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Abstract
Background and Objectives
It is unknown whether there are sex-related profiles of cardiometabolic health that contribute
differently to age-related changes in brain health during midlife. We studied how latent classes
of middle-aged individuals clustering by age, sex, menopause, and cardiometabolic health were
associated with brain structure and cognitive performance.

Methods
Health, brain, and abdominal MRI data from the UKBiobank cohort (men and women aged >40
years in the United Kingdom) were used. We applied latent class analysis to identify groups of
individuals based on age, sex, menopausal status, and cardiometabolic health. We examined
associations of class membership with brain volumes (total brain volume [TBV], gray matter
volume [GMV], white matter volume [WMV], hippocampal volume, and white matter hyper-
intensity volume) and cognitive performance.

Results
Data were available for 36,420 individuals (mean age 64.9 years, 48.5% women). Eight latent
classes differing in age, sex, and cardiometabolic risk were identified. Class 1 (reference class)
included individuals with the lowest probability of older age and cardiometabolic risk, and the
healthiest levels of brain volumes and cognition. In those aged >60 years, but not in those aged
50–60 years, the negative associations of age with TBV, GMV, andWMVwere greater in the class
comprising healthier older women than classes comprising older men of varying cardiometabolic
and vascular health. There were no age-class interactions for cognitive test performance.

Discussion
Latent class analysis detected groups of middle-aged individuals clustering by cardiometabolic
health. The relationship of age with brain volumes varies by sex, menopausal status, and car-
diometabolic health profile.
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Female sex is associated with an increased incidence of de-
mentia.1 The increased vulnerability for the development of
dementia in women may be due to sex-specific factors such as
menopause2 and sex differences in the effects of age and
cardiometabolic disease on brain health.3 In support of this
theory, we have previously demonstrated a stronger re-
lationship of age with lower brain volumes in middle-aged
women compared with men and in postmenopausal women
compared with premenopausal women.4

In addition to increasing dementia risk, aging also increases the
risk of developing cardiometabolic disorders.5 In turn, car-
diometabolic disorders increase dementia risk and can work
synergistically with aging to further amplify dementia risk.6 These
pathways are likely influenced by sex differences in the timing and
pathogenesis of cardiometabolic disease. Although men tend to
develop cardiovascular disease earlier in life, their prevalence
dramatically increases for women following the menopause
transition.7 Emerging evidence also points to differences in dis-
ease pathogenesis, with women more likely to develop micro-
vascular disease than men who tend to develop occlusive
macrovascular disease.8 Studies of sex differences in dementia risk
must therefore account for the complex interplay between age,
sex, and various patterns of cardiometabolic disorders.

Previous work has generally considered cardiometabolic dis-
orders (e.g., heart disease) as discrete factors independently
influencing dementia risk.9 However, those at risk of dementia
often have multiple such disorders, and the pattern or combi-
nation of these may be important in determining risk. It is also
possible that individuals cluster by cardiometabolic health in an
age- and sex-dependent fashion. Understanding how car-
diometabolic disorders, sex, and age group together can lead to
important insights into potential avenues for risk mitigation.
Given the multiplicity of factors at play, it is difficult to use
single hypothesis-driven methods to understand the nature of
the relationships between exposures, and data-driven tech-
niques may be more useful. Latent class analysis (LCA) is one
such method that uses all available data to identify mutually
exclusive clusters of individuals, for example, based on clinical
patterns of cardiometabolic health, sex, and age,10 allowing the
study of the relationships between these classes with sensitive
markers of brain health. The aims of this study were to identify
latent classes of middle-aged adults clustering by age, sex,
menopause status, and measures of cardiometabolic health and
to study the differences in structural brain imaging biomarkers
and cognitive test scores between classes.

Methods
Participants
Data used for this analysis were obtained from theUKBiobank.
Between 2006 and 2010, a cohort of over 500,000 individuals
aged 40–69 years and registered with the National Health
Service were recruited.11 Initial and subsequent assessments
collected extensive health and lifestyle information, physical
and cognitivemeasures, and biological samples. From 2014, the
UK Biobank began inviting 100,000 of the original participants
for brain, heart, and abdominal MRI. Of these individuals, we
included participants with complete exposure data: age, sex,
menopause status, and measures of cardiometabolic health.

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from all participants.
The UK Biobank approved the study application (Project ID
24954), and we obtained ethics approval from the UK Biobank
Research Ethics Committee (reference 11/NW/0382).

