
TCP Connection Management for Stateful
Container Migration at the Network Edge

Yenchia Yu
Politecnico di Torino

Torino, Italy

Antonio Calagna
Politecnico di Torino

Torino, Italy

Paolo Giaccone
Politecnico di Torino

Torino, Italy

Carla Fabiana Chiasserini
Politecnico di Torino

Torino, Italy

Abstract—Container migration has emerged as the most effec-
tive way to ensure the proximity of time-critical microservices at
the network edge with mobile end devices. However, ensuring
service continuity while migrating microservices that rely on
an established TCP connection is still a significant technical
challenge. In this paper, we investigate such pivotal issue and
propose COAT, a novel, yet simple, network architecture that
leverages overlay network technology to achieve TCP connection
migration. Through experimental validation using sample mi-
croservices, we show that, compared to the traditional container
migration approach that does not support connection migration,
our solution enables the successful migration of microservices
relying on an established TCP connection, at the cost of a 14%
maximum increase of the migration duration. Importantly, our
solution to the problem of connection migration does not require
the use of a dedicated protocol, or any modification to the
application source code or the kernel.

Index Terms—Migration, Mobile services, Overlay Networks,
Edge computing

I. INTRODUCTION

In recent years, edge computing has been acknowledged
as the state-of-the-art paradigm to overcome the bandwidth
and latency challenges in cloud computing architectures.
The main idea of edge computing is to bring applications,
computational capabilities, and storage facilities closer to the
end users, thus significantly reducing processing and com-
munication delays. Moreover, to fully exploit the benefits of
cloud and edge computing architectures (namely, scalability,
availability, and resiliency), applications are often designed
in the form of microservices chains, taking advantage of the
lightweight container virtualization technology [1].

Concurrently, due to the rapid development of mobile
communication networks, the main consumers of edge ser-
vices have evolved from static to mobile devices, such as
connected cars and Unmanned Aerial Vehicles (UAVs) –
scenarios that require the support of high-demanding, latency-
and bandwidth-critical applications. In this context, container
migration techniques have gathered attention as an effective
solution to address mobility challenges by ensuring continu-
ous proximity of edge microservices with mobile devices.

Two fundamental migration strategies can be identified,
i.e., stateless and stateful migration, with the second being
used whenever keeping track of the microservice internal
state is essential to guaranteeing service continuity. Impor-
tantly, despite the current trend favouring the development
of stateless microservices, stateful microservices are still

C. F. Chiasserini and P. Giaccone are also with CNIT, Parma, Italy.
This work was supported by the European Union’s NextGenerationEU
instrument, under the Italian National Recovery and Resilience Plan (NRRP),
M4C2 Investment 1.3, “Telecommunications of the Future” (PE00000001),
program “RESTART”, and by the European Commission through Grant No.
101095890 (Horizon Europe SNS JU PREDICT-6G project).

extremely common due to the complexity in refactoring
legacy monolithic applications [2].

In this work, we therefore focus on stateful container
migration and, specifically, on the problem of connection
migration. Indeed, despite microservice migration is supposed
to be ideally seamless, in practice, some service disruption
must be accounted for, mainly due to (i) the traditional
stateful container migration techniques, which require the
freezing of the microservice state, and (ii) the migration of
the microservice network connection with mobile end users.
While in [3] we focused on the former issue, in this work
we analyze the latter one. We underline that, despite several
recent studies have experimentally demonstrated the potential
and effectiveness of stateful container migration techniques,
just few of them have investigated the akin connection
migration issue. Moreover, such existing solutions are mostly
application-specific and based on either kernel or protocol
customization, thus it is impractical to integrate them with
container virtualization technology.

To fulfill this gap and allow for a performant and efficient
migration of stateful microservices, we propose COAT, a
novel, yet simple, network architecture that, independently
from the specific microservice, permits to preserve the estab-
lished connection thereof with the mobile end users, during
stateful migration. Specifically, due to its wide popularity
and practical relevance, we focus on the TCP transport layer
protocol [4], which by itself does not support the mobility of
the connection endpoints. The benefits of COAT can thus be
summarised as follows:

• It migrates a generic microservice container with an
established TCP connection;

• It keeps track of the TCP connection states upon migra-
tion, thus avoiding reconnection procedures;

• It preserves all the data queued inside the TCP socket,
thus preventing data losses;

• It performs the microservice stateful migration proce-
dure in an agnostic way with respect to either the server
or the client side of the connection.

