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Abstract— In response to the growing demand for wireless 

communication in high-density environments, Visible Light 
Communication (VLC) has emerged as a promising complement 
to Radio Frequency (RF) communication. VLC technology utilizes 
light-emitting diodes (LEDs) to enable high-speed data 
transmission, while also providing illumination. In this paper, we 
propose a hybrid VLC/RF network with multiple VLC access 
points (APs) under a single WiFi AP. However, frequent 
handovers are typically required as users move within the 
network, leading to significant overhead and reducing 
throughput. To address this issue, we propose an intelligent 
handover solution based on fuzzy logic (FL) that leverages 
machine learning algorithms and considers received signal 
strength indicator (RSSI), channel state information (CSI), and 
user mobility to enhance handover decisions. We aim to develop a 
seamless and robust mechanism for horizontal handover (HHO) 
and vertical handover (VHO) in hybrid VLC/WiFi networks, 
which we implement in our testbed. Our experiments demonstrate 
that our proposed approach can achieve maximum handover 
times at 100ms and 400ms for HHO and VHO, respectively. We 
have fine-tuned different decision-making models, such as an 
AdaBoost C4.5 model, which can achieve up to 97.5% accuracy. 

Keywords—visible light communication, hybrid architecture, 
horizontal handover, vertical handover, OpenVLC. 

I. INTRODUCTION  
 The surge in wireless data traffic has recently imposed a 
significant strain on existing communication networks. As a 
result, Visible Light Communication (VLC), which utilizes the 
visible light spectrum for data transmission, has emerged as an 
alternative communication channel. Meanwhile, WiFi remains 
the most widely used wireless communication technology for 
indoor environments. Integrated VLC and WiFi technologies 
have the potential to create more efficient, reliable, and secure 
communication systems, leading to benefits for various 
industries and applications. Hybrid VLC/RF systems are state-
of-the-art solutions developed to address mobility/coverage and 
uplink transmission issues. Typically, the RF link serves as a 

backup link for VLC coverage gaps or as a VLC feedback and 
control channel. The advantages of hybrid networks utilizing 
WiFi and LiFi include high data rates due to the vast spectrum 
offered by VLC, non-interference with other systems due to the 
use of a distinct electromagnetic spectrum, and RF’s all-
encompassing coverage. However, due to users’ erratic 
movements and the short-range nature of VLC equipment, the 
network would experience continuous handover. Therefore, a 
intelligent system management is necessary for the hybrid 
system to optimize all control and operation functions, including 
seamless handover between VLC and RF networks. The 
handover solution is what we are focusing on solving. 

In this paper, we present a comprehensive study of handover 
mechanisms in hybrid networks, specifically focusing on the 
combination of VLC and WiFi networks. Firstly, we provide an 
up-to-date literature review of current handover work related to 
hybrid networks. This review provides valuable insights into the 
existing solutions for seamless handovers in hybrid networks 
and identifies the gaps that still need to be addressed. 
Additionally, we propose a robust handover mechanism for 
hybrid VLC/WiFi networks, which we analyze in our testbed. 
Our solution considers both horizontal and vertical handovers. 
Secondly, we verify the effectiveness of our proposal by 
implementing it in our testbed. We gather user mobility data 
using the doppler velocity element and utilize both VLC and 
WiFi networks to make the most accurate handover decision. 
Finally, we apply fuzzy logic and machine learning algorithms 
to our testbed, further improving the performance of the 
handover mechanism. 

The paper is organized as follows. In Section II, we provide an 
up-to-date literature review of the latest handover algorithm for 
the hybrid system model. Section III outlines our proposed 
handover mechanism, specifically designed to optimize 
performance in our testbed environment and applicable to other 
similar hybrid systems. In Section IV, we present the results of 
our experiments and provide a performance evaluation of our 
proposed handover mechanism. 