Clinical and Demographic Data
These data were collected when participants attended the as-
sessment center for an MRI scan and were downloaded from
the UK Biobank Application Management System in April
2018. Age was calculated as age at attendance to the assessment
center. Sex was determined by participant response to 2 op-
tions from a questionnaire (female or male). An accurate
measure of gender as a social construct was not available in the
UK Biobank. Therefore, we used the terms female and women
to refer to individuals who identified as such and the termsmale
and men in reference to people who have self-reported as male.
Level of education including the attainment of a tertiary degree
was determined at first assessment. The Townsend deprivation
index (TDI) is a measure of socioeconomic deprivation12

based on national census data assigned to each participant.
Menopause status was defined as the self-reported response to
the question, “Have you had your menopause (periods stop-
ped)?” By virtue of the age range of the sample, women who
answered “no” to the question were interpreted as comprising
both premenopausal and perimenopausal women, and those
who answered “yes” were classified as postmenopausal.13 Par-
ticipants aged >60 years and/or reporting a history of a bilateral
oophorectomy were deemed postmenopausal regardless of
survey response, whereas those reporting previous hysterec-
tomy but not oophorectomy were not reclassified. Women
with missing menopause data at the imaging visit but who had
characterized themselves as postmenopausal at prior visit(s)

Glossary
AD = Alzheimer disease; AIC = Akaike information criteria; BIC = Bayesian information criteria; DBP = diastolic blood
pressure;GMV = gray matter volume;HV = hippocampal volume; ICD-10 = International Classification of Diseases, 10th revision;
IDP = imaging-derived phenotype; IHD = ischemic heart disease; LCA = latent class analysis; SBP = systolic blood pressure;
TBV = total brain volume; TDI = Townsend deprivation index;WHR = waist-hip ratio;WMHV = white matter hyperintensity
volume; WMV = white matter volume.
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were classified as postmenopausal. The presence of diabetes
mellitus, hypertension, and hyperlipidemia was inferred using
self-reported or International Classification of Diseases, 10th re-
vision (ICD-10) codes (eTable 1, links.lww.com/WNL/C250)
and/or self-reported or coded use of medication indicated for
the condition. Coded medications were classified by a doctor
(E.M.L.) as treatments for diabetes, hypertension, or hyper-
lipidemia. The presence of stroke or ischemic heart disease
(IHD) was determined by self-report and/or ICD-10 codes.
Participants who answered “prefer not to answer” or “not sure”
to touchscreen questions on cardiometabolic health were
coded as having missing data (<5%).

To optimize modeling performance, our data set for LCA ex-
cluded individuals without any available touchscreen car-
diometabolic data or ICD-10 codes and pre/perimenopausal
women who had characterized themselves as postmenopausal at a
prior visit (n = 37). Participants without cardiometabolic ques-
tionnaire data but with ICD-10 codes for other conditions were
classified as not having the pertinent cardiometabolic conditions.

Registered nurses at the assessment center took automated
readings of systolic (SBP) and diastolic blood pressure (DBP)
measurements using anOmron 705 IT electronic blood pressure
monitor. We constructed waist-hip ratios (WHRs) by dividing
waist circumference by hip circumference. DNA was extracted
from blood samples collected from participants, and genotyping
was conducted using 2 similar genotyping arrays (Affymetrix)
with quality control by the UK Biobank.14 Participants carrying
at least 1 APOEe4 allele were deemed APOEe4 positive.

Cognitive Test Scores
We used cognitive tests administered by touchscreen at the time
of the imaging assessment. These included measures of psy-
chomotor speed, working memory/attention, verbal-numeric
reasoning, prospective memory, and visual memory.

Psychomotor Speed
Measured using a timed test of symbol matching, the test was
labeled reaction time in the protocol, and the score was the
mean response time inmilliseconds across trials. Longer times
indicate poorer psychomotor speed.

Working Memory/Attention
Participants were shown a 2-digit number to recall after a brief
pause. The string of digits presented increased by 1 until the
participant made an error or they reached the maximum of 12
digits. The score was the maximum number of digits correctly
recalled and labeled numeric memory. Higher scores indicate
better performance.

Verbal-Numeric Reasoning
Verbal and numerical problems were presented, and participants
were requested to select the correct response from multiple op-
tions, labeled fluid intelligence test in the UK Biobank protocol.
The score is a total of correct responses, with amaximumpossible
score of 13. Higher scores indicate better reasoning ability.

Prospective Memory
Participants were advised: “At the end of the games we will
show you four coloured symbols and ask you to touch the blue
square. However, to test your memory, we want you to ac-
tually touch the Orange Circle instead”. Later in the assess-
ment, they were presented with the task. Participants were
scored dichotomously, depending on whether they correctly
completed the task on the first attempt. A positive result
indicates better performance.

Visual Memory
Labeled pairs-matching, a random array of symbol cards were
presented. Participants were asked to memorize the positions
of matching pairs. The cards were then turned over, and par-
ticipants had to select thematched pairs frommemory. From3-
and 6-pair versions of the test, we chose the 6-pair version
because there was more scope for score variation. The score
was the number of errorsmade trying to select the pairs. Higher
scores reflect poorer visual memory.