It is worth remarking that, to characterize and minimize the
effects that contribute to service disruption, we also evaluate
experimentally the migration performance when the COAT
approach is implemented and validate our solution through
real-world microservices.

The rest of the paper is organized as follows. Sec. II
provides an overview of container and connection migration,
thus introducing the main tools we used to design our
solution. Sec. III describes the COAT network architecture
and our enhanced version of the stateful container migration
process. Sec. IV details the realistic microservices and the
testbed setup we use in our validation experiments, which



are presented in Sec. V. Finally, Sec. VI discusses some
relevant related work while highlighting the novelty of our
study, while Sec. VII draws our conclusions.

II. TECHNOLOGICAL BACKGROUND AND SOLUTION
STRATEGY

This section presents an overview of container migration
and the primary enabling tools to implement it. Further,
it introduces the TCP connection migration challenges and
the technologies we leverage to tackle these issues, namely,
TCP_REPAIR mode and overlay networks.

A. Container migration

Container migration enables container relocation across
hosts while meeting critical time constraints. Two fundamen-
tal container migration techniques have emerged: stateless
and stateful migration. In this work, we focus on the latter,
which is used whenever keeping track of the service state
is fundamental to ensure service continuity. Hence, stateful
container migration enables moving not only the container
template image from source to destination host, but also
the service internal state. In other words, the migrated con-
tainer can seamlessly restore its previous working state, thus
guaranteeing minimal impact on the Quality of Experience
(QoE) of the final users. The fundamental off-the-shelf tools
required to implement stateful container migration are CRIU
and Podman, as detailed below.

CRIU [5]. Checkpoint/Restore In Userspace (CRIU) is
widely considered the key tool for stateful migration from
a process layer perspective. It implements two major proce-
dures: (i) the checkpoint procedure, which freezes a running
process, collects its internal state, and encapsulates it into
an image, and (ii) the restore procedure, which creates a
new process and restores its state by leveraging a previously
acquired checkpoint image. Such checkpoint image mainly
includes: (i) the CPU-context state, e.g., the processes tree
structure and the associated registers, (ii) the network sockets,
(iii) the memory content, and (iv) the open file descriptors.
Importantly, CRIU features the tcp-established option,
which instructs CRIU to collect, along with the internal state
of the container, the information related to the currently active
TCP connection, thus allowing for a successful restoration of
the TCP connection state during migration.

Podman [6]. It is an open-source tool designed to develop,
manage, and run containers and pods according to the Open
Container Initiative (OCI) standards. Among the many off-
the-shelf container engines, e.g., Docker and LXC, Podman
is the one featuring the strongest integration with CRIU, by
directly leveraging its APIs and, thus, effectively supporting
container migration at the microservice layer. As a container
engine, Podman enables the creation of isolated container
environments by leveraging kernel namespaces and exposes
the option to customize a container network namespace, thus
providing high flexibility on the container network configu-
ration.

Leveraging both CRIU and Podman, multiple stateful
migration strategies can be defined. We focus on the most
traditional and simplest one, i.e., Cold Migration, consisting
of the following steps: (1) creation of a snapshot of the con-
tainer (named “checkpoint”) at the source host, (2) transfer
of the checkpoint image from source to destination host, (3)
restoration of the container at the destination host.

CLOSED

LISTEN

SYN-RECVD SYN-SENT

CLOSING

TIME-WAIT

FIN-WAIT-1

FIN-WAIT-2

CLOSE-
WAIT

LAST-ACK

CLOSED

ESTABLISHED

No response to
any command

TCP_REPAIR

Passive Open Close

Close

Active Open

SYN/SYN+ACK

SYN/SYN+ACK

SYN+ACK/ACK

Send/SYN

Close/FIN

ACK

Close/FIN

FIN/ACK

ACK

FIN/ACK Timeout

ACK

FIN/ACK

Close/FINACK+FIN/ACK

Standard TCP state machine

N

Y

connect()
is called?

Send a probe packet to the
other end of connection

TCP Repair Mode

Fig. 1: TCP state machine diagram [8] with Repair Mode

B. Connection migration

Connection migration is one of the critical issues concern-
ing the migration of microservices with an always-established
connection. We focus on TCP as connection-oriented trans-
port protocol, as it is often used for legacy and modern edge
applications [4], and we discuss the features of TCP that
we can leverage to support connection migration. Notably,
once a TCP connection is established, the protocol does
not provide a way to modify or redirect such connection,
unless through a complete re-connection procedure. To over-
come this issue, and, hence, enhance the migration of TCP
connections, a special option for the TCP socket has been
introduced from Linux kernel version 3.5 onwards, namely,
TCP_REPAIR [7].

