝑛 1299 

 1300 

𝑆𝑆𝑖𝑖′(1 − 𝜆𝜆𝑖𝑖) = 1 − 𝜆𝜆𝑖𝑖
𝑛𝑛 1301 

 1302 

𝑆𝑆𝑖𝑖′ =
1 − 𝜆𝜆𝑖𝑖

𝑛𝑛

1 − 𝜆𝜆𝑖𝑖
 1303 

We can now replace this Si' in Si to obtain: 1304 

𝑆𝑆𝑖𝑖 =

1 − 𝜆𝜆𝑖𝑖
𝑛𝑛

1 − 𝜆𝜆𝑖𝑖
− 𝑡𝑡𝜆𝜆𝑖𝑖

𝑛𝑛

1 − 𝜆𝜆𝑖𝑖
 1305 

 1306 
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𝑆𝑆𝑖𝑖 = � 𝑡𝑡𝜆𝜆𝑖𝑖
(𝑡𝑡−1)

𝑛𝑛

𝑡𝑡=1
=

1 − 𝜆𝜆𝑖𝑖
𝑛𝑛

(1 − 𝜆𝜆𝑖𝑖)2
− 𝑛𝑛

𝜆𝜆𝑖𝑖
𝑛𝑛

1 − 𝜆𝜆𝑖𝑖
=

1
1 − 𝜆𝜆𝑖𝑖

�
1

1 − 𝜆𝜆𝑖𝑖
− 𝜆𝜆𝑖𝑖

𝑛𝑛 �
1

1 − 𝜆𝜆𝑖𝑖
+ 𝑛𝑛�� 1307 

Now, using this Si in equation A6-12 yields: 1308 

𝐓𝐓𝑛𝑛 = �
1

1 − 𝜆𝜆𝑖𝑖
�

1
1 − 𝜆𝜆𝑖𝑖

− 𝜆𝜆𝑖𝑖
𝑛𝑛 �

1
1 − 𝜆𝜆𝑖𝑖

+ 𝑛𝑛�� 𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖
𝑖𝑖

 1309 

  (A6-13) 1310 

 Here, simplifying equation A6-13 is possible, but at the expense of another 1311 

approximation. In the case of an isolated dioecious subpopulation, numerical applications 1312 

suggested that if n big (i.e.n>400 generations) or if the subpopulation is big enough (N>4) 1313 

and n>10, then equation A6-13 can be approximated as: 1314 

𝐓𝐓 ≈�
1

(1 − 𝜆𝜆𝑖𝑖)2
𝑥𝑥𝑖𝑖𝐞𝐞𝑖𝑖

𝑖𝑖
 1315 

  (A6-14) 1316 

 For a dioecious population with random mating and even sex-ratio we can write 1317 

Equation A6-2 (see also A6-3) as: Qt=γ(A.Qt-1+v). 1318 

 Eigenpairs of matrix A are of the form (see A2-4 or Scripts 1,2 and 4): 1319 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝜆𝜆1 =

1 − 1
𝑁𝑁 + �1 + �1

𝑁𝑁�
2

2
𝐞𝐞1 = � 1

𝜆𝜆1
�

𝜆𝜆2 =
1 − 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2
𝐞𝐞2 = � 1

𝜆𝜆2
�

 1320 

  (A6-15) 1321 

Vector v is composed of a combination of eigenvectors e1 and e2: 1322 

𝐯𝐯 = �
0
1

2𝑁𝑁
� = 𝑥𝑥1 �

1

1 − 1
𝑁𝑁 + �1 + �1

𝑁𝑁�
2

2

� + 𝑥𝑥2 �

1

1 − 1
𝑁𝑁 −�1 + �1

𝑁𝑁�
2

2

� 1323 

 1324 
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�

0 = 𝑥𝑥1 + 𝑥𝑥2

1
2𝑁𝑁

= 𝑥𝑥1
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2
+ 𝑥𝑥2

1 − 1
𝑁𝑁 −�1 + �1

𝑁𝑁�
2

2

 1325 

 1326 

�

𝑥𝑥2 = −𝑥𝑥1

1
2𝑁𝑁

= 𝑥𝑥1
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2
− 1 + 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2

 1327 

 1328 

�

𝑥𝑥2 = −𝑥𝑥1

1
2𝑁𝑁

= 𝑥𝑥1�1 + �
1
𝑁𝑁
�
2

= 𝑥𝑥1(𝜆𝜆1 − 𝜆𝜆2)
 1329 

 1330 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥1 =

1

2𝑁𝑁�1 + �1
𝑁𝑁�

2
=

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2)

𝑥𝑥2 = −
1

2𝑁𝑁�1 + �1
𝑁𝑁�

2
= −

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2)

 1331 

  (A6-16) 1332 

If we combine equations A6-14, and A6-16, we get: 1333 

 1334 

𝐓𝐓 = �
𝑇𝑇I
𝑇𝑇S
� ≈

1
(1 − 𝜆𝜆1)2

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

1
𝜆𝜆1
� −

1
(1 − 𝜆𝜆2)2

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

1
𝜆𝜆2
� 1335 

 1336 

⎩
⎪
⎨

⎪
⎧𝑇𝑇I ≈

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

1
(1 − 𝜆𝜆1)2 −

1
(1 − 𝜆𝜆2)2�

𝑇𝑇S ≈
1

2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �
𝜆𝜆1

(1 − 𝜆𝜆1)2 −
𝜆𝜆2

(1 − 𝜆𝜆2)2�

 1337 

 1338 
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⎩
⎪
⎨

⎪
⎧ 𝑇𝑇I ≈

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

(1 − 𝜆𝜆2)2 − (1 − 𝜆𝜆1)2

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

𝑇𝑇S ≈
1

2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �
𝜆𝜆1(1 − 𝜆𝜆2)2 − 𝜆𝜆2(1 − 𝜆𝜆1)2

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

 1339 

 1340 

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇I ≈

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

1 + 𝜆𝜆2
2 − 2𝜆𝜆2 − 1 − 𝜆𝜆1

2 + 2𝜆𝜆1
(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

𝑇𝑇S ≈
1

2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �
𝜆𝜆1�1 + 𝜆𝜆2

2 − 2𝜆𝜆2� − 𝜆𝜆2�1 + 𝜆𝜆1
2 − 2𝜆𝜆1�

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

 1341 

 1342 

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇I ≈

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

𝜆𝜆2
2 − 𝜆𝜆1

2 − 2𝜆𝜆2 + 2𝜆𝜆1
(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

𝑇𝑇S ≈
1

2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �
𝜆𝜆1 + 𝜆𝜆2

2𝜆𝜆1 − 2𝜆𝜆1𝜆𝜆2 − 𝜆𝜆2 − 𝜆𝜆1
2𝜆𝜆2 + 2𝜆𝜆1𝜆𝜆2

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

 1343 

 1344 

⎩
⎪
⎨

⎪
⎧𝑇𝑇I ≈

1
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

(𝜆𝜆2 − 𝜆𝜆1)(𝜆𝜆2 + 𝜆𝜆1) + 2(𝜆𝜆1 − 𝜆𝜆2)
(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

𝑇𝑇S ≈
1

2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �
𝜆𝜆1 − 𝜆𝜆2 + 𝜆𝜆1𝜆𝜆2(𝜆𝜆2 − 𝜆𝜆1)

