Assessment of Ammonia as a Biosignature Gas in Exoplanet Atmospheres

Jingcheng Huang¹, Sara Seager^{1,2,3}, Janusz J. Petkowski¹, Sukrit Ranjan⁴, Zhuchang Zhan¹

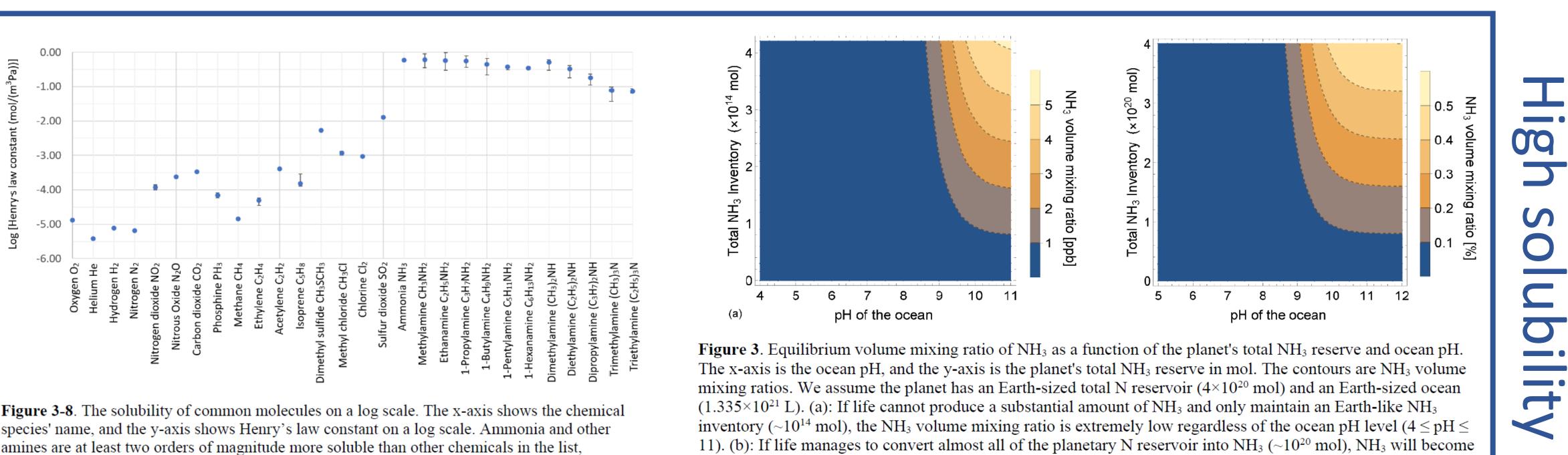
¹Department of Earth, Planetary and Atmospheric Sciences, Massachusetts Institute of Technology ²Department of Physics, MIT ³Department of Aeronautics and Astronautics, MIT ⁴Lunar & Planetary Laboratory/Department of Planetary Sciences, University of Arizona, D: huangic@mit.edu

Takeaway enough for NH_3 's atmospheric production. I am motivated to study NH₃'s biosignature potential because: • NH₃ plays a significant role in biochemistry NH_3 is an ideal N source; some life can use NH_3 as an energy source NH₃ has a very high solubility in water (Seager et al., 2013) \rightarrow break the N₂ triple bond \rightarrow fixing atmospheric H₂ and N₂ into NH₃ ('cold Haber World') **1. Solubility and Henry's law** • H is Henry's law constant for a species X in mol Pa⁻¹ m⁻³ C is the dissolved concentration in the solution in mol m⁻³ • P is the partial pressure in Pa 2. Ocean-NH₃ Interaction Model • The Henderson–Hasselbalch equation pH is the ocean's overall pH T_{NH3} is the planet's total NH₃ reserve in mol Neth V_{Ocean-E} is the volume of the ocean in L **3. Photochemistry Model** We use our photochemistry code to calculate the NH₃ mixing ratio as a function of vertical altitude in exoplanet atmospheres. Our full photochemistry model encodes more than 800 chemical reactions and UV photolysis of atmospheric molecules. It also includes 111 species.

Ammonia (NH₃) in a terrestrial planet atmosphere is generally a good biosignature gas, primarily because terrestrial planets have no significant **known abiotic** NH₃ **source**. The conditions required for NH₃ to accumulate in the atmosphere are, however, stringent. NH₃'s high water solubility and high bio-useability likely prevent NH₃ from accumulating in the atmosphere to detectable levels unless **life is a net source of NH₃** and produces **enough NH₃ to saturate the surface sinks**. In this case, NH₃ is only removed by photochemistry. To establish NH_3 as a biosignature gas, we must rule out mini-Neptunes with deep atmospheres, where temperatures and pressures are high

$$H_{(X)}^{CP} = \frac{C_{(X)}}{P} \quad \frac{dln(H^{CP})}{d(1/T)} = -\frac{\Delta H_{diss}}{R}$$

$$\frac{[NH_3]}{[NH_4^+]} = 10^{(pH-9.25)}$$


$$[NH_3] + [NH_4^+] = \frac{T_{NH_3}}{V_{Ocean-E}}$$

 $[NH_3] = \frac{T_{NH_3} \cdot 10^{pH}}{(1.77828 \times 10^9 + 1 \times 10^{pH}) \cdot V_{Ocean-E}}$

Case I. When the surface is saturated with NH₃: The required biological surface flux to reach 5 ppm is on the order of 10¹⁰ molecules cm⁻² s⁻¹, comparable to the terrestrial biological production of CH₄.

Case II. When the surface is unsaturated with NH₃: Due to additional sinks present on the surface, life would have to produce NH₃ at surface flux levels on the order of 10¹⁵ molecules cm⁻² s⁻¹ (~4.5×10⁶ Tg year⁻¹). This value is roughly 20,000 times greater than the biological production of NH₃ on Earth and about 10,000 times greater than Earth's CH₄ biological production.

My Google Scholar

including several biosignature gas candidates that have already been studied.

11). (b): If life manages to convert almost all of the planetary N reservoir into NH₃ (~10²⁰ mol), NH₃ will become one of the major chemical species in the atmosphere.

	H ₂ -dominated CO ₂ -dominated N ₂ -dominated Massac Institute		6.40×10^{15} 3.60×10^{14} 7.10×10^{14}
e	Atmospheric scenarios	NH ₃ column- averaged mixing ratio	NH ₃ surface flux need With NH ₃ deposition
		-	urface fluxes for exoplanet pheres orbiting M dwarf s

ets with H2-dominated, stars (M5V).

eded [molecules cm⁻² s⁻¹]

Without NH₃ deposition 1.44×10^{10} 8.49×10^{8} 6.77×10^{10}

um

Chemistry

Ca

S

S