Global Cognitive Score
A general cognitive ability score was derived by entering available
cognitive test scores into a principal component analysis: reaction
time (log transformed) working memory/attention, verbal-
numeric memory, prospective memory, and visual memory
(log(x + 1) transformed). Scores on the first unrotated principal
component were saved and used as a global cognitive score, where
higher scores represent superior cognitive function.

Brain MRI Acquisition and Processing
The UK Biobank MRI acquisition protocol and pipeline for
generation of imaging-derived phenotypes (IDPs) have been
described previously.15 BrainMRI scans were acquired on a 3T
Siemens Skyra using a 32-channel head coil. We used the fol-
lowing IDPs, derived fromT1-weighted and T2-weighted fluid-
attenuated inversion recovery scans: total brain volume (TBV),
gray matter volume (GMV), white matter volume (WMV),
total hippocampal volume (HV), and white matter hyper-
intensity volume (WMHV). TBV is a composite of GMV and
WMV. As women have smaller head sizes than men,16 we used
brain volumes normalized for head size. Normalization of brain
tissue volumes for head size was performed using a SIENAX-
style analysis.17

Statistical Analyses
We used simple summary statistics to describe the sample. In
initial exploratory analyses, we examined the associations be-
tween individual cardiometabolic factors, sex, and outcomes.

LCA was commenced with an estimation of a 2-class model
using 16 binary indicators: age >50 years, female sex, no
tertiary degree, TDI greater than median, postmenopausal,
APOEe4 carrier, current/past smoker, SBP ≥140 mm Hg,
DBP ≥90 mmHg, highWHR, hypertension, hyperlipidemia,
diabetes, IHD, and stroke.18 APOEe4 carrier status was also
included due to its interaction with sex and dementia risk.19

We chose a cut point of 50 years to reflect the mean age of
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menopause.20 The number of classes was increased, with the
estimation algorithm cycling through up to 10,000 itera-
tions, until convergence failed.21

We computed Bayesian (BIC) and Akaike information cri-
teria (AIC) for all models. Although the model with the
lowest information criteria values generally implies superior
fit, it is not uncommon for such values to perpetually de-
crease with each additional class. These values were there-
fore plotted to identify the elbow point of diminishing
returns,18 indicating best fit. To strike a balance between
achieving goodness of fit without overfitting, and ensuring
that the LCA model represents a conceptually useful set of
groupings, class enumeration was iterative and exploratory.
By examining class sizes and conditional item-response
probabilities of each competing model, we avoided ex-
panded versions of models with fewer classes and selected
the most parsimonious model. After model selection, latent
class membership was fixed for individuals using the item-
response probabilities generated.

To examine for the presence of between-class differences in
outcome measures, we performed analysis of variance across
classes and compared means using the Tukey method. As
incorporating a simple dichotomous measure of age in the

LCA was unlikely to fully account for the strong correlation
of age with brain health outcomes, we also used a continuous
measure of age in regression modeling of the associations
between class membership and outcomes of interest, with
class 1 as the reference. We examined the presence of in-
teraction between age and class membership for all out-
comes. In the presence of such interaction, we stratified the
sample by age (50–60 and >60 years) to reduce the risk of
overextrapolation, given that members of class 1 were
younger than all other classes (maximum age 59.8 years;
eFigure 1, links.lww.com/WNL/C250). In these subgroup
analyses, class 1 was the reference for analysis of people aged
50–60 years, whereas class 2 was the reference for analysis of
people aged >60 years. Furthermore, in regression models
for cognitive scores, we included TBV, HV, and WMHV as
covariables to explore mediation.

p Values were corrected using the false discovery rate method
to offset spurious findings through multiple comparisons. We
used R version 4.0.1 to perform all analyses and the poLCA
package to perform the LCA.

Data Availability
Requests for access to the data used for this study will be
considered by the corresponding author.