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2 �

 1345 

 1346 

⎩
⎪
⎨

⎪
⎧𝑇𝑇I ≈

(𝜆𝜆1 − 𝜆𝜆2)
2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �

2 − 𝜆𝜆1 − 𝜆𝜆2
(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2�

𝑇𝑇S ≈
𝜆𝜆1 − 𝜆𝜆2

2𝑁𝑁(𝜆𝜆1 − 𝜆𝜆2) �
1 − 𝜆𝜆1𝜆𝜆2

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2�

 1347 

 1348 

⎩
⎪
⎨

⎪
⎧𝑇𝑇I ≈

1
2𝑁𝑁

�
2 − 𝜆𝜆1 − 𝜆𝜆2

(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2�

𝑇𝑇S ≈
1

2𝑁𝑁
�

1 − 𝜆𝜆1𝜆𝜆2
(1 − 𝜆𝜆1)2(1 − 𝜆𝜆2)2�

 1349 

  (A6-17) 1350 
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If we use A6-15 in A6-17, we obtain: 1351 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑇𝑇I ≈
1

2𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

2 −
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2 −
1 − 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2

⎝

⎛1 −
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎝

⎛1 −
1 − 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇S ≈
1

2𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2
1 − 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2

⎝

⎛1 −
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎝

⎛1 −
1 − 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
 1352 

 1353 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑇𝑇I ≈
1

2𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

2 −
1 − 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2
+ 1 − 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2

⎝

⎛
1 + 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎝

⎛
1 + 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇S ≈
1

2𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −
�1 − 1

𝑁𝑁�
2
− 1 − �1

𝑁𝑁�
2

4

⎝

⎛
1 + 1

𝑁𝑁 −�1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎝

⎛
1 + 1

𝑁𝑁 + �1 + �1
𝑁𝑁�

2

2
⎠

⎞

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
 1354 

 1355 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑇𝑇I ≈
1

2𝑁𝑁
2 − �1 − 1

𝑁𝑁�

�
�1 + 1

𝑁𝑁�
2
− 1 − �1

𝑁𝑁�
2

4 �

2

𝑇𝑇S ≈
1

2𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −
1 + �1

𝑁𝑁�
2
− 2 1

𝑁𝑁 − 1 − �1
𝑁𝑁�

2

4

�
�1 + 1

𝑁𝑁�
2
− 1 − �1

𝑁𝑁�
2

4 �

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤ 1356 

 1357 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝑇𝑇I ≈

1
2𝑁𝑁

1 + 1
𝑁𝑁

�
1 + �1

𝑁𝑁�
2

+ 2 1
𝑁𝑁 − 1 − �1

𝑁𝑁�
2

4 �

2

𝑇𝑇S ≈
1

2𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 + 1
2𝑁𝑁

�
1 + �1

𝑁𝑁�
2

+ 2 1
𝑁𝑁 − 1 − �1

𝑁𝑁�
2

4 �

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤ 1358 

 1359 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
𝑇𝑇I ≈

1
2𝑁𝑁

1 + 1
𝑁𝑁

� 1
2𝑁𝑁�

2

𝑇𝑇S ≈
1

2𝑁𝑁
1 + 1

2𝑁𝑁

� 1
2𝑁𝑁�

2

 1360 

 1361 



70 
 

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇I ≈ 2𝑁𝑁 �1 +

1
𝑁𝑁
�

𝑇𝑇S ≈ 2𝑁𝑁 �1 +
1

2𝑁𝑁
�

 1362 

 1363 

�
𝑇𝑇I ≈ 2(𝑁𝑁 + 1)

𝑇𝑇S ≈ 2𝑁𝑁 + 1
 1364 

  (A6-18) 1365 

 This result is the same as in Balloux's paper (Balloux, 2004) (equation 15) with an 1366 

even sex ratio: 1367 

 For a panmictic population of size Ne: 1368 

⎩
⎨

⎧𝑄𝑄I𝑡𝑡 =
1
𝑁𝑁𝑒𝑒

�
1
2

+
1
2
𝑄𝑄It−1� + �1 −

1
𝑁𝑁𝑒𝑒
�𝑄𝑄S𝑡𝑡−1

𝑄𝑄S𝑡𝑡 =
1
𝑁𝑁𝑒𝑒

�
1
2

+
1
2
𝑄𝑄It−1� + �1 −

1
𝑁𝑁𝑒𝑒
�𝑄𝑄S𝑡𝑡−1

 1369 

 1370 

⎩
⎨

⎧𝑄𝑄I𝑡𝑡 =
1

2𝑁𝑁𝑒𝑒
𝑄𝑄𝑆𝑆t−1 + �1 −

1
𝑁𝑁𝑒𝑒
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁𝑒𝑒

𝑄𝑄S𝑡𝑡 =
1

2𝑁𝑁𝑒𝑒
𝑄𝑄St−1 + �1 −

1
𝑁𝑁𝑒𝑒
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁𝑒𝑒

 1371 

 1372 

⎩
⎨

⎧𝑄𝑄I𝑡𝑡 = �1 −
1

2𝑁𝑁𝑒𝑒
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁𝑒𝑒

𝑄𝑄S𝑡𝑡 = �1 −
1

2𝑁𝑁𝑒𝑒
�𝑄𝑄S𝑡𝑡−1 +

1
2𝑁𝑁𝑒𝑒

 1373 

The corresponding transition matrix has the following eigenpair: 1374 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜆𝜆𝑒𝑒1 = 1 −

1
2𝑁𝑁𝑒𝑒

𝜆𝜆𝑒𝑒2 = 0

𝐞𝐞𝑒𝑒1 = �1
1�

𝐞𝐞𝑒𝑒2 = �1
0�

 1375 

  (A6-19) 1376 
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Hence: 1377 

𝐕𝐕𝒆𝒆 =

⎝

⎛

1
2𝑁𝑁𝑒𝑒

1
2𝑁𝑁𝑒𝑒⎠

⎞ = 𝑥𝑥𝑒𝑒1 �
1
1� + 𝑥𝑥𝑒𝑒2 �

1
0� 1378 

 1379 

⎩
⎨

⎧
1

2𝑁𝑁𝑒𝑒
= 𝑥𝑥𝑒𝑒1 + 𝑥𝑥𝑒𝑒2
1

2𝑁𝑁𝑒𝑒
= 𝑥𝑥𝑒𝑒1

 1380 

 1381 

�𝑥𝑥𝑒𝑒1 =
1

2𝑁𝑁𝑒𝑒
𝑥𝑥𝑒𝑒2 = 0

 1382 

  (A6-20) 1383 

 If we apply equation A6-14 with the values of equations A6-19 and A6-20), we 1384 

obtain: 1385 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑇𝑇I𝑒𝑒 ≈

1

�1 − 1 − 1
2𝑁𝑁𝑒𝑒

�
2

1
2𝑁𝑁𝑒𝑒

𝑇𝑇S𝑒𝑒 ≈
1

�1 − 1 − 1
2𝑁𝑁𝑒𝑒

�
2

1
2𝑁𝑁𝑒𝑒

 1386 

 1387 

�𝑇𝑇I𝑒𝑒 ≈ 2𝑁𝑁𝑒𝑒
𝑇𝑇S𝑒𝑒 ≈ 2𝑁𝑁𝑒𝑒

 1388 

 1389 

  (A6-21) 1390 

From there, it is easy to understand that the coalescent effective population size can then 1391 

be defined as in equation 17 of (Balloux et al., 2003), i.e.: 1392 

𝑁𝑁𝑒𝑒 ≈
1
2
𝑇𝑇� 1393 

  (A6-22) 1394 
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where 𝑇𝑇� is the weighted average of the different Ti's, here: 1395 