II. LITERATURE REVIEW 

TABLE I.  SUMMARY OF THE LITERATURE REVIEW 

Ref Outcome Remark 

[1] 

Considered mobility in VLC and HO 
based on RSI in both overlap and non-
overlap coverage 

Simulation, HHO 

[2]  

A novel handover skipping scheme based 
on reference signal received power 
(RSRP) and their changed rate to 
determine the handover target. 

Simulation, HHO 

[3] 
Proposed HO considers a handover 
skipping scheme and aims to tackle the 
negative impact of the handover rate  

Simulation, HHO 

[4] 
Handover based on RSSI and studied 
handover probability based on a Markov 
chain model. 

Simulation, VHO 

[5] 

A Markov decision process adopts a 
dynamic approach to obtain a trade-off 
between the switching cost and the delay 
features. 

Simulation, VHO 

[6] 

Fuzzy logic (FL) algorithm with dynamic 
handover scheme for dynamic HO. 
Channel state information, user speed and 
desired data rate are considered. 

Simulation, VHO 
and HHO 

[7] 

Adopts a dynamic coefficient via machine 
learning. Adaptive handover mechanism 
and selection algorithm optimization are 
the main focus. 

Simulation, VHO 
and HHO 

[8] 

HO is based on link aggregation and 
MPTCP tools. The main focus is lower 
handover outage duration and a high 
network throughput. 

Experiments, 
VHO and HHO 

 
In a hybrid network, horizontal and vertical handovers are 

the two main types of handovers. Horizontal handover (HHO) 
occurs within the domain of a single technology, while vertical 
handover (VHO) occurs between different wireless access 
technologies. During a VHO, the air interface is modified while 
keeping the destination’s path constant. There are mainly three 
types of research related to handovers in a hybrid network: i) 
HHO in VLC, which focuses on improving performance within 
the VLC domain; ii) VHO between VLC and WiFi, which aims 
to optimize handovers between these two wireless access 
technologies; and iii) studies that work on both VHO and HHO, 
providing a more comprehensive approach to addressing 
handover challenges in hybrid networks.  

Handover metrics are critical in determining when, where, and 
how to perform handovers in a hybrid network. To ensure 
seamless user connectivity, various quality of service elements 
that impact handover must be considered. For example, factors 
like RSSI, CSI, network load, handover delay/latency, user 
preferences, and so are all essential considerations. The duration 
of handovers can also vary depending on the type of handover. 
However, minimizing handover time is crucial to prevent 
disruption to user services, and therefore, choosing between 
HHO and VHO is vital for the hybrid system. Overall, effective 
handover mechanisms should consider multiple factors, 
including QoS elements, handover duration, and user 
preferences. In this paper, we have presented the most recent 
handover mechanisms for hybrid systems. However, it is worth 
noting that previous studies on HHO or VHO are also relevant 
to our work and can be found in reference [9]. Many of them 
lack implementation, which is crucial for verifying their 

effectiveness in a testbed environment. To address this gap, we 
have developed and implemented our handover mechanism in 
an open platform. By doing so, we can verify the effectiveness 
of our proposed handover mechanism in a real-world setting and 
ensure that it provides superior performance compared to 
existing solutions. 

III. PROPOSED METHOD 
 

 
Fig. 1. Simple scenarios for hybrid VLC/WiFI network 

Handover management is a critical aspect of developing 
solutions and supporting mobility scenarios. It is the process by 
which the user maintains its active connection while moving 
from one point of attachment to another. This section describes 
the handover process features and provides the handover 
decision problem in a heterogeneous network. The handover 
scenarios which we consider are shown in Fig. 1. 