When the TCP_REPAIR option is used, the TCP socket
is switched into a special mode where any native TCP action
performed on the socket has no effect (as depicted in Fig. 1).
In this condition, the state of the TCP connection can be
successfully “checkpointed” by CRIU and restored on a new
host machine, with a probe packet being eventually sent to
notify the other connection end point that the communica-
tion can be resumed. However, the TCP_REPAIR option is
not widely used due to the following required conditions
to achieve a successful connection restoration: (i) address
consistency: the microservice container, when migrating from
source to destination host, has to be assigned the same
IP address; (ii) network reachability: when moved to the
destination host, the microservice container must be able to
directly reach the other end involved in the communication.
In other words, the TCP_REPAIR option only provides the
possibility to freeze and collect the state of the TCP socket,
thus not tackling scenarios in which the IP address may
change after migration. Moreover, to successfully resume the
communication flow, the probe packet has to be correctly
received at the destination, which is not trivial in the case of
migration between distinct private networks.

We address the above requirements for TCP repair mode
by defining a proper logical overlay network in which traffic
flows can be dynamically managed. To do so, we leverage
Open vSwitch (OvS) [9], a production-quality, multilayer
virtual switch that provides two functions that are crucial for
our purposes: (i) overlay network creation and (ii) network
flow management. Indeed, it creates overlay networks based
on Virtual Extensible LAN (VXLAN) – a technique that



Handover

BS1 BS2

Mobile Edge
Server 1

Mobile Edge
Server 2

Migration

Microservice Microservice

Public
Network

Migrated
connection

Initial
connection

Connection
after

handover

Fig. 2: COAT target migration scenario

encapsulates OSI layer 2 Ethernet frames within layer 4 UDP
datagrams. Once the overlay network is established, users can
easily define or change the behavior of the virtual switches,
e.g., forwarding rules, through the OpenFlow protocol.

III. COAT NETWORK ARCHITECTURE AND ENHANCED
MICROSERVICE MIGRATION

We now present our solution, named Container OverlAy
TCP (COAT) architecture, which effectively supports TCP
connection migration and addresses the akin networking chal-
lenges by leveraging the previously introduced tools. Further,
we integrate the COAT architecture in the stateful container
migration procedure, yielding an enhanced procedure referred
to as COAT migration, thus enabling the migration of mi-
croservices that rely on an established TCP connection.

A. Reference Scenario

The COAT network architecture targets at supporting the
simple yet crucial connection migration scenario depicted
in Fig. 2. As an example, we consider a UAV as mobile
end device, which connects to different base stations (BSs)
as it moves across the network. Due to the UAV’s limited
computational resources, some of its critical functions (e.g.,
flight control with collision avoidance algorithm) must be
deployed at the edge in the form of microservices and con-
nected to the UAV using the TCP protocol. To minimize the
experienced latency, such microservices should be deployed
on the nearest edge server, i.e., the one co-located with
the BS the UAV is connected to. We thus consider stateful
container migration (see Sec. II-A) as the key technology
to address such mobility challenge and ensure continuous
proximity of edge microservices with mobile end devices. As
thoroughly discussed in Sec. II-B, the problem of migrating
the established TCP connection along with the microservice
container is still to be properly addressed. As a solution to
this issue, below we propose the COAT network architecture
and the COAT migration process.

B. COAT Network Architecture

The proposed COAT architecture is depicted in Fig. 3,
which includes three fundamental blocks, namely, the source
host, the destination host, and the mobile end device. Source
and destination hosts resemble the edge nodes that run a
microservice before and after the migration process, respec-
tively. The mobile end device, instead, is the node hosting
the containerized client application that generates requests to
be served by the microservice. The connectivity between the
microservice and the client container is enabled by an overlay

TCP

TCP

TCP

Virtual
Switch 3

Virtual
Switch 2

Virtual
Switch 1

VXLAN

Source Host Destination Host

Microservice
container

Migrated microservice
network namespace

e.g., 172.16.0.1

Migration

Microservice
container

Microservice network namespace
e.g., 172.16.0.1

Mobile End Device

Client namespace
e.g., 172.16.0.2

Client containerOverlay Network
e.g., 172.16.0.0/24

Fig. 3: COAT network architecture

network implemented using interconnected virtual switches
and customized network namespaces.