𝑇𝑇� =
1
𝑁𝑁
𝑇𝑇I + �1 −

1
𝑁𝑁
�𝑇𝑇S 1396 

  (A6-23) 1397 

The weights in fact correspond to the probabilities to sample two genes from the 1398 

considered hierarchy: within one individual, from two different individuals within the same 1399 

sub-population, from two different sub-populations from the same archipelago, etc… 1400 

 In our context, for a dioecious and isolated population of size N with an even sex-1401 

ratio, combining equations A6-18, A6-22 and A6-23 leads to: 1402 

𝑁𝑁𝑒𝑒 ≈
1
2
�

1
𝑁𝑁

2(𝑁𝑁 + 1) + �1 −
1
𝑁𝑁
� (2𝑁𝑁 + 1)� 1403 

 1404 

𝑁𝑁𝑒𝑒 ≈
1
2
�2 �1 +

1
𝑁𝑁
� + 2𝑁𝑁 + 1 − 2 −

1
𝑁𝑁
� 1405 

 1406 

𝑁𝑁𝑒𝑒 ≈
1
2
�2 +

2
𝑁𝑁

+ 2𝑁𝑁 − 1 −
1
𝑁𝑁
� 1407 

 1408 

𝑁𝑁𝑒𝑒 ≈
1
2
�1 +

1
𝑁𝑁

+ 2𝑁𝑁� 1409 

 1410 

𝑁𝑁𝑒𝑒 ≈ 𝑁𝑁 +
1
2

+
1

2𝑁𝑁
 1411 

  (A6-24) 1412 

 Equation A6-24 is exactly the same as equation 10 in (Balloux, 2004). To give a 1413 

biological meaning to this result, it corresponds to the census size (or number of breeders) 1414 

plus half an individual that would have been coalescent through random selfing in a WF 1415 

population, plus one coalescent individual that would occur in a WF population (which may 1416 

sound redundant with the second). 1417 
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 1418 

Appendix 7: Matrix method to compute eigenvalue effective population size in a 1419 

dioecious population 1420 

 Let QI(t) and QS(t) be the probabilities of identity between two alleles at time t within 1421 

individuals and between individuals in a dioecious random mating population. We can then 1422 

use Equations 7 and 8 in the main text: 1423 

⎩
⎪
⎨

⎪
⎧

𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) =
1
4
�

1
𝑁𝑁𝑓𝑓

�
1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� + �1 −

1
𝑁𝑁𝑓𝑓
�𝑄𝑄S(𝑡𝑡−1)�

+
1
4
�

1
𝑁𝑁𝑚𝑚

�
1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� + �1 −

1
𝑁𝑁𝑚𝑚

�𝑄𝑄S(𝑡𝑡−1)� +
1
2
𝑄𝑄S(𝑡𝑡−1)

 1424 

 1425 

�
𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = 𝑄𝑄I(𝑡𝑡−1)
1
8
�

1
𝑁𝑁𝑓𝑓

+
1
𝑁𝑁𝑚𝑚

� + 𝑄𝑄S(𝑡𝑡−1) �1 −
1

4𝑁𝑁𝑓𝑓
−

1
4𝑁𝑁𝑚𝑚

� +
1
8
�

1
𝑁𝑁𝑓𝑓

+
1
𝑁𝑁𝑚𝑚

�
 1426 

  (A7-1) 1427 

Equation A9-1 has transition matrix (see appendices 1-4): 1428 

𝐀𝐀 = �
0 1

1
2
�

1
4𝑁𝑁𝑓𝑓

+
1

4𝑁𝑁𝑚𝑚
� �1 −

1
4𝑁𝑁𝑓𝑓

−
1

4𝑁𝑁𝑚𝑚
�� 1429 

  (A7-2) 1430 

 To save time we used wxMaxima to find the leading eigenvalue of A (see Script 1): 1431 

𝜆𝜆1 =
��16𝑁𝑁𝑓𝑓2 + 1�𝑁𝑁𝑚𝑚2 + 2𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓2 + �4𝑁𝑁𝑓𝑓 − 1�𝑁𝑁𝑚𝑚 − 𝑁𝑁𝑓𝑓

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
 1432 

 1433 

𝜆𝜆1 =
1
2
−

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+
��4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚�

2
+ 𝑁𝑁𝑓𝑓2 + 𝑁𝑁𝑚𝑚2 + 2𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
 1434 

 1435 
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𝜆𝜆1 =
1
2
−

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

+
1
2
�1 + �

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

�
2

 1436 

which is the same as equation 11 in the main text (QED). 1437 

 1438 

Appendix 8: Derivatives and Taylor-MacLaurin's expansion series 1439 

Basic notions about derivative functions 1440 

 Readers acquainted with derivatives can skip this first section.  1441 

 The derivative of a function f(x) describes the orientation and speed of variation of 1442 

this function, measured between two points separated by a distance Δx that tends to 0: 1443 

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)
∆𝑥𝑥

 1444 

For the present paper, we will need to compute the derivative of several functions. For 1445 

instance for the function f(x)=xn, then: 1446 

𝑓𝑓′(𝑦𝑦) = lim
∆𝑥𝑥→0

(𝑥𝑥 + ∆𝑥𝑥)𝑛𝑛 − 𝑥𝑥𝑛𝑛

∆𝑥𝑥
 1447 

For any n, beginning with n=2 or 3, it is easy to show that: 1448 

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

𝑛𝑛𝑥𝑥(𝑛𝑛−1) + ∆𝑥𝑥 × 𝑔𝑔(𝑥𝑥) 1449 

where g(x) is a function of x with one term in xm<n, one term in Δxn-2 and other terms in 1450 

xΔx, so that the limit when Δx→0 necessary is nxn-1. Then f'(x)=nxn-1. It is easy to see that 1451 

the derivative of a sum of functions is simply the sum of derivatives of the different 1452 

functions of this sum. 1453 

 Next, we need to compute the derivative of f(g(x)) or more correctly (f ○ g)(x). For 1454 

this, it will be easier to change of notation: 1455 

(𝑓𝑓 ○ 𝑔𝑔)′(𝑥𝑥) = lim
∆𝑥𝑥→0

𝑓𝑓(𝑔𝑔(𝑥𝑥) + ∆𝑥𝑥) − 𝑓𝑓(𝑔𝑔(𝑥𝑥))
∆𝑥𝑥

 1456 

 Let 𝑓𝑓(𝑔𝑔(𝑥𝑥) + ∆𝑥𝑥) − 𝑓𝑓�𝑔𝑔(𝑥𝑥)� = ∆𝑢𝑢, and ∆𝑣𝑣 = 𝑔𝑔(𝑥𝑥 + ∆𝑥𝑥) − 𝑔𝑔(𝑥𝑥), then: 1457 

