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Abstract

For a compact Lie group G the complex representation ring RH of a
closed subgroup H can be equipped with the structure of an RG-module
using the ring homomorphism induced by the inclusion H ⊆ G. Pittie and
Steinberg have shown that for certain compact connected Lie groups G the
representation ring RT of a maximal torus T in G is a free RG-module. In
particular, it is flat over RG. In this thesis, we take a look at closed connected
subgroups H1, H2 of these types of Lie groups and study the vanishing of
TorRGi (RH1, RH2).
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Introduction

This thesis deals with complex representation rings of compact connected
Lie groups under an algebraic point of view.

Let G be a compact Lie group. The complex representation ring RG
of G results from the semiring of equivalence classes of complex, finite-
dimensional, linear representations of G. By the Closed Subgroup Theorem,
every closed subgroup H of G is an embedded Lie subgroup. In particular,
the inclusion H ↪! G is a morphism of Lie groups. We are interested in
the representation rings RH of closed subgroups H of G. More precisely, we
will regard RH as an RG-module using the ring homomorphism RG! RH
induced by the inclusion H ⊆ G. In this thesis, we will mainly ask ourselves
the following question: If we take two closed connected subgroups H1, H2 of
a compact connected Lie group G, then what can be said about the vanishing
of TorRGi (RH1, RH2)? Our aim is to prove the following conjecture:

Conjecture (see Conjecture 100). Let G be a compact connected Lie group
with RG isomorphic to a tensor product of a polynomial algebra and a Laurent
algebra. In addition let H1, H2 ⊆ G be two closed connected subgroups that
satisfy the strict double coset condition. Then:

TorRGi (RH1, RH2) = 0 for all i > rankG− (rankH1 + rankH2).

Here, the rank of a compact connected Lie group is the dimension of a
maximal torus contained in the group. The additional conditions that appear
in the conjecture are motivated by the following results of Singhof, Pittie and
Steinberg:

� The strict double coset condition is a condition for a pair of subgroups
that naturally appears when studying biquotients manifolds. We will
introduce these terms in detail in the first two sections of Chapter 3.
The motivation to demand this condition was a work of Singhof [Sin93],
in which he studied these biquotients and managed to show a result
similar to the conjecture for cohomology with coefficients in Q (see
Theorem 101).
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� In compact connected Lie groups G, a maximal torus T ⊆ G always
exists. Let T be such a maximal torus. The Theorem of Pittie yields
that RT is free as an RG-module if the fundamental group π1(G) is
free. This was generalized by Steinberg who introduced equivalent con-
ditions for when RT is free as an RG-module. One of these equivalent
conditions is that RG is isomorphic to the tensor product of a polyno-
mial and a Laurent algebra. If RT is free, we have in particular:

TorRGi (RT,Z) = 0 for all i > 0.

This can be seen as a special case of the conjecture, because for the
trivial subgroup H = {1}, we have RH = Z. So assuming that the
equivalent conditions of Steinberg are fulfilled is a reasonable condition.

We approach this problem by studying the primes in the support and
the associated primes of the RG-modules RH1 and RH2. For this, results of
Segal [Seg68] were crucial. Using them, we were able to connect the strict
double coset condition with the occurring supports. If the strict double coset
condition is fulfilled, we are able to describe the intersection of the supports
of the representation rings:

Proposition (see Proposition 113). Let G be a compact Lie group and
H1, H2 ⊆ G two closed subgroups that satisfy the strict double coset con-
dition. Then

SuppRG(RH1) ∩ SuppRG(RH2) = {I} ∪ {I + (p) | p ∈ Z prime }

where I denotes the augmentation ideal given by the kernel of the rank map
RG! Z.

In our setting, the ideals in this intersection do not appear as associated
primes:

Proposition (see Proposition 114). Let G be a compact connected Lie group
and H ⊆ G a closed connected subgroup of G with rank(H) ≥ 1. Then the
augmentation ideal I of RG is not an associated prime of RH, nor is I+(p)
for any prime p ∈ Z

Using these results, we are able to prove the conjecture in the following
case:

Theorem (see Theorem 115). Let G, H1 and H2 be as in Conjecture 100. In
addition, assume that rank(H1) ≤ 1 or rank(H2) ≤ 1. Then Conjecture 100
holds.
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We also present an approach for the general case:

Proposition (see Proposition 117). Let G be a compact Lie group and H1,
H2 two closed subgroups of G satisfying the strict double coset condition. In
addition, let I ⊆ RG be the augmentation ideal of RG and i ∈ N>0. If there
exists an element a ∈ I for which the multiplication

TorRGi (RH1, RH2)
·a
−! TorRGi (RH1, RH2)

is injective, then TorRGi (RH1, RH2) = 0.

For compact connected Lie groups G, we propose a choice for a concrete
element a ∈ I ⊆ RG. With this choice of element, we are able to prove the
following:

Proposition (see Proposition 124). Conjecture 100 holds if G = T is a
torus.

Structure of the Thesis:

This thesis is structured as follows: The purpose of the first two chapters is
to outline the fundamentals in the two mathematical fields with which we
will work in this thesis: representation theory and commutative algebra.

The first chapter starts with a brief introduction of Lie groups in which
we also introduce maximal tori and the Weyl group of compact connected
Lie groups. In the next section we deal with representation theory starting
a bit more general with arbitrary topological groups and finally introducing
the representation ring of compact Lie groups. Afterwards, we take a closer
look at the representation rings of tori. The next section deals with the
augmentation ideal of the representation rings of compact connected Lie
groups. Finally, we take a closer look at the previously introduced concepts
by studying classical examples of Lie groups.

The second chapter’s purpose is to introduce some tools from commu-
tative algebra which we will use when studying the representation rings as
modules. After the introduction of some basic terms in the first section, the
support and associated primes of modules are studied. The third section
deals with the Tor functors, the derived functors of the tensor product. The
last section introduces regular sequences and the Koszul complex.

The third chapter is the main part of this thesis. We start by introducing
biquotient manifolds. In this context, we also consider some examples of
biquotient manifolds that appear in Eschenburgs classification of biquotients.
In the next section, we introduce the strict double coset condition and see
how it is connected to biquotient manifolds. Afterwards, we again state the
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conjecture and take a look at the theorems of Singhof, Pittie and Steinberg.
Then, we examine the primes that appear in SuppRG(RH) and AssRG(RH).
In the next section, this study of primes comes to use when proving our
conjecture in case that one of the occurring subgroups is of rank 1 or lower.
Finally, we conclude by presenting an approach for the general case and
analyze which further problems may occur.

Afterwards, we conclude by a summary of the results.
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Chapter 1

Representation Theory of
Compact Lie Groups

In this thesis the objects which we will study are representation rings of cer-
tain compact Lie groups. The idea behind representation theory is to describe
the elements of an abstract group by mapping them to the automorphism
group of a vector space. So after the choice of a basis, the group elements
are mapped to (not necessarily distinct) matrices. Representations of groups
are of great interest since they make it possible to examine abstract groups
with tools used in Linear Algebra. In addition, they are of computational
use since computers can handle the representing matrices more easily.

At the beginning of the first section, we will briefly introduce Lie groups.
Then the focus will be set on maximal tori contained in Lie groups and
the Weyl group. In the second section the representation ring of compact
Lie groups will be introduced, mainly following the definitions in [Ada69].
Afterwards, the special case of representation rings of tori will be considered
in more detail. This includes taking a look at the Weyl group action on
the representation rings and how this connects the representation rings of
a compact connected Lie group and a maximal torus of the group. In the
fourth section, the augmentation ideal of representation rings will be defined
and studied. Finally, we conclude by taking a look at the representation
rings and the Weyl group action on it for some classical examples.

