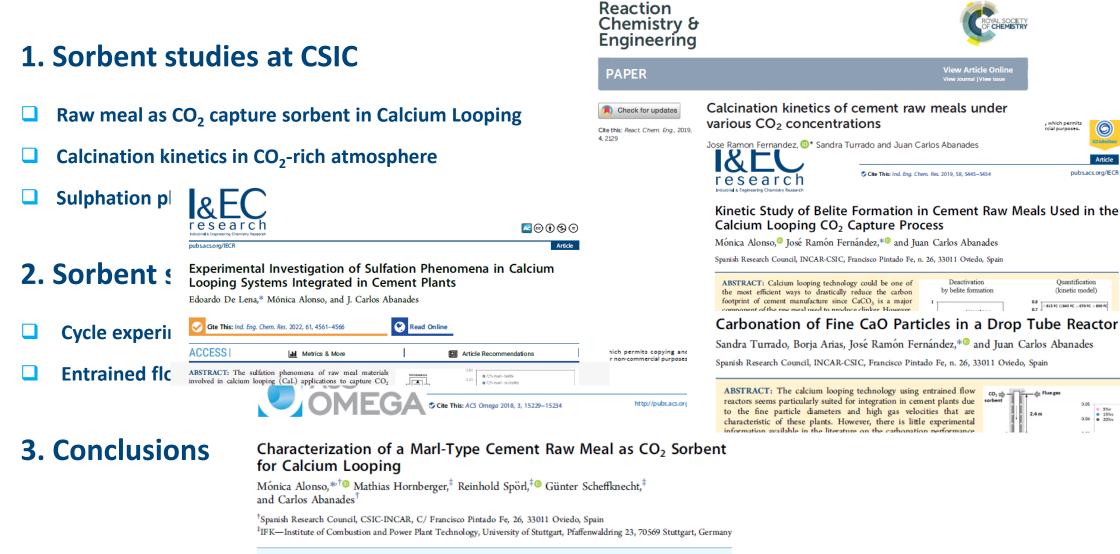
CLEANKER CONFERENCE

Sorbent properties and lab scale tests for cement applications

Progress at CSIC and USTUTT


Mónica Alonso, Sandra Turrado, Jose Ramon Fernandez, Borja Arias, Carlos Abanades <c.abanades@csic.es> (CSIC)

Nico Mader <nico.mader@ifk.uni-stuttgart.de>; Joerg Maier (USTUTT) CLEANKER

ABSTRACT: The use of cement raw meals as sorbent precursors for CO₂ capture can 0.7

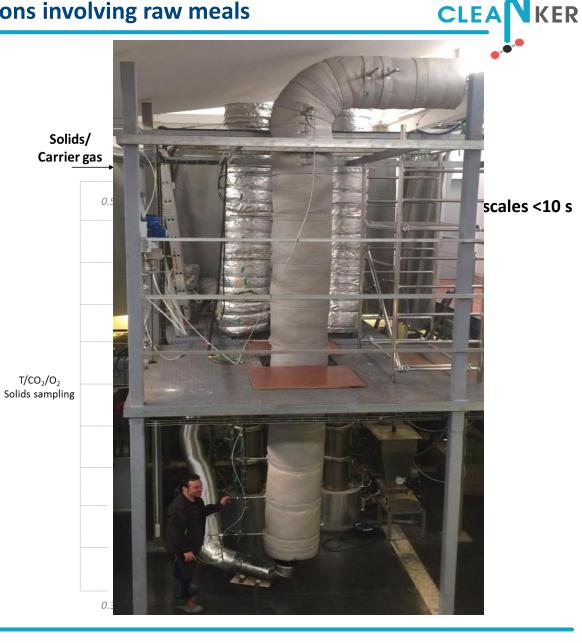
s.acs.org/IECR

Main experimental facilities used at CSIC for CaL gas-solid reactions involving raw meals

- CO₂ carrying capacity •
- **Belite formation kinetics**
- **Calcination kinetics**
- **Carbonation kinetics** •
- Sulfation kinetics •