(𝑓𝑓 ○ 𝑔𝑔)′(𝑥𝑥) = lim
∆𝑥𝑥→0

∆𝑢𝑢
∆𝑥𝑥

 1458 
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 1459 

(𝑓𝑓 ○ 𝑔𝑔)′(𝑥𝑥) = lim
∆𝑥𝑥→0

∆𝑢𝑢∆𝑣𝑣
∆𝑣𝑣∆𝑥𝑥

 1460 

 1461 

(𝑓𝑓 ○ 𝑔𝑔)′(𝑥𝑥) = 𝑔𝑔′(𝑥𝑥) lim
∆𝑥𝑥→0

∆𝑢𝑢
∆𝑣𝑣

 1462 

Since it is easy to see that when Δx→0, then Δv→0, we can rewrite: 1463 

(𝑓𝑓 ○ 𝑔𝑔)′(𝑥𝑥) = 𝑓𝑓′(𝑢𝑢)𝑔𝑔′(𝑥𝑥) 1464 

or 1465 

(𝑓𝑓 ○ 𝑔𝑔)′(𝑥𝑥) = 𝑓𝑓′(𝑔𝑔(𝑥𝑥))𝑔𝑔′(𝑥𝑥) 1466 

 We then have the necessary tools for Taylor-MacLaurin's expansion series 1467 

 1468 

Taylor-MacLaurin's expansion series 1469 

 In the neighborhood of a, any infinitely differentiable function f(x), writes: 1470 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) +
𝑓𝑓′(𝑎𝑎)

1!
(𝑥𝑥 − 𝑎𝑎) +

𝑓𝑓′′(𝑎𝑎)
2!

(𝑥𝑥 − 𝑎𝑎)2 + ⋯+
𝑓𝑓(𝑛𝑛)(𝑎𝑎)
𝑛𝑛!

(𝑥𝑥 − 𝑎𝑎)𝑛𝑛 + 𝜀𝜀 1471 

Indeed, let f be a derivable function of variable x so that:  1472 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1(𝑥𝑥 − 𝑎𝑎) + 𝑎𝑎2(𝑥𝑥 − 𝑎𝑎)2 + 𝑎𝑎3(𝑥𝑥 − 𝑎𝑎)3 + 𝑎𝑎4(𝑥𝑥 − 𝑎𝑎)4 + ⋯ 1473 

If we derivate f, we get: 1474 

𝑓𝑓′(𝑥𝑥) = 𝑎𝑎1 + 2𝑎𝑎2(𝑥𝑥 − 𝑎𝑎) + 3𝑎𝑎3(𝑥𝑥 − 𝑎𝑎)2 + 4𝑎𝑎4(𝑥𝑥 − 𝑎𝑎)3 + ⋯ 1475 

𝑓𝑓′′(𝑥𝑥) = 2𝑎𝑎2 + 3 × 2 × 𝑎𝑎3(𝑥𝑥 − 𝑎𝑎) + 4 × 3 × 𝑎𝑎4(𝑥𝑥 − 𝑎𝑎)2 + ⋯ 1476 

𝑓𝑓′′′(𝑥𝑥) = 3 × 2 × 𝑎𝑎3 + 4 × 3 × 2 × 𝑎𝑎4(𝑥𝑥 − 𝑎𝑎) + ⋯ 1477 

If x→a, then (x-a)→0 and: 1478 
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𝑓𝑓′(𝑥𝑥) = 𝑎𝑎1 1479 

𝑓𝑓′′(𝑥𝑥) = 2𝑎𝑎2 1480 

𝑓𝑓′′′(𝑥𝑥) = 3 × 2 × 𝑎𝑎3 1481 

𝑓𝑓′′′′(𝑥𝑥) = 4 × 3 × 2 × 𝑎𝑎3 1482 

𝑓𝑓(𝑛𝑛)(𝑥𝑥) = 𝑛𝑛! × 𝑎𝑎𝑛𝑛 1483 

where f(n) is the nth derivative of f. 1484 

We can thus set that, in the neighborhood of a: 1485 

𝑎𝑎𝑛𝑛 =
𝑓𝑓(𝑛𝑛)(𝑥𝑥)
𝑛𝑛!

 1486 

From there we can rewrite f(x) in the neighborhood of a: 1487 

𝑓𝑓(𝑥𝑥) =
𝑓𝑓(𝑎𝑎)

0!
+
𝑓𝑓′(𝑎𝑎)

1!
(𝑥𝑥 − 𝑎𝑎) +

𝑓𝑓′′(𝑎𝑎)
2!

(𝑥𝑥 − 𝑎𝑎)2 +
𝑓𝑓′′′(𝑎𝑎)

3!
(𝑥𝑥 − 𝑎𝑎)3 + ⋯ 1488 

If a→0, f(x) writes (QED): 1489 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) + 𝑓𝑓′(0)(𝑥𝑥) +
𝑓𝑓′′(0)

2!
(𝑥𝑥)2 +

𝑓𝑓′′′(0)
3!

(𝑥𝑥)3 + ⋯ 1490 

 This method will offer very good approximations of cumbersome functions of small 1491 

variables (e.g. 1/(2N) or 1/N²). 1492 

 1493 

Examples of Taylor-MacLaurin's expansion series 1494 

 We need to find a proxy for √1 + 𝑋𝑋 and for 1/(1-X), when X is small.  1495 

 For 𝑓𝑓(𝑥𝑥) = √𝑥𝑥: 1496 

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

√𝑥𝑥 + ∆𝑥𝑥 − √𝑥𝑥
∆𝑥𝑥

 1497 

 1498 

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

�√𝑥𝑥 + ∆𝑥𝑥 − √𝑥𝑥��√𝑥𝑥 + ∆𝑥𝑥 + √𝑥𝑥�
∆𝑥𝑥�√𝑥𝑥 + ∆𝑥𝑥 + √𝑥𝑥�

 1499 

 1500 
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𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

𝑥𝑥 + ∆𝑥𝑥 + √𝑥𝑥 + ∆𝑥𝑥√𝑥𝑥 − √𝑥𝑥√𝑥𝑥 + ∆𝑥𝑥 − 𝑥𝑥
∆𝑥𝑥�√𝑥𝑥 + ∆𝑥𝑥 + √𝑥𝑥�

 1501 

 1502 

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

∆𝑥𝑥
∆𝑥𝑥�√𝑥𝑥 + ∆𝑥𝑥 + √𝑥𝑥�

 1503 

 1504 

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

1
√𝑥𝑥 + ∆𝑥𝑥 + √𝑥𝑥

 1505 

 1506 

𝑓𝑓′(𝑥𝑥) =
1

2√𝑥𝑥
 1507 

Let g(X) be: 1508 

𝑔𝑔(𝑋𝑋) = √1 + 𝑋𝑋 1509 

Then: 1510 

𝑔𝑔′(𝑋𝑋) = �√1 + 𝑋𝑋�′ × 1 1511 

 1512 

𝑔𝑔′(𝑋𝑋) =
1

2√1 + 𝑋𝑋
 1513 

 For the function 1/x: 1514 

�
1
𝑥𝑥
� ′ = lim

∆𝑥𝑥→0

� 1
𝑥𝑥 + ∆𝑥𝑥� −

1
𝑥𝑥

∆𝑥𝑥
 1515 

 1516 

�
1
𝑥𝑥
� ′ = lim

∆𝑥𝑥→0

𝑥𝑥 − 𝑥𝑥 − ∆𝑥𝑥
𝑥𝑥(𝑥𝑥 + ∆𝑥𝑥)