To effectively implement such architecture, we leverage
the features provided by OvS to firstly create a virtual switch
for each physical host and configure each of them to ensure
their interconnection, thus defining the “backbone” of the
overlay network. Secondly, we create two custom network
namespaces, one for the microservice at the source host and
one for the client container at the mobile end device. Both
are then connected with the virtual switches, to complete the
overlay network. Thirdly, we use Podman to run both the
microservice and the client, and bind them to their dedicated
network namespaces, hence connecting them to the overlay
network. Once this third step is completed, the microservice
and the client can communicate using the TCP protocol on
top of the newly defined overlay network.

We underline that, when the microservice migration is
performed, the TCP connection between the microservice and
the client is preserved by (i) leveraging the TCP_REPAIR
option to collect the connection state, and (ii) imposing
an exact recreation of the microservice namespace at the
destination host, especially in terms of its IP address config-
uration. Thus, COAT effectively solves the network address
consistency problem since, thanks to the overlay network,
the same IP address can be easily replicated at the destination
host. Furthermore, since overlay networks enable the creation
of a distributed network among multiple machines and to
dynamically manage the traffic flows, direct reachability
between microservice and client is always guaranteed, even
after the migration process has been completed. Nevertheless,
to effectively integrate the COAT architecture with the tradi-
tional migration process (see Sec. II-A), additional operations
are required, which involve the creation and replication of
customized network namespaces and the management of the
flow control rules.

C. COAT Migration

To address such critical issues, we introduce COAT migra-
tion, which is an enhanced version of the stateful container
migration process consisting of the steps illustrated in Fig-
ure 4 and described below.



Checkpoint
container 

Step 1
Clear network
namespace 

Step 2.1
 Transfer

checkpoint image

Step 2.2
Create new network

namespace 

Step 2.3
Update

network flow

Step 3
Restore

container

Step 4

tPerformed at: Destination Host Mobile End DeviceSource Host

Fig. 4: COAT Migration, i.e., enhanced stateful container migration procedure integrating the COAT network architecture

• Step 1: Checkpoint the running container at the source
host using Podman with the tcp-established op-
tion. Both the microservice state and the established TCP
connection state are now dumped into the checkpoint
image and stop running.

• Step 2.1: Clear the network namespace, thus preventing
network configuration conflicts in the following steps.

• Step 2.2: Transfer the checkpoint image from source to
destination host.

• Step 2.3: Re-create and configure the network names-
pace at the destination host to match the original one,
which is required for the later container restore proce-
dure to be successful.

• Step 3: Update the network flow of the TCP connection.
Firstly, update the flow control rule in OvS. During the
network namespace recreation, a new virtual network
interface is generated, along with a new MAC address.
The ARP table at the client host is then cleared in order
to ensure a successful ARP discovery process once the
TCP connection is restored.

• Step 4: Restore the container from the checkpoint image.
Now, the microservice, and its established TCP connec-
tion, can resume from its previous working state.

We notice that Steps 2.1, 2.2, and 2.3 in Figure 4 may
be executed in parallel, in order to speed up the migration
procedure. However, as in this work we aim at validating the
novel architecture and at assessing the impact of each step on
the total duration of the migration process, in our performance
evaluation all steps will be executed sequentially.

To summarize, COAT makes it possible to define an
enhanced stateful container migration procedure to effectively
support microservices that rely on an already established TCP
connection. In particular, the proposed network architecture
(i) allows for the migration of the TCP connection state, thus
avoiding any reconnection procedure, (ii) preserves all the
data queued inside the TCP socket, hence avoiding packet
loss, and, (iii) does not require any modification at either the
server or the client application to support a stateful migration.

IV. OUR TESTBED

In this section, we briefly describe the testbed we devel-
oped to validate the connection migration in COAT architec-
ture and to assess the performance of the COAT migration
procedure.

A. Microservices

We perform two independent sets of experiments using
sockperf and iperf3 as examples of stateful microservices
to migrate. They indeed resemble real-world microservices
with established TCP connection and their features, briefly
described below, allow us to effectively assess the network
performance.

