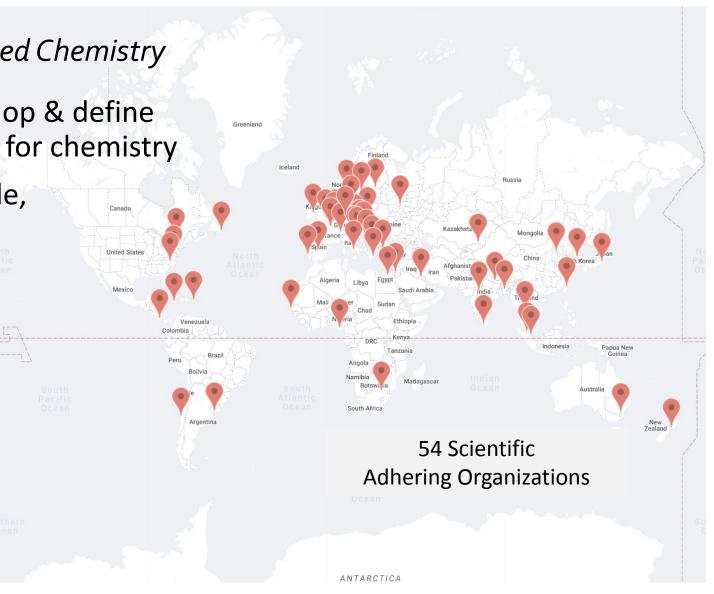


Leah McEwen, Cornell University Library *IUPAC Committee on Publications and Cheminformatics Data Standards*

PARC FAIR data webinar series 2023.04.20

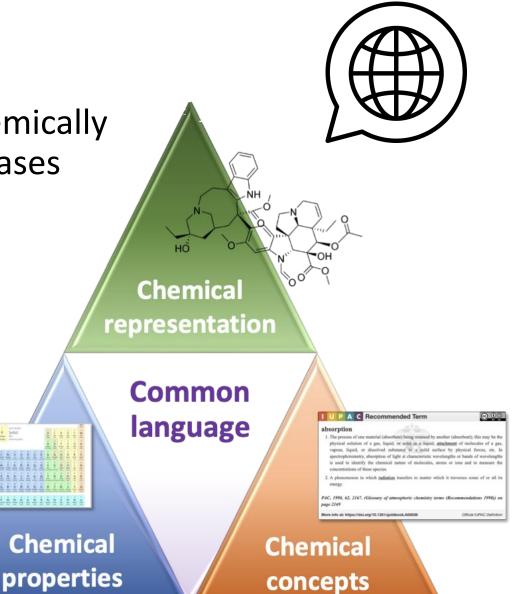
What is IUPAC?


International Union of Pure and Applied Chemistry

100 yrs of global consensus to develop & define a common and systematic language for chemistry

 2000 scientific experts worldwide, drawn from scientific societies

- Pure and applied research, industry, policy, education
- Core values neutral, open, transparent provenance, sustainable process, benefit to humankind



Interpretable chemical data

Outputs from measurements need to be chemically interpretable between systems, across use cases and over time, including:

- Quantities (i.e., units, symbols)
- Equations, models (e.g., systems, uncertainty)
- Notations (e.g., chemical substances)
- Terms (e.g., properties, processes, roles)

IUPAC provides authoritative definitions and parameters for consistent expression of chemical data and information.

IUPAC standard definitions and properties

Chemical representation

- Nomenclature
 - Blue Book (organic)
 - Red Book (inorganic)
 - Purple Book (polymer)
- Graphical representation (structures, stereo, reactions)

Chemical terminology

- Orange Book (analytical)
- Silver Book (clinical)
- White Book (biochemical)
- Green Book (physical)

Chemical properties

- Periodic Table (CIAAW tables)
- Solubility Data Series
- Atmospheric kinetics datasheets
- Polymerization kinetics dataset
- Stability constants dataset

Machine-processable (to some degree)

- InChI notations
 - InChlKey
 - RInChl
 - MInChI
 - NInChI
- SMILES+ notation
- HELM notation
 - Glycans notation

- Gold Book (compendium)
- NPU terminology for clinical chemistry
- Green book digital quantities & symbols
- DRUM digital units

- JCAMP-DX spectra format
- ThermoML format
- AIF adsorption format
- FAIRSpec metadata principles
- MAPT metadata schema
- Solubility metadata schema
- Dissociation constants dataset
- Atmospheric kinetics dataset
- Polymerization kinetics database

IUPAC: FAIR-enabling resources for Chemistry

- Premise: IUPAC standards provide the scientific backbone for accurate chemical data exchange
- Target: digitalize IUPAC standards and map to FAIR attributes
 - How do these digital standards enable FAIR re-use ?
 - Are IUPAC standards FAIR and accessible for programmatic re-use?
- Goal: enable application of chemistry description at multiple levels
 - Concise information for registration and general discovery
 - Consistent representation for exchange and integration
 - Rich metadata for analysis & prediction