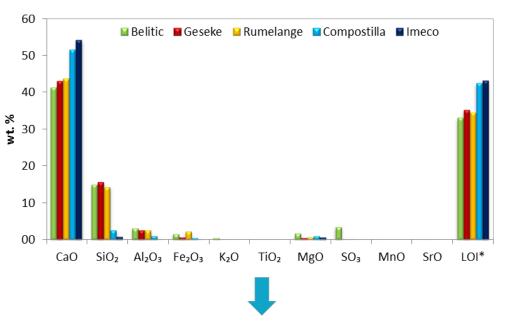
Thermogravimetric analysers

TA-Q5000IR


In-house TGA

Reactions with time scales >10 s

CLEANKER project

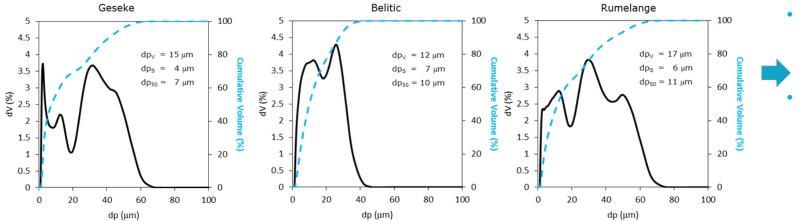

CLEAN clinKER by calcium looping for low-CO, cement

CLEA

13 Calcium-based raw meals materials

- Rumelange: mixture of marl, limestone and slag
- Belitic: mixture of marl, limestone and gypsum
- **Geseke**: mixture of marl and a corrective material (4 wt.%)
- Compostilla: limestone (<20 μm, 20-36 μm, 36-63 μm)
- Imeco: limestone (<20 μm, 20-36 μm, 36-63 μm)
- Vernasca: mixture of marl (Marine) and limestone (Calcare)
- Marine: marl
- Calcare: limestone
- Bilbao: marl

Chemical composition (XRF)



- Similar contents of CaO (41-43 wt.%), SiO₂ (15 wt.%) and Al₂O₃ (3 wt.%) in the raw meals
- Relevant content of Fe₂O₃ (2.3 wt.%) in Rumelange (presence of slag)
- High content of SO₃ (3.5 wt.%) in Belitic (presence of gypsum)

CLEAN clinKEE by calcium looping for low-CO, cement

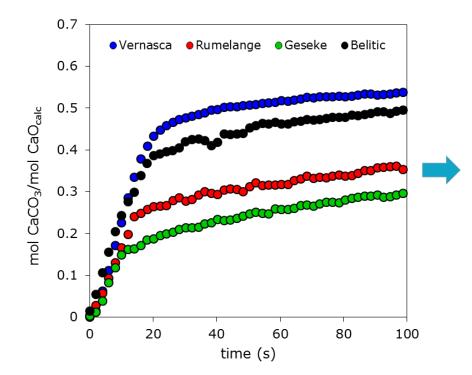
Particle size distribution

- Clearly separated volumetric fractions
- Similar average diameters (not expected diff. behaviour due to particle size)

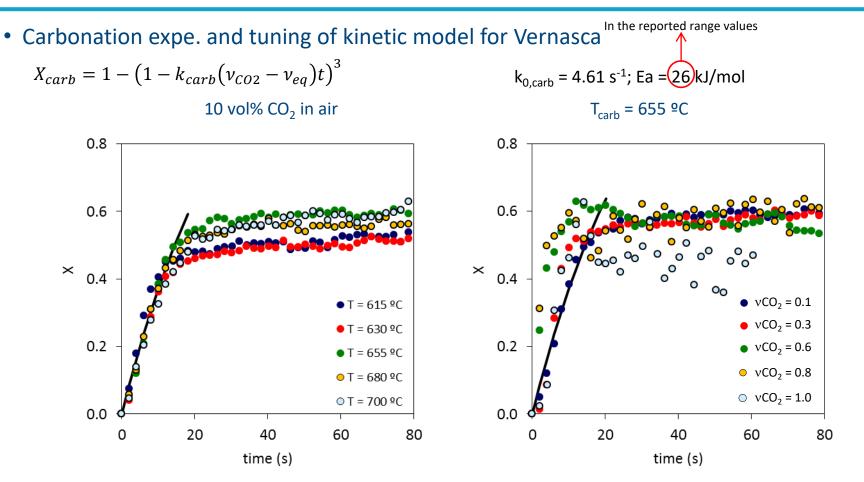
BET	surface	area

Material	BET area (m ² /g)		
<u>Raw meals/marls</u>			
Vernasca	13.5		
Rumelange	6.1		
Belitic	10.8		
Bilbao	3.6		
Geseke	4.3		
Marine	13.7		
<u>Limestones</u>			
Calcare	1.4		
Compostilla <20 µm	4.0		
Compostilla 20-36 μm	4.0		
Compostilla 36-63 μm	3.1		
Imeco <20 μm	0.6		
Imeco 20-36 μm	0.6		
Imeco 36-63 μm	0.4		

Limestones present in general the lowest BET areas (0.4-4 m²/g). BET areas increase as d_p is reduced (for $d_p>20 \mu m$)