∆𝑥𝑥
 1517 

 1518 

�
1
𝑥𝑥
� ′ = lim

∆𝑥𝑥→0

−∆𝑥𝑥
𝑥𝑥(𝑥𝑥 + ∆𝑥𝑥)∆𝑥𝑥

 1519 

 1520 
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�
1
𝑥𝑥
� ′ = lim

∆𝑥𝑥→0

−1
𝑥𝑥(𝑥𝑥 + ∆𝑥𝑥) 1521 

 1522 

�
1
𝑥𝑥
� ′ =

−1
𝑥𝑥2

 1523 

Using the same approach as for g'(X): 1524 

𝑔𝑔′′(𝑋𝑋) = −
1

22�√1 + 𝑋𝑋�
3 1525 

If we now use Taylor for 𝑔𝑔(𝑋𝑋) = √1 + 𝑋𝑋 in the neighborhood of a: 1526 

𝑔𝑔(𝑋𝑋) ≈
𝑔𝑔(𝑎𝑎)

0!
(𝑋𝑋 − 𝑎𝑎)0 +

𝑔𝑔′(𝑎𝑎)
1!

(𝑋𝑋 − 𝑎𝑎)1 +
𝑔𝑔′′(𝑎𝑎)

2!
(𝑋𝑋 − 𝑎𝑎)2 + ⋯ 1527 

 1528 

𝑔𝑔(𝑋𝑋) ≈
√1 + 𝑎𝑎

0!
(𝑋𝑋 − 𝑎𝑎)0 +

1
2√1 + 𝑎𝑎

1!
(𝑋𝑋 − 𝑎𝑎)1 +

− 1
22�√1 + 𝑎𝑎�

3

2!
(𝑋𝑋 − 𝑎𝑎)2 + ⋯ 1529 

When a→0, we get: 1530 

𝑔𝑔(𝑋𝑋) = √1 + 𝑋𝑋 = 1 +
1
2
𝑋𝑋 −

1
8
𝑋𝑋2 + ⋯ 1531 

The same result can be obtained with the command "taylor(sqrt(1+X),X,0,3)" in wxMaxima 1532 

(Vodopivec, 2017). 1533 

𝑔𝑔(𝑋𝑋) = √1 + 𝑋𝑋 = 1 +
1
2
𝑋𝑋 −

1
8
𝑋𝑋2 +

1
16

𝑋𝑋3 … 1534 

Now, if X<<1, we can approximate this expression as: 1535 

√1 + 𝑋𝑋 ≈ 1 +
1
2
𝑋𝑋 −

1
8
𝑋𝑋2 1536 

The first and second derivatives of 1/(1-X) are 1/(1-X)² and 2(1-X)/(1-X)4. We can use 1537 

Taylor-MacLaurin again and write: 1/(1-X)=1+X+X²+X3+… (note that the same result would 1538 

have been obtained with Maxima (Vodopivec, 2017) typing "taylor(1/(1-X),X,0,3)"). 1539 

 1540 

Appendix 9: Finding the root of Ne_Eq3-Ne_Eq13 1541 
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 Since Equation 15 gave an almost perfect estimate of equation 13, we studied the 1542 

sign of ΔNe=Ne_Eq3-Ne_Eq15 instead of Ne_Eq3-Ne_Eq13 for the sake of simplicity. 1543 

∆𝑁𝑁𝑒𝑒 =
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

+
1
2

+
1

2𝑁𝑁
−

4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚
𝑁𝑁

−
1
2
−

1
4

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 1544 

 1545 

∆𝑁𝑁𝑒𝑒 =
1

2𝑁𝑁
−

1
4

𝑁𝑁
4𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

 1546 

=> 1547 

∆𝑁𝑁𝑒𝑒 ∝
1
𝑁𝑁
−

𝑁𝑁
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚

< 1548 

=> 1549 

∆𝑁𝑁𝑒𝑒 ∝
8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁2

8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚𝑁𝑁
 1550 

=> 1551 

∆𝑁𝑁𝑒𝑒 ∝ 8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − �𝑁𝑁𝑓𝑓 + 𝑁𝑁𝑚𝑚�
2 1552 

=> 1553 

∆𝑁𝑁𝑒𝑒 ∝ 8𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁𝑓𝑓2 − 𝑁𝑁𝑚𝑚2 − 2𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 1554 

=> 1555 

∆𝑁𝑁𝑒𝑒 ∝ 6𝑁𝑁𝑓𝑓𝑁𝑁𝑚𝑚 − 𝑁𝑁𝑓𝑓2 − 𝑁𝑁𝑚𝑚2 1556 

We can divide the right term by Nf², then, noting SR=Nm/Nf: 1557 

∆𝑁𝑁𝑒𝑒 ∝ 6𝑆𝑆𝑆𝑆 − 1 − 𝑆𝑆𝑆𝑆2 1558 

=> 1559 

∆𝑁𝑁𝑒𝑒 ∝ 𝑆𝑆𝑆𝑆2 − 6𝑆𝑆𝑆𝑆 + 1 1560 

=> 1561 

∆𝑁𝑁𝑒𝑒 ∝ 𝑆𝑆𝑆𝑆2 − 2 × 3𝑆𝑆𝑆𝑆 + 9 − 8 1562 

=> 1563 

∆𝑁𝑁𝑒𝑒 ∝ (𝑆𝑆𝑆𝑆 − 3)2 − 8 1564 
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We need to find the two roots of the right term, which must satisfy: 1565 

(𝑆𝑆𝑆𝑆 − 3)2 = 8 1566 

 1567 

𝑆𝑆𝑆𝑆 − 3 = ±√8 1568 

 1569 

𝑆𝑆𝑆𝑆 = 3 ± √8 1570 

 1571 

�𝑆𝑆𝑆𝑆1 = 3 + √8 ≈ 5.8284
𝑆𝑆𝑆𝑆2 = 3 − √8 ≈ 0.1716

 1572 

 A sex-ratio above 1 is not relevant here, since an excess of females would lead to 1573 

the same result as in populations with an even sex-ratio. Consequently, SR2 is the only 1574 

relevant root. From there, it can be seen that Balloux's equation will provide an over-1575 

estimate when SR>SR2, an under-estimate when SR<SR2 and will be exact when 1576 

SR=SR2=3-2√2. 1577 

 1578 

Appendix 10: Balloux's like method to compute FIS based Ne 1579 

 Let QI and QS be the probabilities to sample twice the same allele in one individual 1580 

and between individuals from the same population, respectively, u the mutation rate, then, 1581 

for a dioecious population with an even sex-ratio and random mating, we can set the 1582 

following recurrences between generation t and t-1 (see equations 7 and 8 with Nf=Nm): 1583 

�
𝑄𝑄I(𝑡𝑡) = (1 − 𝑢𝑢)2𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = (1 − 𝑢𝑢)2 �
1
𝑁𝑁
�

1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� + �1 −

1
𝑁𝑁
�𝑄𝑄S(𝑡𝑡−1)�

 1584 

 1585 

�
𝑄𝑄I(𝑡𝑡) = (1 − 𝑢𝑢)2𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = (1 − 𝑢𝑢)2
1