UPAC

FER implementation	Chemistry considerations	IUPAC notes
I1: knowledge representation language Metadata: rules for machine-processable expression Data: formats for machine-processable encapsulation of critical data components	Graphical representation guidelines, nomenclature rules, InChI algorithm, OpenSMILES specification, HELM specification; JCAMP-DX, ThermoML, CIF, AIF, molfile/SDF family, NMReData	Guidance and test sets for implementation of nomenclature rules, graphical representation standards, other formats and metadata schema in development
I2: structured vocabulary Metadata: referrable concepts for annotation Data: regularized labels for fields/components	Gold Book, VIM (metrology generally), MeSH, CIF dictionaries (crystallography), STRENDA	Align Gold Book metadata with Dublin Core and SKOS practices
I3: semantic model Metadata: ontologies, classification Data: meaningful relationships of data components	CHMO, RXNO, MOP, ClassyFire, ChEBI Models of meaning: CTAB (connectivity), PToE (periodicity), FAIRSpec (spectra-structure), QSAR (structure-activity)	Project to digitalize Periodic Table underway; do we need to a standardize CTAB/CT file specification? QSAR?

FER implementation	Chemistry considerations	IUPAC notes
F1: globally unique, persistent, resolvable identifier service	Most use general DOI services for data files; various chemical database, record identifiers (e.g. CAS RNs, PubChem CIDs) but not universal	Register more IUPAC datasets, descriptors, etc.
F2: metadata schemas for findability	InChI, SMILES, HELM, chemical names, polymer names, named reactions, properties, methodologies, etc.	Core metadata components for discovery (e.g, MMI); micro-metadata schema?
F3: metadata-data linking specification	Provided in registered metadata associated with DOI services; often managed locally	Register more IUPAC datasets, descriptors, etc.
F4: registry service for publishing datasets and metadata records	Pubchem, ChemSpider, DSSTox, ChEMBL, VAMDC Also use general DOI services for citation	Register more IUPAC datasets, descriptors, etc.

FER implementation	Chemistry considerations	IUPAC notes	
A1: standardized communications protocol	Most use http/https, ftp, Shibboleth, etc.; CoreTrustSeal best practices for repos	IUPAC needs hosting repositories (some partner agencies)	
		Do we need chemistry criteria for API protocols (e.g., use of chemical linear notations)?	
A2: metadata preservation policy	Use cases: CBI (confidential business information), retraction	Develop trusted repository criteria?	

FER implementation	Chemistry considerations	IUPAC notes
R1.1: usage license	Emerging publisher guidelines (DAS levels)	Existing policy is for open dissemination of standards w/approval requested for derivatives and commercial use (i.e., CC-BY-NC-ND); relax for metadata*
R1.2: metadata schema for describing provenance	Chemistry examples: CAS tracks deleted & superseded CAS RNs; PubChem tracks data sources up to 2 levels; Gold Book tracks sources of definitions, superseded terms	Track: versioning of standards, official copy of record, source of original experimental data, subsequent evaluation processes
R1.3: validation service for syntax and semantics	Example: checkCIF (Generic example: OpenRefine)	Validation mechanisms for all IUPAC digital standard formats and rule-sets (e.g., nomenclature, graphical representation)

^{*(}human-readable rendering for end users must be consistent)

U P A C

FAIR chemical datasets/systems/workflows

FAIR attributes	Chemical notations (examples)	Functionality
Findable metadata schema	InChI, nomenclature	Indexing, matching
	Chemical notations (e.g., SMILES), terms (e.g., properties, methods)	Searching
Accessible retrieval protocols	Chemical structure resolver (general spec underway in WFC)	Searching, retrieving (APIs) (presently specific to systems)
Interoperable knowledge	SDF, CIF, ThermoML, JCAMP-DX, mzML	File formats for chemical systems and measurements
representations,	Gold Book, VIM, MeSH	Referrable terms and definitions
vocabularies, metadata references	CHMO, RXNO, ChEBI, FAIRSpec	Classification, modeling
Reusable Validation services	checkCIF	Completeness, consistency

IUPAC standards

Are these digital standards FAIR for programmatic access and reuse?

InChl

Standard Metadata
Schema

Structure Exchange
Specifications

File formats

Molecular Representations

GOLD Book

Models: chemical systems, quantities, measurements

Criteria for interoperability

Need

FAIR enabling resources

Identifier Services

Metadata Schema

Registries

Communication Protocols

Knowledge Representation

Structured Vocabularies

Semantic Models

Usage Licences

Provenance

Validation Services

Gold Book

Searchable

Search (three chars min

Compendium of Chemical Terminology

https://goldbook.iupac.org

Additional Indexes

Alphabetical Index

Physical Constants

Units of Measure

Physical Quantities

SI Prefixes

Ring Index

General Formulae

Exact Formulae

Source Documents

- L ILIDAO D

Welcome to the Chemical Termin these pages yo publication. Start

- · browsing th
- · using one of
- · using the s

To learn more ab (Updated July 1s

Expanded Search!

