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A R T I C L E  I N F O   

Keywords: 
Lidar 
Georeferencing 
Point cloud registration 
UAVs 
Pose-graph optimization 
Dynamic networks 

A B S T R A C T   

With the objective of improving the registration of lidar point clouds produced by kinematic scanning systems, 
we propose a novel trajectory adjustment procedure that leverages on the automated extraction of selected 
reliable 3D point–to–point correspondences between overlapping point clouds and their joint integration 
(adjustment) together with raw inertial and GNSS observations. This is performed in a tightly coupled fashion 
using a dynamic network approach that results in an optimally compensated trajectory through modeling of 
errors at the sensor, rather than the trajectory, level. The 3D correspondences are formulated as static conditions 
within the dynamic network and the registered point cloud is generated with significantly higher accuracy based 
on the corrected trajectory and possibly other parameters determined within the adjustment. We first describe 
the method for selecting correspondences and how they are inserted into the dynamic network via new obser
vation model while providing an open-source implementation of the solver employed in this work. We then 
describe the experiments conducted to evaluate the performance of the proposed framework in practical airborne 
laser scanning scenarios with low-cost MEMS inertial sensors. In the conducted experiments, the method pro
posed to establish 3D correspondences is effective in determining point–to–point matches across a wide range of 
geometries such as trees, buildings and cars. Our results demonstrate that the method improves the point cloud 
registration accuracy (∼5× in nominal and ∼10× in emulated GNSS outage conditions within the studied cases), 
which is otherwise strongly affected by errors in the determined platform attitude or position, and possibly 
determine unknown boresight angles. The proposed methods remain effective even if only a fraction (∼0.1%) of 
the total number of established 3D correspondences are considered in the adjustment.   

1. Introduction 

1.1. Challenges in kinematic laser scanning 

Thanks to active sensing that increases the discrimination of fine 
elements, an ability to ”peer through” vegetation and directly recon
struct three-dimensional surfaces, kinematic laser scanning remains a 
key technology to provide foundational data for the creation of digital 
twins of infrastructure (both outdoor and indoor) cities as well as high- 
resolution terrain models. Together with its independence on external 
illumination as an active sensor, these properties make mobile laser 
scanning (MLS) indispensable for rapid digitalization of fine features in 
urban infrastructure and airborne laser scanning (ALS) the essential tool 
for deriving digital elevation models, precise quantification of above 
ground biomass, canopy structure, snow accumulation, detection of 

stream networks, high-resolution bathymetry, etc. However, this mod
ern technology does not come without disadvantages. Under certain 
circumstances, due to its need for direct orientation, kinematic laser 
scanning is challenging in dense urban environments, indoors and in 
areas where GNSS signal occlusions occur in general; as well as on small 
UAVs or high-altitude carriers where the influence of attitude noise on 
point cloud registration surpasses that of ranging accuracy. A standard 
processing scheme of kinematic laser scanning is depicted in Fig. 1a. As 
discussed in detail by Glennie (2007), the accuracy of individual points 
is, apart from ranging quality, affected by the forward propagation of 
errors starting from the trajectory determination by navigation sensors 
(outdoors mainly INS/GNSS), the incertitude in mounting (lever-arm, 
boresight) and the parameters related to scanner interior orientation. 
These, together with sampling density, influence the geometrical quality 
of derived elevation models (Skaloud and Schaer, 2012) or other objects 
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of interest. The prevailing source of error depends on the application and 
sensor quality. Generally, indoor and MLS applications are more influ
enced by position error due to GNSS signal occlusion; while ALS is 
generally more affected by the projection of attitude errors due to longer 
ranging distances. 

1.2. Related work 

When the accumulated errors in kinematic laser systems are higher 
than the ranging noise, the discrepancies between scans from different 
perspectives (directions, altitude, etc.) become noticeable and thus the 
need to mitigate them arises. This holds for conventional mapping as 
well as for specially designed “in-motion” calibration scenarios. In the 
latter case, the aspects of trajectory quality are usually controlled 
through planning, so the subsequent adjustment can be formulated in a 
rigorous way either with “good enough” trajectories as in e.g., Kager 
(2004); Filin (2003); Skaloud and Lichti (2006); Friess (2006); Kerstling 
et al. (2012), or with minimum assumptions on the trajectory deficiency 

as in e.g., Filin and Vosselman (2004); Hebel and Stilla (2012); Glira 
et al. (2015b). In the latter situation, trajectory corrections are often 
modeled as angular and/or position offsets that are considered time- 
invariant either per block or per strip/flight line. While these assump
tions are possibly reasonable for situations in which laser scanners are 
mounted on stabilized platforms with high quality IMUs, they do not 
hold in general. For instance, in MLS the shape of the trajectory due to 
errors in position may change quickly and non-linearly in GNSS-denied 
environments (Schaer and Vallet, 2016). For non-stabilized lasers on 
platforms such as helicopters or Unmanned Aerial Vehicles (UAVs) that 
do not necessarily fly in regular grid pattern (e.g., with a constant ve
locity and minimal angular change during flight lines), the projection of 
orientation-induced errors varies substantially within a strip. Further
more, in lightweight UAVs employing industrial-grade IMUs, the error 
signatures of point clouds created by attitude-projected errors become 
“too wavy” to be captured by such simple modelling (Vallet et al., 2020). 

In short, in many cases the deficiencies in the estimated trajectory 
cause time-dependent, non-linear, and possibly fast-changing 

Fig. 1. Overview of lidar georeferencing approaches. (a) Conventional: Kalman smoother and strip adjustment (b) Proposed: Dynamic Network with raw IMU, GNSS 
and 3D correspondences. 

Fig. 2. Overview of steps to connect trajectories via lidar pulse observations through the key point–to–point detection and matching principle. Two overlapping and 
misaligned lidar point clouds in blue and orange are related to a portion of two overlapping flight lines 1 and 2. 
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deformations of point clouds during data collection. To mitigate such 
errors one can either attempt to model their effect on the trajectory, as 
proposed for instance by Glira et al. (2016), or directly their cause as put 
forward by this contribution. We argue that while the former approach 
may work in certain scenarios, the latter is rigorous and thus can be 
applied more generally. Furthermore, and as we will demonstrate 
practically, the modelling and estimation of the cause requires a rela
tively small number of 3D tie-features to correct errors in the trajectory 
(and indirectly in the point cloud) that otherwise have complex ap
pearances in the mapping frame. 

A good selection of tie-features is an important prerequisite for the 
proposed method to be applied during general-operation as well as 
during in-motion calibration. The parameter recovery of non-calibrated 
kinematic scanning systems usually benefits from some a priory 
knowledge on the existing physical form of scanned patches (e.g., 
planarity, etc.) as in Kager (2004); Filin (2003); Friess (2006); Glennie 
and Lichti (2010). When coupled with a strong observation geometry, 
such conditioning tolerates poor initial registration quality, guarantees 
parameter observability (Skaloud and Lichti, 2006) and allows auto
mation (Skaloud and Schaer, 2007). Nevertheless, this approach is 
better suited for calibration than for general mapping where the a priory 
assumption on the presence of certain surface geometries can not be 
made. Hence, the conditioning is usually formulated as some surface to 
surface intrinsic, point to surface patch (Kerstling et al., 2012) or 
point–to–point. The last option usually stems from some evolved vari
ants of the Iterative Closest Point (ICP) algorithm, independently pro
posed by Besl and McKay (1992) and Chen and Medioni (1992) for 
registration between terrestrial scanning stations. As point–to–point 
minimization is practically simpler to deal with, it is also widely applied 
in ALS (Glira et al., 2015a). Nevertheless, this approach exhibits only a 
local linear convergence (Pottmann et al., 2006) and therefore requires a 
good approximation of the initial registration; a case that may not hold 
in UAV based ALS or MLS due to previously mentioned reasons. In the 
proposed methodology we assume that only some point–to–point cor
respondences can be found within the overlapping regions of measured 
point clouds based on the analysis of their surroundings. In this respect, 
our goal is not to propose a new algorithm to establish such corre
spondences, but rather to exploit and adapt some recent advances in this 
domain when utilizing it within the dynamic networks adjustment 
approach. Although we previously studied the potential benefits of 
employing a common modeling-estimation approach in kinematic laser 
scanning for trajectory estimation within a simulated scenario (Rouzaud 
and Skaloud, 2011), the proposed adjustment approach involves basic 
steps introduced within our former work in photogrammetry (Cucci 
et al., 2017b) while expanding it to make use of 3D point–to–point 
correspondences (derived from an approximated point cloud) instead of 
2D tie-points derived from images. 