2𝑁𝑁
𝑄𝑄I(𝑡𝑡−1) + (1 − 𝑢𝑢)2 �1 −

1
𝑁𝑁
�𝑄𝑄S(𝑡𝑡−1) + (1 − 𝑢𝑢)2

1
2𝑁𝑁

 1586 

  (A9-1) 1587 
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Let Qt and Qt-1 be the vectors defining genetic identities at generations t and t-1, A the 1588 

transition matrix and v the vector of residuals, then: 1589 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝐐𝐐𝑡𝑡 = �

𝑄𝑄I(𝑡𝑡)
𝑄𝑄S(𝑡𝑡)

�

𝐀𝐀 = �
0 (1 − 𝑢𝑢)2

(1 − 𝑢𝑢)2
1

2𝑁𝑁
(1 − 𝑢𝑢)2 �1 −

1
𝑁𝑁
�
�

𝐯𝐯 = �
0

(1 − 𝑢𝑢)2
1

2𝑁𝑁
�

 1590 

  (A9-2) 1591 

and Qt=A.Qt-1+V. 1592 

 At equilibrium, we can write that the vector of genetic identities Q writes Q=(I-A)-1.V, 1593 

where I=�1 0
0 1� is the identity matrix (see appendix 5). 1594 

 To solve this equation, and get QI and QS at equilibrium, we used wxMaxima 1595 

17.10.1 (Vodopivec, 2017) as detailed in the section wxMaxima scripts, Script 2. Taking 1596 

into account that u<<1, we obtained: 1597 

𝐹𝐹IS =
𝑄𝑄I − 𝑄𝑄S
1 − 𝑄𝑄S

≈ −
1

2𝑁𝑁 + 1
 1598 

  (A9-3) 1599 

 The same results can be obtained with classic algebra, without the use of matrix 1600 

computations, but it is much faster this way. This is also the same results as equation 8 in 1601 

Balloux's paper. It is worth mentioning here that equation A10-3 can also theoretically give 1602 

access to the census size of individuals in the population (N) or, more precisely, to the 1603 

exact number of adult parents of the individuals in the poulation, that some may call the 1604 

effective number of breeders: 1605 

𝑁𝑁 = −
1 + 𝐹𝐹IS

2𝐹𝐹IS
 1606 

  (A9-4) 1607 
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 If we go back to equation 16 of the main manuscript, we can compute the 1608 

eigenvalue effective population size as: 1609 

𝑁𝑁𝑒𝑒 ≈ 𝑁𝑁 +
1
2

+
1

4𝑁𝑁
 1610 

  (A9-5) 1611 

If we combine equations A9-5 with A9-4, we obtain: 1612 

𝑁𝑁𝑒𝑒 ≈ −
1 + 𝐹𝐹IS

2𝐹𝐹IS
+

1
2
−

1

4 1 + 𝐹𝐹IS
2𝐹𝐹IS

 1613 

 1614 

𝑁𝑁𝑒𝑒 ≈ −
1

2𝐹𝐹IS
−

𝐹𝐹IS
2(1 + 𝐹𝐹IS) 1615 

  (A9-6) 1616 

 Now, with a stronger approximation, Ne≈N+1/2, which, combined with equation A9-4 1617 

yields Pudovkin et al.'s equation 3 (see equation 4 of the present manuscript). We can also 1618 

notice that A9-6 is the average of equations 4 (Pudovkin et al. second equation) and 6 1619 

(Balloux). 1620 

 1621 

Appendix 11: Equilibrium value for FIS in a dioecious population (general case) 1622 

 For this we need to use equation A6-1 and add a mutation rate u so that equation 1623 

A6-1 becomes: 1624 

⎩
⎪
⎨

⎪
⎧ 𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)(1 − 𝑢𝑢)2

𝑄𝑄S(𝑡𝑡) = 𝑄𝑄I(𝑡𝑡−1)
1
8
�

1
𝑁𝑁𝑓𝑓

+
1
𝑁𝑁𝑚𝑚

� (1 − 𝑢𝑢)2 + 𝑄𝑄S(𝑡𝑡−1) �1 −
1

4𝑁𝑁𝑓𝑓
−

1
4𝑁𝑁𝑚𝑚

� (1 − 𝑢𝑢)2

+
1
8
�

1
𝑁𝑁𝑓𝑓

+
1
𝑁𝑁𝑚𝑚

� (1 − 𝑢𝑢)2

 1625 

  (A10-1) 1626 

 The transition matrix and the associated vectors of this equation are: 1627 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐐𝐐𝑡𝑡 = �

𝑄𝑄I(𝑡𝑡)
𝑄𝑄S(𝑡𝑡)

�

𝐀𝐀 = �
0 (1 − 𝑢𝑢)2

1
2
�

1
4𝑁𝑁𝑓𝑓

+
1

4𝑁𝑁𝑚𝑚
� (1 − 𝑢𝑢)2 �1 −

1
4𝑁𝑁𝑓𝑓

−
1

4𝑁𝑁𝑚𝑚
� (1 − 𝑢𝑢)2�

𝐕𝐕 = �
0

1
8 �

1
𝑁𝑁𝑓𝑓

+ 1
𝑁𝑁𝑚𝑚

� (1 − 𝑢𝑢)2
�

 1628 

and equation A7-1 can be rewritten as Qt=A.Qt-1+V. 1629 

 At equilibrium, the vector of genetic identities satisfies the equation Q=(I-A)-1.V, 1630 

where I=�1 0
0 1� is the identity matrix (see appendix 5). 1631 

 To solve this equation, and get QI and QS at equilibrium, we used wxMaxima 1632 

17.10.1 (Vodopivec, 2017), as detailed in the section wxMaxima scripts (Script 3) and 1633 

obtained: 1634 

𝐹𝐹𝐼𝐼𝑆𝑆 −
�𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓�𝑢𝑢2 − 2�𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓�𝑢𝑢 + 𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓

�𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓�𝑢𝑢2 − 2�𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓�𝑢𝑢 + 𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓 + 8𝑁𝑁𝑚𝑚𝑁𝑁𝑓𝑓
 1635 

 1636 

𝐹𝐹IS = −
�𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓�(1 − 𝑢𝑢)2

�𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓�(1 − 𝑢𝑢)2 + 8𝑁𝑁𝑚𝑚𝑁𝑁𝑓𝑓
 1637 

  (A10-2) 1638 

Terms in u are small in front of 1 so that equation A7-2 can be simplified as: 1639 

𝐹𝐹IS ≈ −
𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓

𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑓𝑓 + 8𝑁𝑁𝑚𝑚𝑁𝑁𝑓𝑓
 1640 

  (A10-3) 1641 

 1642 

Appendix 12: Effective population size of an isolated monogamous population 1643 

 We will use the same notations as in other sections. Monogamy implies an even 1644 

sex ratio in the pool of adults that are involved in a mating. For the identity within 1645 

individuals, the recurrence stays the same as in polygamous populations. The recursion 1646 
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for the identity between individuals can be determined by conditioning on the ancestry of 1647 

the sampled pair in the previous generation. One possibility is that the two sampled 1648 

individuals are sibs, i.e., they share the same parents, which is true with probability 1649 