Many works describe the handover process in three phases. 
Firstly, handover information gathering refers to the process of 
collecting all the essential information needed to identify when 
a handover is necessary and to initiate it if required. This phase 
is also known as the handover initiation or system discovery 
phase. By gathering critical information, such as signal strength 
and available bandwidth, this phase helps determine when a 
handover is necessary and triggers the subsequent steps in the 
handover process. Secondly, the handover decision phase is 
responsible for determining whether and how a handover should 
be performed. This involves selecting the most appropriate 
access network based on specific criteria, such as user 
preferences, and providing instructions for the execution phase. 
Also known as network or system selection, this phase is crucial 
in ensuring a seamless and efficient handover process. By 
making informed decisions about which network to connect to 
next, the handover process can help maximize network 
performance while minimizing disruptions to the user 
experience. Thirdly, the handover execution phase involves 
changing channels in accordance with the details determined 
during the decision-making phase. Once the appropriate access 
network has been selected, this phase takes action to execute the 
handover, ensuring that the user’s connection is smoothly 
transferred from one base station or access router to another. By 
performing the handover promptly and effectively, this phase 
helps maintain continuous connectivity for users as they move 
across different attachment points. 



A. Handover Information Gathering in VLC 
Handover decision criteria help to determine which access 

network should be chosen, and the handover decision policy 
represents the influence of the network on when and where the 
handover occurs. We plan to use RSSI values for traditional 
handover decision policy because this is the most effective and 
does not require further information to learn about VLC channel 
conditions. The technique compares the old RSSI (oRSSI) and 
the new RSSI (nRSSI). There are four different policies that can 
be employed based on these values. i) RSSI value if nRSSI > 
oRSSI; ii) RSSI with a threshold (thr): choosing the new BS if 
nRSSI > oRSSI and oRSSI < thr; iii) RSSI with a hysteresis (h): 
choosing the new BS if nRSSI > oRSSI + h; iv) RSSI with both 
hysteresis and threshold: choosing the new BS if nRSSI > oRSSI 
+ h and oRSSI < thr. 

 
Fig. 2. Memory sharing between PRUs and OpenVLC driver receiver 

Our testbed is built on OpenVLC 1.3, an open platform that 
enables researchers to develop their prototypes [10]. The 
OpenVLC system comprises three components: the OpenVLC 
cape, which is the front-end transceiver connected to the 
Beaglebone Black; the OpenVLC firmware, which runs on the 
Processing Real-time Units (PRUs) that function as 
microprocessors for the BBB and performs real-time 
processing; and the OpenVLC driver, which is a module in the 
Linux kernel that implements the VLC MAC and PHY layers, 
as well as sampling, symbol identification, coding/decoding, 
and Internet protocol interoperability. However, the current state 
of the OpenVLC platform does not provide RSSI to a Linux 
environment. The OpenVLC firmware stores each of the 16 bits 
of the current RSSI value in the register of PRU0. Once read, 
this RSSI is compared with a threshold for decoding. After 
decoded, a new RSSI value is started to be read, so the previous 
one is lost. The process shows in Fig. 2. 

To extract the RSSI value and integrate it into our handover 
mechanism, we utilized a prudebug-bbb tool to gain insight into 
the registers used by the OpenVLC firmware. With this 
knowledge, we modified the firmware to search for the register 
containing the RSSI value. Our efforts led us to identify r3 as 
the essential register for storing the RSSI value from PRU0. By 
successfully retrieving the RSSI value on the receiver side, we 
have taken a significant step toward implementing our handover 
mechanism. 

B. Handover Information Gathering in WiFi 
We utilize a commercial USB dongle to establish a WiFi 

channel link in a hybrid system that facilitates testbed replication 
for fellow researchers. It is crucial to ensure the compatibility of 

selected dongles with the system and that they meet the 
necessary performance requirements. Moreover, documenting 
the configuration process of the dongle and WiFi channel setup 
could assist other researchers in following the protocol quickly. 
Our investigation of WiFi channels relied on a diverse set of 
tools, with particular emphasis on extracting CSI information. 
In addition to discerning link quality and data rate metrics, we 
are particularly interested in utilizing CSI information to gain 
insights into user mobility patterns. As prior studies suggest, 
doppler velocity information derived from CSI measurements 
can provide excellent approximations of the user’s movement 
speed [11]. 