Open
vSwitch 1

VM1

Sockperf/iperf
service container

Microservice
network namespace

eth1
tc 1

Open
vSwitch 2

eth2
tc 2

Open
vSwitch 3Iperf/sockperf

Client container

Client namespace

eth3
tc 3

Sockperf/iperf
service container

Migrated microservice
network namespace

VM2

VM3

Network
Switch

Migrate

Control
Script

Traffic Control Setting

eth1

eth2

eth3

sockperf iperf3

20 ms

2 ms

2 ms

100 Mbps

500 Mbps

500 Mbps

Scenario

Fig. 5: Testbed setup for COAT migration process

Sockperf is a network benchmarking utility over socket
API. It is a powerful tool to perform network latency mea-
surements, which can provide a full log of each packet’s
transmission timestamps in sub-nanosecond resolution. In our
testbed, we configure sockperf to measure the network latency
using the TCP protocol, in order to assess the impact of COAT
migration on the communication latency. Specifically, latency
is measured at the sockperf client side through the so-called
ping-pong test, which calculates the time difference between
the timestamp in which a probe packet is sent to the sockperf
server and the one in which the corresponding response from
the sockperf server is received.

Iperf3 is a popular, lightweight tool for active measure-
ments of the achievable bandwidth on IP networks. We use
iperf3 to determine the impact of COAT migration on the
communication throughput. To this end, we configure iperf3
to measure the throughput at the client side using the TCP
protocol in reversed mode, i.e., the iperf3 server sending data
to the iperf3 client, and we set the measurement interval to
100 ms.

B. Testbed and experimental setup

In our experiments, we leverage a cloud computing archi-
tecture featuring Intel Xeon Skylake CPU to instantiate three
identical virtual machines (VMs). As shown in Figure 5, VM1
and VM2 represent two edge servers acting, respectively, as
source and destination of the microservice migration process.
Further, VM3 hosts the client container, thus acting as an end
device that interacts with the edge servers. The migration
procedure is controlled by a script running on VM3, which
passes the control commands to VM1 and VM2 using the



0 25 50 75 100 125 150
Packet Sequence Number

101

102

103

R
T

T
[m

s]

Fig. 6: Sockperf migration experiment: RTT measurement as a
function of the packet sequence number

Secure Shell Protocol (SSH). Specifically, consistently with
Figure 4, the commands corresponding to Step 1, Step 2.1 and
Step 2.2 are executed at the source host (VM1), those related
to Step 2.3 and Step 4 run at the destination host (VM2),
while Step 3 runs locally at the end device (VM3). The three
VMs can communicate with each other using their default
network interfaces, i.e., eth1, eth2 and eth3 (resp.), which
are provisioned by the underlying virtualization technology.
To emulate realistic values of network latency and throughput,
specific queuing disciplines are applied to the default network
interface of each VM using tc – a tool used to configure the
Linux kernel traffic scheduler. Through these disciplines, the
outgoing traffic of the network interface on each VM can
be manipulated as needed. Consistently with the reference
scenario presented in Sec. III-A, in our testbed we assume that
VM2 has a closer physical distance to VM3 than VM1, thus
resulting in lower latency and higher bandwidth experienced,
which strongly motivates the need for microservice migration
from VM1 to VM2. Therefore, in the latency experiment, we
apply a 20 ms delay to eth1 and a 2 ms delay to eth2 and
eth3. Similarly, in the throughput experiment, we limit the
bandwidth of eth1 to 100 Mbps, and that of eth2 and eth3 to
500 Mbps.

The results shown in the following have been obtained by
averaging over 50 runs, and computing the 90% confidence
interval.

V. EXPERIMENTAL ANALYSIS

We now use our testbed under the settings introduced in
Section IV to validate the COAT architecture and to evaluate
the migration performance according to our enhanced stateful
container migration procedure.

We start by looking at the TCP connection round trip time
(RTT) (Figure 6) and the experienced throughput (Figure 7),
before, during, and after a microservice migration. In par-
ticular, Figure 6 shows the RTT measured by sockperf as
a function of the packet sequence number. To highlight the
impact of the migration process on the experienced RTT,
a measurement window of 160 samples has been extracted
around such event, with packet with sequence number 80
being the one transferred during the migration. Consistently
with the scenario we are tackling and the settings presented in
Section IV, the experienced RTT decreases when the sockperf
microservice is moved from the source to the destination host.

0 2 4 6 8 10
Time [s]

0

100

200

300

400

500

T
hr

ou
gh

tp
ut

[M
bp

s]

Fig. 7: Iperf3 migration experiment: throughput temporal evolution

Also, one can observe a peak in the RTT values corresponding
to the time interval during which the migration procedure
takes place. Interestingly, two considerations can be drawn:
(i) despite the migration process, the packet transmission
is successful (hence also enabling a correct RTT measure-
ment), and (ii) the value of RTT measured for the packet
transmitted in correspondence of the migration reflects the
total duration of the COAT migration process. In summary,
from the experiment we can conclude that (i) the TCP
connection migration is successful, and (ii) no packet loss
is experienced at transport layer during the migration
process, which validates the proposed COAT architecture.