1/(N/2). In this case, with probability 1/2, the two alleles will have come from the same 1650 

parent, in which case they are equally likely to be derived from a single parental allele or 1651 

from both parental alleles. In the former case, the sampled alleles are necessarily IBD, 1652 

whereas in the latter case, the probability that they are IBD is QI(t-1). Alternatively, with 1653 

probability 1/2, each sampled allele may have come from a different parent, in which case 1654 

the probability that they are IBD is QS(t-1). The second possibility, which has probability 1 - 1655 

1/(N/2), is that the two sampled individuals are not sibs, in which case the probability that 1656 

the sampled alleles are IBD is QS(t-1). . We can thus set the following recurrence: 1657 

⎩
⎪
⎨

⎪
⎧ 𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) =
1

1
2𝑁𝑁

�
1
2
�

1
2

+
1
2
𝑄𝑄I(𝑡𝑡−1)� +

1
2
𝑄𝑄S(𝑡𝑡−1)� + �1 −

1
1
2𝑁𝑁

�𝑄𝑄S(𝑡𝑡−1)
 1658 

 1659 

⎩
⎪
⎨

⎪
⎧ 𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = 𝑄𝑄I(𝑡𝑡−1)
1

2𝑁𝑁
+ 𝑄𝑄S(𝑡𝑡−1) �

1
𝑁𝑁

+ 1 −
1

1
2𝑁𝑁

� +
1

2𝑁𝑁
 1660 

 1661 

�
𝑄𝑄I(𝑡𝑡) = 𝑄𝑄S(𝑡𝑡−1)

𝑄𝑄S(𝑡𝑡) = 𝑄𝑄I(𝑡𝑡−1)
1

2𝑁𝑁
+ 𝑄𝑄S(𝑡𝑡−1) �1 −

1
𝑁𝑁
� +

1
2𝑁𝑁

 1662 

Using Maxima, it is easy to compute the leading eigenvalue of the corresponding transition 1663 

matrix as: 1664 

𝜆𝜆1 =
1
2
−

1
2𝑁𝑁

+
1
2
�1 + �

1
𝑁𝑁
�
2

 1665 

For X small, Taylor-MacLaurin of √1 + 𝑋𝑋 ≈ 1 + 1
2
𝑋𝑋, hence: 1666 
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𝜆𝜆1 ≈
1
2
−

1
2𝑁𝑁

+
1
2
�1 +

1
2
�

1
𝑁𝑁
�
2

� 1667 

 1668 

𝜆𝜆1 ≈ 1 −
1

2𝑁𝑁
�1 −

1
2𝑁𝑁

� 1669 

The eigenvalue effective population size is: 1670 

𝑁𝑁𝑒𝑒 ≈
1

2(1 − 𝜆𝜆1) 1671 

 1672 

𝑁𝑁𝑒𝑒 ≈
1

2�1 − 1 + 1
2𝑁𝑁 �1 − 1

2𝑁𝑁��
 1673 

 1674 

𝑁𝑁𝑒𝑒 ≈
1

1
𝑁𝑁 �1 − 1

2𝑁𝑁�
 1675 

 1676 

𝑁𝑁𝑒𝑒 ≈
𝑁𝑁

1 − 1
2𝑁𝑁

 1677 

 1678 

Using Taylor-MacLaurin again leads to: 1679 

1

1 − 1
2𝑁𝑁

≈ 1 +
1

2𝑁𝑁
+ �

1
2𝑁𝑁

�
2

 1680 

Then: 1681 

 𝑁𝑁𝑒𝑒 ≈ 𝑁𝑁 �1 +
1

2𝑁𝑁
+ �

1
2𝑁𝑁

�
2

� 1682 

 1683 

𝑁𝑁𝑒𝑒 ≈ 𝑁𝑁 +
1
2

+
1

2𝑁𝑁
 1684 
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 This result is exactly the same as for a dioecious pangamic population with even 1685 

sex ratio. 1686 

  1687 
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wxMaxima scripts 1688 

 1689 

Script 1: Computing the eigenvalues of Matrix A (equation A6-2) 1690 

(%i1)   A: matrix( [0,1],  [(1/N_f+1/N_m)/8,1−1/(4·N_f)−1/(4·N_m)]); 1691 

(A) �
0 1

1
Nm

+ 1
Nf

8
− 1

4 Nm
− 1

4 Nf
+ 1

� 1692 

(%i2)   eigenvalues(A); 1693 

(%o2)  [[−
��16 Nf2+1� Nm2+2 Nf Nm+Nf2+(1−4 Nf) Nm+Nf

8 Nf Nm
,
��16 Nf2+1� Nm2+2 Nf Nm+Nf2+(4 Nf−1) Nm−Nf

8 Nf Nm
], [1,1]] 1694 

 1695 

Script 2: recomputing Ne and FIS in dioecious populations with an even sex ratio 1696 

(%i1)   A: matrix( 1697 

 [0,(1−u)^2],  1698 

 [(1−u)^2/(2·N),(1−u)^2·(1−1/N)] 1699 

); 1700 

(A) �
0 (1 − u)2

(1−u)2

2 N
�1 − 1

N
�  (1 − u)2� 1701 

(%i2)   I: matrix( 1702 

 [1,0],  1703 

 [0,1] 1704 

); 1705 

(I) �1 0
0 1� 1706 

(%i3)   V: matrix( 1707 

 [0],  1708 

 [(1−u)^2/(2·N)] 1709 

); 1710 
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(V) �
0

(1−u)2

2 N
� 1711 

(%i4)   Q:invert(I−A).V; 1712 

(Q) 

⎝

⎜
⎛

(1−u)4

2 N �−(1−u)4
2 N −�1−1

N� (1−u)2+1�

(1−u)2

2 N �−(1−u)4
2 N −�1−1

N� (1−u)2+1�
⎠

⎟
⎞

 1713 

(%i5)   QI:(1−u)^4/(2·N·(−(1−u)^4/(2·N)−(1−1/N)·(1−u)^2+1)); 1714 

(QI) (1−u)4

2 N �−(1−u)4
2 N −�1−1

N� (1−u)2+1�
 1715 

(%i6)   QS:(1−u)^2/(2·N·(−(1−u)^4/(2·N)−(1−1/N)·(1−u)^2+1)); 1716 

(QS) (1−u)2

2 N �−(1−u)4
2 N −�1−1

N� (1−u)2+1�
 1717 

(%i7)   FIS:(QI−QS)/(1−QS); 1718 

(FIS) 

(1−u)4

2 N �−(1−u)4
2 N −�1−1N� (1−u)2+1�

− (1−u)2

2 N �−(1−u)4
2 N −�1−1N� (1−u)2+1�

1− (1−u)2

2 N �−(1−u)4
2 N −�1−1N� (1−u)2+1�

 1719 

(%i9)   FIS2:ratsimp(FIS); 1720 

(FIS2) − u2−2 u+1
u2−2 u+2 N+1

 1721 

(%i10)   eigenvalues(A); 1722 

(%o10) 1723 

 [[−√N2+1 �u2−2 u+1�+(1−N) u2+(2 N−2) u−N+1
2 N

, √N
2+1 �u2−2 u+1�+(N−1) u2+(2−2 N) u+N−1

2 N
], [1,1]] 1724 

(%i11)   λ1:ratsubst(0,u,(sqrt(N^2+1)·(u^2−2·u+1)+(N−1)·u^2+(2−2·N)·u+N−1)/(2·N)); 1725 