1.3. Proposed approach 

We adapt the final stage of the formerly described kinematic laser 
scanning registration methodology (Fig. 1a). There we propose to utilize 
raw inertial and GNSS observations together with a percentage of the 
laser measurements within the overlapping point cloud regions in a 
common adjustment step as schematically shown in Fig. 1b. Thanks to 
the rigorous modeling of observations and error sources on the sensor 
and system level that this approach yields, an optimal registration of the 
whole trajectory is achieved. The obtained optimal trajectory (and 
possibly other system parameters) are then applied in the final regis
tration (georeferencing) of the measured point clouds. 

The remainder of this work is organised as follows. In Section 2 we 
describe the novel aspects of the methodology depicted in Fig. 1b. These 
consist in the algorithm to extract point–to–point correspondences from 
overlapping areas between scans and in the way dynamic network fuses 
those with raw inertial and GNSS observations to obtain an optimal 
trajectory. In Section 3 we describe the design and implementation of 

empirical tests that were established to assess the merits of the proposed 
method with respect to high-quality references in position, attitude and 
final registered point clouds. In Section 4 we provide a reference 
implementation of the Dynamic Network solver employed in this work 
and discuss the results of conducted experiments: we first consider a 
nominal scenario where we correct the registration errors (mainly) 
caused by the noise of the MEMS-IMU attitude over distances that are 
expected to be achieved by modern UAV based laser scanners (Riegl, 
2021). We then study the possibility of recovering some calibration 
parameters, such as an imperfect lidar boresight, within the adjustment 
process. Finally, we look at the capacity of the method to correct errors 
in the point cloud registration for a trajectory where GNSS outages 
occur. 

2. Methodology 

This section describes how lidar point–to-point correspondences are 
identified between overlapping point clouds and how these can be 
included in a dynamic network adjustment to determine continuous, 
non-rigid and optimal correction of the whole trajectory. 

2.1. Point detection and description 

Preprocessing:the overlapping region between point clouds from 
two different flight lines is extracted and divided in rectangular tiles of 
tractable size. This is done by splitting the two point clouds in smaller 
rectangular grids and keeping only the tiles where points of both clouds 
are present. The steps that follow, namely detection, description and 
matching, are performed independently on each pair of tiles. 

Point detection:the 3D key point detection step aims at selecting 
salient points from a point cloud (edges, corners) where their distinc
tiveness with respect to their neighborhood is expected to ease matching 
with corresponding points in other point clouds. We do not aim to design 
a detector, rather we have evaluated several state-of-the-art detectors on 
close-range ALS data (ranges < 300 m) and applied the most suitable 
one. We have selected the ISS (Intrinsic Shape Signature) algorithm 
(Zhong, 2009) to detect key points because of its robustness and per
formance compared to the other algorithms tested, as mentioned in Salti 
et al. (2012). ISS was originally designed to be a descriptor but its first 3 
steps can be used independently to detect key points. We use the open- 
source implementation shipped with the Point Cloud Library (Rusu and 
Cousins, 2011), which enables the detection of key points in a few sec
onds for one tile. 

ISS employs the following steps to detect key points:  

1. For every point, its spherical neighborhood is extracted and a weight 
(inversely proportional to its number of neighbors) is computed. The 
radius of the spherical neighborhood to extract is related to the 
typical size of geometric elements one wants to observe. In denser 
ALS clouds it is of the order of magnitude of one meter to include 
cars, fences, trees, etc.  

2. For every point, the covariance matrix of its neighborhood is 
computed and its three eigenvalues are extracted.  

3. Points that show high ratio in the successive eigen values of their 
covariance matrix are selected as key point candidates. 

The complete formulation of the algorithm can be found in the 
original publication as well as in the PCL source code (Rusu and Cousins, 
2011). The detection is performed separately on the two point clouds of 
each tile pair, returning for each of these pairs two independent sets of 
key points. 

Point description:the aim of point description step is to compute a 
lower dimensionality representation of a point and its surroundings or, 
in other words, to encode its (geometric) neighborhood into a feature 
vector so that similar structures have similar feature vectors. It is then 
possible to match points by comparing their feature vectors using a 
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distance metric, e.g., the L2 norm of the difference of the two 
descriptors. 

In the case of close-range ALS over a mixed natural-built environ
ment, LCD (Pham et al., 2019) showed the best descriptiveness and 
robustness, the reason for which it was selected in our final imple
mentation. Other descriptors are compared in Appendix A. LCD is a Si
amese neural network originally designed for 2D to 3D matching 
between images and point clouds but the neural network responsible for 
description of 3D points can be used independently. LCD is able to 
establish lidar correspondences on a diverse range of surfaces (e.g., man 
made constructions and vegetation). We used the open source pre- 
trained version of the network (trained on indoor point clouds). LCD 
works as follows: given a selected point, its spherical neighborhood is 
extracted and for each neighbor, its relative coordinates are computed 
taking the key-point as the origin of the sphere, making the descriptor 
translation invariant. The neighborhood is then fed to the neural 
network, which outputs a feature vector for the point. The description is 
performed on the two point clouds of each tile pair and outputs one 
feature vector for each point. 

2.2. Point matching 

The matching step aims at establishing the point–to–point corre
spondences between the two tiles of each pair given the sets of key- 
points and the point-wise feature description. It follows the steps 
below, performed independently on every pair of tiles:  

1. For every key-points in the first tile, the Euclidean distance between 
its feature vector and the feature vector of every points in the second 
tile is computed.  

2. A correspondence is built for every key-point by selecting the point 
with the smallest distance in feature space, arguably implying the 
highest geometric similarity, as corresponding point. 

Note that contrary to common matching procedures we compare 
key-points with all other points from the second cloud (instead of key- 
points to key-points). This is because when matching key-points to 
key-points, the detector must be able to retrieve the exact same key- 
points between the two point clouds of a scene. This characteristic is 
called detector ”repeatability” (Salti et al., 2012) and it is hard to obtain 
in practice, especially with ALS data because of the difference in laser 
sampling density and the variable viewpoints at which ALS flight lines 
are flown. The method proposed here mitigates the dependency on de
tector repeatability, at the price of obtaining a larger number of candi
dates and subsequently increasing the risk of outliers. The matching 
time is also increased but stays comparable to the points detection and 
description time, two to three minutes per tile in our case.  

3. The set of correspondences is filtered using RANSAC algorithm 
(Fischler and Bolles, 1981) with the goal to remove as much outliers 
as possible. The method is chosen for its efficiency in processing 
moderately to highly contaminated datasets. 

The particular RANSAC algorithm employed in this work is based on 
the following assumptions: in ALS, the error in vehicle position and 
attitude will vary in time during the flight, causing georeferencing errors 
to vary in the point cloud along the flight lines. This implies that the 
misalignment between two point clouds is not rigid and changes along 
the overlapping region. The amplitude of these changes is nevertheless 
limited within one tile (e.g., 50 by 50 meters) since this is scanned in a 
few seconds (at the most) by the aerial platform. During such a short 
time span the navigation errors are i) mainly caused by IMU noise, ii) are 
strongly correlated in time and iii) have a similar impact on the entire 
tile. This observation allows us to establish the following statement: 
given a set of contaminated correspondences, there exists a 6 DoF 
transformation applicable within the period of few seconds of a tile that 

approximately aligns the correct correspondences, but which does not 
align the incorrect correspondences (outliers). Additionally, the inliers 
are only approximately aligned, e.g., because of non-rigid misalignment 
between the two tiles and because of the discrete nature of the point 
cloud. This makes it necessary to use a qualitative criteria to separate 
inliers and outliers. Formally, given the correct 6 DoF transformation (T 
and R) and two points of a correspondence (pa and pb), this corre
spondence is classified as an inlier if the following condition is true: 

||Rpa +T − pb|| < τ. (1)  

In other words, a correspondence is classified as an inlier if the 
misalignment between the two points after applying the transformation 
is below a certain threshold τ. The value of the threshold is chosen such 
that it is above the expected amplitude of the non-rigid component of the 
misalignment at the scale of a tile. As a result, the non-rigid nature of the 
alignment is accounted for in the final set of correspondences (some
thing that is not possible using ICP). The detailed version of the RANSAC 
algorithm is presented in Appendix B. 

2.3. Dynamic network with lidar constraints 

Dynamic Networks (DNs) are probabilistic graphical models useful 
for solving a wide class of sensor fusion problems in inertial navigation, 
photogrammetry and laser scanning. They are an extension of conven
tional geodetic networks and were first introduced in (Colomina and 
Blázquez, 2004; Skaloud et al., 2018). DNs share many similarities with 
those formulations of graph-SLAM (Simultaneous Localization and 
Mapping) which consider raw inertial observations, see for example 
(Cioffi and Scaramuzza, 2020; Campos et al., 2021). 