Table 1 Sample Characteristics

Total sample (N = 36,420) Men (n = 18,753) Women (n = 17,667) p Value

Age, y 64.9 ± 7.7 65.6 ± 7.8 64.2 ± 7.5 <0.001

Postmenopausal 16,574 (45.5) NA 16,574 (93.8) NA

Tertiary degree 17,195 (47.2) 8,899 (47.5) 8,296 (47.0) 0.030

Townsend deprivation indexa −1.9 ± 2.7 −1.9 ± 2.7 −1.8 ± 2.7 <0.001

White ethnicity 35,222 (96.7) 18,102 (96.9) 17,120 (97.2) 0.150

Hypertensionb 15,511 (42.6) 9,336 (49.8) 6,175 (35.0) <0.001

Diabetesb 2,278 (6.3) 1,549 (8.3) 729 (4.1) <0.001

Hyperlipidemiac 10,170 (27.9) 7,020 (37.4) 3,150 (17.8) <0.001

Ischemic heart diseased 2,394 (6.6) 1,848 (9.9) 546 (3.1) <0.001

Stroked 1,667 (4.6) 1,038 (5.5) 629 (3.6) <0.001

Current or previous smoker 14,101 (38.7) 8,007 (43.1) 6,094 (34.8) <0.001

Systolic blood pressure, mm Hg 141.0 ± 19.8 144 ± 18.5. 138 ± 20.6 <0.001

Diastolic blood pressure, mm Hg 78.9 ± 10.7 80.5 ± 10.4 77.1 ± 10.6 <0.001

High waist-hip ratio (for sex)e 18,434 (52.1) 12,968 (71.0) 5,466 (31.9) <0.001

APOE «4 carrier 9,830 (27.0) 4,961 (26.5) 4,869 (27.6) 0.006

Abbreviations: ICD-10 = International Classification of Diseases, 10th revision; NA = not available.
Data are presented as mean ± SD or n (%).
a A higher Townsend deprivation index or score implies a greater degree of socioeconomic deprivation.
b Self-reported diagnosis or self-reported medication use or coded medication use or ICD-10 code of condition.
c Self-reported medication use or coded medication use or ICD-10 code of condition.
d Self-reported diagnosis or ICD-10 code of condition.
e High waist-hip ratio: women >0.85; men >0.90.
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Results
Sample Characteristics
Complete data were available for 36,420 participants. Table 1
describes the sample characteristics. The mean age was 65.6
years for men and 64.2 years for women. Compared with
women, men were more likely to have a greater WHR and a
higher prevalence of diabetes, hypertension, hyperlipidemia,
current/previous smoking, IHD, and stroke (all p < 0.05).
Men with diabetes, hypertension, and hyperlipidemia were
more likely to be on relevant medications than women
(eTable 2, links.lww.com/WNL/C250).

Characteristics of participants who had complete cognitive and
brain imaging data are presented in eTable 3 (links.lww.com/
WNL/C250). In general, those without cognitive performance
data were slightly younger, and those without complete brain
imaging data were older and more likely to be male, with a
higher prevalence of cardiometabolic comorbidities.

We present associations of individual cardiometabolic factors
with cognitive scores and brain volumes stratified by sex in
eTables 4–14 (links.lww.com/WNL/C250). As expected,
several of these factors were associated with brain volumes
and cognitive scores in both men and women, and we ob-
served a few interactions between sex and cardiometabolic
factors in predicting brain outcomes.

Latent Class Analysis
Model comparison and fit for the LCA are presented in eTa-
ble 15 and eFigure 2 (links.lww.com/WNL/C250). As the
maximum log likelihood was reached with a 13-class model, we
examined models with 2–12 classes. Statistically, the optimum
number of classes appeared to be between 7 and 10. These
candidate models were then examined for individual class size,
plausibility, and utility. Although the BIC supported a 9-class
model, half of the classes supported fewer than 5% of the sample,
suggesting overfitting. The 7-class model performed poorly in
distinguishing younger and older groups and appeared to

Table 2 Latent Classes and Posterior Probabilities of Age, Sex, Menopause, and Cardiometabolic Risk Factors in an 8-
Class Model (n = 36,420)

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Sample size per class, n 1,293 10,973 3,270 2,112 10,201 2,953 866 4,752

% 3.55 30.13 8.98 0.58 28.01 8.11 2.38 13.05

Age over 50 y 67.09c 99.77c 99.82c 99.91c 99.16c 97.67c 98.74c 99.76c

Female sex 63.54c 81.85c 73.19c 100.00c 25.78 14.92 31.91 3.94

Postmenopausala 12.47 99.88c 97.66c 99.35c 99.64c 95.01c 95.75c 99.63c

No tertiary degree 41.04 43.47 49.81 64.01c 47.44 53.62 59.60 51.73

Townsend deprivation index greater than median 56.50 50.44 43.96 54.68 51.19 48.68 62.32c 49.36

APOE «4 carrier 26.44 28.91 26.85 31.84 26.40 26.59 18.65 29.56

Current or previous smoker 31.37 32.41 28.55 40.76 42.10 44.84 47.63 52.62

Systolic blood pressure ≥140 mm Hg 10.11 20.31 95.75c 58.03 38.45 100.00c 51.18 58.98

Diastolic blood pressure ≥90 mm Hg 4.80 1.12 42.72 8.70 4.61 59.89 4.99 10.86

Greater than recommended WHR (for sex) 22.80 11.96 26.54 40.26 82.44c 86.44c 87.60c 80.20c