IV. EXPERIMENTS RESULTS 

A. Hybrid VLC/WiFi testbed 

 
Fig. 3. Experiment setup for hybrid VLC/WiFi testbed 

Our testbed includes two OpenVLC transmitters with WiFi 
integration, which enable efficient data transmission over visible 
light. On the receiver side, we have one OpenVLC unit with 
customized firmware, which is mounted on a robot that can 
move freely between the two access points. One critical feature 
of the VLC channel condition is the RSSI value, which measures 
the signal strength between the transmitter and receiver. To 
better understand this aspect of the OpenVLC platform, we 
conducted experiments to observe how the RSSI value changes 
as the receiver moves further away from the center point of the 
OpenVLC AP. With all knowledge about OpenVLC, we 
successfully retrieved the RSSI value on the receiver side, 
enabling us to integrate it into our handover mechanism, which 
determines the most effective base station for seamless 
handover. By conducting experiments to monitor the RSSI value 
as the receiver moved away from the center point of the 
OpenVLC AP, we gained insight into the performance of the 
VLC channel under different conditions. Our results showed that 
the maximum RSSI value decreased as the receiver moved 
further away from the center point, indicating a degradation in 
signal strength like in Fig. 4. These observations may also lead 
to advancements in the performance of VLC systems, as a better 
understanding of channel conditions can result in more robust 
systems that deliver higher data rates and improved reliability. 



 
Fig. 4. The maximum RSSI values capture the different distances between 
center point OpenVLC Tx and OpenVLC Rx.  

After careful consideration, we used the sample standard 
deviation of RSSI values (sRSSI) to measure RSSI channel 
variability. We chose sRSSI because it provides a 
comprehensive view of the RSSI channel and is less prone to 
bias than other standard deviation estimates. Overestimating 
variability in samples is preferable to underestimating it, which 
could potentially lead to inaccurate results. Therefore, sRSSI is 
a reliable way to gauge RSSI variation in our study.  

 
Fig. 5. Doppler velocity envelope extracted from a testbed scenario. 

To investigate user mobility in a WiFi environment, we 
collected CSI data and extracted doppler velocity components, 
as depicted in Fig. 5. The experimental setup involved linear 
movements of a receiver at different velocities. The sequence is 
the receiver moves at high speeds for the first 10 seconds, 
followed by a slow movement for the next 10 seconds, with a 
10-second pause in between. This cycle was repeated for 120 
seconds. Our analysis revealed a strong correlation between the 
doppler velocity and the rate of user mobility, allowing us to 
categorize it into three levels based on our predetermined 
thresholds: slow movement (green), medium movement (blue), 
and fast movement (red). We plan to leverage this information 

in our machine learning algorithms, which we will elaborate on 
in the subsequent section in Fig. 5. 

B. Handover Decision. 
Handover decisions are crucial in the handover process, 

especially when developing a handover mechanism between 
VLC and WiFi networks. However, this can be challenging due 
to differences in physical layers, communication protocols, and 
network architectures. Therefore, selecting appropriate 
handover criteria is of utmost importance. In our study, we 
experimented with various combinations of techniques and 
features that can be collected from both networks. After careful 
consideration, we decided to employ fuzzy logic for our small-
scale testbed, which allowed us to achieve fast handover times 
while meeting our requirements. 

TABLE II.  FUZZY LOGIC RULES 

Rule 
No. 

Features AP 
Allocation sRSSI 1 sRSSI 2 WiFi 

data rate 

1 not Low - - VLC1 

2 - not Low - VLC2 

3 Low High - VLC2 

4 High Low - VLC1 

5 Low Low not Low WiFi 

 

In our fuzzy logic approach, we consider the sRSSI 1 and sRSSI 
2 values for two OpenVLC access points, respectively. We 
choose the WiFi data rate as the most convenient feature to learn 
about WiFi channel conditions. In our testbed, in case the VLC 
channel is appropriate for transmitting data, we prioritize it over 
the WiFi channel, which serves as a backup network. This 
approach helps reduce the likelihood of bottleneck issues in the 
WiFi channel [12][13]. In our OpenVLC platform, the 
maximum achievable data rate is 400 kbps. We observed that 
when sRSSI is low, traffic drops below 50 kbps, which led us to 
define the sRSSI threshold at this level as a handover procedure 
that should take place. We demonstrate the fuzzy logic rules in 
Table II. 