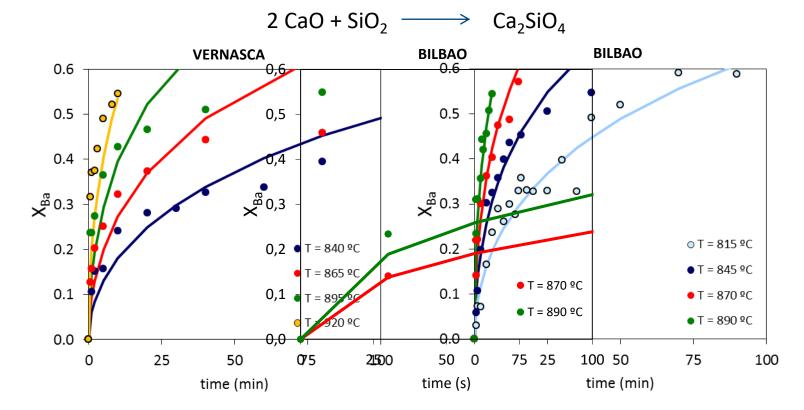

٠

- Intermediate values (3.6-6.1 m²/g) for Bilbao (marl), Geseke (marl) and Rumelange (mixture)
- Largest BET areas (11-13.7 m²/g) for Belitic (mixture), Marine (marl) and Vernasca (mixture).


<u>CO₂ carrying capacity tests with differente raw meals</u>

- Materials with higher Ca-Si aggregation level show lower
 CO₂ carrying capacities (formation of belite)
- **Geseke** (almost single compound raw meal) shows the lowest CO₂ carrying capacity
- **Belitic** (mixture) exhibits similar behaviour to Vernasca (i.e. similar Ca-Si aggregation level)
- Rumelange (mixture) presents lower carbonation conversion than expected. Possible formation of other compound/s that consume active CaO (due to unknown crystalline phase detected by XRD?)

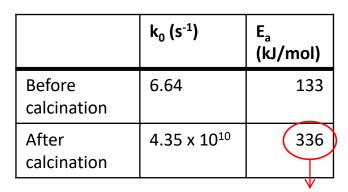
Reactivity of calcined Vernasca raw meal towards CO₂ (from TG experiments)



- Similar tendencies than those observed for CaO derived from limestone in the fast stage.
- The CO₂ concentration greatly affects the carbonation rate.

OLEAN clinKEE by calciu Inoning for low-CO, cem

• Extent of belite formation during the calcination of Vernasca



- Calcination temperature greatly affects the reaction.
- In Vernasca raw meal (low level of Ca/Si aggregation) the model overestimates belite formation at long times
- Belite formation in Bilbao raw meal (marl) is accurately described

CLEANKER project

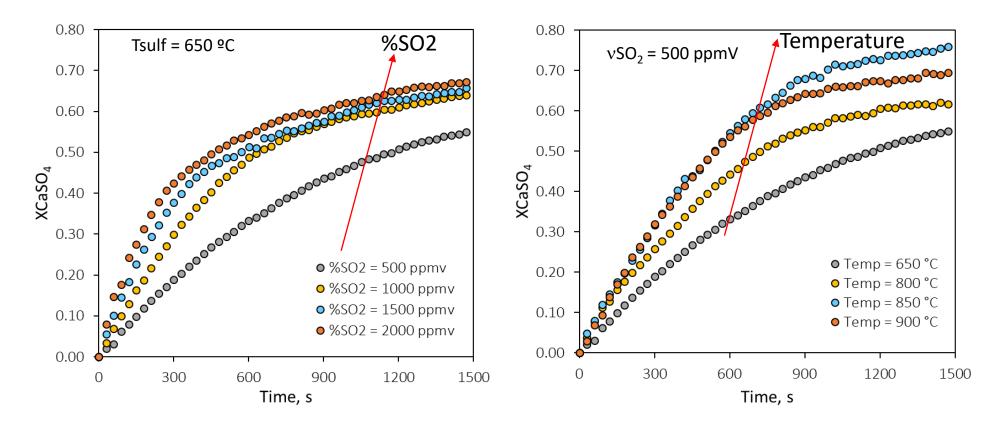
 $X_B = 1 - \left[1 - (k_B t)^{1/2}\right]^3$

Similar value to Weisweiler et al.

CLEAN clinKER by calcium looping for low-CO, cement

CLE

ER


Kinetic Study of Belite Formation in Cement Raw Meals Used in the Calcium Looping ${\rm CO}_2$ Capture Process

Mónica Alonso,¹⁰ José Ramón Fernández,*¹⁰ and Juan Carlos Abanades

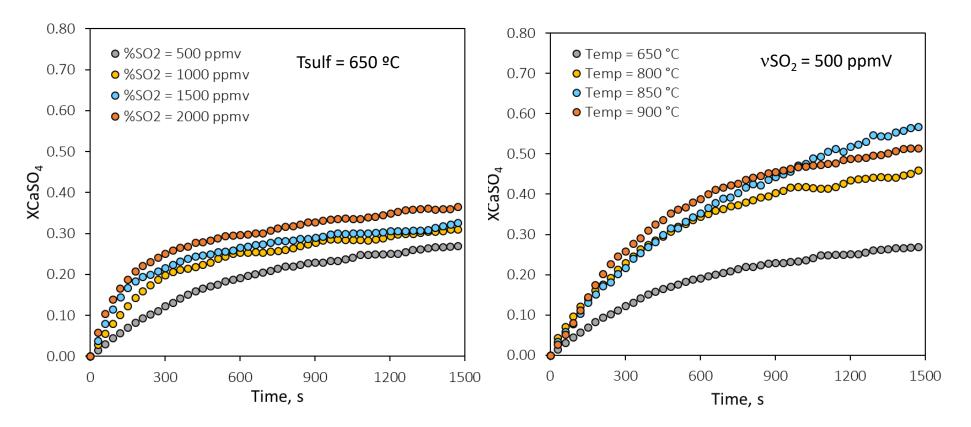
Spanish Research Council, INCAR-CSIC, Francisco Pintado Fe, n. 26, 33011 Oviedo, Spain