1.1 Basic Definitions

We will start by a quick reminder of the definition of Lie groups:

Definition 1 (Lie group). A Lie group G is a smooth manifold equipped with
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a group structure, such that the maps:

G×G −! G, (a, b) 7−! ab

G −! G, a 7−! a−1,

given by the product and inverse elements in the group, are smooth. A ho-
momorphism of Lie groups is a map f : G ! H that is both a group homo-
morphism and smooth. An isomorphism of Lie groups is a homomorphism
that has an inverse.

Some common examples of Lie groups are:

� Rn for an n ∈ N as a group under the component-wise addition.

� S1 as a multiplicative group.

� GLn(R), O(n), SO(n), U(n), SU(n), . . . .

Next, we list some examples for Lie groups that are isomorphic to S1:

Example 2. � S1 is isomorphic to R/Z as Lie groups. The isomorphism
is given by the exponential map R/Z! S1, a 7! e2πia.

� R/Z and SO(2) are isomorphic as Lie groups: Every element in SO(2)

is of the form Bϕ =
(

cos(2πϕ) − sin(2πϕ)
sin(2πϕ) cos(2πϕ)

)
for a ϕ ∈ [0, 1). Multiplication

of Bϕ1 and Bϕ2 results in Bϕ1+ϕ2, an addition of the arguments. The
map given by R/Z ! SO(2), a 7! Ba yields an isomorphism of Lie
groups.

One very important Theorem when dealing with Lie groups is the Closed-
Subgroup Theorem of Élie Cartan, sometimes also referred to as Cartan’s
theorem:

Theorem 3 (Closed-Subgroup Theorem). Let G be a Lie group and H a
closed subgroup of G. Then H is an embedded Lie subgroup. An embedded
Lie subgroup H of G is a subgroup equipped with the subspace topology and a
smooth structure so that it is a Lie group and an embedded submanifold, i.e.
the inclusion map H ↪! G is a smooth embedding with respect to the topology
and the smooth structure.

In particular, the inclusion H ↪! G is a homomorphism of Lie groups.

Proof. See [Lee13, Chapter 20, Theorem 20.12].
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So every closed subgroup of a Lie group is a Lie group as well. We will
frequently use this theorem implicitly.

In this thesis, we will work a lot with tori. These are defined as follows:

Definition 4 (torus). A torus is a Lie group that is isomorphic to T k =
S1 × · · · × S1︸ ︷︷ ︸

k

for a k ∈ N.

Tori can be classified in the following way:

Proposition 5. Let T be a Lie group. The following two statements are
equivalent:

1. T is a torus.

2. T is compact, connected and abelian.

Proof. See [Ada69, Chapter 2, Corollary 2.20].

Tori often occur as (closed) subgroups of Lie groups. For compact, con-
nected Lie groups G, there are maximal subtori:

Definition 6. Let G be a compact connected Lie group. A maximal torus of
G is a subgroup T ⊆ G which satisfies the following conditions:

1. T is a torus.

2. If T ′ is a torus with T ⊆ T ′ ⊆ G then T = T ′.

These maximal tori are a powerful tool to study the respective group.

Proposition 7. Let G be a compact connected Lie group and T ′ ⊆ G a
subtorus. Then there exists a maximal torus T containing T ′.

The following proof is based on [BtD85, Chapter IV.1, paragraph after
(1.1) Definition]:

Proof. We will prove this using Zorn’s lemma. Consider the set

J = {T ⊆ G | T is a subtorus containing T ′}.

It is not empty since T ′ ∈ J. Together with the inclusion ⊆ the set J is
partially ordered.

Every Lie groupG is a manifold and thus a Hausdorff space. As a compact
subspace of a Hausdorff space, every subtorus T ⊆ G is closed in G. By the
Closed-Subgroup Theorem T is a submanifold of G. In particular if we have
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two subtori T1 ( T2 ⊆ G then T1 is a closed submanifold of T2. Since tori
are connected it follows that dimT1 < dimT2. Otherwise, T1 would be an
open subset of T2 and since T1 is closed and T2 is connected we would have
T1 = T2.

The connected manifold G is of finite dimension. This yields that every
strict chain of the form T ′ ( T1 ( T2 ( · · · ( G has to be finite. So every
arbitrary chain in J stabilizes and thus has an upper bound in J. Zorn’s
lemma yields the existence of a maximal element T which is a maximal torus
in G containing T ′.

Maximal tori fulfill the following properties:

Proposition 8. Let G be a compact connected Lie group and T ⊆ G a
maximal torus. Then the following statements are true:

1. Every element g ∈ G is conjugate to an element t ∈ T .

2. Every element g of G lies in a maximal torus.

3. Any two maximal tori are conjugated.

4. Any two maximal tori have the same dimension.

Proof. See [Ada69, Chapter 4, Theorem 4.21, Corollary 4.22, Corollary 4.23,
Definition 4.24].

So maximal tori are unique up to conjugation. Using Proposition 8.4, we
can define the rank of a compact connected Lie group:

Definition 9 (rank). Let G be a compact connected Lie group and T a max-
imal torus. Then we define the rank of G as the dimension of the maximal
torus T and write rank(G) = dimT .

Finally, we will define the Weyl group, a tool that frequently appears in
the study of Lie groups and their Lie algebras. In this thesis, we will need the
Weyl group of compact connected Lie groups to connect the representation
ring of a Lie group with the representation ring of a maximal torus which we
understand better.

Definition 10 (Weyl group). Let G be a compact connected Lie group and
T a maximal torus of G. Then the Weyl group WT of G (with respect to T )
is the quotient N/T where N = {g ∈ G | gTg−1 = T} is the normalizer of T
in G.

As a group, this does not depend on the choice of a maximal torus [BtD85,
Chapter IV.1, paragraph after (1.3) Definition]:
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Proposition 11. The Weyl group of a compact connected Lie group G is
unique up to isomorphism.

Proof. Let T , T ′ be two maximal tori of G. By Proposition 8 there exists
an element g ∈ G so that gTg−1 = T ′. Let W , W ′ be the Weyl groups
corresponding to T and T ′, respectively. Then W = N(T )/T and W ′ =
N(T ′)/T ′.

We start by showing that N(T ) and N(T ′) are isomorphic as groups:
Consider the group homomorphism

N(T ) −! G, n 7−! gwg−1

given by conjugation with g. For every n ∈ N(T ), the element gng−1 is in
the normalizer of T ′:

(gng−1)T ′(gng−1)−1 = (gng−1)T ′(gn−1g−1)

= (gn) (g−1T ′g)︸ ︷︷ ︸
=T

(n−1g−1)

= g (nTn−1)︸ ︷︷ ︸
=T

g−1 = gTg−1 = T ′.

So conjugation with g yields a group homomorphism N(T )! N(T ′).
On the other hand, if we conjugate with g−1, we get a group homomor-

phism N(T ′)! N(T ) by similar arguments. As both group homomorphisms
are clearly inverse to each other, it follows that N(T ) ∼= N(T ′) as groups.

Concatenation with the projection map π : N(T ′)! T ′ yields the follow-
ing group homomorphism:

N(T )
g()g−1

−! N(T ′)
π
−! N(T ′)/T ′.

The kernel of this surjective map is T . By the fundamental homomorphism
theorem it follows that N(T )/T ∼= N(T ′)/T ′.

1.2 Representation Rings of Compact Lie Groups

In this subsection, we will introduce the representation rings of compact Lie
groups. These will later become our main object of interest. The initial
definitions are kept more general. For these we will assume that G is a
topological group:
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Definition 12 (topological group). A topological group is a group G equipped
with a topology so that the maps:

G×G −! G, (a, b) 7−! ab

G −! G, a 7−! a−1,

given by the product and inverse elements in the group are continuous.