Hypertension 14.73 17.67 36.44 100.00c 28.62 51.13 60.30c 99.80c

Hyperlipidemia 1.19 6.65 9.99 64.49c 17.39 31.31 85.01c 89.86c

Diabetes 0.84 0.81 0.71 12.90 0.73 5.40 100.00c 16.30

IHD 0.14 0.06 0.17 22.09b 0.06 0.00 0.00 41.77b

Stroke 1.37 2.11 1.90 10.99b 3.08 5.34 5.63 12.57

Abbreviations: IHD = ischemic heart disease; WHR = waist-hip ratio.
Class 1members aremore likely to be younger, premenopausal if female, and least likely to have hypertension, hyperlipidemia, and stroke. Class 2members
are more likely older, female, postmenopausal, and less likely to have cardiometabolic risk factors. Class 3 members are more likely older, female,
postmenopausal, andmore likely to have elevated systolic blood pressures. Class 4members aremore likely older, female, postmenopausal, andmore likely
to have hypertension, hyperlipidemia, and end-organ vascular disease (IHD, stroke). Class 5 members are more likely older, male, with a high WHR, but few
other cardiometabolic risk factors. Class 6 members are more likely older, male, with a high WHR, elevated systolic and diastolic blood pressures. Class 7
members aremore likely older, male, with a highWHR, diabetes, hyperlipidemia, and hypertension. Class 8members aremore likely older, male, with a high
WHR, hyperlipidemia, hypertension, and end-organ vascular disease (IHD and stroke).
a In female participants only.
b High posterior probabilities relative to low prevalence in the total sample.
c Posterior probabilities higher than 0.60 in each class.
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underfit the data. The 8-class model was slightly more complex
in structure, representing a good balance between conceptual
and statistical concerns. We therefore chose to implement the
8-class model.

Class sizes and conditional item-response probabilities in the
8-class LCA model are presented in Table 2. Broadly, the
classes separated based on age, sex, menopause, and car-
diometabolic health. Class 1 members had the lowest proba-
bility of being >50 years of age, were more likely to be pre/
perimenopausal if female, and were least likely to have hyper-
tension, hyperlipidemia, and stroke. Members of classes 2–4
were more likely older, female, and postmenopausal, with
varying degrees of cardiometabolic risk. Specifically, class 2
members were less likely to have cardiometabolic risk factors
than those in classes 3 and 4, who in turn were more likely to
have elevated SBP and a diagnosis of hypertension, re-
spectively. Among these female-preponderant classes, class 4
members were most likely to have end-organ vascular disease
(IHD and stroke). Members of classes 5–8 were more likely to
be older men and have a high WHR, and among these male-
preponderant classes,members of classes 6–8 were highly likely
to have a high SBP and a diagnosis of hypertension. Members

of classes 7 and 8 were highly likely to have hyperlipidemia, and
everyone in class 7 had diabetes. Class 8 members were the
most likely to have end-organ vascular disease.

Cognitive Test Performance Outcomes by
Latent Class
Cognitive test performances for each class are presented in
Table 3 and illustrated in Figure 1. Unadjusted for age, class 1
exhibited the best performances in psychomotor speed,
working memory/attention, reasoning, prospective memory,
visual memory, and global cognition (p < 0.05). Those in
classes 4, 7, and 8 generally had the poorest performances.
eTable 16 (links.lww.com/WNL/C250) presents linear re-
gression models examining associations between age, class
memberships, and cognitive test performance. Although we
did not observe any age-class interactions on cognitive per-
formance, membership in certain classes was associated with
cognitive domain scores except for visual memory, in-
dependent of age (p < 0.05). However, because no individual
assigned to the reference group (class 1) was aged over 60
years, these age-adjusted coefficients reflect extrapolation
and do not reflect comparisons between individuals in dif-
ferent classes.

Table 3 Brain Volumes and Cognitive Test Scores by Latent Class Membership

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Cognitive tests

Psychomotor speed (milliseconds) 545 ± 96.4 594 ± 106 599 ± 110 636 ± 121 595 ± 110 588 ± 110 620 ± 113 610 ± 116

Working memory/attention
(maximum number
of digits remembered correctly)

7.0 ± 1.3 6.8 ± 1.3 6.6 ± 1.3 6.3 ± 1.3 6.8 ± 1.3 6.7 ± 1.3 6.6 ± 1.3 6.7 ± 1.3

Verbal-numeric reasoning
(fluid intelligence score)

6.8 ± 2.1 6.7 ± 2.0 6.6 ± 2.1 6.1 ± 1.9 6.6 ± 2.1 6.5 ± 2.1 6.2 ± 2.1 6.4 ± 2.1

Prospective memory (% participants
correct on the first attempt)

1,123 (86.9) 8,859 (80.7) 2,622 (80.2) 1,446 (68.5) 7,861 (77.1) 2,316 (78.4) 603 (69.6) 3,474 (73.1)