ABSTRACT: Calcium looping technology could be one of	Deactivation	Quantification
the most efficient ways to drastically reduce the carbon	by belite formation	(kinetic model)
footprint of cement manufacture since CaCO ₃ is a major component of the raw meal used to produce clinker. However,	1	0.8 0.8 0.5 TC C 845 TC - 870 TC - 890 TC

• Effect of sulfation temperature and SO₂ concentration on Vernasca (<u>non bel</u>ite)

There is an increase in sulfation as the sulphur content in the flue gas increases

There is also an increase in sulfation as the temperature increases. But the maximum was achieved at 850 °C

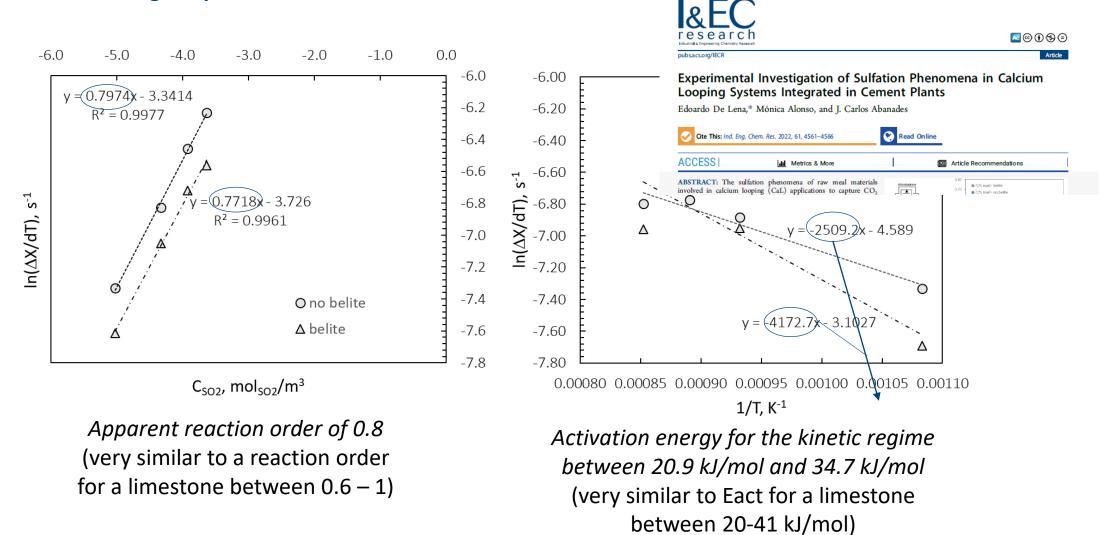


9

CLEAN clinKEE by calcium looping for low-CO, cemen

Effect of sulfation temperature and SO₂ concentration on Vernasca (maximum belite)

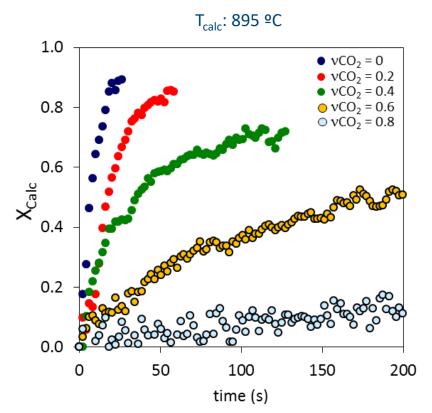
The shape of the obtained curves are the same but with a <u>lower conversion</u>, due to the presence of the <u>belite</u>