Figure 7 presents the temporal evolution of the throughput
measured by the iperf3 client. In this scenario, the migration
of the iperf3 server container is performed in the time window
between 4 and 8 seconds. After the iperf3 server container
is migrated, the measured throughput increases significantly,
which is again consistent with our settings. Indeed, the
end device can experience a larger link bandwidth with the
destination host than with the source host (see Section IV).
However, during the migration of the iperf3 server container,
the iperf3 client experiences zero throughput, as evident from
the plot in Figure 7. It follows that: (i) even though the
client is unaware of the microservice migration process, it
still experiences a service disruption, and (ii) the duration
of such disruption notably corresponds to the total duration
of the COAT migration process. In summary, in spite of the
fact that the COAT migration can successfully migrate an
active TCP connection, a service disruption during migration
is unavoidable. Our next objective is therefore to thoroughly
characterize the service disruption time, along with its com-
ponents, and to identify which step of the migration process
contributes the most to service disruption.

To this end, we perform an experimental analysis to break
the migration duration measured by sockperf and iperf3 into
different components. First, we notice that, in our experi-
ments, the main migration control script runs on the end
device, hence most of the commands to implement the COAT
migration procedure need to be passed to specific hosts
via an SSH tunnel. Using SSH tunnels to remotely control
other hosts inevitably introduces an additional delay in the
procedure. Thus, the total migration duration mainly consists
of two contributions: (i) the SSH delay and (ii) the actual
duration of the migration steps.

The SSH delay is presented in Figure 8, for each step



Checkpoint Clear
Namespace

Checkpoint
Transfer

Create
Namespace

Restore
0

200

400

600

800

S
S

H
D

el
ay

[m
s]

sockperf

iperf3

Fig. 8: Additional SSH delay introduced to remotely execute the
commands related to the COAT migration procedure

of the migration procedure and for both the cases where
sockperf and iperf3 are migrated. The duration of such delay
varies from 500 ms to 800 ms, depending upon the specific
network latency setting, the amount of transferred data (e.g.,
the command itself), and the exchanged certificates to ensure
a secure connection with the remote host. Importantly, such
SSH delay can be easily avoided by applying better remote
control mechanisms – a relevant, interesting aspect that is,
however, out of the scope of this work.

Next, the actual duration of each migration step is inves-
tigated in Figure 9. By comparing such duration for the two
experiments with sockperf and iperf3 (resp.), one can observe
that the values measured for sockperf are higher. This is
due to the fact that sockperf is characterized by a larger
microservice state size, mainly consisting of the memory
allocation, which we measured to be, on average, 10 MB for
sockperf and 1.5 MB for iperf3. Moreover, we remark that
the duration of the checkpoint transfer step is affected by
the network setting we described in Section IV. Interestingly,
the fundamental migration steps, namely, checkpoint, transfer,
and restore, dominate the COAT migration duration, and the
duration of these steps is consistent with the results of our
previous study on stateful container migration modeling [3].
Thus, we can conclude that the COAT migration does not
introduce any time overhead in the three most-impactful
migration steps (checkpoint, transfer, and restore) with re-
spect to the original process. Indeed, the COAT architecture
only introduces three additional steps in the COAT migration
process, namely, clear namespace, create namespace, and
OvS flow update (see Figure 4), whose delay contribution
is almost one order of magnitude smaller than that of the
checkpoint, transfer, and restore steps. Remarkably, such
additional steps are independent of the microservice state
size; hence, their delay overhead would represent an even
smaller percentage of the total overhead in case microservices
with larger state size were considered.

In summary, we measured three duration metrics: (i) the
COAT migration duration, comprising all COAT migration
steps, (ii) the total migration duration, computed summing
the above COAT migration duration and the SSH delay, (iii)
the service disruption duration experienced by sockperf and
iperf3 upon migration (also accounting for the SSH delay).