Visual memory
(number of incorrect matches)

2.9 ± 2.4 3.5 ± 2.8 3.7 ± 3.0 3.9 ± 3.0 3.7 ± 3.0 3.7 ± 3.0 3.8 ± 3.2 4.1 ± 3.3

Global cognitive score 0.43 ± 1.2 0.08 ± 1.3 −0.09 ± 1.3 −0.61 ± 1.4 −0.01 ± 1.3 −0.05 ± 1.3 −0.04 ± 1.4 −0.26 ± 1.4

Brain volumes, mL

Total brain 1,568 ± 61.1 1,508 ± 71.0 1,495 ± 70.5 1,478 ± 70.1 1,486 ± 70.1 1,481 ± 70.6 1,467 ± 71.2 1,457 ± 67.35

Gray matter 846 ± 37.2 806 ± 44.2 794 ± 44.4 786 ± 44.7 783 ± 44.8 775 ± 44.2 767 ± 46.1 758 ± 43.5

White matter 722 ± 38.3 702 ± 40.8 702 ± 41.10 693 ± 41.7 703 ± 40.9 706 ± 41.6 699 ± 42.8 699 ± 40.7

Total hippocampal 10.4 ± 1.0 10.2 ± 1.1 10.0 ± 1.1 10.0 ± 1.1 9.7 ± 1.2 9.7 ± 1.2 9.8 ± 1.1 9.3 ± 1.2

White matter hyperintensity 1.6 ± 2.0 3.8 ± 5.0 5.4 ± 6.4 7.8 ± 9.8 5.1 ± 6.5 6.1 ± 7.0 6.3 ± 6.5 7.7 ± 9.0

Abbreviations: IHD = ischemic heart disease; WHR = waist-hip ratio.
Data are presented as mean ± SD or n (%).
Class 1members aremore likely to be younger, premenopausal if female, and least likely to have hypertension, hyperlipidemia, and stroke. Class 2members
are more likely older, female, postmenopausal, and less likely to have cardiometabolic risk factors. Class 3 members are more likely older, female,
postmenopausal, andmore likely to have elevated systolic blood pressures. Class 4members aremore likely older, female, postmenopausal, andmore likely
to have hypertension, hyperlipidemia, and end-organ vascular disease (IHD, stroke). Class 5 members are more likely older, male, with a high WHR, but few
other cardiometabolic risk factors. Class 6 members are more likely older, male, with a high WHR, elevated systolic and diastolic blood pressures. Class 7
members aremore likely older, male, with a highWHR, diabetes, hyperlipidemia, and hypertension. Class 8members aremore likely older, male, with a high
WHR, hyperlipidemia, hypertension, and end-organ vascular disease (IHD and stroke).
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Results from the addition of structural brain measure to the
models of associations between class membership and cog-
nitive performance are presented in eTable 17 (links.lww.
com/WNL/C250). Brain volume measures attenuated the
associations between class membership and cognitive per-
formance by greater than 20% in only 4 models: HV atten-
uated the associations between class 4 membership and
psychomotor speed (39%) and attention/working memory
(28%). TBV andWMHV attenuated the associations between

class 4 membership and psychomotor speed (41% and 48%,
respectively).

Structural Brain Imaging Outcomes and
Latent Classes
Mean brain volumes for each class are presented in Table 3 and
illustrated in Figure 2. Class 1 individuals had the largest TBV,
GMV, WMV, and HV and the smallest WMHV, whereas
members of class 8 had the smallest TBV, GMV, and HV

Figure 1 Cognitive Test Performance by Latent Class Membership

(A) Psychomotor speed. (B) Workingmemory/attention. (C) Verbal-numeric reasoning. (D) Visual memory. (E) Prospectivememory. (F) Global cognitive score.
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compared with members of other classes (p < 0.05). Members
of classes 4 and 8 tended to have the highest WMHV.

In linear regression analysis of the whole sample, we found
statistically significant interactions between age and classes
2–8 for TBV, GMV, HV, and WMHV (all adjusted p < 0.05)
such that each additional year of age was associated with lower
TBV, GMV, and HV and higher WMHV in classes 2–8 rel-
ative to class 1 (eTable 18, links.lww.com/WNL/C250).

Predicted volumes and graphed interactions are presented in
eFigure 3. The main driver for these interactions appeared to
be the weak association between age and brain volumes in
class 1 (younger participants with a low likelihood of car-
diometabolic risk) relative to other classes. No interaction was
detected forWMV for which the associations of age (negative,
p < 0.05) and class membership (positive, p < 0.05) were
independent. In analysis restricted to participants aged 50–60
years, far fewer age-class interactions were detected, with each

Figure 2 Mean Brain Volumes (mL) by Latent Class Membership

(A) Total brain volume. (B) Gray matter volume. (C) White matter volume. (D) Total hippocampal volume. (E) White matter hyperintensity volume.
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additional year of age associated with a larger decrease of
WMV in classes 2 and 5, and HV in class 6, relative to class 1
(eTable 19, links.lww.com/WNL/C250).

