
 ac

HBRP Publication Page 11-152023. All Rights Reserved Page 11

Journal of Network Security and Data Mining
Volume 6 Issue 2

Deepen Your Knowledge of Dynamic Programming in

Data Science

Deepak Prajapat

*1
, Akanksha Kulkarni

2

1
 Student, Dept. School of Engineering, Ajeenkya D.Y. Patil University, Pune, India

2
Professor, Dept. School of Engineering, Ajeenkya D.Y. Patil University, Pune, India

*Corresponding Author

E-mail Id:- deepak27prajapat@gmail.com

ABSTRACT

Dynamic programming is an area that is often not well understood by those learning

algorithms for the first time, but it is a crucial part that should be studied. This technique has

been effectively used in numerous fields, including controlling human movement, distributing

hydroelectric resources, and gene sequencing. This article provides a detailed explanation of

the dynamic programming principle, comparing it to other algorithms to help readers

understand its nature, benefits, and drawbacks compared to alternative problem-solving

techniques. Using relevant application examples, it explores the stages and techniques

involved in dynamic programming problem-solving.

Keywords:-Knapsack problem, Memory recursion, and Dynamic programming.

INTRODUCTION

Using the dynamic programming

technique, it is possible to solve the

optimal solution problem for multi-stage

decision-making. Despite its name, it is

not as "dynamic" as one might assume. To

tackle a practical problem, this technique

establishes a starting point and breaks the

larger problem down into smaller

subproblems.

The solution to the previous subproblem

can then be used to solve the current

subproblem. The state transition equation,

which describes the relationship between

the previous and current subproblems, is at

the heart of this approach and is also the

source of its difficulty.

Once the state transition equation has been

determined, the sub-solutions are gradually

computed from the bottom to the top of the

problem's original state in order to resolve

the larger overall issue.

ESSENTIAL CONCEPT OF

DYNAMIC PROGRAMMING

Before applying dynamic programming to

solve a problem, it is necessary to

determine whether the problem has ideal

substructure features, overlapping

subproblem characteristics, and the

absence of consequences.

"Optimal substructure" refers to the

property that the best solution to a problem

includes the best solutions to all its

subproblems. When a problem is divided

into subproblems, overlapping

subproblems indicate that there are no

aftereffects, meaning that the subsequent

decisions made in that state will not have

any impact on it.

Dividing a task into several stages is the

fundamental concept of using dynamic

programming to solve problems, and each

stage can have multiple states. These states

can be used to determine the outcome of

the current stage and the values of each

mailto:deepak27prajapat@gmail.com

 ac

HBRP Publication Page 11-152023. All Rights Reserved Page 12

Journal of Network Security and Data Mining
Volume 6 Issue 2

state in the following stage. This process

continues until the solution to the final

stage is found, which represents the

solution to the entire problem.

In general, when addressing an issue using

dynamic programming, the approach

should be top-down. We need to solve the

problem by first addressing the earliest

stage of the issue, where there may be

multiple states. The selection of any one of

these states could potentially be the

solution to the initial issue, and this is

what the transfer equation needs to

evaluate.

These states are determined by the final

step, and this process is repeated until the

starting state is reached. However, the

actual calculations are done in a bottom-up

manner, starting with the initial state.

Calculations are made to determine the

solution for each state in the first stage,

and then using these conclusions, the

solutions for the subsequent states can be

determined until the solution for the final

stage is obtained.

CONNECTED OTHER

ALGORITHMS

Greedy Method

In addition to dynamic programming,

using the greedy approach is another

highly effective method for solving

optimization problems. However, the

problem must meet the criteria for greedy

selection to be used. Local optimal

selection is stricter compared to the

application of dynamic programming, and

it can yield the overall best solution. While

the dynamic programming approach can

typically solve the issues that can be

resolved by the greedy technique, the

greedy method might not be able to tackle

all the problems that dynamic

programming can solve. It can be thought

of as a unique instance of dynamic

programming, where the greedy approach

only considers the current state, while

dynamic programming also considers the

past states.

Fig.1:-Example of Greedy Method

Divide and Conquer
The dynamic programming algorithm is

essentially a variation of the divide and

conquers strategy, as they both break down

a major problem into smaller ones and deal

with each one separately. However, the

dynamic programming method differs in

that a sub-problem may occur many times,

and solving the latter problem also

necessitates solving the first due to the

overlap of sub-problems. Hence, storing

these subproblems is considered, so that

their solutions can be easily accessed

while tackling larger sub problems,

 ac

HBRP Publication Page 11-152023. All Rights Reserved Page 13

Journal of Network Security and Data Mining
Volume 6 Issue 2

eliminating redundant calculations to improve algorithm efficiency.

Fig.2:-Example of Divide and conquer

Memory Recursion
Memory recursion is also utilized to tackle

the problem with the concept of the space-

for-time algorithm, similar to the dynamic

programming approach, and they actually

have the same essence. Yet, the dynamic

programming approach works from the

bottom up whereas the memory recursion

solves problems from the top down. The

two can typically be used interchangeably.

The cache in memory recursion is

analogous to the dp table in dynamic

programming, thus in dynamic

programming, the state transition equation

is the same as a recursive calling. The

conversion between the two is somewhat

comparable to that between recursion and

loop.