DOI

Compendium of

Chemical

Second edition

Compiled by Alan D. McNaught

Terminology

IUPAC RECOMMENDATIONS

New Download I

https://doi.org/10.1351/goldl

The Gold Book API Alpha API V1.0 (5/31/19)

API

While we expect a lot of humans to stop by the Gold Book, its about time that the recent ulary be friendly towards computers and have set up an application programming interface (API) so they may download a bunch of stuff. Here is the overview of the API and we are working on additional documentation. (click the headers below to toggle whats visible.

Terms

Endpoint/Notes Example(s)

/terms/index/[scope]/[format]/[download]

List of terms in the Gold Book

[scope]: (all), A-W, XYZ (returns to referring page if no data)

[format]: (html), xml, json (rest are ignored) [download]: (""), download (rest are ignored)

/terms/view/[identifier]/[format]/[download]

A term from the Gold Book

[identifier]: term code or id

[format]: (html), xml, json (rest are ignored) [download]: (""), download (rest are ignored) /terms/view/A00001

/terms/index/C/xml

/terms/view/P04409/ison

/terms/view/ZT07132/xml/download

/terms/index/all (just "terms" works too)

/terms/index/XYZ/json/download

Sources (Click to show)

absorbance, A

Logarithm of the ratio of incident to

adjant power through a sample

ing on the base of the logarithm a decadic and the effe A_{10} , $A_{\rm e}$. This quantity is sometimes called absorba Provenance er called attenuance, is reserved for the quan althoug takes into account. Itects of juminescence and scattering as well.

Source:

Green Book, 2nd ed., p. 32 [Terms] [Book]

Currently developing the processes and practices needed to ensure definitions are born digital

U P A C

FAIR for machines

✓ Persistent Identifiers

✓ Rich Metadata

Data Repositories

✓ Standard Open Protocols

Knowledge Representation

✓ FAIR Vocabularies

Linked Data

✓ Usage Licences

✓ Provenance

Community Standards

IUPAC standards

InChl

Standard Metadata
Schema

Structure Exchange Specifications

File formats

Molecular Representations

GOLD Book

Models: chemical systems, quantities, measurements

Criteria for interoperability

Need

FAIR enabling resources

Identifier Services

Metadata Schema

Registries

Communication Protocols

Knowledge Representation

Structured Vocabularies

Semantic Models

Usage Licences

Provenance

Validation Services

[Gold Book example]

FIP/FER analysis: friendly suggestions 😂

Domain/broader application

- Full declaration option for R1.3: validation
 - Check representation for syntax & semantics; assessment of (meta)data completeness
- Option to reference domain descriptors as metadata components in F2
- Option to reference domain specifications for API protocols (e.g., URI syntax)
- FIP assessment for each FER (FERs also need to be FAIR to reuse, exposes more how-to-use)
- Link to FAIR implementation community profiles from FER profiles as FER curators
- Allow any FER to show up under any attribute in FIP profiles, and push selected types back to the FER profile
- Profile review by responsible organizations and domain technical experts

UPAC

Well defined chemical data are broadly reusable

RIPE for sharing	Chemical data	Standard definitions (examples)
Reliable information for samples & measurements	Samples: identity of substance(s), sample description (provenance, purity, state)	nomenclature (Blue/Red/Purple books), graphical representation, InChI
	Measurements: techniques, conditions, calibrations, uncertainties	Terminology for analytical chemistry (Orange book), metrology (VIM)
Interpretable scientific expression	Results: quantities, units, calculations, dependencies, processing/derivation	Notations, symbols, terminology for physical chemistry (Green book)
Processable formatted for machines	File formats, validation	SDF, CIF, ThermoML, JCAMP-DX, mzML
	Referrable terms, ontologies	Gold Book, CHMO, RXNO, ChEBI
	Data models, metadata schema	FAIRSpec, Solubility, Periodic Table
Exchangeable metadata online	Registered metadata for indexing chemicals	InChls, standard terms/notations
	Standardized exchange APIs for chemicals	Chemical structure API specification

WE ARE FAIR ENABLERS

ENABLERS	PIDs & registered metadata	Domain repositories	Open standard formats	Verified, licensed
Repositories	- standard chemistrydescriptors- key metadata	standard chemistry APIsauthentication andauthorization	standard formats, terminology,ontologiesmetadata relationships	standardized validationtransparent licensing
Software (tools)	- generate standard chemistry descriptors	- standard chemistry APIs (e.g., instrument to ELN)	standard descriptors in native formatslink data/metadata	metadata extractionvalidation checks
Support services	- cross-linking data and publications	facilitate depositdata preparation checklist	how-to support for using file formatsmetadata templates	data reviewprocess guide
Researchers	- templates to collect metadata	- select repository & upload	assemble data filesdocument which formats used	validation checkselect licenseprepare ReadMe

Questions?

iupac.org

@FAIRChemistry @iupac

https://bit.ly/WhatsAchemical

FAIRChemistry@iupac.org

@iupac.org

FAIRChemistry Community