As every smooth manifold is in particular a topological space and smooth
maps are continuous (see [Lee13, Chapter 2, Proposition 2.4]), every Lie
group is a topological group.

Definition 13. Let G be a topological group. A (complex) representation of
G is a pair (V, φ) consisting of a finite-dimensional complex vector space V
and a continuous action

φ : G× V ! V

such that for each g ∈ G the map v 7! φ(g, v) is C-linear.

It is also common to use the following definition to define complex repre-
sentations of topological groups:

Definition 14. Let G be a topological group. Then a (complex) representa-
tion is a finite-dimensional vector space V over C together with a continuous
homomorphism ψ : G! Aut(V ).

Firstly, we will show that both definitions can be easily transferred to
each other:

Proposition 15. Let G be a topological group, V a finite-dimensional com-
plex vector space and φ : G×V ! V and ψ : G! Aut(V ) as in Definition 13
and Definition 14, respectively. Then the following statements are true:

1. (V, φ#) with φ#(g) = (v 7! φ(g, v)) is a representation of G in terms
of Definition 14.

2. (V, ψ#) with ψ#(g, v) = (ψ(g))(v) is a representation of G in terms of
Definition 13.

3. We have (φ#)# = φ and (ψ#)# = ψ.

Proof. Firstly we will show that φ# and ψ# maintain their continuity. This is
precisely the exponential law for locally compact spaces (see [LS15, Kapitel
4, Satz 4.21 (Exponentialgesetz)]). We can apply this since V is a finite
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dimensional complex vector space equipped with the norm-induced topology
and thus a locally compact space.

Now, we start with φ#. It is left to show that this is well-defined and in-
deed a homomorphism of groups. Since φ is a group action,we have φ(e, v) =
v for the neutral element e ∈ G. Thus φ#(e) is the identity on V . In addition,
φ being an action yields that for each a, b ∈ G and each v ∈ V , φ(a, φ(b, v)) =
φ(ab, v). In terms of φ# this is translated to φ#(a)(φ#(b)(v)) = φ#(ab)(v)
and it follows that φ# is a homomorphism of groups. By choosing b = a−1

we also directly see that every element in the image of φ# is invertible and
thus in Aut(V ).

For ψ# we still have to show that it is a group action. Since ψ is a
group homomorphism, ψ(e) = idV for the neutral element e ∈ G and thus
ψ#(e, v) = (ψ(e))(v) = v. Furthermore, for a, b ∈ G and v ∈ V we have
ψ#(ab, v) = (ψ(ab))(v) = ψ(a)(ψ(b)(v)) = ψ#(a, ψ#(b, v)). So ψ# satisfies
all necessary axioms for group actions.

Finally, the third statement directly follows from the definitions.

Note that it is also common to replace the field C with the real numbers
R or the quaternions H. However, in this thesis we will only study complex
representations. So when talking about representations, we will always mean
complex representations.

Furthermore, we will often denote a representation only by its underlying
vector space V . The omitted maps in the sense of both definitions will
then be denoted as φV and ψV , respectively. In addition, the expression
φV (g, v) = (ψV (g))(v) will be shortened to gv.

Definition 16 (rank of representations). Let G be a topological group and V
a representation of G. The rank of V is rank(V ) = dimC(V ), the dimension
of V as a complex vector space.

By choosing a basis of V we can view the map φ as a homomorphism
φ : G! GLn(C) with n = dimC V . When such a basis is given, we will also
call the representation of G a matrix representation. A matrix representation
that only takes values in U(n) is called unitary representation.

The easiest way to gain a representation of G is to let G act trivially:

Definition 17. A representation V of G is called trivial if gv = v for all
g ∈ G.

Next, we take a look at more examples:

Example 18. Here, we give some examples of matrix representations of the
n-dimensional torus Tn = (S1)n:
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1. Let k be a natural number. The trivial representation of rank k is given
by the homomorphism:

T n ! GLk(C), t 7!

(
1

...
1

)
= Ik

that sends every element of the torus to the unit matrix Ik of rank k.

2. For every 1 ≤ j ≤ n the projection pj onto the j-th entry given by:

pj : T n ! S1 ⊆ GL1(C), (d1, . . . , dn) 7! dj

is a representation of rank 1.

3. Let U = {u1, . . . , uk} be a subset of {1, . . . , n} consisting of k pairwise
disjoint elements. Then mapping to the diagonal matrix whose entries
consists of the respective projections is a representation of rank k:

pU : T n ! GLk(C), (d1, . . . , dn) 7!

(
du1

...
duk

)
.

For |U | = 1 this is precisely the second example above.

4. For two subsets U1, U2 of {1, . . . , n} of the same cardinality, the product
pU1 · pU2 that sends t ∈ T n to pU1(t) · pU2(t) is a representation of T n.

5. For U ⊆ {1, . . . , n} the map p−1U that sends t ∈ T k to the inverse matrix
(pU(t))−1 is a representation of G.

In some proofs of the main part of this thesis, we will need the term
faithful representation:

Definition 19. A representation V of G is called faithful if ψV is injective.

In our setting, faithful representations always exist:

Theorem 20. Every compact Lie group G has a faithful representation.

Proof. See [BtD85, Chapter III.4, (4.1) Theorem].

If we consider the representations of a group G as the objects of our study,
the next step is to introduce the respective morphisms:

Definition 21. 1. Let V , W be two representations of G. A morphism of
representations of G is a C-linear map f : V ! W satisfying f(gv) =
gf(v) for all g ∈ G, v ∈ V , i.e. a map that commutes with the action
of G.
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2. The set of all such morphisms is denoted as HomG(V,W ).

3. An isomorphism of representations of G is a homomorphism that has
an inverse.

4. Two representations which only differ by an isomorphism are called
equivalent.

Let (V, φV ), (W,φW ) be two equivalent representations of G. In partic-
ular, V and W are isomorphic as vector spaces over C. Thus by choosing
bases, we can substitute V and W by Cn and take a look at the correspond-
ing matrix representations ψV and ψW . An isomorphism f : V ! W can be
seen as an invertible matrix A ∈ GLn(C) satisfying A · ψV (g) = ψW (g) · A
(or equivalently A · ψV (g) · A−1 = ψW (g)) for all g ∈ G.

There are some parallels between ordinary C-linear maps and morphisms
of representations:

Proposition 22. Let f : V ! W be a morphism of representations. Then
the following statements are equivalent:

1. f is an isomorphism.

2. Ker(f) = {0} and Im(f) = W .

Proof. The first implication is trivial since every morphism of representa-
tions is especially a C-linear map. So we have to show that Ker(f) = {0}
and Im(f) = W imply that there exists an inverse morphism of represen-
tations. From linear algebra it is well known that for a linear map these
conditions imply that the inverse map is a linear map as well. Let f−1 be
this inverse linear map. We have to show that f−1 respects the action of
G. For w ∈ W there exists a unique v ∈ V so that f(v) = w. Then
gf−1(w) = gv = f−1(f(gv)) = f−1(gf(v)) = f−1(gw) and thus f−1 is a
morphism of representations.

If we have two representations V and W of G, it is possible to construct
a new representation using them. This will be done by using methods of
constructing vector spaces: direct sums and tensor products. We will start
with direct sums:

Definition 23 (direct sums of representations). Let G be a topological group
and V , W two representations of G. The direct sum of V and W is given by
the direct sum V ⊕W as a complex vector space together with the continuous
action given by g(v, w) = (gv, gw) for all g ∈ G, v ∈ V , w ∈ W .
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The constructed map in the definition above is clearly continuous since
both φV and φW are continuous. The conditions for being an action are
directly transferred as well. The rank of V ⊕W is given by: rank(V ⊕W ) =
rank(V ) + rank(W ). By considering the maps that permute the respective
entries, one can see that taking direct sums is associative and commutative
up to equivalence.