In DNs, as in graph-SLAM, a graph is constructed where the nodes are 
the unknown body frame position and orientation at discrete time in
stants, Γn

b,t , calibration parameters (e.g., the lidar boresight, Rb
L) and 

inertial sensor biases. Edges encode constraints between the connected 
unknowns given by sensor measurements. This graph is a graphical 
model, known as factor-graph (Loeliger et al., 2007), of the joint prob
ability distribution of the observed sensor measurements given the un
knowns. An optimal estimator for the unknowns can be obtained by 
determining the values that maximize the joint likelihood of the sensor 
measurements. 

Typically, we assume that all the random effects are zero mean and 
Gaussian distributed. In this setting each edge evaluates the difference 
between the predicted sensor measurement given the connected un
knowns (via a measurement model), and the observed one. The max- 
likelihood estimator for the unknowns is then obtained minimizing all 
such differences (residuals) by solving a non-linear weighted least- 
squares optimization problem. Nowadays, solvers originated in the ro
botics community, such as (Kümmerle et al., 2011), leverage on the 
graph representation of the least-squares problem and exploit sparse 
linear algebra methods (Davis, 2006) to solve it efficiently, allowing us 
to post-process real-world datasets in minutes or hours at most. 

In this work we extend the approach proposed in (Cucci et al., 
2017b) to consider lidar correspondences, as it will be discussed in the 
following. 

2.3.1. Lidar correspondences error model 
In order to consider lidar point–to–point correspondences in DNs, it 

is necessary to specify the measurement model for one such corre
spondence. Let us assume that the algorithm presented in Sections 2.1 
and 2.2 has established that a certain point p1, found in one point cloud, 
corresponds to point p2, found in an overlapping one. These points can 
be traced back to the original lidar measurements, corresponding to two 
3D vectors vL

1 and vL
2 , expressed in lidar frame L, acquired at t1 and t2. 

Since p1 and p2 are corresponding points, vL
1 and vL

2 should match once 
expressed in the navigation frame n. This can be formally expressed as 
follows: 
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Γn
b(t1)Rb

LvL
1 − Γn

b(t2)Rb
LvL

2 = 0 + ξ, ξ ∼ N (0, σI3×3). (2)  

where Γn
b(t) ∈ SE(3)1 is the continuous time body frame position and 

orientation (pose) at time t and Rb
L is the lidar boresight. Here, the 

product operator corresponds to the usual composition of rigid trans
formations. ξ is a zero-mean Gaussian noise whose variance has to be 
adjusted depending on the point cloud density and the assumed statistics 
of the error in the generated correspondences. Please see Fig. 3 for a 
graphical representation of Eq. 2 and the discussions in Section 3.2 and 
4.1 for the matching-filtering threshold and the choice of ξ, respectively. 

In DNs, body frame poses are kept at discrete time instants, i.e., Γn
b,t , 

synchronous with the IMU. Since the rate of typical lidar sensors is 
substantially higher with respect to IMUs, t1 and t2 in general do not 
match the timestamp of any IMU measurement and thus Γn

b(⋅), as it 
appears in Eq. 2, is not available in general. Thus, we replace Γn

b(t1) and 

Γn
b(t2) with two new poses, Γ̃

n
b,t1 

and Γ̃
n
b,t2 , which are constrained to lie on 

the geodesic in SE(3) between the nearest poses available in the DN. This 
approach is described in detail in (Cucci et al., 2017b, Section 4.2), 
where it was employed to handle image observations at arbitrary 
timestamps, and in (Ceriani et al., 2015) in the context of mobile laser 
scanning. Eq. 2 thus becomes 

Γ̃
n
b,t1 Rb

LvL
1 − Γ̃

n
b,t2 Rb

LvL
2 = Rb

LvL
1 −

[
Γ̃

n
b,t1

]− 1
Γ̃

n
b,t2 Γb,t1

b,t2⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟

Rb
LvL

2 = 0 + ξ, (3)  

where in the second line it has been rearranged to show that the intro
duced measurement model only constrains the relative body frame po
sition and orientation between t1 and t2. Eq. 3 is formulated for each 
couple of matched points and builds an edge in the DN graph for each 
point–to–point correspondence, as it will be discussed in the following. 

2.3.2. Dynamic network structure 
The resulting DN structure considered in this work is presented in 

Fig. 4, where the circles represent unknowns, and the squares represent 
measurement edges, respectively. Five types of edges are considered:  

1 p: GNSS position measurements,  
2–3 ω and f: angular velocity and specific force edges. Here, IMU pre- 

integration (Lupton and Sukkarieh, 2011) is employed in order to 
reduce the overall number of unknowns in the graph without loss 
of information. The exact formulation is presented in (Cucci and 
Skaloud, 2019), which extend classical IMU pre-integration ap
proaches to consider a gravity model and the Earth rotation, thus 
removing limitations on the size of the mapped area while mak
ing it also applicable to inertial systems of higher quality. The 
inertial sensor biases and the related stochastic models are 
handled as in (Cucci et al., 2017a).  

4 0: zero-observation edges (edges for which no actual sensor 
measurement exists) that constrain Γ̃

n
b,⋅ to lie on the geodesic in 

SE(3) connecting adjacent, IMU synchronous, poses. Please refer 
to (Cucci et al., 2017b, Section 4.2).  

5 L: lidar correspondences, the error model being defined in Eq. 3. L 
edges connect two poses nodes, corresponding to Γ̃

n
b,t1 

and Γ̃
n
b,t2 

and, optionally, the lidar boresight node. 

For further details, the reader is invited to refer to the referenced 
publications and to the released source code, see Section 3.7 below. 

It is worth nothing that the actual 3D coordinates of the lidar point in 
navigation frame do not appear as unknowns in the proposed DN, c.f., 
Fig. 4, resulting in reduced computational complexity. This is different 
with respect to classical image-to-image (or point–to–point) corre
spondences commonly employed in bundle adjustment or in visual 
SLAM where an additional unknown is considered for all observations 
referring to the same point in object space. 

3. Experiments 

In this section, we describe the particular setup of the data acquisi
tion and details of the data processing. We also present experiments that 
were conducted with the aim of highlighting the limitations of trajectory 
determination using lightweight IMUs via Kalman filtering and optimal 
Smoothing (KS)2, as well as their impact on the georeferencing of the 
measured point cloud. Moreover, we seek to demonstrate the potential 
benefit of employing the proposed point–to–point lidar correspondences 
together with raw navigation in dynamic networks. 

Fig. 3. Graphical representation of the geometrical constraint that can be 
formulated if the laser point p1, belonging to one point cloud, has been matched 
with p2, belonging to an overlapping one. The unknowns, sensor measurements, 
and random variables appearing in Eq. 2 are shown in orange. 

Fig. 4. A simplified Dynamic Network in which only one correspondence edge 
L is shown (in orange) with the optional lidar boresight node (in blue). The 
nodes and edges required to handle the stream of GNSS and inertial measure
ments are shown in black. For simplicity the inertial sensor bias nodes are 
not displayed. 

1 The special Euclidean group of dimension 3, SE(3) = SO(3)× R3. 

2 More precisely, with the term “Kalman smoother” we refer to the Rauch- 
Tung-Striebel smoother (Rauch et al., 1965), abbreviated with “KS” in the 
following for the sake of brevity. 
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3.1. Data acquisition 

For the experiments, we use the airborne dataset presented in (Vallet 
et al., 2020). There, reference and lower-cost sensors (lidars, IMUs and 
cameras) were rigidly mounted together on a vibration dampened as
sembly and installed in a helicopter. The common mounting provides 
the same flight conditions for all sensors (temperature, dynamics, height 
of flight, GNSS availability). In our experiments, we consider only part of 
those sensors, namely the reference lidar and two (reference and low- 
cost) IMUs. The reference lidar is a medium range VQ-480 (Riegl). 
The reference IMU is a navigation grade AIRINS (iXblue) while the small 
MEMS-IMU is a Navchip v1 (Thales), the performance of which is similar 
to popular commercial UAV-grade INSs such as the APX15 (Applanix) 
(see Vallet et al. (2020) or Clausen and Skaloud (2020) for a detailed 
evaluation). A scheme of the experimental mounting is shown in Fig. 5 
and specifications of all sensors are presented in Table 1. 