In analyses restricted to people aged >60 years, there were age-
class interactions for TBV, GMV, WMV, HV, and WMHV (all
adjusted p < 0.05). Predicted volumes and graphed interac-
tions are presented in Figure 3. Generally, a stronger negative

relationship was observed in class 2 (comprising mainly post-
menopausal women with low likelihood of excess adiposity and
cardiovascular risk) between age and TBV, GMV, and WMV
than in classes 5, 6, and 8. Conversely, the negative association
between age and HV was weaker for those in class 2 than indi-
viduals in classes 5, 6, and 8. We also found a stronger positive
association between age and WMHV in class 2 than in classes 3,
4, and 8 (eTable 20, links.lww.com/WNL/C250).

Figure 3 Age-Class Interactions for Brain Volumes (mL) in >60-Year-Old Subsample

(A) Total brain volume. (B) Gray matter volume. (C) White matter volume. (D) Total hippocampal volume. (E) White matter hyperintensity volume.
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Discussion
In this large population-based sample, middle-aged individ-
uals appeared to cluster by sex, age, and varying degrees of
cardiometabolic and vascular health. Members of the youn-
gest, healthiest class (class 1) performed best cognitively and
had the healthiest brain volumes, and those in classes with
most cardiometabolic factors of interest generally had poorer
brain health outcomes, particularly when they already had
established end-organ vascular disease (classes 4 and 8). We
found interactions between class membership and age for
brain volumes, but not for cognitive scores, which confirmed
that the effect of age on brain volumes was least evident in the
younger class 1. However, on excluding those under 60 years,
we found that the negative effect of age on total, gray, and
white matter volumes was stronger in the class consisting of
healthier, older, postmenopausal women than in classes
comprising mainly older men of varying cardiometabolic
health, suggesting a sex-dependent effect of cardiometabolic
health on the age–brain atrophy relationship. These data,
taken as a whole, suggest that there may be particular groups
of people at a greater risk of accelerated brain aging as a result
of sex-dependent clustering of cardiometabolic factors.

This interplay between sex, age, and cardiometabolic health is
reflected in the classes generated by the LCA, which were
striking for several reasons. First, there was a distinctly healthy
and younger class of both sexes—pre/perimenopausal
women and men—suggesting that some men are compara-
ble to pre/perimenopausal women with respect to their car-
diometabolic and brain health, contrary to the general belief
that men develop cardiometabolic risk factors at earlier ages
than women.22 Second is the clear separation of the data set
by sex in the older classes (age >50 years), where we observed
4 predominantly male and 3 predominantly female classes,
with each class diverging by gradations of cardiometabolic
burden. Not only do these results support findings from
previous studies reporting between-sex differences in in-
dividual cardiovascular factors23,24 but also extend these
findings by clearly illustrating clusters and patterns of car-
diometabolic risk that are age and sex specific. Moreover, the
process by which the latent classes were formed was in-
dependent of brain outcomes, which reinforces the validity of
the relationships with brain outcomes that we observed.

We found that class membership modified the association
between age and brain volumes, and these relationships dif-
fered depending on the age category examined. The age-class
interactions on brain structure became particularly pro-
nounced from 60 years of age. In this older sample, each
additional year was associated with lower total (gray and
white) brain volumes for postmenopausal women with better
cardiometabolic health compared with classes of pre-
dominantly male subjects who were less healthy. This extends
results from our prior work, which demonstrated that the
negative effects of age on brain structure appear to be greater
in women than men, particularly after menopause.4 This may

also reflect subtle menopause-related sex differences in how
the brain responds to cardiometabolic factors. For example,
although a diagnosis of hypertension, hyperlipidemia, and
diabetes in midlife is associated with a higher risk of dementia
in both sexes, the risk may be greater for women.23 Similarly, a
meta-analysis has found that for every 10 mm Hg increase in
SBP, there was a 25% and 15% increase in cardiovascular
disease risk for women and men, respectively.25 Treatments
for cardiovascular disorders may also not be as effective for
women than for men. Some studies have observed that statins
are less successful at lowering cholesterol in women compared
with men,26 and angiotensin receptor blockers may improve
survival rates for men, but not women with hypertension or
cardiovascular disease.27 Although such biological differences
in therapeutic responses may exist, it is also possible that
prescription of treatments also differs between sexes, as we
found in our data, and consistent with prior work.28 Women
with diabetes are also more susceptible to cardiovascular
disease and Alzheimer disease (AD), especially after meno-
pause,29 possibly due to greater changes in body fat distri-
bution and insulin resistance. The absence of age-class
interactions with cognition in our study is congruent with the
temporal relationship of brain atrophy preceding clinically
perceptible declines in cognition.30 The observed attenuation
of associations between class membership and cognitive
scores by brain volume measures indicates that follow-up of
these individuals over a sufficient length of time may be re-
quired to unmask these interactions if present.