(λ1) √N2+1+N−1
2 N

 1726 

 1727 

Script 3: Computing FIS in a dioecious population (general case) 1728 

(%i2)   A: matrix( 1729 
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 [0,(1−u)^2],  1730 

 [(1−u)^2·(1/(4·N_f)+1/(4·N_m))/2,(1−1/(4·N_f)−1/(4·N_m))·(1−u)^2] 1731 

); 1732 

(A) �
0 (1 − u)2

� 1
4 Nm

+ 1
4 Nf

� (1−u)2

2
�− 1

4 Nm
− 1

4 Nf
+ 1�  (1 − u)2

� 1733 

(%i3)   V: matrix( 1734 

 [0],  1735 

 [(1−u)^2·(1/N_f+1/N_m)/8] 1736 

); 1737 

(V) �
0

� 1
Nm

+ 1
Nf
� (1−u)2

8

� 1738 

(%i4)   I: matrix( 1739 

 [1,0],  1740 

 [0,1] 1741 

); 1742 

(I) �1 0
0 1� 1743 

(%i5)   Q:invert(I−A).V; 1744 

(Q) 

⎝

⎜
⎜
⎜
⎜
⎛

� 1
Nm

+ 1
Nf
� (1−u)4

8 �−
� 1
4 Nm

+ 1
4 Nf

� (1−u)4

2 −�− 1
4 Nm

− 1
4 Nf

+1� (1−u)2+1�

� 1
Nm

+ 1
Nf
� (1−u)2

8 �−
� 1
4 Nm

+ 1
4 Nf

� (1−u)4

2 −�− 1
4 Nm

− 1
4 Nf

+1� (1−u)2+1�
⎠

⎟
⎟
⎟
⎟
⎞

 1745 

(%i6)   ratsimp(%); 1746 

(%o6)  �
− (Nm+Nf) u4+(−4 Nm−4 Nf) u3+(6 Nm+6 Nf) u2+(−4 Nm−4 Nf) u+Nm+Nf

(Nm+Nf) u4+(−4 Nm−4 Nf) u3+�(8 Nf+4) Nm+4 Nf� u2−16 Nf Nm u−Nm−Nf

− (Nm+Nf) u2+(−2 Nm−2 Nf) u+Nm+Nf
(Nm+Nf) u4+(−4 Nm−4 Nf) u3+�(8 Nf+4) Nm+4 Nf� u2−16 Nf Nm u−Nm−Nf

� 1747 
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(%i7)   1748 

QI:−((N_m+N_f)·u^4+(−4·N_m−4·N_f)·u^3+(6·N_m+6·N_f)·u^2+(−4·N_m−4·N_f)·u1749 

+N_m+N_f)/((N_m+N_f)·u^4+(−4·N_m−4·N_f)·u^3+((8·N_f+4)·N_m+4·N_f)·u^2−11750 

6·N_f·N_m·u−N_m−N_f); 1751 

(QI) −(Nm+Nf) u4−(−4 Nm−4 Nf) u3−(6 Nm+6 Nf) u2−(−4 Nm−4 Nf) u−Nm−Nf
(Nm+Nf) u4+(−4 Nm−4 Nf) u3+�(8 Nf+4) Nm+4 Nf� u2−16 Nf Nm u−Nm−Nf

 1752 

(%i8)   1753 

QS:−((N_m+N_f)·u^2+(−2·N_m−2·N_f)·u+N_m+N_f)/((N_m+N_f)·u^4+(−4·N_m−4·1754 

N_f)·u^3+((8·N_f+4)·N_m+4·N_f)·u^2−16·N_f·N_m·u−N_m−N_f); 1755 

(QS) −(Nm+Nf) u2−(−2 Nm−2 Nf) u−Nm−Nf
(Nm+Nf) u4+(−4 Nm−4 Nf) u3+�(8 Nf+4) Nm+4 Nf� u2−16 Nf Nm u−Nm−Nf

 1756 

(%i9)   FIS:(QI−QS)/(1−QS); 1757 

(FIS)1758 

 1759 

−�Nm+Nf� u4−�−4 Nm−4 Nf� u3−�6 Nm+6 Nf� u2−�−4 Nm−4 Nf� u−Nm−Nf
�Nm+Nf� u4+�−4 Nm−4 Nf� u3+��8 Nf+4� Nm+4 Nf� u2−16 Nf Nm u−Nm−Nf

−
−�Nm+Nf� u2−�−2 Nm−2 Nf� u−Nm−Nf

�Nm+Nf� u4+�−4 Nm−4 Nf� u3+��8 Nf+4� Nm+4 Nf� u2−16 Nf Nm  u

1−
−�Nm+Nf� u2−�−2 Nm−2 Nf� u−Nm−Nf

�Nm+Nf� u4+�−4 Nm−4 Nf� u3+��8 Nf+4� Nm+4 Nf� u2−16 Nf Nm u−Nm−Nf

 1760 

(%i10)   FIS2:ratsimp(FIS); 1761 

(FIS2) − (Nm+Nf) u2+(−2 Nm−2 Nf) u+Nm+Nf
(Nm+Nf) u2+(−2 Nm−2 Nf) u+(8 Nf+1) Nm+Nf

 1762 

 1763 

Script 4: Computing eigenpairs in a dioecious population (even sex-ratio) 1764 

(%i1)   A: matrix( 1765 

 [0,1],  1766 

 [1/(2·N),1−1/N] 1767 

); 1768 

(A) �
0 1
1
2 N

1 − 1
N
� 1769 

(%i2)   eigenvectors(A); 1770 
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(%o2)  [[[−√N2+1−N+1
2 N

, √N
2+1+N−1
2 N

], [1,1]], [[[1,−√N2+1−N+1
2 N

]], [[1, √N
2+1+N−1
2 N

]]]] 1771 

 1772 

Script 5: Computing partial Q in a dioecious population (even sex-ratio) 1773 

(%i7)   D: matrix( 1774 

 [λ_1^(t−1),0],  1775 

 [0,λ_2^(t−1)] 1776 

); 1777 

(D) �λ1
t−1 0
0 λ2

t−1� 1778 

(%i8)   P: matrix( 1779 

 [1,1],  1780 

 [λ_1,λ_2] 1781 

); 1782 

(P) � 1 1
λ1 λ2

� 1783 

 -->   ; 1784 

 -->   Q_1: matrix( 1785 

 [Q_I_1],  1786 

 [Q_S_1] 1787 

);¦ 1788 

(Q_1) �Q_I1
Q_S1

� 1789 

(%i10)   Q_partial:γ^(t−1)·P.D.invert(P).Q_1; 1790 

(Q_partial) 

⎝

⎜
⎛
γt−1 �λ1

t−1 �Q_I1 λ2
λ2−λ1

− Q_S1
λ2−λ1

�+ λ2
t−1 � Q_S1

λ2−λ1
− Q_I1 λ1

λ2−λ1
��

γt−1 �λ1
t �Q_I1 λ2

λ2−λ1
− Q_S1

λ2−λ1
�+ λ2

t � Q_S1
λ2−λ1

− Q_I1 λ1
λ2−λ1

��
⎠

⎟
⎞

 1791 

 1792 