C. Handover Execution 
As part of our experimental study, we conducted tests in 

several indoor environments to evaluate the effectiveness of our 
proposed hybrid handover solution. We collected data for five 
minutes while the receiver moved in the same cycle as we 
collected CSI data for doppler velocity. These tests assessed the 
system’s ability to handle handovers seamlessly between VLC 
and WiFi networks. Our experiments generated valuable data, 
presented in Table III, which showcases the minimum and 
maximum handover times for HHO and VHO. As predicted, the 
experimental results indicate that the handover time for VHO is 
typically more than double compared to the handover time in 
HHO. For HHO, the minimum handover time observed ranges 
from 0.043 s to 0.105 s, while for VHO, it ranges from 0.286 s 
to 0.431 s. Although the handover time has not yet been defined 
in VLC standardization, these results meet the standard for 
handover time in other radio frequency technologies. 



TABLE III.  HANDOVER TIMES 

Handover type 
Handover time 

Minimum (s) Maximum (s) 

Horizontal 0.043 0.105 

Vertical 0.286 0.431 

 

Our results demonstrate better performance than the latest 
reported handover time for the Li-Wi network in [8] that we 
discuss in section II. In that study, the author employed MPTCP 
and link aggregation tools to develop handover mechanisms, 
only achieving a minimum handover time of 0.2 s to 0.35 s.  

D. Handover with User Mobility and Machine Learning 
Our experiment aims to scale up our operations in a massive 

IoT system by utilizing machine learning techniques to develop 
robust handover systems. Gathering more information about our 
testbed is crucial before fine-tuning the machine learning model. 
Moreover, our approach prioritizes decisions based on 
maintaining a minimum throughput, which guarantees that the 
quality of service remains consistently high across all user 
scenarios and movement patterns. To achieve this, we have 
identified six features - maximum RSSI, minimum RSSI, sRSSI, 
WiFi link quality, WiFi noise level, and WiFi data rate - that can 
provide valuable insights into network performance. In addition, 
we have incorporated user mobility as an essential feature by 
extracting it from doppler velocity data. This information has 
been categorized into three distinct movement patterns - slow, 
medium, and fast - as illustrated in Fig. 5. By integrating user 
mobility data with other relevant features, we aim to improve 
the accuracy and reliability of our machine learning model for 
predicting handovers in different scenarios. 

TABLE IV.  PERFORMANCE OF CLASSIFIERS 

Classifier Training Size 
(%) 

Accuracy 
(%) 

Ave. Training 
Time (s) 

KNN 
40 85.4 

0.01 60 90.5 
80 93.1 

Random 
Forest 

40 87.6 
0.08 60 90.3 

80 95.3 

AdaBoost 
C4.5 

40 87.2 
0.03 60 90.1 

80 97.5 

LMT 

40 86.2 

0.05 60 90.5 

80 93.1 

 
To identify the most effective algorithms for improving our 
machine learning model, we experimented with several 
supervised learning techniques, including Logistic Regression, 
Support Vector Machine Classifier, Gradient Boosting, Naive 
Bayes Classifier, and others. Based on our initial analysis, we 
selected the four methods that displayed the greatest potential 
for enhancing the accuracy of our model while requiring a fast-
training time. These techniques were K-Nearest Neighbors, 

Random Forest, AdaBoost C4.5, and Logistic Model Tree. We 
proceeded to fine-tune these models and evaluated their 
accuracy results, which are presented in TABLE IV.  