If we choose two bases v1, . . . , vn ∈ V and w1, . . . , wm ∈ W , we can
combine them to a basis (v1, 0), . . . , (vn, 0), (0, w1), . . . , (0, wm) of V ⊕ W .
Considering the corresponding matrix representations, the direct sum of the
representations ψ1 : G! GLn1(C) and ψ2 : G! GLn2(C) is given by:

g 7!
(
ψ1(g) 0

0 ψ2(g)

)
.

Example 24. Again, consider the n-dimensional torus G = T n. Let 1 ≤
i < j ≤ n. The direct sum of the projections pi and pj is of the form:

pi ⊕ pj : T n −! GL2(C), (d1, . . . , dn) 7−!
(
di
dj

)
which coincides with p{i,j}.

Next, we construct new representations using the tensor product of vector
spaces:

Definition 25 (tensor products of representations). Let G be a topological
group and V , W two representations of G. The tensor product of the two
representations is given by the tensor product V ⊗C W of the two complex
vector spaces together with the continuous action given on pure tensors by
g(v⊗w) = gv⊗ gw. For other elements in V ⊗W the action of g is linearly
extended.

One can easily see that tensor products of representations are represen-
tations as well. The rank of V ⊗W is the product of the respective ranks of
V and W , i.e. rank(V ⊗W ) = rank(V ) rank(W ). Again, the tensor product
of representations is commutative and associative up to equivalence.

For V = Cn and W = Cm, we can choose the standard bases v1, . . . , vn ∈
V and w1, . . . , wm ∈ W . Then v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , vn ⊗ wm is
a basis for V ⊗W . Then for each g ∈ G, ψV⊗W (g) is the Kronecker product
of ψV (g) and ψW (g).

Example 26. Again, we take a look at the case G = T n. The tensor product
of two projections pi and pj is of the form:

pi ⊗ pj : T n −! GL1(C), (d1, . . . , dn) 7−! didj
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Additionally, one can show that up to equivalence, the direct sum (as
addition) together with the tensor product (as multiplication) fulfill the dis-
tributive law.

In the setting of compact Lie groups, instead of taking values in GLn(C)
it is also possible to restrict ourselves to U(n). For this we need to equip
the complex vector space V with an appropriate positive definite Hermitian
form:

Proposition 27. Let G be a compact Lie group and V a representation of
G. Then there exists a positive definite Hermitian form H on V which is
invariant under G, i.e. H(v, w) = H(gv, gw) for all g ∈ G.

The proof sketch underneath is from [Ada69, Chapter 3, 3.14 – 3.16]:

Proof sketch. The idea behind this is to choose an arbitrary positive definite
Hermitian form H ′ on V and integrate H ′(g−1v1, g

−1v2) over G, i.e.:

H(v, w) =

∫
g∈G

H ′(g−1v, g−1w)dg.

It uses the Haar integral, in the special case of compact Lie groups also known
as invariant integral. We will leave the concrete definition of this integral as a
black box and refer to [Nac65] for more information. Using the properties of
this integral, one can show that H is an invariant, positive definite Hermitian
form on V .

By equipping V with a positive definite Hermitian form, we can show
that V is equivalent to an unitary representation:

Proposition 28. Every representation of a compact Lie group is equivalent
to an unitary representation.

The following proof is based on [Ada69, Chapter 3, remark after 3.16
Proposition]:

Proof. Let G be a compact Lie group and V a representation of G. By
Proposition 27, we can equip V with a positive definite Hermitian form H.
Using Gram-Schmidt, we can find an orthonormal basis a1, . . . , an of V with
respect to H, i.e. H(ai, ai) = 1 and H(ai, aj) = 0 for all 1 ≤ i, j ≤ n,
i 6= j. As H is invariant under the action of G, we have H(gai, gai) = 1 and
H(gai, gaj) = 0 for all 1 ≤ i, j ≤ n, i 6= j and all g ∈ G.

We equip V with the basis a1, . . . , an and thus can regard it as V ∼=⊕n
i=1Cai ∼= Cn. Elements of V are then written as vectors (c1, . . . , cn) ∈ Cn
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which correspond to the sum
∑n

i=1 ciai ∈ V . The positive definite Hermitian
form H is the standard scalar product on this complex vector space: For two
vectors c = (c1, . . . , cn), d = (d1, . . . , dn) ∈ C their standard scalar product is
given by < c, d > =

∑n
i=1 cidi. Applying H yields:

H(c, d) = H

(
n∑
i=1

ciai,

n∑
i=1

diai

)
=

n∑
i=1

n∑
j=1

cidjH(ai, aj) =
n∑
i=1

cidi.

With respect to our choice of basis, ψV : G! Aut(V ) sends every element
g ∈ G to a matrix Ag ∈ GLn(Cn). We show that Ag is unitary: A matrix
Ag is unitary if and only if the columns of Ag are an orthonormal basis with
respect to the standard complex scalar product. Here, the columns are given
by ga1, . . . , gan which are orthonormal with respect to H, the standard scalar
product.

For a matrix representation with a different choice of basis, one may
take the respective change-of-basis matrix which yields an isomorphism of
representations in the sense of the remark after Definition 21.

Using the previous proposition, from now on, we will assume that all
matrix representations of compact Lie groups are unitary.

Later, we will construct the representation ring of a compact Lie group
using equivalence classes of irreducible representations of G. To define irre-
ducibility, we have to start with the term of subrepresentations :

Definition 29. Let G be a topological group and V a representation of G.
A subrepresentation of V is a subspace U ⊆ V which is invariant under G,
i.e. gu ∈ U for all u ∈ U .

A common way to get a subrepresentation of a given representation is to
take a look at the images and kernels of morphisms:

Proposition 30. Let G be a topological group, V and W two representations
of G and f : V ! W a morphism of representations. Then Ker(f) ⊆ V and
Im(f) ⊆ W are subrepresentations of V and W , respectively.

Proof. The kernel and image are vector subspaces of V and W , respectively.
It is left to show that they are invariant under G. For an element v ∈ Ker(f)
and a group element g ∈ G we get that f(gv) = gf(v) = g0 = 0 and thus gv
is in the kernel as well. Similarly, for a w ∈ Im(f) there exists a v ∈ V with
f(v) = w and for every g ∈ G we find that gw = gf(v) = f(gv) ∈ Im(f).

Irreducible representations are representations that only have trivial sub-
representations:

17



Definition 31. A representation V of G is called irreducible if it is nonzero
and if its only submodules are {0} and V . Otherwise, we will call V reducible.

In particular, representations of rank 1 are irreducible for dimensional
reasons.

For compact Lie groups, to understand representations it suffices to study
the irreducible ones:

Proposition 32. Let G be a compact Lie group. Then every representation
is a direct sum of irreducible representations.

The following proof is taken from [Ada69, Chapter 3, Theorem 3.20]:

Proof. Let V be a representation. If V is reducible, there exists a sub-
representation U of V that is not trivial. Using Proposition 27 we can
choose an invariant positive definite Hermitian form H on V . Now we define
W = {w ∈ V | H(u,w) = 0 for all u ∈ U} as the orthogonal complement of
U in V . Since H is a positive definite Hermitian form, the vector space V
is the direct sum of U and its orthogonal complement, i.e. V = U ⊕W (see
[Bos14, Kapitel 7.2, Korollar 8]). It is left to show that W is invariant under
the action of G, i.e. gw ∈ W for all g ∈ G and w ∈ W . We know that H
is invariant under G, i.e. 0 = H(u,w) = H(gu, gw) for all u ∈ U , w ∈ W ,
g ∈ G. The element g−1u is in U because U is a subrepresentation of V . If
we substitute u with g−1u in the previous equation we get that 0 = H(u, gw)
for all g ∈ G, u ∈ U , v ∈ W . This means that gw is in the orthogonal
complement of U and thus W is invariant under G.