Notice that the SSH delay for the checkpoint step (i.e.,
Step 1 in Figure 4) is omitted from the calculation mentioned

Checkpoint Clear
Namespace

Checkpoint
Transfer

Create
Namespace

Update
Net.Flow

Restore
0

200

400

600

800

1000

1200

D
ur

at
io

n
[m

s]

sockperf

iperf3

Fig. 9: Duration of each step of the COAT migration process, for
the sockperf and iperf3 experiments

TABLE I: COAT migration performance using sockperf and iperf3

Sockperf Iperf3
COAT migration duration 2.67 s 1.87 s
SSH delay 2.41 s 1.95 s
Total migration duration
(COAT migration duration + SSH delay) 5.08 s 3.82 s

Service disruption duration 5.11 s 3.71 s
SSH time overhead 47.16% 52.56%
COAT time overhead 13.67% 13.48%

in (ii), since it happens before the migration process starts. As
reported in Table I, by comparing the total migration duration
and the service disruption duration, for both the sockperf
and iperf3 experiments, their difference is negligible, which
means that the measurements provided by such experiments
are consistent with our breakdown analysis.

In conclusion, compared to the traditional migration pro-
cess (see Sec. II-A), we can safely conclude that the addi-
tional steps introduced by our COAT solution to enable
connection migration determine an increase on the mi-
gration duration up to roughly 14% with respect to the
COAT migration duration.

We argue that such overhead is reasonably small com-
pared to the great advantage COAT provides in easily, yet
effectively, supporting migration for microservices with es-
tablished TCP connection. On the other hand, in the two
scenarios we considered, the overhead due to SSH remote
control represents approximately 50% of the measured mi-
gration duration. Hence, it is critical that, in place of SSH
tunnels, more efficient remote control mechanisms are used to
minimize the duration of a migration procedure. Importantly,
we recall that the existing solutions are mostly application-
specific and based on either kernel or protocol customization,
which, as thoroughly discussed in the following related work
(Sec. VI), are loose in generality, complex to implement,
and impractical to be integrated with container virtualization
technology. We advocate that these key points prevent an
effective technical comparison with our solution.

VI. RELATED WORK

Stateful container migration has recently attracted a great
deal of interest. An extensive survey on service migration in
Multi-access Edge Computing (MEC) environments can be
found in [10], while [11] presents an overview of current
container migration techniques along with their fundamental
metrics. However, far too little attention has been paid to



the connection migration problem. Indeed, many studies, e.g.,
[12], [13], suggest to perform re-connection after a container
is migrated. From a practical perspective, such an approach
implies a customization of the client application source code
to let it support the reconnection procedure. To the best of
our knowledge, only few studies discuss solutions to enable
connection mobility in a completely transparent manner for
the client. Such solutions are mostly based on dedicated
protocols, network proxy, overlay network tunneling, and
software-defined networking (SDN).

The works in [14], [15] propose Multi-Path TCP (MPTCP)
protocol as an effective solution to implement connection
migration, since it permits to define multiple sub-flows for
the same connection in a transparent way with respect to
the client application. However, MPTCP requires kernel cus-
tomization, implying practical limitations in real-world sce-
narios and unfeasibile integration with container virtualization
technology. Similarly, [16], [17] thoroughly investigate the
QUIC protocol and propose an extension thereof to effectively
support server-side connection migration, thus advocating
its validity for container migration. Despite the validity
of this solution, it cannot be extended to other protocols,
including TCP. Other approaches, e.g., the ones proposed
in [18], [19], leverage the cloud platform’s network proxy
to hold and redirect active connections with external clients
while performing intra-cloud or inter-cloud service migration.
Likewise, [20], [21] design dedicated network proxies to
redirect the network flows for general connection migration
purposes. However, the use of centralized proxies is unfit
for latency-critical edge computing scenarios since it breaks
the proximity principle with mobile end users. Furthermore,
[22] investigates the Locator/Identifier Separation Protocol
(LISP), i.e., an overlay routing level on top of legacy IP,
and suggests how to enhance it to effectively support VMs
mobility management. However, this approach relies on a
specific protocol customization, which limits the generality
of the solution. In addition, [23] presents an SDN-based UAV
controller migration testbed, which addresses the connection
migration issue by manipulating the MAC addresses and
leveraging SDN flow duplication functionality. Indeed, the
design of this solution is tightened to a specific use case, i.e.,
UAV controller applications.

We finally recall that the main objective of our work
is to enhance the stateful migration process to effectively
support microservices with an always-established connec-
tion. We achieve this goal through an architectural solution
based on overlay networks that, unlike previous solutions, is
application-independent, requires no dedicated protocol and
no modifications to the kernel or application source code.