Our analysis indicates that when 80% of our dataset is used to 
train the model, the accuracy of predicting handovers exceeds 
93%. During the tuning process, we found that the AdaBoost 
C4.5 algorithm displayed the most significant potential with an 
impressive 97.5% accuracy. We selected AdaBoost.C4.5 
because it employs Decision Trees as its base classifiers, which 
are widely recognized for their effectiveness in machine 
learning applications. Specifically, AdaBoost.C4.5 incorporates 
the C4.5 decision tree algorithm into the AdaBoost framework. 
Unlike AdaBoost, which uses weak learners, AdaBoost.C4.5 
builds a forest of decision trees and selects the best one to add to 
the ensemble at each iteration. This approach allows 
AdaBoost.C4.5 to identify more complex relationships in the 
data than AdaBoost alone, leading to improved predictive 
accuracy. 

Our machine learning model for the handover system was 
optimized by utilizing two essential hyperparameters, namely 
n_estimators and learning_rate. The hyperparameter 
n_estimators was set to 100 and 200, indicating the maximum 
number of estimators utilized before the AdaBoost.C4.5 
algorithm terminated the boosting process. By increasing this 
value from the default 50, we could reduce the model's variance 
while preventing overfitting on the training data. Furthermore, 
we could determine the number of expanding rounds executed 
before the algorithm stops by utilizing n_estimators. The second 
hyperparameter, learning_rate, was tuned from 0.001 to 0.5. 
This parameter controls the weight update during each iteration 
of the boosting process. A lower value of learning_rate leads to 
a slower adaptation of the model to the gradient of the loss 
function, while a higher value results in a faster adaptation. It is 
crucial to strike a balance between the two hyperparameters 
since using a small learning_rate and many estimators might not 
lead to better results and can increase computational costs. 

In conclusion, selecting appropriate values for these 
hyperparameters is paramount in influencing the model's 
performance. As such, we paid keen attention to tuning both 
hyperparameters to strike a balance between model accuracy 
and computational efficiency. There is potential to expand this 
research further by incorporating more transmitter and receiver 
access points with different hybrid VLC and RF technology. 
Additionally, we can further boost the performance of our 
machine learning models by increasing the size of the data 
available through the hybrid system. 

V. CONCLUSIONS 
Developing a seamless handover mechanism between the 

two systems is crucial to explore VLC and WiFi integration’s 
full potential. Our proposed testbed serves as a platform for 
researchers to address the challenges associated with handover 
mechanisms and develop more efficient, reliable, and secure 
communication systems across different industries and 
applications. To achieve seamless integration between VLC and 
WiFi systems, we proposed a hybrid handover solution based on 
RSSI and CSI values for both HHO and VHO. Our experimental 
results indicate that the proposed solution achieves maximum 
handover times of around 100 ms and 400 ms for HHO and 



VHO, respectively. Additionally, our machine learning 
algorithm for handover decision-making provides remarkable 
accuracy, with a score of 97.5%. The results demonstrate that 
our proposed solution can achieve efficient handover times in 
diverse indoor environments. This underscores the importance 
of developing a seamless handover mechanism to enable other 
researchers working on hybrid systems to implement their work 
in a similar testbed environment.  

In the future, several extension ideas warrant further 
investigation. Integration of tracking and localization into our 
machine learning model could lead to more efficient handovers 
by dynamically adapting to user movement patterns and 
changing network conditions. Developing an architectural 
solution for managing strip-LED systems allows seamless 
communication with multiple receivers and traffic flows while 
balancing the complexity of individual LED intelligence 
modules. Exploring resource allocation trade-offs between 
traffic load in each cell and dwell time during handovers may 
optimize overall system performance. Additionally, 
investigating adaptive node-association strategies based on 
anticipated user movement could minimize handover dwell 
times, even in cell-free systems. By pursuing these research 
directions, we aim to enhance the applicability and efficiency of 
our proposed handover mechanism, ultimately contributing to 
improved user experiences and more robust large-scale 
networks. 
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