If U and W are irreducible, we are finished. Otherwise we can continue
inductively on V and W . Note that this induction will stop at some point
because of the decreasing ranks.

The following theorem is extremely useful when studying morphisms of
representations:

Theorem 33 (Schur’s Lemma). Let G be a topological group and V , W two
irreducible representations of G. Then the following statements are true:

1. Every morphism f : V ! W is either zero or an isomorphism.

2. Every morphism h : V ! V is of the form h(v) = λv for some constant
λ ∈ C.

The following proof is taken from [BtD85, Chapter II.1, (1.10) Theorem]:
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Proof. In Proposition 30 we have seen that the kernel and the image of a
homomorphism of representations are subrepresentations. If both V and W
are irreducible then Ker(f) ∈ {{0}, V } and Im(f) ∈ {{0},W}. The case
Ker(f) = V is equivalent to the case Im(f) = {0} and is precisely the case
when f is zero. By Proposition 22 the remaining case yields that f is an
isomorphism. This proves the first statement.

For the second statement we choose an eigenvalue λ of the linear map h.
Let U = {v ∈ W | h(v) = λv} be the eigenspace of λ. The vector subspace
U ⊆ V is a subrepresentation of V since for u ∈ U we have h(gu) = gh(u) =
g(λu) = λgu. By definition U cannot be zero. So V being irreducible yields
that U = V and thus h(v) = λv for all v ∈ V .

For two representations V , W of G, the usual complex vector space struc-
ture on the set of C-linear maps between V and W yields a complex vector
space structure on HomG(V,W ). Using Schur’s Lemma, the following can be
concluded [BtD85, Chapter II.1, (1.10) Theorem (iii)]:

Corollary 34. Let V and W be two irreducible representations of G. Then
the following statements are true:

1. If V and W are not equivalent then dimC HomG(V,W ) = 0.

2. If V and W are equivalent then dimC HomG(V,W ) = 1.

Proof. By Schur’s Lemma, every morphism between irreducible representa-
tions is either an isomorphism or zero. If V and W are not equivalent then
the zero map is the only morphism and thus dimC HomG(V,W ) = 0.

Now assume that V ∼= W . If we fix an isomorphism g : W ! V then
every morphism f ∈ HomG(V,W ) can be seen as a morphism V ! V by
taking g ◦ f . In Schur’s Lemma these are characterized as linear maps of the
form f(v) = λv for λ ∈ C. Thus it follows that dimC HomG(V,W ) = 1.

In Proposition 32, we have already seen that any representation of G can
be expressed as a direct sum of irreducible representations. Next, we will see
that these irreducible summands are unique up to equivalence:

Proposition 35. Let G be a topological group and V1, . . . , Vk, k ∈ N, pairwise
non-isomorphic, irreducible representations of G. In addition, let mi, ni ∈
N, 1 ≤ i ≤ k, be natural numbers. If the representations

⊕k
i=1miVi and⊕k

i=1 niVi are equivalent then mi = ni for all 1 ≤ i ≤ n.

The following proof is taken from [Ada69, Chapter 3, 3.24 Theorem]:
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Proof. Let
⊕k

i=1miVi and
⊕k

i=1 niVi be equivalent representations. We fix
an index 1 ≤ j ≤ k. Since the representations above only differ by an
isomorphism, we have: HomG(Vj,

⊕k
i=1miVi) ∼= HomG(Vj,

⊕k
i=1 niVi) for all

1 ≤ j ≤ k. Since morphisms of representations are in particular linear maps
between vector spaces, we can use the universal property of the product
in the category of vector spaces and gain that:

⊕k
i=1mi HomG(Vj, Vi) ∼=⊕k

i=1 ni HomG(Vj, Vi) as complex vector spaces. By Corollary 34(1) we have
HomG(Vj, Vi) = 0 for i 6= j since Vj and Vi are not equivalent. So it follows
that mi HomG(Vj, Vj) ∼= ni HomG(Vj, Vj). By taking the dimension as a
complex vector space and using Corollary 34(2), it follows that:

mi = dimC(mi HomG(Vj, Vj)) = dimC(ni HomG(Vj, Vj)) = ni.

Now let G be a compact topological group. Using the irreducible rep-
resentations of G we will construct an invariant of G. Let HG = {[V ] |
V is an irreducible representation of G} be the set of equivalence classes of
irreducible representations of G. When the context is clear, we will usually
omit the brackets and just write V ∈ HG for the respective equivalence class
of V . We define R(G) as the free abelian group generated by the elements
of HG, i.e.

R(G) =

{ ∑
V ∈HG

λV V

∣∣∣∣∣ λV ∈ Z, λV = 0 for all but finitely many V ∈ HG

}
.

By Proposition 32 every representation is a direct sum of irreducible repre-
sentations. So for every equivalence class of an arbitrary representation V of
G there is an element

∑n
i=1 λiVi ∈ R(G) with λi ≥ 0 so that V ∼=

⊕n
i=1 λiVi.

Proposition 35 yields that these elements are uniquely determined. In ad-
dition, by taking the direct sum of the representations, every element in
R(G) containing only positive coefficients yields a representation of G. So
for compact groups G the subset

R(G)+ =

{ ∑
V ∈HG

λV V

∣∣∣∣∣ λV ∈ N, λV = 0 for all but finitely many V ∈ HG

}

is in a one-to-one correspondence with the equivalence classes of represen-
tations of G. The identity element of addition is the formal sum in which
every coefficient vanishes. It corresponds to the unique representation of rank
zero. So the addition in R(G) behaves in the same way as the direct sum of
representations of G. Furthermore, the elements in R(G) can (uniquely) be
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written as formal differences of elements in R(G)+ by sorting by the sign of
the coefficients:∑

V ∈HG

λV V =

( ∑
V ∈HG

max{λV , 0}V

)
−

( ∑
V ∈HG

max{−λV , 0}V

)
.

Direct sums together with tensor products satisfy the distributive law (up to
equivalence). So we can equip R(G) with a multiplication using the tensor
product. This makes R(G) into a ring with the trivial representation of
rank 1 as the identity element of multiplication:

Definition 36 (representation ring). Let G be a compact topological group.
We call R(G) the (complex) representation ring of G.

We will sometimes omit the brackets and only write RG instead of R(G).
Another, more formal approach to this is the concept of Grothendieck groups.
It is a method to construct a group G(A) out of an abelian monoid A so that
a certain universal property is satisfied. For the formal construction, see
[Wei13, Chapter II.1]. In addition, if A is a semiring, G(A) yields a ring
structure. Here, R(G)+ together with the direct sum and the tensor product
is a semiring and R(G) is the Grothendieck group of R(G)+ (see [BtD85,
beginning of Chapter II.7]).

Now, let G,H be two compact Lie groups and f : H ! G a morphism
of Lie groups. If V is a representation of G with ψ : G ! Aut(V ) we can
consider the concatenation ψ ◦ f : H ! Aut(V ). As both maps are group
homomorphisms, so is ψ ◦ f . It is continuous as well, since f is smooth and
thus in particular continuous. So ψ ◦ f : H ! Aut(V ) is a representation of
H.