During the flight, the helicopter flew profiles close to the ground to 
mimic a typical UAV flying altitude and at a speed similar to that of a 
small multi-copter (around 12 m/s) over an area featuring various 
terrain types including urban and rural areas, forest, croplands, roads, 
railroads and power lines. We focus on two successive flight lines 
depicted in Fig. 6 that are approximately 2 km long, for a total flight 
time of around 6 min. The overlapping sections where correspondences 
can be established are depicted in the same figure. The swath width of 

each flight line is about 180 m and the side overlap is close to 40%. It is 
important to mention that the reference lidar is not a small, UAV grade 
sensor and thus generates a higher point cloud density when flown at a 
typical UAV flight altitude. To mitigate this aspect, the helicopter was 
flown at 230 meters above ground level (AGL) while small UAV-based 
lidars are generally flown below 180 m AGL (see for example mini
VUX (Riegl, 2021)). This results in point clouds with ground densities 
varying between 35 pts/m2 and 50 pts/m2 on bare ground. Similar point 
cloud densities could be obtained by flying a UAV at a slightly lower 
speed (e.g., 10 m/s) and between 100 m and 160 m AGL. This density 
corresponds to a point cloud GSD (average distance between one point 
and its closest neighbor) of between 10 cm and 20 cm. 

Thanks to this particular setup, it is possible to obtain a reference 
dataset that is based on a carrier phase differential post-processed (PPK) 
trajectory generated with the AIRINS coupled with the medium range 
lidar. The trajectory integrated with this kind of IMU shows attitude 
errors typically one order of magnitude lower than those based on 
MEMS-IMUs, e.g., <0.003◦ see Vallet et al. (2020). This ensures low 
errors in the subsequent georeferenced point cloud (⩽5 cm). This dataset 
was considered as the ground-truth reference for our experiments due to 
its high accuracy. 

A “UAV-grade” data set was also generated with the setup described 
above. This was accomplished by employing the small MEMS-IMU (as is 
used on UAVs) to estimate the trajectory used for the subsequent 
georeferencing of laser observations. Albeit based on a larger lidar, the 
newly introduced line of UAV-targeted laser scanners from the same 
manufacturer (miniVUX) is reported to have ranging errors within PPK 
noise level (i.e. < 2–3 cm) at up to ∼250 m AGL (Riegl, 2021). Further, 
as the attitude quality based on pre-calibrated NavChip data is similar to 
that of APX15 (Vallet et al., 2020) used on such scanners (Riegl, 2021), 
we obtain a representative “UAV-grade” point cloud in terms of 
geometrical accuracy through applying the standard georeferencing 
procedure. This quality is then compared to that obtained via the pro
posed methodology. 

3.2. Data processing 

In all cases the absolute position and velocity observations are ob
tained via PPK from Javad multi-constellation and multi-frequency re
ceivers (rover and master) using GrafNav (Novatel) software. Lever- 
arms between all sensors on the system are determined within 1 cm 
following the laboratory calibration approach of Vallet and Skaloud 
(2004). The processing steps for the standard approach and the dynamic 
network approach with correspondences are summarized in Fig. 1a and 
Fig. 1b, respectively. For the sake of clarity we refer to the standard 
trajectory estimation approach based on the optimal Kalman smoother 
as “KS“ and to the dynamic network approach as“DN” or “DN + C”, the 
latter being the DN which considers lidar correspondences (“C”) as 
additional observations. 

In the KS approach, we generate trajectories via an optimal 
smoothing to integrate IMU readings in a loosely coupled manner with 
vehicle PPK position and velocity. We use the APPS software (iXblue) 
when integrating AIRINS reference data and Posproc (Applanix) with 
internally designed filters for the MEMS-IMU data. The lidar’s boresight 
matrix is estimated with Riprocess (Riegl), which produces practically 
the same value as estimated with LIBOR (Skaloud and Schaer, 2007). 
These parameters are estimated using separate flight data and reused for 
every dataset (with the exception of Case 3). The boresight between the 
AIRINS and the MEMS-IMU is determined as a mean value that mini
mizes the attitude differences between the two trajectories obtained by 
applying the Kalman filtering and optimal smoothing to data from both 
IMUs over almost 1 h. While the boresight determined this way may be 
slightly incorrect due to residual misalignments in the trajectory 
determined with the MEMS-IMU, it ensures the best results for all “KS” 
trajectories in later comparisons. We thus stay on the “safe side” when 
comparing reference methodologies with the proposed one. Finally, the 

Fig. 5. Illustration of the mounting used to capture the data.  

Table 1 
Manufacturer or confirmed specifications (Vallet et al., 2020; Clausen and 
Skaloud, 2020).  

IMUs Gyro drift [◦/h] Accel. drift 
[mg] 

RP/Y acc. 
(PPK) [◦] 

XYZ acc. 
(PPK) [m] 

AIRINS <0.01 <0.25 0.002/0.005 ref 
Navchip 20 2 0.03/0.18 <0.03 
Lidar Beam divergence 

[mrad] 
Point meas. 
rate [kHz] 

Scan rate 
[Hz] 

Return mode 

VQ-480 0.27 200 100 multi  

Fig. 6. Flight lines and position of the overlapping areas where correspon
dences were established. 
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point cloud is georeferenced based on the previously estimated trajec
tory and mounting parameters using an in-house software, LIEO (Ska
loud, 2017). 

In the DN + C approach (Fig. 1b), the two first steps are common to 
the KS approach, where an approximate trajectory and subsequent point 
cloud are obtained using a Kalman smoother (or using a dynamic 
network without lidar correspondences). We then establish correspon
dences as detailed in Sec. 2.1 and 2.2. For the preprocessing, a size of 50 
by 50 meters was used to tile the point clouds. For the ISS key point 
detection method, point neighborhoods are extracted with a support 
radius of 1 m and key points are selected using an eigenvalue ratio of 0.5, 
which enables the extraction of key-points from a variety of elements 
(man made and vegetation). For the LCD key-point description method, 
point neighborhoods are extracted with a support radius of 2 meters to 
include typical terrain features (e.g., building sections, cars, etc.) that lie 
within the neighborhood of the described points. A threshold of 25 cm 
(1.2–2.5× GSD) was selected for the RANSAC algorithm. This threshold 
is important to perform non rigid matching and has been selected in 
consideration of the dynamic of the flight, the GSD and the size of the 
point cloud tiles. As will be shown later, such a threshold is suitable for 
the dynamic of standard UAV flights as well as for challenging scenarios 
such as during GNSS outages or in the case of miscalibrated boresight 
matricies, where trajectory estimation is less accurate and larger mis
alignments occur. It is important to note that the proposed approach is 
permeable to variations in the choice of the threshold to some extent. 
Similar behavior in the corrections were observed when taking a 
threshold twice as large, of 50 cm (corresponding to 2.4–5× GSD) by 
adapting the corresponding weighting in the Dynamic Network, re
flected by the parameter σ in Eq. 2. On the other hand, taking a smaller 
threshold might lead to a “pseudo rigid” selection of the correspon
dences. In this case the the Dynamic Network will still be able to correct 
with those correspondences but might show patterns on certain tiles, 
when the non-rigid component of the misalignment is not brought into 
the correspondences due to a too severe pruning by RANSAC. 

Once 3D point–to–point lidar correspondences are generated, they 
are processed in a single pass of the DN along with raw inertial obser
vations (angular rate and specific force), and GNSS positions. After such 
“DN + C” adjustment, the point cloud is georeferenced from scratch 
based on the adjusted trajectory in LIEO for comparison with the 
reference. As noted above, trajectories can also be estimated in the dy
namic network without using lidar correspondences (“DN”). We inves
tigate the proposed methodology within the following use cases and 
scenarios. 

3.3. Case 1: nominal (optimal GNSS reception) 

The trajectories described in this section are generated under optimal 
GNSS signal reception to serve as reference trajectories and point clouds 
obtained in ideal flight conditions. We define five scenarios:  

• Trajectory 0 R: reference trajectory, employing navigation grade INS 
and KS approach. All other trajectories and point clouds will be 
compared to this “ground-truth” dataset to estimate their respective 
accuracy.  

• Trajectory 1 KS: employing MEMS-IMU (as that employed in UAVs) 
and KS approach.  

• Trajectory 2 DNC: employing MEMS-IMU (as that employed in 
UAVs) and DN + C approach. This dataset is obtained following the 
methodology depicted in Fig. 1b. We establish correspondences on 
the UAV grade point cloud from trajectory 1 in the area depicted in 
Fig. 6. In total, ∼ 62′000 correspondences are generated and used to 
constrain the adjusted trajectory.  

• Trajectory 3 DN: employing MEMS-IMU (as that employed in UAVs) 
and DN approach (without correspondences). We produce this tra
jectory to be able to assess separately the impact of the lidar corre
spondences and the impact of the DN itself compared to a Kalman 
smoother. 

• Trajectory 4 DNC (from DN): employing the same procedure as tra
jectory 2 DNC except that correspondences are generated from point 
clouds from trajectory 3 DN instead of trajectory 1 KS. The purpose of 
this setup is to show that the proposed approach does not rely on 
standard KS to generate the approximate trajectory and point cloud 
and that the DN can be used at both trajectory estimation steps. 