CLEAN clinKEE by calcium Inoping for low-CO, cemer

Sulfation study: reported in D5.2

CLEAN KER

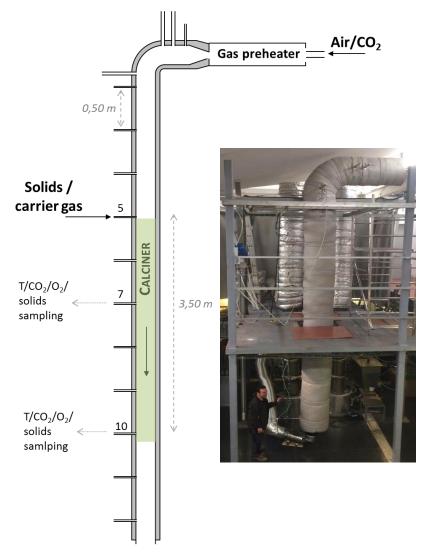

• Kinetic regime parameters

11

11

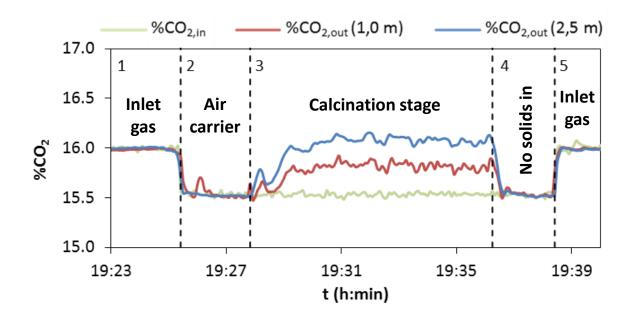
• Calcination experiments with Vernasca

- Much longer calcination times than those found in suspension reactors.
- <u>Heat transfer resistance has been identified as the main limitation to measure reliable kinetics of very fast reactions.</u>



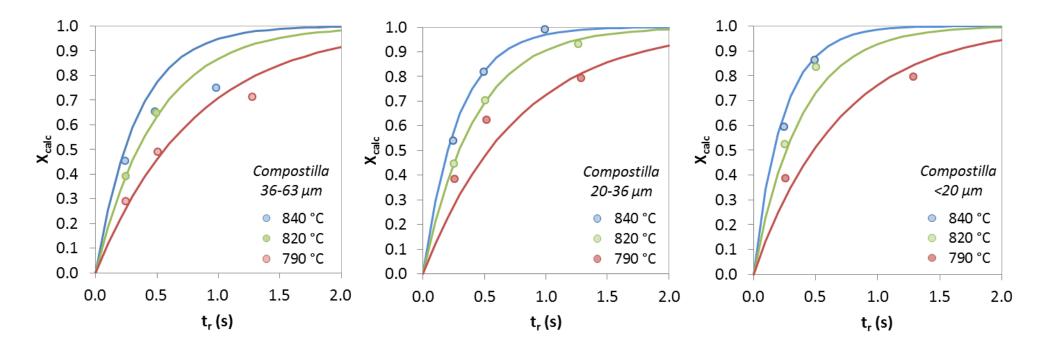
OLEAN clinKEE by calcium looping for low-CO, cemen

CLE


Experimental methodology

Main operating conditions tested in the drop tube

Calciner temperature (°C)	T _{calc}	790-1000
Calciner inlet velocity (m/s)	u _{calc}	1.1 - 2.2
Inlet CO_2 to the calciner	vol.%	0 - 90
Solids flowrate (kg/h)	, m _s	0.2 - 1.0


Pulverized coal was mixed (up to 10% wt) with raw meals for tests at T>900°C

Experimental conditions (reference test): material Compostilla 36-63 μ m, T= 860 °C, $u_{gas=}^2$ m/s, solids,in =0.65 kg/h, %CO₂in=15.5

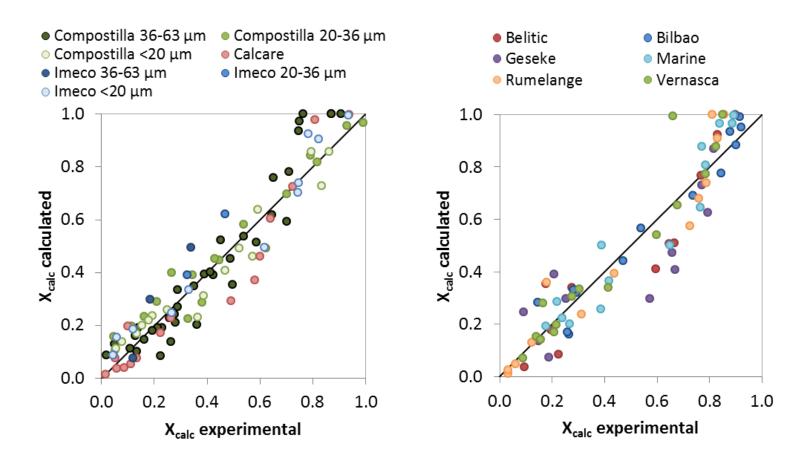
Effect of particle size and surface area on calcination kinetics

Higher surface BET areas accelerate the calcination of CaCO₃

Calcination in air (0 vol.% CO₂) ,T= 820 °C and t_r =0.5 s:

RESULTS CONSISTENT WITH BORGWARD'S MODEL (1985)

(calcination in atmospheres free of CO2)