This construction respects direct sums and tensor products of representa-
tions: Let V ⊕W be a direct sum of representations of G with g ∈ G acting by
g(v, w) = (gv, gw). Then H acts on V ⊕W by f(h)(v, w) = (f(h)v, f(h)w)
for all h ∈ H. This is the direct sum of the representation of H induced by
the respective representations of G using f . A similar argument works for
tensor products. In addition, the rank of a representation does not change
and trivial representations of G are sent to the respective trivial representa-
tions of H.

Furthermore, if V1 and V2 are two equivalent representations of G, the
respective representations of H are equivalent as well: If l : V1 ! V2 is an
morphism of representations, we have l(gv) = gl(v) for all v ∈ V and g ∈ G.
For h ∈ H we have hv = f(h)v and so l(hv) = l(f(h)v) = f(h)l(v) = hl(v).
Thus l is a morphism of representation for the respective representations of
H. If l is an isomorphism, we can apply the same argument for the inverse.
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So we have a map f ∗ : R(G)+ ! R(H)+ respecting the addition and
multiplication, i.e. a semiring homomorphism. We can extends this to the
formal sums V1 − V2 with V1, V2 ∈ R(G)+ in R(G) by f ∗(V1) − f ∗(V2) and
thus get a ring homomorphism R(G)! R(H). Another way to see this is to
use the contravariant functorial properties of G(−). This sums up to:

Proposition 37. Let G, H be two compact Lie groups. Then every homo-
morphism of Lie groups f : H ! G induces a ring homomorphism f ∗ : RG!
RH.

1.3 Representation Rings of Tori

After introducing representation rings of arbitrary compact topological groups,
we will take a closer look at tori. We will see that their representation rings
are always Laurent rings generated by the representations given by project-
ing to the respective components of T k = (S1)k. In addition, we will see that
the representation ring of a maximal torus of compact connected Lie groups
and the representation ring of the Lie group are related. The elements in
RG are exactly the elements of RT which are invariant under the action of
the Weyl group.

Since the representation ring is generated by the irreducible representa-
tion, we will start by taking a look at these:

Proposition 38. Let T be a torus. Then the irreducible representations of
T are of rank 1.

The following proof is from [Ada69, Chapter 3, 3.71 Proposition]:

Proof. Let V be an irreducible representation of T with ψ : G ! Aut(V ).
If we fix an element g ∈ G we can consider the linear map ψ(g) : V ! V .
This yields a morphism of representations ψ(g) : V ! V since for all g′ ∈ T ,
v ∈ V we have:

ψ(g)(g′v) = ψ(g)(ψ(g′)(v)) = ψ(gg′)(v)

T is abelian
= ψ(g′g)(v) = ψ(g′)(ψ(g)(v)) = g′ψ(g)(v).

By Schur’s Lemma (Theorem 33), we know that for an irreducible V , mor-
phisms of the form V ! V are scalar multiplications by a λ ∈ C.

So for every g ∈ T the linear map ψ(g) : V ! V is a scalar multiplication
with a scalar λ(g) ∈ T . Every subspace of a complex vector space V is
invariant under scalar multiplication and thus invariant under the action of
T . So every subspace of V yields a subrepresentation of V . Since V is
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irreducible, there are only trivial subrepresentations and so it follows that V
is one-dimensional.

Note that the previous proof works the same for arbitrary abelian topo-
logical groups G. Proposition 28 allowed us to assume that all matrix rep-
resentations of compact Lie groups are unitary, thus the scalars λ(g), g ∈ T ,
in the previous proposition are in S1.

We can equip the irreducible representations of T with a multiplication
given by the pointwise multiplication of the respective maps T ! S1. The
trivial representation of rank 1 acts as the neutral element. There are also
inverse elements since for a representation ψ : T ! S1 the map ψ′ : T ! S1

sending t to ψ(t)−1 is a representation as well. This yields a structure of an
abelian group on the set of irreducible representation of T :

Definition 39 (character group). We call the set of irreducible representa-
tion of a torus T the character group χ(T ) = HomT (T, S1) and an element
of χ(T ) a character of T .

Every character is a product of characters given by the projections:

Proposition 40. The characters of a k-dimensional torus T k are all of the
following form:

S1 × · · · × S1 −! S1

(x1, . . . , xk) 7−! xa11 · . . . · x
ak
k

for a1, . . . , ak ∈ Z.

Proof. See [BtD85, Chapter II.8, (8.1) Proposition].

If we remember Example 18, we see that every character of a torus can
be expressed as a combination of the second, forth and fifth subitem of the
example, i.e. every character can be obtained by using projections, their
inverses and products.

The proposition yields that χ(T k) is isomorphic to Zk as an abelian
group. The generators are given by the projections πj : T k ! S1 sending
(x1, . . . , xk) ∈ (S1)k to xj ∈ S1.

The representation ring of T can be expressed using the character group:

Proposition 41. Let T be a torus. Then the representation ring of T is
canonically isomorph to the group ring Z[χ(T )] over the abelian group χ(T ).

Proof. See [BtD85, Chapter II.8, (8.3) Proposition].
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As for a k-dimensional torus T the character group χ(T ) is a free abelian
group of rank k, the representation ring RT is of the form:

RT = Z[x±11 , . . . , x±1k ],

the ring of Laurent polynomials over k variables where xj represents the
projection to the j-th factor. It directly follows that:

Corollary 42. The representation ring RT of a torus T is an integral do-
main.

For a subtorus T ′ ⊆ T , we may describe the representation rings of T and
T ′ in an intuitive way:

Proposition 43. Let T be a torus and T ′ ⊆ T a subtorus. Then the repre-
sentation rings of T and T ′ are of the following form:

RT = Z[x±11 , . . . , x±1n ]

RT ′ = Z[x±11 , . . . , x±1k ]

with n = rank(T ) and k = rank(T ′) ≤ n. The ring homomorphism RT !
RT ′ induced by the inclusion is given by the map that sends xj to xj for j ≤ k
and to 1 for j > k.

The following proof is based on notes in [Zib]:

Proof. As shown in [HN12, Chapter 15.3.2, Lemma 15.3.2] we can assume
that T ′ is a direct factor of T , i.e. there exists a subtorus S ⊆ T so that
T ∼= T ′ × S as a Lie group. The isomorphism is given by the multiplication
map sending (t, s) ∈ T ′ × S to ts ∈ T .

So we have an isomorphism T ∼= (S1)rank(T
′)× (S1)rank(T )−rank(T

′) in which
the first rank(T ′) factors belong to T ′ and the remaining factors to S. The
representation ring of T is a Laurent ring generated by the projection to the
respective S1-factors. So we can write:

RT ∼= Z[x±11 , . . . , x±1rank(T ′), x
±1
rank(T ′)+1, . . . , x

±1
rank(T )]

in which xi, with i ≤ rank(T ′), are the projections to factors of T ′ and
the remaining xj, j > rank(T ′), the projections to factors of S. As T ′ is a
torus, its representation ring is generated by the projections as well. The
generators are the restrictions of the respective generators of RT and thus
the representation ring is of the form:

RT ′ = Z[x±11 , x±12 , . . . , x±1rank(T ′)].

Restricted to T ′, the projections to factors of S become trivial. So the induced
map by the inclusion T ′ ⊆ T is of the form stated in the proposition.
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Now, let G be a compact connected Lie group and T a maximal torus of
G. Let W be the Weyl group of G (with respect to T ). The Weyl group W
acts on T by conjugation. This yields an action on the representations of T :
Let ψ : T ! Aut(V ) be a representation of T and w ∈ W . Then consider
the following map:

ψw : T −! Aut(V ), t 7! ψ(wtw−1).

This is well-defined since wTw−1 = T for all elements w in the Weyl group.
It is continuous since ψ is continuous. In addition, it fulfills:

ψw(tt′) = ψ(wtt′w−1) = ψ(wtw−1wtw−1)

= ψ(wtw−1)ψ(wt′w−1) = ψw(t)ψw(t′).