3.4. Case 2: nominal with reduced set of point–to–point correspondences 

In this case we aim to assess the performance of the proposed pro
cedure with a sparser set of lidar correspondences. This is to consider 
mapping an area with fewer geometric features to match, for example in 
a built up area with bare ground and without vegetation. To do so, we 
down-sample the set of point–to–point lidar correspondences used in T.2 
DNC from 50% to 0.1% of its initial size. We finally estimate a trajectory 
and subsequent point clouds for each previously described scenario and 
estimate the respective attitude and georeferencing errors. 

3.5. Case 3: Boresight self-calibration 

This scenario aims at assessing the ability of the method to calibrate 
the lidar boresight, Rb

L, “in one go” along with the trajectory determi
nation, despite the sub-optimal geometry (two opposite flight lines at 
the same altitude). The following trajectories and subsequent point 
clouds will be compared:  

• Trajectory 5 KSB: employing the same technique as trajectory 1 KS, 
but without using the pre-calibrated boresight. To do so, each 
boresight angle is set to 0∘ when registering the point cloud in LIEO.  

• Trajectory 6 DNB: employing the same technique as trajectory 2 
DNC, but without using the pre-calibrated boresight. The boresight is 
considered as a supplementary unknown parameter to estimate by 
the DN with an initial value of 0∘. Please see Fig. 4, in blue. 

3.6. Case 4: GNSS outage 

In this case we are interested to assess the ability of the proposed 
method (DN + C) to generate trajectories and point clouds of a higher 
accuracy under challenging scenarios such as during a GNSS outage.  

• Trajectory 7 KSo: employing the same technique as trajectory 1 KS, 
but with a simulated GNSS outage impacting the two flight lines 

Table 2 
Overview of evaluated trajectories and their parameters.    

Trajectory 
Name 

Est. 
Method 

% 
Corresp. 

Known 
bore. 

GPS 
outage 

CASE 
1 

Nominal T.1 KS KS n.a. ✓ 
T.2 DNC DN 100% ✓ 
T.3 DN DN 0% ✓ 

T.4 DNC 
(from dn) 

DN 100% ✓ 

CASE 
2 

Nominal 
with min. 
constrain 

∼T.4 DNC 
(from dn) 

DN 100% 
→0.1% 

✓ 

CASE 
3 

Boresight 
calibration 

T.5 KSB KS n.a. 
T.6 DNCB DN 100% 

CASE 
4 

GNSS 
outage 

T.7 KSo KS n.a. ✓ ✓ 
T.8 DNCo DN 100% ✓ ✓ 
T.9 DNCo1 DN 100% ✓ ✓ 

(single 
FL) 

T.10 DNo DN 0% ✓ ✓  
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during ∼ 60 seconds each (2 min in total). This corresponds roughly 
to a 750 m long area without GNSS signal reception that could occur 
for example when operating in obstructed corridors, urban canyons 
or due to radio signal interference, or possibly jamming.  

• Trajectory 8 DNCo: employing the same technique as trajectory 2 
DNC, but with the same simulated GNSS denied area as trajectory 7 
KSo.  

• Trajectory 9 DNCo1: employing the same technique as trajectory 2 
DNC, but with a GNSS outage impacting only one of the two flight 
lines. This is to simulate a perturbation due to close physical 
obstruction (building, mountain) or a temporal electromagnetic 
disturbance for example. This scenario is considerably different from 
trajectory 8 DNCo because for all correspondences, only one of the 2 
points is affected by the outage.  

• Trajectory 10 DNo: employing the same technique as trajectory 3 
DN, but with the simulated GNSS outage of 60 s over the two flight 
lines. We consider this case to assess the performances of DN 
(without correspondences) with respect to KS. 

Table 2 summarizes the different scenarios of trajectory estimation 
and their respective parameters. 

3.7. Reference implementation 

We release a reference implementation of the DN solver employed in 
this work. The code to compute all “DN” trajectories referenced in 
Table 2, along with the necessary data, is available at3. This imple
mentation is based on the ROAMFREE sensor fusion framework (Cucci 
and Matteucci, 2014b; Cucci and Matteucci, 2014a), a general purpose, 
open-source dynamic network solver built on the top of the widely 
employed g2o least-squares solver (Kümmerle et al., 2011) and sparse 
linear algebra libraries (Davis, 2006), allowing the adjustment of, for 
example, trajectory 2 DNC, within a few minutes on a standard desktop 
computer. 

4. Results and analysis 

The dataset generated with navigation grade INS/PPK and precise 
airborne scanner (T.0 R) serves as the ground-truth reference with 
respect to which all other generated datasets are compared. It is 
important to keep in mind that the same lidar measurements are used in 
every dataset but the IMUs and methods used in georeferencing vary. 
This means that point clouds registered using different trajectories 
contain exactly the same number of points and that, for each point in 
these point clouds, the corresponding point in the ground-truth can be 
(easily) recovered. Thus, the “mapping” quality can be evaluated by 
comparing the difference between the coordinates of each point with the 
reference. 

4.1. Case 1: nominal (optimal GNSS reception) 

Correspondences: Correspondences are established following the 
methodology from Sections 2.1 and 2.2 (Fig. 2) over an area depicted in 
Fig. 6 independently on two datasets. First, on the UAV-grade trajectory 
T.1 KS (to be used in T.2 DNC) and second, on the T.3 DN (to be used in 
T.4 DNC (from DN)). 

In both cases, the overlapping area is split into 91 tiles of 50 by 50 
meters. Before filtering, between 200 and 1200 correspondences are 
retrieved per tile in built-up zones, while for tiles with vegetation be
tween 1’000 and 6’000 correspondences are retrieved. This is due to the 
higher number of key points identified by ISS in vegetation. Overall, 
∼50’000 correspondences are kept after filtering. We trace the two 
correspondence sets in the ground-truth point cloud to estimate the 

correspondence quality and estimate the error distribution as shown in 
Fig. 7. 

First of all, we can see that the error distribution is almost identical in 
the two cases which means that the methodology for establishing the 
correspondences is not particularly dependent on method for the initial 
trajectory estimation. We observe that, after outlier rejection, 89 of the 
91 tiles have correspondences discrepancies below 20 cm (∼ 1–2× point 
cloud GSD), which we consider as a successful run of the RANSAC al
gorithm. In particular, most of the correspondences have an error be
tween 10 cm to 20 cm. This is mostly due to the GSD of the point cloud 
and the limited characterization of LCD that can not efficiently separate 
points that are very close when projected in feature space (due to high 
similarity of their neighborhood). In other words, the mean fit is directly 
related to the point cloud GSD (in our case 0.1–0.2 m). Although 
increasing the sampling density could possibly allow detecting closer 
correspondences and thus obtaining stronger constraints between tra
jectories, we will demonstrate later that it is not necessary. In both cases, 
the mean error of retrieved correspondences is 15.6 cm with a 1σ 
dispersion of 7.6 cm. As 15 cm corresponds to the average point cloud 
GSD, this confirms the suitability of choosing the GSD as a 1σ value to 
weight correspondence constraints in the dynamic network (Fig. 4, right 
and Eq. 2). 

Trajectory: To estimate the accuracy of the trajectory, we compute 
the error in position (East, North, Up) and attitude (Roll, Pitch, Yaw), 
with respect to the reference. The impact of correspondences on the 
position correction is expected to be limited within the nominal (no GNSS 
outage) scenario compared to the effect on attitude. This is because, 
under such conditions, and with well calibrated system parameters, the 
main source of error affecting the point cloud georeferencing is the 
attitude obtained from small MEMS-IMUs (Glennie, 2007). Indeed, the 
error in vehicle position with correctly determined differential carrier- 
phase ambiguities (PPK) is lower than the precision of correspondences. 

We can see in Table 3 that the DN estimates the position slightly 
better than the Kalman smoother with respect to the reference. Overall, 
the position mean error between T.1 and T.3 appears to be reduced by a 
factor of 1.7 (from 2.3 cm to 1.4 cm) but the respective differences are 
close to the reference precision. Hence, the inclusion of correspondences 
have practically negligible influence on the airborne position for both 
T.2 and T.4 against T.3. This is somewhat expected since, as explained 
before, for the given GSD, the mean accuracy of correspondences is 
worse than vehicle position under PPK/INS. 

However, Fig. 8 shows that using correspondences as input to the DN 
leads to a significant reduction of the error for all three attitude angles. 
Comparing the standard Kalman smoother (T.1) to the proposed 
approach (T.2), the last three columns of Table 3 show that the smallest 
correction occurs in the roll angle, with a 1.6× reduction of the RMSE 
(from 0.037◦ to 0.023◦). This relatively small improvement is related to 
the fact that the absolute magnitude of the roll error is smaller compared 
to that of pitch and yaw, leaving less room for improvement. The im
provements on pitch and yaw are more substantial. Pitch RMSE is 
reduced from 0.060◦ to 0.021◦ while Yaw RMSE is reduced from 0.190 

Fig. 7. Correspondence normalized error distribution. The actual interval of 
point cloud GSD is depicted in dashed black lines. 