VII. CONCLUSIONS

Container migration has become one of the fundamental
technologies to support service mobility at the network edge.
Nevertheless, multiple technical challenges still need to be
addressed, especially those related to connection migration
and service continuity. To fill this gap, we introduced COAT,
a novel and effective, yet simple, network architecture that
leverages overlay network technology to achieve TCP con-
nection migration. To effectively integrate our proposed ar-
chitecture with the stateful container migration process, we
envisioned an enhanced migration procedure. We validated
our solutions using popular, real-world microservices. In

particular, our experimental analysis demonstrated that COAT
migration process successfully enables microservice stateful
migration while effectively preserving the state of the TCP
connection, at the cost of a 14% maximum increase of the
migration duration. We finally remark that COAT architecture
effectively addresses the problem of connection migration
without requiring a dedicated protocol or any modification
to the application source code or the kernel.

Future work will focus on the integration of the COAT mi-
gration with orchestration systems, so as to minimize service
disruption due to migration in more complex scenarios.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd ed. USA: Prentice Hall Press, 2016.

[2] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, “Migrat-
ing enterprise legacy source code to microservices: On multitenancy,
statefulness, and data consistency,” IEEE Software, 2018.

[3] A. Calagna, Y. Yu, P. Giaccone, and C. F. Chiasserini, “Processing-
aware Migration Model for Stateful Edge Microservices,” IEEE ICC,
2023.

[4] D. Lee, B. E. Carpenter, and N. Brownlee, “Observations of UDP to
TCP ratio and port numbers,” in ICIMP, 2010.

[5] CRIU, “Checkpoint/restore,” https://criu.org/.
[6] The Containers Organization, “Podman,” https://podman.io/.
[7] J. Corbet, “TCP connection repair,” https://lwn.net/Articles/495304/.
[8] L. L. Peterson and B. S. Davie, Computer Networks, Fifth Edition: A

Systems Approach. Morgan Kaufmann Publishers Inc., 2011.
[9] Linux Foundation, “Open vSwitch,” https://www.openvswitch.org/.

[10] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration
in mobile edge computing,” IEEE Access, vol. 6, 2018.

[11] M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnostic
container migration and failover,” in IEEE LCN, 2021, pp. 565–572.

[12] W. Bao, D. Yuan, Z. Yang, S. Wang, W. Li, B. B. Zhou, and A. Y.
Zomaya, “Follow me fog: Toward seamless handover timing schemes
in a fog computing environment,” IEEE Communications Magazine,
2017.

[13] P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated
service/data migration for edge services leveraging container charac-
teristics,” IEEE Access, vol. 7, pp. 139 746–139 758, 2019.

[14] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “LXC container
migration in cloudlets under multipath TCP,” in IEEE COMPSAC,
2017.

[15] F. Le and E. M. Nahum, “Experiences implementing live VM migration
over the WAN with multi-path TCP,” in IEEE INFOCOM, 2019.

[16] L. Conforti, A. Virdis, C. Puliafito, and E. Mingozzi, “Extending the
QUIC protocol to support live container migration at the edge,” in IEEE
WoWMoM, 2021, pp. 61–70.

[17] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side
QUIC connection migration to support microservice deployment at the
edge,” Pervasive Mobile Computing, vol. 83, 2022.

[18] P. S. Junior, D. Miorandi, and G. Pierre, “Good shepherds care for
their cattle: Seamless pod migration in geo-distributed kubernetes,” in
IEEE ICFEC, 2022, pp. 26–33.

[19] T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling
live migration of containerized applications across clouds,” in IEEE
INFOCOM, 2020, pp. 2529–2538.

[20] S. Kassahun, A. Demessie, and D. Ilie, “A PMIPv6 approach to
maintain network connectivity during VM live migration over the
internet,” in IEEE CloudNet, 2014, pp. 64–69.

[21] M. Bernaschi, F. Casadei, and P. Tassotti, “SockMi: a solution for
migrating TCP/IP connections,” in EUROMICRO PDP, 2007.

[22] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pu-
jolle, “Achieving sub-second downtimes in large-scale virtual machine
migrations with LISP,” IEEE Transactions on Network and Service
Management, vol. 11, no. 2, pp. 133–143, 2014.

[23] N. An, S. Yoon, T. Ha, Y. Kim, and H. Lim, “Seamless virtualized
controller migration for drone applications,” IEEE Internet Computing,
vol. 23, no. 2, pp. 51–58, 2019.