So ψw is representation of T .
The action of W commutes with direct sums and tensor products of rep-

resentations: Let ψ1 : T ! Aut(V1), ψ1 : T ! Aut(V2) be two representations
of T and w ∈ W . The element w acts on the direct sum of ψ1 and ψ2 by:

(ψ1 ⊕ ψ2)w : T −! Aut(V1 ⊕ V2), t 7−! (ψ1 ⊕ ψ2)(wtw
−1)

= (ψ1(wtw
−1), ψ2(wtw

−1))

= (ψ1w ⊕ ψ2w)(t)

and on the tensor product of ψ1 and ψ2 by:

(ψ1 ⊗ ψ2)w : T −! Aut(V1 ⊗ V2), t 7−! (ψ1 ⊗ ψ2)(wtw
−1)

= ψ1(wtw
−1)⊗ ψ2(wtw

−1)

= (ψ1w ⊗ ψ2w)(t).

Furthermore, by setting (−ψ)w = −(ψw) for each representation ψ : T !
Aut(V ) of T and each element w ∈ W , we gain an action of W on the
representation ring RT . By construction, the rank of a representation is
invariant under the action of W .

With a lot of additional theory, one is able to prove that RG can be
described by RT using the Weyl group action:

Theorem 44. Let G be a compact connected Lie group and T a maximal
torus of G. Then the morphism RG ! RT induced by the inclusion T ⊆ G
is injective and yields an isomorphism:

RG
∼=
−! (RT )W .

Here (RT )W denotes the elements of RT that are invariant under the action
of the Weyl group W of G.
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Proof. See [BtD85, Chapter IV.2, (2.8) Corollary and Chapter VI.2, (2.1)
Proposition].

By Corollary 42, representation rings of tori are integral domains. So
using Theorem 44, one can directly conclude:

Corollary 45. Let G be a compact connected Lie group. Then RG is an
integral domain.

1.4 The Augmentation Ideal

By the Closed Subgroup Theorem, for every closed subgroup H ⊆ G of a
compact Lie group G, the inclusion i : H ↪! G is a morphism of Lie groups.
So by Proposition 37, it induces a ring homomorphism i∗ : RG ! RH. On
representations ψ ∈ RG+, i∗(ψ) is the restriction of ψ : G! Aut(V ) to H.

In this subsection, we take a look at the case in which H is the subgroup
{1} ⊆ G. It yields a ring homomorphism

RG −! R({1}) ∼= Z

with z ∈ Z≥0 corresponding to the trivial representation of rank z. When
restricted to {1} ⊆ G any representation ψ : G ! Aut(V ) is trivial since
ψ(1) = idV . Thus ψ ∈ RG+ is sent to rank(ψ) ∈ Z. We refer to this
homomorphism as rank map (of RG) and write rank: RG! Z.

Definition 46. Let G be a compact Lie group. The augmentation ideal I of
RG is the kernel of the rank map.

Now assume that G is connected. Let T ⊆ G be a maximal torus of
G. By Theorem 44, RG is the subring of RT consisting of all elements that
are invariant under the action of the Weyl group. By using the inclusions
{1} ↪! T ↪! G, the rank map of RG factors over RT :

RG ↪−! RT −! Z

with RT −! Z being the respective rank map of RT . By Proposition 41 we
know that RT is of the form Z[x±11 , . . . , x±1n ] with xj corresponding to the
projection to the j-th factor of T ∼= (S1)n. As every xj is of rank 1, the rank
map of RT is given by sending each variable xj, 1 ≤ j ≤ n, to 1 ∈ Z. So on
a Laurent polynomial f ∈ RT , the rank map is of the following form:

f =
∑
i∈I

αi

n∏
j=1

x
ri,j
j 7−!

∑
i∈I

αi ∈ Z
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with I being a finite index set and αi, ri,j ∈ Z.
Lastly, we will take a look at the ideals of the form I + (p) for a prime

p ∈ Z. Here, (p) ⊆ RG is the ideal generated by the equivalence class of
the trivial representation of rank p. Thus, the elements in I + (p) are of the
form: x+ p · y with x, y ∈ RG and rank(x) = 0. Applying the rank map on
an element x+ p · y ∈ I + (p) yields:

rank(x+ p · y) = rank(x)︸ ︷︷ ︸
=0

+ rank(p · y) = p · rank(y).

Thus p ∈ Z divides the rank of every element in I + (p). On the other
hand, if we take an element z ∈ RG with rank(z) = p · u for u ∈ Z,
we can write it as (z − p · u) + p · u ∈ RG where p and u are the trivial
representations of the respective rank (or their additive inverse in case of a
negative u ∈ Z). This shows that z is in I + (p), because z − p · u fulfills
rank(z − p · u) = rank(z)− p · u = 0. So we can conclude:

Proposition 47. Let G be a compact Lie group and I ⊆ RG the augmenta-
tion ideal of RG. For each prime p ∈ Z, we have:

I + (p) = {z ∈ RG | p divides rank(z)}.

1.5 Some Examples

In this subsection, the maximal tori and the Weyl groups of some well-known
(classical) Lie groups will be discussed. All of this is based on Chapter IV.3
of [BtD85]. We will omit most of the proofs and focus on illustrating how
the respective Weyl group acts on the maximal torus and its representation
ring. For the abstract Weyl groups, we will state representing elements for
the cosets in W = N(T )/T . In our examples, we will do so by giving an
embedding i of the Weyl group W in the normalizer N(T ) in G, so that
p ◦ i = id for p : N(T )! N(T )/T = W .

U(n):

The unitary group U(n) consists of all complex valued n × n matrices for
which its conjugate transpose is its inverse, i.e.

U(n) =
{
U ∈ GLn(C) | UHU = I

}
.
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One maximal torus of U(n) is given by the subgroup of diagonal matrices in
U(n):

TU(n) =

{( α1
α2

...
αn

) ∣∣∣∣∣ αj ∈ S1 for 1 ≤ j ≤ n

}
.

The Weyl group of U(n) is WU(n) = Sn, the symmetric group on n elements.
As representing elements in N(T ), one may choose the permutation matrices
in U(n), i.e. matrices whose columns are permutations of the standard basis
vectors e1, . . . , en. An element π ∈ Sn is then sent to the permutation matrix
in which the k-th column is eπ(k) for 1 ≤ k ≤ n. The Weyl group WU(n) acts
on the maximal torus TU(n) by permuting the diagonal entries.

In Proposition 41, we have seen that the representation ring of the maxi-
mal torus TU(n) is given by Z[x±11 , . . . , x±1n ] where xj corresponds to the pro-
jection to the j-th diagonal entry. So the Weyl group WU(n) acts on RTU(n)

by permuting the indices of xj, 1 ≤ j ≤ n. In Theorem 44 we have seen that
R(U(n)) is the subset of RTU(n) consisting of all elements that are invariant
under the action of the Weyl group WU(n).

Proposition 48. The representation ring of U(n) is Z[σ1, . . . , σn, σ
−1
n ] where

σj is the j-th elementary symmetric polynomial in x1, . . . , xn.

The following proof is from [BtD85, Chapter IV, (3.13) Application and
the remarks before]:

Proof. Let f ∈ Z[x±11 , . . . , x±1n ] be invariant under permutation of the indices.
By multiplying with σkn = (x1 · . . . ·xn)k for a sufficiently large k ∈ N, we may
assume that f · σkn is in Z[x1, . . . , xn]. The element f · σkn is still invariant
under the Weyl group action, because both factors are invariant. It is known
that the symmetric polynomials in Z[x1, . . . , xn] form the polynomial ring
Z[σ1, . . . , σn] (see [Mac95, Chapter I.2, (2.4)]). Thus f · σkn ∈ Z[σ1, . . . , σn]
which implies that f is in Z[σ1, . . . , σn, σ

−1
n ]. In addition, one may easily

check that every element of Z[σ1, . . . , σn, σ
−1
n ] is invariant under permutation

of indices.