3 https://github.com/TOPO-EPFL/DN-LiDAR 
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to 0.051; a reduction factor of 3× and 3.7× respectively. Considering the 
fact that attitude quality improvement is proportional to the square (or 
even the cube) of the IMU size and weight (as well as cost), such 
improvement is substantial. Also, the ability to correct angles with larger 
initial errors is critical as they are responsible for most of the georefer
encing errors (in the nominal mapping scenario with optimal GNSS 
signal reception). In this particular geometry, those larger angular errors 
cause the greatest discrepancies between the two flight lines and become 
observable with the inclusion of the 3D-lidar point–to–point corre
spondences. Pitch and yaw errors are observable along track (long 
overlapping area) while roll errors are visible across track (short over
lapping area). Comparing T.2 and T.4 (i.e., the two DNC approaches 
based either on KS or DN to generate approximate trajectory and point 
clouds), we can see both reaching the same level of agreement with 
respect to the reference, despite their respective differences in initial 
trajectory errors and initial point cloud misalignment within the over
lapping section. In this respect the error reduction is higher between 
both trajectories from the dynamic network (T.3 vs. T.4 as purple vs. 
yellow in Fig. 8), which demonstrates that the use of correspondences 
provides the improvements in attitude estimation in this framework 
even with less complex inertial error modeling (e.g., with respect to 
Posproc) (which is the primary cause of attitude differences between T.1 
and T.3 with respect to the reference). 

Point cloud: As we have observed that the attitude estimation is 
greatly improved by the use of lidar correspondences within the dy
namic network with respect to T.1, we expect the DN + C trajectory to 

deliver a point cloud of better quality than the one from the Kalman 
smoother. To verify this, we estimate the point-wise georeferencing 
error by estimating for every point, the distance with respect to the 
corresponding point in the reference point cloud. 

The results are visible in Fig. 9. On flight line 1, when using the 
standard KS approach (T.1 KS, in blue), the maximum georeferencing 
error is about 1.1 m and most of the points have errors between 15 cm 
and 50 cm (1× to 3× GSD). These errors are significantly reduced when 
using the DNC methodology. Considering T.2 DNC, most of the points 
are georeferenced within 5 cm to 15 cm (0.3× to 1× GSD). The 
maximum georeferencing error is also greatly reduced, to 28 cm in this 
flight line. Comparing the two DNC cases (T.2 and T.4), georeferencing 
errors are almost identical due to similar trajectory improvements (see 
Table 3). Finally, the errors are much larger using the dynamic network 
without correspondences (T.3 DN, yellow), which demonstrates that the 
reduction in georeferencing error is due to the use of correspondences. 
As shown in Table 4, the mean error using the standard Kalman 
smoother approach (T.1 KS) is 38 cm and is decreased to 8 cm using the 
proposed approach (T.4 DNC), corresponding to a reduction by a factor 
of ∼5, from 2.5× to 0.6× GSD. This improvement is mostly in planim
etry, as shown by the RMSE per axis (East/North columns in Table 4). 
Please note that the reference point cloud, obtained with a navigation 
grade IMU, is assumed to be accurate up to 5 cm. 

It is important to keep in mind that the magnitude of the georefer
encing errors is proportional to the flight altitude, in our case 230 m 
AGL. Flying at a lower altitude and with less powerful and smaller 
scanners intended for use with UAVs, i.e., miniVUX1-3, Riegl (2021) at 
∼150 m AGL, would allow the registration refinement to fully benefit 

Table 3 
Position and attitude relative errors for trajectories n◦1, 2, 3 and 4 with respect to the reference trajectory (T.0).    

Position Error [m] Attitude Error [◦] 

Traj. East North Up Norm Roll Pitch Yaw 

RMSE Mean Std RMSE 

T.1 KS 0.016 0.016 0.017 0.023 0.017 0.037 0.060 0.190 
T.2 DNC 0.008 0.010 0.011 0.014 0.010 0.023 0.021 0.051 
T.3 DN 0.007 0.009 0.014 0.014 0.010 0.073 0.053 0.150 

T.4 DNC (from DN) 0.008 0.010 0.011 0.014 0.009 0.023 0.021 0.046  

Fig. 8. Normalized distribution of attitude errors in 4 trajectories.  

Fig. 9. Normalized distribution of point cloud georeferencing error in magni
tude for the four trajectories. 

Table 4 
Point cloud georeferencing error in the 1st flight line.  

Traj. RMSE [m] Norm [m] 

East North Up Mean Std 

T.1 KS 0.428 0.120 0.034 0.379 0.234 
T.2 DNC 0.079 0.058 0.018 0.087 0.049 
T.3 DN 0.310 0.361 0.094 0.455 0.166 
T.4 DNC (from DN) 0.072 0.058 0.018 0.080 0.049  
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from attitude improvement and the desired point cloud accuracy of 5 cm 
could be obtained. 

Fig. 10 shows georeferencing errors at the scale of the point cloud by 
coloring each point according to its spatial distance with respect to the 
reference. The point clouds in the upper part of this figure are geore
ferenced using T.1 that is based on the KS. As expected, larger errors are 
observed at the edges of the scan, due to the distance from the vehicle. 
While the error is below 30 cm at the center of the point cloud, it reaches 
1.2 meters in the edges. The irregular patterns in the error are due to the 
orientation dynamic of the flight causing the rapid fluctuations in atti
tude error projection in the mapping frame (which are difficult, if not 
impossible to correct with ICP). The improvements are very clear when 
comparing these errors to the bottom part of the figure, which is based 
on DN + C trajectory (T.2). Here, the georeferencing errors are 
considerably reduced and most of the points have a georeferencing er
rors lower than 15 cm. 

Summary: This practical example demonstrates that within the 
nominal mapping scenario (i.e., stable GNSS signal reception) using a 
small MEMS-IMU, incorporating point–to–point correspondences into 
the dynamic network significantly improves the quality of the computed 
trajectory and in particular the three attitude angles. In turn, this 
ameliorated estimation of the vehicle attitude results in residual point 
cloud registration errors that are lower than the GSD; a significant 
improvement compared to the direct georeferencing approach where 
the errors are ∼5× larger. 

4.2. Case 2: nominal with reduced set of point–to–point correspondences 

Correspondences: In this situation we use the same set of 

correspondences as in T.4 DNC (from DN), except that we downsample 
them, or in other words we use a small sub-set of the original corre
spondence set in subsequent adjustments. Thus their quality is the same 
as depicted in Fig. 7, but fewer are used in the adjustment. In particular, 
we down-sample progressively from 50% to 0.1% of the original set of 
correspondences and estimate both trajectories with their respective 
point clouds for each step. 

Impact: Fig. 11 illustrates the effect of down-sampling correspon
dences (x-axis, in logarithmic scale) on the attitude RMSE (left y-axis, in 
blue) and on the RMSE of the registered point cloud (right y-axis, in red). 
Yaw angle is the first angle affected by the down-sampling since its 
RMSE increase significantly when down-sampling more than 25% 
(keeping ∼12’500 correspondences). On the other hand, the estimation 
of roll and pitch is less sensitive to down-sampling, their RMSE being 
stable up to down-sampling to 0.1% (keeping only ∼50 correspon
dences) for roll and 0.5% (∼250 correspondences) for pitch. Due to the 
geometry of nadir ALS, laser beams are mostly projected along the 
vertical axis. While a perturbation in roll and pitch will impact more its 
vertical component, a perturbation in yaw affects more the horizontal 
component towards the swath extremities. For this reason, despite being 
more influenced by down-sampling as compared to other angles, yaw 
error has generally smaller effect on point cloud georeferencing than 
pitch and roll. The stability in roll and pitch estimation allows the point 
cloud to be accurately registerd even with strong correspondence down- 
sampling. In fact, the point cloud RMSE is kept below 10 cm when down- 
sampling at 5% (∼2500 correspondences), and is still remarkably stable 
up to a down sampling at 0.5% (∼250 correspondences) which results in 
an increase of the georeferencing RMSE by a factor of 1.4× . 

Summary: This example illustrates practically the ability of the 
proposed method to correctly adjust the trajectory even with a consid
erably smaller number of correspondences. This can be practical when 
scanning over an areas with limited distinctive features (e.g., crops with 
sparse and low vegetation) where establishing correspondences is more 

Fig. 10. Magnitude of error in points coordinates based on trajectory KS T.1 
(top) and T.2 DNC (bottom). 

