

PREDICT-6G

The importance of predictability in 6G networks

Antonio de la Oliva (aoliva@it.uc3m.es)
ONDM 2023 - Challenges of optical communications in the 6G era: a view from EU projects

The vision

Building a deterministic 6G network

TIME SENSITIVE

PREDICTABLE

Availability
Low packet
Failure resilient

Bounded latency Low jitter

Use of AI to predict events, states, demands, resources
Autonomous proactive actions based on predictions

The mission

PREDICT-6G aims to design, create and validate end-to-end (E2E) 6G solutions providing deterministic services over multiple interconnected domains and technologies (incl. wired and wireless).

3 pillars

- To extend the reliability and time sensitiveness features of IEEE 802.11 and 3GPP networks, including APIs for the monitoring and control of such capabilities, enabling predictability.
- To develop a multi-technology multidomain Data-Plane jointly with an Aldriven multi-stakeholder inter-domain Control-Plane (AICP)
- To enhance the predictability of the network through artificial intelligence, enabling the forecasting of the occupancy of network resources and the effect of accepting a new flow into the network

3 use cases

Smart manufacturing

Multi-domain deterministic communications

3. Critical communications

Innovations

Specific innovations

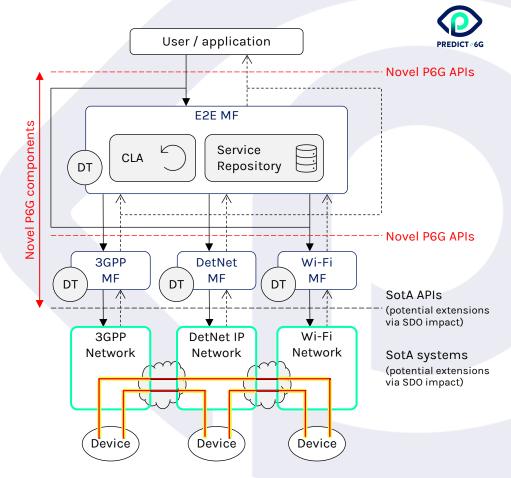
- Cross-domain E2E deterministic service management automation
- Emulate deterministic network capabilities on top of non-deterministic network segments
- Predictability through Network Digital Twinning
- User, resource, and function mobility under deterministic constraints

- Highly configurable monitoring platform for multi-technology deterministic networks
- Improvement of L2 deterministic capabilities of IEEE 802.11 and 3GPP
- Data-plane integration of multiple deterministic and non-deterministic domains

Architecture overview

PREDICT-6G management scope

Network services within one network (e.g., connectivity, det. SLA)


E2E services over multiple networks
 (e.g., between devices attached to different networks)

These are **Managed Entities (ME)** for the PREDICT-6G framework.

E2E deterministic service flow (MDP)

Request / configuration (AICP)

Measurement / status / insight (AICP)

10.05.23

Multi-technology multi-domain DP architecture concepts Non-TSN capable PREDICT 660 device, fixed endpoint Per domain service endpoints Host PREDICT-6G E2E service endpoints ● VM Non-TSN capable wireless sensors, fixed endpoints Non-deterministic connectivity Edge cloud (requires further mechanisms to ensure determinism) (((1)) DetNet#P domain Edge UPF: fixed endpoint Aggregator GW: fixed (maybe only temporarily TSN capable device, endpoint (always on) available) fixed endpoint **UPF** TSN routers TSN capable device, ••• NW-TT fixed endpoint UE/FWA Edge cloud

•••

UPF

NW-TT

Fixed endpoint

(always on)

Core cloud

3GPP domain

Mobile endpoint (maybe offline)

between TSN

DS-TT

UE

DS-TT

Note: the concepts apply to other technology domains as well.

DetNet/IP domain

Wi-Fi AP: fixed

endpoint (always on)

Nomadic

endpoint

(maybe

offline)

Meet our team

17 partners from seven EU countries have joined forces

Thank you!

predict-6g.eu

PREDICT-6G Project