Co-funded by the Horizon 2020 Framework Programme of the European Unior

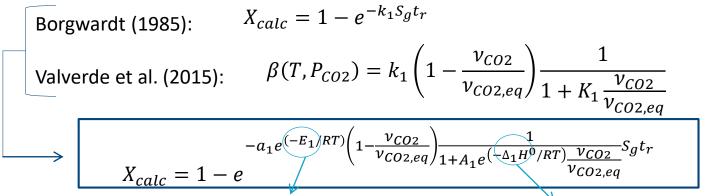
 Compostilla 36-63 μ m (S_{BET}= 3.1 m²/g)
 X_{cal}=0.60

 Compostilla 20-36 μ m (S_{BET}= 4.0 m²/g)
 X_{cal}=0.70

 Compostilla <20 μ m (S_{BET}= 4.0 m²/g)
 X_{cal}=0.70

Experimental vs. model

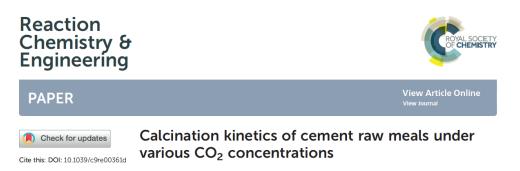
• The model predicts reasonably well the extent of the solids conversion for all the materials tested in this study (r²≈0.90)



CLEAN clinKEE by calcium looping for low-CO, cement

CLE

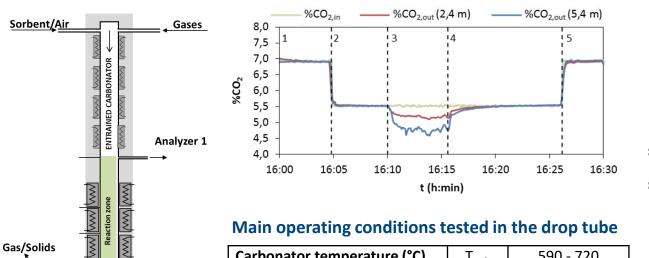
2. Kinetic studies of calcination


Kinetic model

194.5 kJ/mol (Borgwardt, 1985)

150 kJ/mol (Valverde et al., 2015)

Material	a ₁ (mol/m ² s)	A ₁ (-)
Compostilla	11.7·10 ⁶	153·10 ⁶
Imeco	45.8·10 ⁶	152·10 ⁶
Calcare	11.9·10 ⁶	219·10 ⁶
Vernasca	2.9·10 ⁶	137·10 ⁶
Marine	3.0·10 ⁶	43·10 ⁶
Geseke	5.8·10 ⁶	66·10 ⁶
Rumelange	4.9·10 ⁶	239·10 ⁶
Belitic	1.6·10 ⁶	28·10 ⁶
Bilbao	9.6·10 ⁶	27·10 ⁶



CLEAN clinKER by calcium looping for low-CO, cement

CLE

CLEAN clinKEE by calcium looping for low-CO, cement KER CLEA

Experimental methodology

Carbonator temperature (°C)	T _{carb}	590 - 720
Inlet velocity (m/s)	U _{carb}	0,5 - 2,0
Inlet CO ₂ to carbonator	v _{co2}	0,05 - 0,30
Inlet H ₂ O to carbonator	V _{H2O}	0 - 0,25
X _{ave}	X _{ave}	0,17 - 0,67
Solid flow rate(kg/h)	, m _s	0,3 - 8,0
dp ₅₀ (μm)	d _{p50}	48 - 53
All Information		

pubs.acs.org/IECF Cite This: Ind. Eng. Chem. Res. 2018, 57, 13372-13380

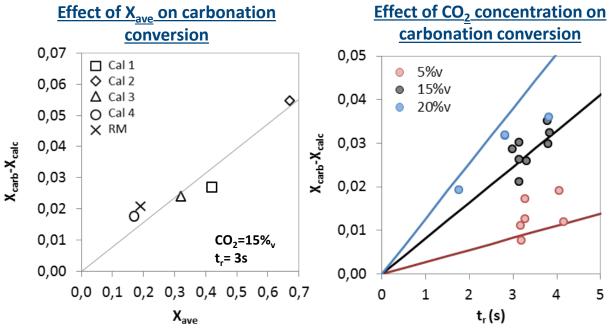
Carbonation of Fine CaO Particles in a Drop Tube Reactor

Sandra Turrado, Borja Arias, José Ramón Fernández,*9 and Juan Carlos Abanades

Spanish Research Council, INCAR-CSIC, Francisco Pintado Fe, n. 26, 33011 Oviedo, Spain

ABSTRACT: The calcium looping technology using entrained flow reactors seems particularly suited for integration in cement plants due to the fine particle diameters and high gas velocities that are CO2 = haracteristic of these plants. However, there is little experimental

 \sim


 \mathbb{W}

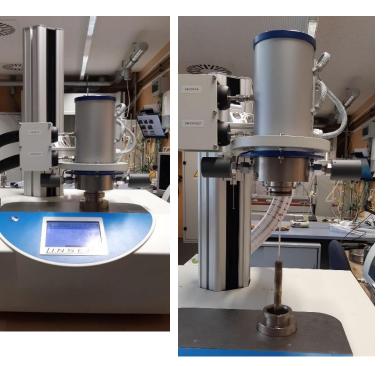
 \sim

Analyzer 2

0.04 0.04 0.04

Basic carbonation kinetic model

0.16 s⁻¹ (in agreement with values reported in the literature)