Fig. 11. Effect of correspondences down-sampling on attitude estimation and 
subsequent point cloud regeneration. 

Fig. 12. Correspondences’ normalized error distribution. The actual interval of 
point cloud GSD is depicted in dashed black lines. 
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challenging. 

4.3. Case 3: Boresight self-calibration 

Correspondences: Correspondences are established on the point 
cloud registered using the KS trajectory with unknown (zero) boresight 
(T.5 KSB). This dataset shows significantly higher misalignment be
tween the point clouds due to the absence of the boresight parameters (e. 
g., between 1 and 3.5 meters in the overlapping section, in the top part of 
Fig. 13). We first compare the agreement of established lidar corre
spondences with those obtained in the “boresight-perfect” dataset from 
T.1 KS. As shown in Fig. 12, the histogram of the two error distributions 
overlaps, indicating that the quality of the correspondences is almost 
identical in both cases. This confirms the translation invariance of the 
LCD descriptor and the ability of the method to establish sufficiently 

accurate correspondences even with a poor initial registration (i.e., be
tween two strongly misaligned point clouds). 

The trajectory is then re-estimated along with the three lidar bore
sight angles by the dynamic network with the set recovered of corre
spondence. Both outputs (corrected trajectory and the estimated 
boresight) are finally used as input to LIEO to refine the registration of 
the point clouds. 

Point cloud: The quality of the point cloud registration is depicted in 
Fig. 14 as a histogram of the georeferencing error (point-wise magni
tude) for T.5 KSB (blue) and T.6 DNCB (yellow). For the sake of 
completeness, the same figure displays the error histogram for the 
reference point cloud based on T.2 DNC (orange) as well. 

We first observe the effect of the absence of boresight parameters on 
the point cloud (T.5 KSB, blue). This point cloud shows large georefer
encing errors ranging from 0.7 m to 1.8 m and a mean error of 1.1 m (e. 
g., compared to 0.38 cm with the calibrated boresight, T.1 KS). On the 
other hand, we can see that, when coupled with correspondences, the 
dynamic network is able to estimate the boresight matrix as well as 
correct the systematic causes for the errors in the trajectory at the same 
time: as shown in bottom part of Fig. 13, the resulting point cloud based 
on T.6 DNCB is well aligned. Indeed, the mean error is approximately 8 
cm, which is about 13× smaller that that of the point cloud based on T.5 
KSB. 

The boresight estimated by the dynamic network is slightly different 
from that obtained via the calibration flight using planar constraints 
(using Riprocess, Riegl), with values per angle of [-0.276; 0.049; 0.154] 
and [-0.213; 0.010; 0.191], respectively. This difference is mainly due to 
the fact that boresight angles and IMU attitude errors (caused by 
imperfect initialization of orientation that is, among others, related to 
the unknown biases of the inertial sensors) have similar effect on the 
trajectory, at least within this scenario. Since the dynamic network es
timates those simultaneously, the change in boresight angles is 
compensated with IMU biases, leading to a resulting point cloud regis
tration that is very similar to T.2 DNC. 

Summary: In this case we first showed practically that the proposed 
approach to estimated correspondences is robust to large misalignment 
in the approximate point cloud. Second, we demonstrated the ability of 
the “DNC” approach to correct for point cloud deformations due to 
unknown mounting parameters, in this case the three boresight angles, 
without any loss in accuracy in the final georeferenced point cloud. 

4.4. Case 4: GNSS outage 

Correspondences: Correspondences are established on the point 
cloud generated from the KS trajectory with a relatively long (for a low- 
cost MEMS-IMU) GNSS position outage of 60 s (T.7 KSo). We have seen 
in Section 5.1 that the quality of correspondences is not necessarily 
impacted when using a point cloud georeferenced with a highly sub- 
optimal trajectory. This is again verified for a trajectory affected by a 
2 min-long absence of GNSS position measurements. As can be seen in 

Fig. 13. Points georeferencing error with unknown (top) end recovered bore
sight (bottom) via constrained dynamic network. 

Fig. 14. Normalized distribution of point cloud georeferencing error in 
magnitude for trajectories T.2, T.5 and T.6. 

Fig. 15. Normalized error distribution of established correspondences. The 
actual interval of point cloud GSD is depicted by dashed black lines. 
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Fig. 15, the error distribution is almost identical to the cases discussed 
previously (see Fig. 7). After filtering, most of the correspondences have 
an error between 10 cm and 20 cm, while the mean error in the corre
spondences is 15.8 cm (compared to 15.6 cm in T.1 KS and T.3 DN) with 
1σ dispersion of 7.8 cm. Due to the similarity in correspondence quality, 
we use the same set of correspondences (originated from T.7 KSo 
dataset, containing a double outage) in both T.8 DNCo and T.9 DNCo1. 

Trajectory: Similarly to Case 1, we estimate trajectory errors in 
terms of position and attitude. For a fair comparison, we estimate the 
errors only for the portion of outage within the first flight line, that is 
common to all four trajectories T.7 to T.10. The first 5 columns of 
Table 5 as well as Fig. 16 (left) illustrate the effect of the outage on the 
position estimation. 

We first observe that the dynamic network without correspondences 
(T.10 DNo) estimates airborne positions during a GNSS outage are 
slightly less precisely than the Kalman smoother (T.7 KSo) in the hori
zontal direction and more precise in the vertical. This is likely due to 

modelling differences of the inertial errors (i.e., inclusion of scale-factors 
for accelerometers and gyroscopes in KS). On the other hand, the atti
tude errors of the smoother (T.7 KSo) are, especially in pitch and yaw, 
larger than those obtained via the dynamic network without corre
spondences (T.10 DNo). 

Second, we notice that the impact of using correspondences depends 
on the outage scenario. When considering the outage on two flight lines 
(T.8 DNCo), both points in each correspondence fall within the “GNSS 
denied segment”. In such a situation, a constant shift in position esti
mation occurring along the same direction during the outages will not be 
detectable via correspondences because they are relative, as shown in 
Eq. 3. This explains somewhat lower efficiency of the correspondences 
to correct for trajectory position errors when both points are from a 
“GNSS denied area”. Nevertheless, the mean error in position is reduced 
∼2× , and the RMSE in attitude ∼2× ,∼3× and ∼6× in roll, pitch and 
yaw, respectively. As it will be shown later, this reduction of errors will 
substantially improve the quality of point cloud registration. 

Finally, we compare the Kalman smoother (T.7 KSo) with the dy
namic network (T.9 DNCo1) facing a single outage. In this situation, 
only one of the flight lines is within the “GNSS denied” zone. Therefore a 
point originating from the trajectory that is not affected by the outage in 
each correspondence acts as an anchor for a point affected by the outage. 
This explains the superior correction capacity of the dynamic network in 
this scenario: while the position errors are maintained at ∼0.1 m level 
(RMSE), (i.e., ∼5× smaller than T.7 KSo) those in attitude are signifi
cantly lower (by a factor 4× –10× ) than T.7 KSo and even lower (2×

–3× ) than those observed in the Kalman smoother without GNSS 
outage (T.1 KS). 

Point cloud: We estimate the point-wise georeferencing error in the 

Table 5 
Position and attitude errors in trajectories T.7 to T.10 during the outage on line 1 with respect to the reference.    

Position Error [m] Attitude Error [◦] 

Traj. East North Up Norm Roll Pitch Yaw 

RMSE Mean Std RMSE 

T.7 KSo 0.560 0.282 0.123 0.566 0.297 0.051 0.083 0.665 
T.8 DNCo 0.206 0.297 0.040 0.299 0.202 0.018 0.024 0.102 
T.9 DNCo1 0.133 0.033 0.011 0.118 0.071 0.012 0.017 0.064 
T.10 DNo 0.650 0.403 0.024 0.630 0.434 0.050 0.068 0.341  

Fig. 16. Errors in position and attitude during outage on line 1 (60 s) on 4 
tested trajectories. 

Table 6 
Point clouds georeferencing error with respect to the 1st flight line.  

Traj. RMSE [m] Norm [m] 

East North Up Mean Std 

T.7 KSo 1.375 0.503 0.140 1.225 0.814 
T.8 DNCo 0.326 0.301 0.042 0.376 0.248 
T.9 DNCo1 0.158 0.055 0.019 0.130 0.107 
T.10 DNo 1.089 0.312 0.099 0.977 0.582  

Fig. 17. Normalized distribution of point cloud georeferencing error in 
magnitude for the 4 trajectories. 
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point clouds (with respect to the reference cloud) for trajectories T.7 to 
T.10. The axis-wise RMSE and mean georeferencing errors are displayed 
in Table 6. 