Our finding of lower brain volumes with each additional year of
aging for classes of postmenopausal women compared with their
less healthy male counterparts indicates that there are mecha-
nisms other than cardiometabolic factors at play. The meno-
pausal transitionmarks an abrupt decline in estrogen production
and is responsible for numerous physical and cognitive symp-
toms experienced during midlife for women.13 Estrogens, es-
pecially 17β-estradiol, promote neuron viability, regulate
β-amyloid accumulation, lower tau hyperphosphorylation, im-
prove cerebral blood flow, and exert anti-inflammatory benefits
in the brain.2 Estrogens also impart cardioprotective effects,31

and its loss following menopause is linked to the emergence of a
constellation of cardiovascular risk factors known as the meta-
bolic syndrome,32 which is in itself associated with an increased
dementia risk.9 The transition to menopause may therefore
represent a window of accelerated brain aging, with hormonal
shifts triggering the emergence of cardiometabolic disease and
consequent brain changes.

In contrast to our findings with TBV, GMV, and WMV, the
negative association of age with HV was greater in pre-
dominantly male classes than classes comprising older
women. This is consistent with studies indicating that brain
aging patterns vary by sex, and the direction of interaction
may depend on whether cortical or subcortical brain matter is
involved.33-36 Our previous work found steeper inverse as-
sociations between male sex and subcortical GMV,4 and
similar inverse associations have been reported between male
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sex and HV of younger adults.33-36 Nonetheless, men consis-
tently have larger hippocampi,37 so the clinical implications for
a more rapid volumetric decline are yet uncertain, particularly
whenADand related dementias aremore prevalent in women.1

This sex-specific disparity may be partly explained by the brain
reserve model, which emphasizes quantitative measures of
structural integrity and volume that support cognitive perfor-
mance.38 According to this model, individuals with high brain
and/or cognitive reserve, compared with those with low re-
serve, demonstrate better cognitive performance and later
cognitive decline despite equal amounts of pathology.38 Male
brains may therefore be better protected even before the dual
insults of menopause and accelerated cardiovascular risk for
women at midlife. More studies investigating sex and gender
contributions to reserve are required to better understand the
mechanisms for sex-specific effects on regional brain structures
over time, particularly in later midlife.

Our study has the strength of using a large, well-characterized
sample with detailed volumetric brain imaging data. Where
possible, self-reported data were validated by coded medication
and hospital diagnoses. We also used a data-driven approach
(LCA) to account for multidimensionality and cluster middle-
aged individuals on the basis of sex, age, and cardiometabolic
profiles, to compare them for measures of brain health. An ad-
vantage of using LCA is that the groupings originate from the
data and are not limited by our current understandings of disease
pathways. Previous studies have used latent class or cluster
analysis to define subgroups of neurocognitive syndromes in
people with and without dementia,39-44 as well as the patterns of
cardiometabolic risk factors,45-48 but none have explored for an
underlying relationship between the 2. However, this study has
some limitations. The participants in this study were volunteers
rather than randomly selected. Similarly, those who had missing
brain imaging data were generally less healthy than those who
did. As such, our results may not be fully generalizable, although
we speculate that the inclusion of such people in the analysis may
strengthen our reported relationships. Menopause status was
determined by self-report, and the cross-sectional nature of our
study limits the ability to draw conclusions about declines in brain
health. In addition, our analyses considered sex as binary, as
measured in the UK Biobank, assuming homogeneity of gender
representationwithin the self-reported categories of sex.Wewere
therefore unable to partition out the potential effects of sex (a
biological construct) and gender (a social construct) on the as-
sociations we found. Future studies would benefit from defining
these constructs better in their analyses.49 Finally, longitudinal
studies are required to explore whether the kinds of classes
identified behave differently over time with respect to brain
health and how this relates to sex- and/or gender-related factors.

In conclusion, groups of middle-aged individuals cluster by sex,
age, menopause status, and cardiometabolic health, and these
groups differ by cognitive and imaging measures of brain aging.
Data-driven approaches such as those used in this study can
help understand whether these groups are at a greater or lower
risk of progression to dementia, thus enabling better targeting

of prevention efforts in the future. Further work is needed to
refine our understanding of the relationship between meno-
pause, cardiometabolic health, and brain health in women as
they age and also uncover relevant menopause-related factors
unrelated to cardiometabolic health. Such studies have the
potential to inform ways to reduce the risk of brain aging and
dementia for both men and women.
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