Co-funded by the Horizon 2020 Framework Programme of the European Union

Properties of cycle experiments:

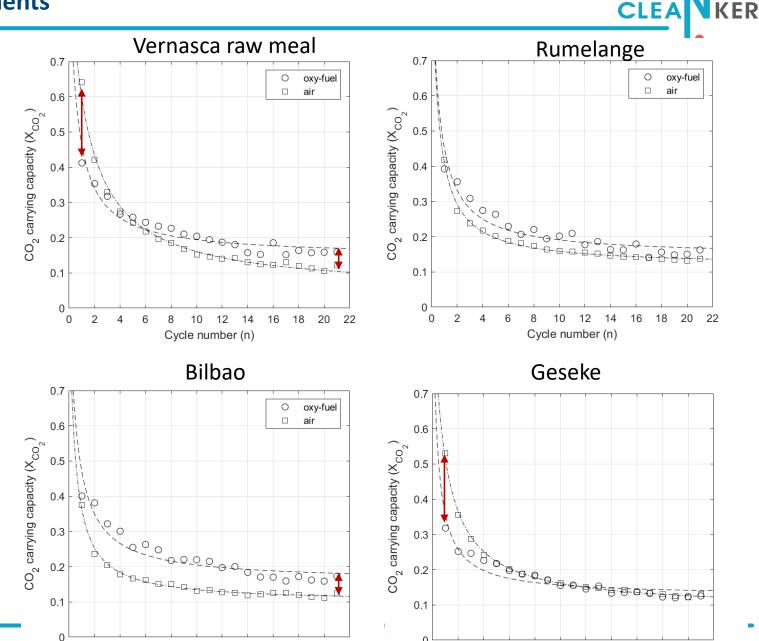
- TGA conditions set in order to represent entrained flow conditions as good as possible
- \rightarrow Fast heat up and cool down ramps
- \rightarrow Short dwell time at calcining conditions
- Oxy-fuel and air calcination
- Sample weight of approx. 12 mg
- Investigated raw meals:
 - Vernasca raw meal
 - Bilbao
 - Geseke
 - Rumelange
 - Vernasca Calcare

	Vernasca	Bilbao	Geseke	Rumelan	Vernasca
				ge	Calcare
γ_{CaO}	0,4127	0,4007	0,4345	0,4576	0,5035
γ_{SiO2}	0,1673	0,1439	0,1455	0,1367	0,0298
$\gamma_{\rm Fe2O3}$	0,0233	0,0195	0,0089	0,0253	0,0047
γ _{A12O3}	0,0356	0,0628	0,0227	0,0272	0,0091
γ _{MgO}	0,0121	0,0138	0,0044	0,0018	0,0176
γ _{CO2}	0,3307	0,3349	0,3704	0,3371	0,4315
γ_{others}	0,0184	0,0245	0,0135	0,0142	0,0039

Experimental setup

Linseis STA PT 1100

CLEAN clinKER by calcium looping for low-CO, cemen


CLEA

(ER

1. Sorbent studies at USTUTT: Cycle experiments

Results:

- Initial deactivation & residual activity
- \rightarrow appear to be dependent from the reaction atmosphere
- Cycles with oxy-fuel calcination show higher residual activity
- Different properties between the raw meals have big impact on results

CLEAN clinKER by calcium looping for low-CO, cemen

18 20 22

16

12 Cycle number (n)

10

16 18

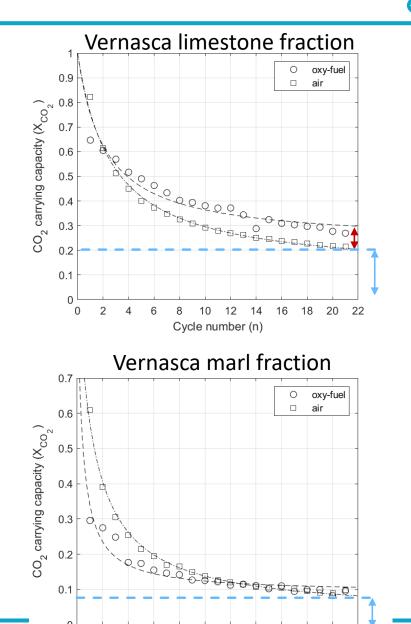
14

20 22

0 2 4 6 8 10 12 14

Cycle number (n)