First we compare T.7 KSo and T.8 DNCo. There the correspondences 
reduced the error norm (mean and std) 3× –4× . Note that the error 
distribution (marked red in Fig. 17) contains 2 peaks for T.8 DNCo. This 
is related to the residual error in trajectory estimation along East axis, 
that is correct only during the first half of the outage. The inclusion of 
correspondences considerably reduces also the tail of error distribution 
(i.e., the size of maximum errors) from 4 m (T.7 KSo) and 2.5 m (T.10 
DNo) down to 1 m (T.8 DNCo). 

The improvements are more substantial when only one flight line is 
impacted by the GNSS signal obstruction (i.e., T.9 DNCo1) as one side of 
the correspondences serves as a “position anchor”). In this situation, the 
georeferencing error is reduced by a factor of 9–10 compared to T.7 KSo 
– from 1.25 (∼ 9× GSD m to 0.13 m (∼ 1× GSD). Also importantly, the 
maximum errors are reduced substantially and do not exceed 0.5 m. 

The point cloud georeferencing error along the entire flight line is 
illustrated in Fig. 18. Outside of the GNSS denied section, both T.8 DNCo 
and T.9 DCo1 show significantly lower errors than T.7 KSo. Inside the 
GNSS denied section, we can observe that the error varies rapidly with 
very large deviations in T.7 KSo as compared to T.8 DNCo, where the 
error pattern is smoother but still remains somewhat widespread. This 
illustrates the difference between the impact of attitude errors (of which 
the projection on the point cloud coordinates is rapidly varying – T.7 
KSo) and the position errors (that are slowly drifting, T.8 DNCo) within 
the laser georeferencing. The remaining errors in the point-cloud for T.9 
DCo1 are not far from those obtained by the same method without GNSS 
outage. 

Summary: In this last case, we evaluated the performance of the 

proposed approach in the event of GNSS outages. We showed that the 
use correspondences within the proposed approach produces a signifi
cant reduction in the trajectory attitude error as compared to the stan
dard approach. The error in trajectory position is also significant 
reduced using the described method when only one flight line is affected 
by an outage. This is due to the fact that one point in each correspon
dence serves as a position anchor to another point affected by the GNSS 
outage thereby enabling the correction of the part of trajectory within 
the GNSS denied segment. The improvement is somewhat lower when 
both flight lines experience an outage since and their respective “de
viations” go in a similar direction and magnitude (in the mapping 
frame). Such a situation is not observable at the correspondence level 
that act as relative constraints. Nevertheless, in our experiment, their 
inclusion still leads to a reduction of ∼300% of the point cloud geore
ferencing error within the GNSS denied area. 

5. Conclusions 

In this work we first used “close-range” airborne laser scanning (AGL 
< 300 m) over terrain with different typology (low & high vegetation, 
buildings, infrastructure) to evaluate some existing methods in feature- 
based point–to–point matching. We combined the promising detector/ 
descriptor with additional filtering to obtain robust lidar 3D 
point–to–point correspondences between overlapping areas. We inte
grated those as additional observations into a dynamic network which at 
its base considers GNSS positions and raw inertial data (specific forces 
and angular rates) in a single (iterative non-linear least-squares) 
adjustment. For a system with small MEMS-IMU (as used in UAVs), this 
“tight” sensor fusion resulted in an improved trajectory determination 
that in turn produced considerably better results in the point cloud 
registration process. 

We investigated different scenarios related to the correspondence 
quality and quantity, lack of knowledge in system parameters, as well as 
limitations in GNSS signal reception, from which we can draw the 
following conclusions:  

• The chosen detection, matching and filtering of over overlapping 
patches (50 × 50 m) resulted in a high number of correspondences 
irrespective of terrain type.  

• The performance of correspondence quality was not affected by poor 
approximation of initial trajectory either due to a non-calibrated 
system or long GNSS outage. This indirectly indicates that the 
translation invariance properties of the employed descriptor were 
sufficient with respect to the size of patches used in the correspon
dence matching. Indeed, in all studied cases, the goodness of 3D 
point–to–point matching was close to the mean GSD value (≈ 0.15 
m, the inverse of which was therefore used as a weighting for all 
correspondences within the dynamic network. 

• The inclusion of correspondences into the dynamic network effec
tively mitigated the “wavy” patterns in the point cloud registration 
caused by the attitude errors in trajectory. This was the largest source 
of georeferencing error for a pre-calibrated systems and nominal 
GNSS reception.  

• The observered improvement in the point cloud registration was 
practically the same when employing only 5% of the total number of 
correspondences; and still significant enhancement was detected 
using only 1% to 0.1% of correspondences. 

• Thanks to the correspondences, the point cloud registration via dy
namic networks was also able to cope well with an unknown lidar 
boresight. As the accuracy of the recovered boresight parameters is 
related to their correlation with systematic errors in attitude, their 
determination was restrained by the geometry of the studied case of 
two parallel flight lines. This had, however, very small impact on the 
residual errors in the point cloud due to the previously mentioned 
correlation. 

Fig. 18. Normalized distribution of point cloud georeferencing error (magni
tude) for the 4 trajectories. 
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• Utilizing correspondences within the dynamic network can also 
effectively mitigate the imprecise point cloud registration during the 
absence of GNSS signals, especially when affecting only one of a pair 
of flight lines. 

In our opinion, methods that attempt to perform the integration of all 
the available information in a single step, such as the one put forward in 

this contribution, are to be preferred over multiple stages, cascade 
adjustment approaches because of their simplicity, rigour and effec
tiveness in correcting errors at the sensor measurement level, rather 
than in the intermediate products. The proposed approach can be 
applied to other kinematic scanning scenarios, such as terrestrial laser 
scanning, and generalise well to more complex multi-sensor adjustment 
problems. 
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Appendix A. Descriptors evaluation 

Describing feature characteristics observed by kinematic laser scanning is a challenging task due to the sparse nature of point clouds (i.e., 
compared to images) and to their high variability depending on the scanned surface, the technology and the vehicle used. Substantial effort has been 
devoted to the design efficient point cloud descriptors, and since the advent of deep-learning considerable progress was registered in this field (Zhang 
et al., 2020; Huang et al., 2021). These descriptors were usually designed and tested for TLS or MLS point clouds and their generalization potential to 
ALS point clouds remain uncertain. Therefore we evaluated multiple 3D descriptors, namely FPFH (Rusu et al., 2009), SHOT (Tombari et al., 2010b), 
USC (Tombari et al., 2010a), SpinNet (Ao et al., 2021), FCGF (Choy et al., 2019) and LCD (Pham et al., 2019). While not being fully detailed here, we 
provide some evaluation of their suitability with respect to our ALS experimental data in Table 7. There we summarize for each tested descriptor its 
number of dimension, parameters, run times and performances. Computation time is measured when estimating descriptors on a pair of ALS fragments 
(of around ∼120’000 points each) on a modern computer with the following configuration under Ubuntu 20.04: Intel(R) Core(TM) i7-10750H CPU @ 
2.60 GHz, 32 Gb RAM, NVDIA RTX 2070. 

The inlier ratio at 30 cm represents the fraction of retrieved correspondences whose error in the reference point clouds is below 30 cm. This is the 
main metric used to select the final descriptor. 

For both FCGF and SpinNet, pre-trained version of their network on KITTI outdoor dataset are used. For LCD, the pre-trained version on indoor 
dataset is used since it is the only one available. 

Appendix B. RANSAC algorithm 

In this section, we detail the version of the RANSAC algorithm used in this research and its parameters. 

B.1. Parameters  

• C the complete set of K correspondences.  
• pk

a and pk
b the first and second point of the kth correspondence.  

• R and T the rotation matrix and translation vector defining the 6 DoF transformation.  
• τ the tolerance threshold to classify correspondences as inliers or outliers given an estimated 6 DoF transformation parameter.  
• s the number of correspondences to select to form a subset.  
• Nit the number of iterations to perform, defined following the probabilistic approach from the original publication (Fischler and Bolles, 1981). 

Table 7 
Descriptors parameters, run-time and performances.  

Descriptor Dim. Parameters Computation 
time [s] 

Match 
time [s] 

Inlier 
ratio 

@30 cm 
[%] 

SHOT 352 rs = 15 * GSD 49 73 13.3 
FPFH 32 rs = 15 * GSD 16 1,4 5.7 
USC 1980 rs = 15 * GSD 82 612 5.2 
FCGF 32 vox. size = 0.2 

kernel size = 7 
0,21 1,3 27.3 

SpinNet 32 rs = 2, radn = 9, 
elen = 30, azin =

60 voxr = 0.3, 
voxs = 30 

1410 2 30.7 

LCD 256 rs = 2 m patch pts 
N = 1024 

128 31 53.7  
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B.2. Algorithm 

Algorithm 1. RANSAC    
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