
Automatically Exploring GPU 
Program Design Spaces for 
Increased Productivity and 
Sustainability

Ben van Werkhoven
Netherlands eScience Center

Towards Improvement of Sustainability and Productivity for Research Software
SIAM CSE 2023, March 1, 2023



Supercomputer application lifetimes

Some widely-used applications1:

• Average age: 27.8 years

Application area Initial release Latest release
VASP Atomic-scale materials 1989 2022
LAMMPS Atomic/molecular simulation 1995 2022
cp2k Quantum chemistry & solid-state physics 2000 2023
GROMACS Molecular dynamics simulations 1991 2023
NEMO Ocean circulation model 1998 (components 

dating back to 1980s)
2022

1according to Archer2 usage data, release dates from Wikipedia and nemo-ocean.eu



Supercomputer lifetimes

Average lifetime: 5.4 years

Huygens Cartesius Snellius
2007 2013 2021

https://www.olcf.ornl.gov/frontier/, https://www.surf.nl/

https://www.olcf.ornl.gov/frontier/
https://www.surf.nl/


GPU architecture lifetimes

Average lifetime: 1.96 years
Optimization Techniques for GPU Programming
Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven, and Henri Bal
ACM Computing surveys 2022



Sustainability and productivity problem

Achieving high-performance on GPUs requires optimizing the code
to efficiently use the underlying hardware

Problem:
• How can applications adapt to new architectures every two years?



How to not optimize GPU code …



Proposed solution: tunable code

• Parametrize the code:
• based on implementation choices, not architecture features
• without hard coding constants in the source code

• All parameters in the code combined define the program design 
space



Large search space of kernel configurations

Exploring different designs of a Convolution kernel on Nvidia A100



On different GPUs …

A100

V100

top 5% on A100

8,16,2,2,1,0
8,32,2,1,1,0

top 5% on V100

4,32,5,1,1,0
4,32,5,1,1,1
32,4,1,4,0,0
32,4,1,4,0,1
32,4,1,4,1,0
32,4,1,4,1,1
64,2,1,4,0,0
64,2,1,4,1,0
64,4,1,4,0,0
64,4,1,4,0,1
64,4,1,4,1,0
64,4,1,4,1,1
128,2,1,8,0,0
128,2,1,8,1,0



Kernel Tuner – A Python tool for auto-tuning GPU kernels

• Started in 2016, now developed by the Kernel 
Tuner developers team

• Funded by several national and European 
projects

• Supports many different use cases
• Allows testing GPU kernels from Python
• Implements 20+ search optimization algorithms

• Actively used for research software 
development in many different projects

https://github.com/KernelTuner/kernel_tuner

Kernel Tuner developers team

https://github.com/KernelTuner/kernel_tuner


Kernel Tuner workflow

Tunable GPU kernel

Data & Kernel & Parameters

Optimal 
parameter 
values

Compiles & 
benchmarks

Python script



Auto-tuning productivity challenges

• Where are the parameters for the kernels stored/defined?
• Keeping Python script and the GPU code in sync is not ideal

• How to describe input/output data of all kernels to the tuner?
• Recreating or dumping & reading in data in Python is extra work

• How to feed the output of the tuner back into the application?
• Solution depends on the host programming language



Kernel Launcher: C++ library

CUDA kernel

Host code

Application
Data & Kernel

+

Wisdom file

https://github.com/KernelTuner/kernel_launcher

https://github.com/KernelTuner/kernel_launcher


Use case: MicroHH

Computational fluid dynamics code for 
simulation of turbulent flows in the 
atmosphere

Tuned kernels for different input 
domains, precisions, and target GPUs

Wageningen University: Bart van Stratum, Chiel van Heerwaarden
Netherlands eScience Center: Stijn Heldens, Gijs van den Oord, Alessio 
Sclocco, Ben van Werkhoven

ESiWACE2 has received funding from the European 
Union’s Horizon 2020 research and innovation 
programme under grant agreement No 823988



Conclusion

Auto-tuning allows to choose the optimal implementation that is otherwise 
limited by hard-coded constants in the source code

Improved sustainability: you can automatically adapt the code to new hardware
Improved productivity: optimizing code by hand is a waste of time

Kernel Tuner is open source: https://github.com/KernelTuner/kernel_tuner

For C++, Kernel Launcher: https://github.com/KernelTuner/kernel_launcher

Offline questions: b.vanwerkhoven@esciencecenter.nl

https://github.com/KernelTuner/kernel_tuner
https://github.com/KernelTuner/kernel_launcher
mailto:b.vanwerkhoven@esciencecenter.nl


Funding
The CORTEX project has received funding from the Dutch Research Council (NWO) in the framework of the 
NWA-ORC Call (file number NWA.1160.18.316). 

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 823988.

ESiWACE3 is funded by EuroHPC JU and national co-funding bodies under grant agreement No 101093054.

The ConFu project is funded by the Netherlands eScience Center (file number 00020223-A).


	Slide 1: Automatically Exploring GPU Program Design Spaces for Increased Productivity and Sustainability
	Slide 2: Supercomputer application lifetimes
	Slide 3: Supercomputer lifetimes
	Slide 4: GPU architecture lifetimes
	Slide 5: Sustainability and productivity problem
	Slide 6: How to not optimize GPU code …
	Slide 7: Proposed solution: tunable code
	Slide 8: Large search space of kernel configurations
	Slide 9: On different GPUs …
	Slide 10: Kernel Tuner – A Python tool for auto-tuning GPU kernels
	Slide 11: Kernel Tuner workflow
	Slide 12: Auto-tuning productivity challenges
	Slide 13: Kernel Launcher: C++ library
	Slide 14: Use case: MicroHH
	Slide 15: Conclusion
	Slide 16: Funding