0


2

4

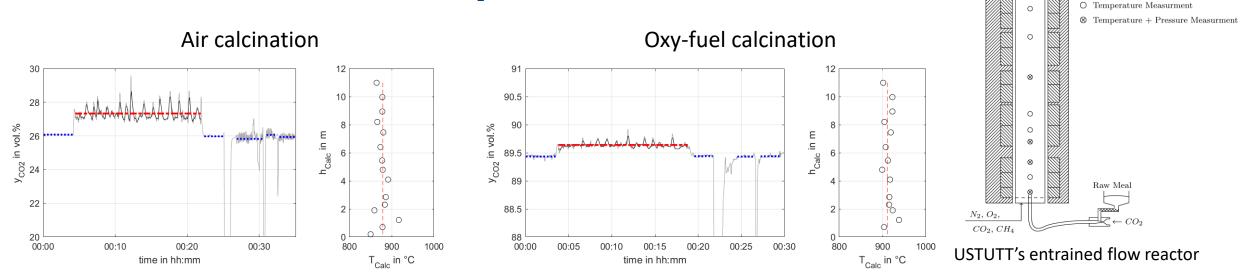
6 8

Results:

- additionally, the two main components of the Vernasca raw meal were investigated separately
- Marl fraction of the raw meal:
 - Residual activity not dependent from the reaction conditions
 - Much lower residual activity compared to limestone fraction
 - → Predominantly responsible for the deactivation of the Vernasca raw meal

0 2 4 6 8 10 12 14

20 22


16 18

Cycle number (n)

CLEAN clinKEE by calcium looping for low-CO, cement

Properties of calcination experiments:

- Test rig:
 - Electrically heated, 120 kW_{el}
 - 12.4 m height, 68 mm diameter
- Three different setups:
 - Air calcination at 860°C and CO₂ concentration of 0.26 m³/m³
 - Oxy-fuel calcination at 900°C and CO₂ concentration of ~0:90 m³/m³
 - Oxy-fuel calcination at 920°C and CO₂ concentration of ~0:90 m³/m³

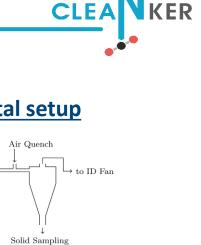
CLEANKER – Grant Agreement n° 764816

Co-funded by the Horizon 2020 Framework Programme of the European Union

Experimental setup

🕅 el. Heating

Insulation


Gas Analysis

⊗

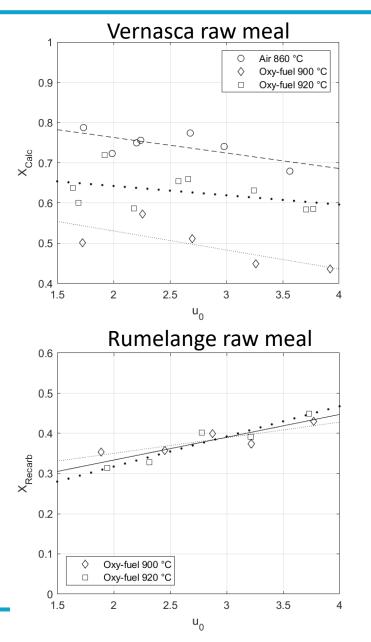
⊗

0

0

OF FAN clinKER by calcium Inoping for low-CO, cement

2. Sorbent studies at USTUTT: Calcination experiments in entrained flow reactor


Results:

Calcination Degree

- Common trends over different raw meals:
 - Calcination kinetics improve with higher temperature
 - Calcination rate increases with reaction time

Recarbonation Degree

- Common trends over different raw meals:
 - Higher ability to absorb CO₂ with increasing velocity (i.e. shorter residence time)
 - Samples from oxy-fuel calcination: no significant influence of the calcination temperature on the recarbonation observable

CLEAN clinKEE by calcium Inoping for low-CO, cemen

FR

Conclusions

- The performance of raw meals in all gas-solid reaction CaL-Systems strongly depend on their chemical and physical composition and level of aggregation of Ca/Si atoms
- Carbonation:
 - Active fraction of CaO, kinetics of carbonation, sulfation rates and belite formation rates can be determined by TG analysis
 - Carbonation rate is shown to be proportional to the CO₂ carrying capacity of the sorbent, regardless the origin of the calcined material under the experimental conditions tested
 - Marl fraction of the raw meal predominantly responsible for the deactivation of the Vernasca raw meal
- Calcination:
 - Calcination in oxy-fuel conditions requires drop tube / entrained flow apparatus
 - Within short gas-solid contact times, reasonable calcination rates possible
 - Dependency of calcination rate and surface area of the carbonate, activation energy and the standard enthalpy of CaCO₃ decomposition noticeable

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement n. 764816

This work is supported by the China Government (National Natural Science Foundation of China) under contract No.91434124 and No.51376105

<u>www.cleanker.eu</u> <u>Twitter: @CLEANKER_H2020</u> LinkedIn: www.linkedin.com/company/14834346

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

CLEANKER – Grant Agreement n° 764816

CLEAN clinKEE by calcium looping for low-CO, cemen