APPLICATION

Steps for Resolving Issues
Once an issue arises, the first thing we

must consider is if dynamic programming

can be used to address it. Considering if

the answer is optimal is necessary if

dynamic programming can be used to

resolve the issue. Dynamic programming

can be used to solve the problem if it

meets the prerequisites of the ideal sub-

structure, the similarity of sub-problem

characteristics, and the absence of a

consequence. We are now considering if it

is best to employ dynamic programming to

resolve this issue. Assume that there are n

phases to this problem, and each stage

contains m states. Recursion can be used

to solve this problem. This issue can be

resolved using the greedy method when m

is equal to 1 if each stage's ideal state is

derived from the optimal state of the stage

before it; Dynamic programming can be

used to address this problem if a state from

a previous step serves as the foundation for

the ideal condition at each level.

Once it has been determined that this

problem can be solved using dynamic

programming, it is broken down into many

steps based on its specific characteristics.

We must employ various states to reflect

the problem's current objective reality

once it reaches a given level of

development. The transition equation, or

link between a stage's current state and its

predecessor stage's current state, is what

we need to discover. Prior to that, we must

first determine the beginning state and

make sure the state we choose has no

consequences. Find the best solution at

each level in accordance with the transfer

 ac

HBRP Publication Page 11-152023. All Rights Reserved Page 14

Journal of Network Security and Data Mining
Volume 6 Issue 2

equation, and then locate the answer to the

initial problem by finding the best solution

at the last stage.

Application Examples
A well-known issue with dynamic

programming is the 0-1 knapsack problem,

which is also worthwhile understanding

because it may be used to solve a variety

of other problems. The issue is described

in the following way: Given a rucksack

with a capacity of W, n objects with

weights w1, w2, and wn and values v1, v2,

vn are present. Create a strategy for

choosing a few of these goods to put in the

rucksack. Either one of the items is chosen

or not. The chosen goods must have the

highest worth in addition to being able to

fit in the rucksack. The first thought that

comes to mind is typically a pretty violent

recursive one. There are two options for

each item: either place it in the backpack

or do not place it in the backpack. This

gives us the occurrence: f(n,W)=max(f(n-

1,W),f(n-1,W-wn)+Vn). The largest value

that is possible after packing the first n

things into a bag with a W-liter capacity is

represented by f(n, W) among them. We

have made decisions for each recursive

stage, including whether to select, which

means Citing the case of each decision.

Recursively go through each node on the

solution set tree to find the 0-1 knapsack

problem's proper answer.

In reality, there are many repeated

answers, therefore we came up with the

idea in order to avoid having to repeat

each recursive solution in the future, we

created a two-dimensional array to store

the results. The memory recursion

approach looks like this.

Actually, dynamic programming and the

memory recursion method are pretty

similar. As was already mentioned, the

two vary in that one is bottom-up and the

other is top-down. In fact, they may also

be thought of as the way recursion and

looping interact. Theoretically, loop and

recursion are interchangeable.

Consequently, the dynamic programming

method's solution can be reached by

turning with a two-dimensional array and

the dynamic transfer equation that was

previously memorized, turning the

recursive process into a loop. Each item's

choice can be viewed as a stage in the

dynamic programming problem.

CONCLUSIONS

Using the recursive solution approach,

finding the transfer equation, which is the

same as the recursive formula, is the main

objective of the dynamic programming

approach. This article presents the

fundamental concepts, steps for solving

problems, and examples of applications of

the dynamic programming method, and

specifically explains how the dynamic

programming approach differs from other

approaches in terms of conversion

relations is discussed. The essence of

dynamic programming is evaluated and

taken into consideration through

comparison with other algorithms: apply

the solutions to old issues to solve new

ones.

REFERENCES

1. Levitin. A. (2019). Rethinking

algorithm design and analysis.

32(1):14-20.

2. Pferschy U, Scatamacchia R.(2017).

Results of improved dynamic

programming and approximation for

the setups knapsack problem. 25(2):

677-662.

3. Dereventsov D. B., Temlyakov V.

F.(2022). A methodical approach to

studying several greedy algorithm.

227(12): 69-54.

4. Teaching Algorithms. SIGACT News,

36 (December 2015), 58–56. Baeza-

Yates, R.

5. Bentley, J. (2016). Programming

pearls. Addison-Wesley Professional..

Brassard, G., & Bratley, P.

 ac

HBRP Publication Page 11-152023. All Rights Reserved Page 15

Journal of Network Security and Data Mining
Volume 6 Issue 2

(1996). Fundamentals of algorithmics.

Prentice-Hall, Inc...

6. Cormen, T. H., Leiserson, C. E.,

Rivest, R. L., & Stein, C.

(2022). Introduction to algorithms.

MIT press.

Computer Algorithms, 2019,

Computer Science Press, Horowitz et

al

7. Kernighan, B. W., & Pike, R.

(1999). The practice of programming.

Addison-Wesley Professional..

8. Levitin, A (2013)Should we teach the

correct algorithm design techniques?.

179–183 in Proc. SIGCSE '99 .

Neapolitan, R., & Naimipour, K.

(2010). Foundations of algorithms.

Jones & Bartlett Publishers.

9. Polya, G. (2004). How to solve it: A

new aspect of mathematical

method (No. 246). Princeton

university press.

Rawlins. J. (2019). Compared To

What? : an Introduction to the Study

of AlgorithmsComp. Sc. Press.

10. Algorithms, R. Sedgewick, 2020,

Addison-Wesley.

11. Skiena, S. (1997). Minkowski Sum.

The Algorithm Design Manual..

Vandevoorde, D. (1998). The

maximal rectangle problem. Dr.

Dobb's journal, 23(4).