SU(n):

The special unitary group SU(n) consists of all unitary matrices of degree n
with determinant 1:

SU(n) = {U ∈ U(n) | det(U) = 1} .
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A maximal torus of SU(n) is given by the intersection of TU(n) and SU(n):

TSU(n) = TU(n) ∩ SU(n)

=

{( α1
α2

...
αn

) ∣∣∣∣∣ αj ∈ S1 for 1 ≤ j ≤ n and
n∏
j=1

αj = 1

}
.

As any n− 1 diagonal entries determine the remaining entry, this torus is of
dimension n − 1 and thus rank(SU(n)) = n − 1. The Weyl group of SU(n)
coincides with the Weyl group of U(n), thus WSU(n) = Sn. The same holds for
the action of the Weyl group: WSU(n) can be represented by the permutation
matrices and acts on TSU(n) by permuting the diagonal entries. To understand
the action of the Weyl group WSU(n) on the representation ring RTSU(n), it is
useful to write it as the quotient RTSU(n) = Z[x±11 , . . . , x±1n ]/(x1 · . . . · xn − 1)
with xj corresponding to the projection to the j-th diagonal entry. Then
WSU(n) acts by permuting the indices. When writing it as a Laurent ring
in n − 1 variables, one has to be more cautious when considering the Weyl
group action.

Sp(n):

The symplectic group Sp(n) consists of matrices of U(2n) that are of a special
form:

Sp(n) =

{
U ∈ U(2n)

∣∣∣∣ U =

(
A −B
B A

)
for A,B ∈ Cn×n

}
There is a natural inclusion of U(n) ⊆ Sp(n) given by:

U(n) ↪−! SU(n), A 7−!

(
A

A

)
.

The image of the maximal torus TU(n) of U(n) yields a maximal torus of
SU(n) of the form:

TSp(n) =




α1

...
αn

α1

...
αn


∣∣∣∣∣∣∣∣ αj ∈ S

1 for 1 ≤ j ≤ n

 .

So the first n diagonal entries determine the remaining n entries in the second
block. Thus the torus is of dimension n. The Weyl group of Sp(n) is the group
G(n). It consists of all permutations π of the set {1, . . . , n} ∪ {−1, . . . ,−n}
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satisfying π(−k) = −π(k) for all k ∈ {1, . . . , n}. It acts on TSp(n) by permut-
ing the diagonal entries while preserving the form of the torus. This means
that if αj is sent to the k-th diagonal entry, 1 ≤ k ≤ 2n, then αj is sent to
the entry on position (k + n) mod 2n.

The embedding i : W ! N(T )/T is given by sending π ∈ G(n) to a
2n×2n permutation matrix in the following way: We consider the the image
under π of k ∈ {1, . . . , n}. If π(k) = t > 0, then the k-th column of the
permutation matrix is the t-th standard basis vector et and the (k + n)-th
column is et+n. If on the other hand π(k) = −t < 0, then the k-th column of
the matrix is et+n and the (k+n)-th column is et. So the 2n×2n-permutation
matrices fulfill that for all 1 ≤ t ≤ n the standard basis vectors et and et+n
appear in columns of the matrix that are n indices apart. By symmetry the
same holds for the rows.

The group G(n) can also be described as a semi-direct product (Z/2Z)o
Sn.

SO(2n + 1):

The special orthogonal group SO(n) consists of all orthogonal matrices of
order n with determinant 1, i.e.:

SO(n) =
{
Q ∈ GLn(C) | QTQ = I and det(Q) = 1

}
For this group we have to distinguish between the cases of odd and even
order since the respective maximal tori and Weyl groups differ. We start
by considering the matrices of odd order. The following subgroup yields a
maximal torus of SO(2n+ 1):

TSO(2n+1) =


 Bϑ1

...
Bϑn

1

 ∈ GL2n+1(R)

∣∣∣∣∣∣ ϑj ∈ [0, 1)


with block matrices Bϑ =

(
cos(2πϑ) − sin(2πϑ)
sin(2πϑ) cos(2πϑ)

)
∈ SO(2). SO(2) is isomorphic

to S1 (see Example 2) and thus TSO(2n+1) is a torus of dimension n.
The Weyl group of SO(2n+ 1) is WSO(2n+1) = G(n). On TSO(2n+1) it acts

by permuting the Bϑ-blocks and possibly changing signs of ϑ. More precisely,
if under π ∈ G(n) the element k is sent to t > 0, then the Bϑk is sent to
the position of the t-th diagonal block while preserving the sign of ϑk. If it
is sent to −t < 0 then Bϑk is sent to the t-th block on the diagonal and in
addition, ϑk becomes −ϑk.
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It can be embedded into N(TSO(2n+1)) in the following way: An element
π ∈ G(n) is sent to the following matrix:(

A
det(A)

)
∈ SO(2n+ 1)

in which A is obtained from a n×n permutation matrix by substituting each
0 with ( 0 0

0 0 ) and each 1 with either ( 1 0
0 1 ) or ( 1 0

0 −1 ). The n× n permutation
matrix is obtained in the following way: Consider the image of k ∈ {1, . . . , n}.
If π(k) = ±t, the k-th column is the standard basis vector et. If π(k) is
positive, this entry is later substituted by ( 0 0

0 0 ), and otherwise we choose
( 1 0
0 −1 ).

If no ( 1 0
0 −1 )-block is used, the matrix A has determinant 1. In this case A

itself is a 2n× 2n permutation matrix which results from an even number of
switching rows of the identity matrix. Every ( 1 0

0 −1 )-block used in A yields a
change of sign of det(A). So if there is an odd number of these blocks used,
we need to compensate this using det(A) as an offset. It does not have an
effect on TSO(2n+1) and only serves the purpose of controlling the sign.

SO(2n):

Now we take a closer look at the special orthogonal matrices of even degree.
A maximal torus of SO(2n) is given by the following subgroup:

TSO(2n) =

{( Bϑ1

...
Bϑn

)
∈ GL2n(R)

∣∣∣∣∣ ϑj ∈ R/Z
}
.

The Bϑ are of the same form as in the previous example. The Weyl group
WSO(2n) can be represented by matrices A ∈ SO(2n) which result from per-
mutation matrices in the same way as in WSO(2n+1). However, since we are
missing an offset to control the determinant of A, only an even number of
( 1 0
0 −1 )-blocks can be used. We can describe WSO(2n) as SG(n) ⊆ G(n), the

subgroup consisting of all even permutations in G(n).
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Chapter 2

Commutative Algebra

In the main part of this thesis, we will interpret representation rings RH
of closed subgroups H of compact Lie groups G as RG-modules. In this
chapter, we will introduce the algebraic means to study these RG-modules.
We start by quickly summing up some of the basic terms in commutative
algebra, including the Zariski spectrum Spec(R) of a ring R and localization
of R-modules at prime ideals. Then we take a closer look at the support and
the associated primes of R-modules. Next, we will briefly introduce the Tor
functors stating some properties which we will later use. Lastly, there is a
short section dealing with Koszul complexes.

For us a ring will always be commutative with unit if not mentioned oth-
erwise.

2.1 Basic Commutative Algebra

In commutative algebra, the prime ideals of rings are of great importance:

Definition 49 (spectra of rings). The spectrum of a ring R is the set of all
prime ideals of R. We note it as Spec(R).

Proposition 50. Let R, S be two rings and let f : R ! S be a ring homo-
morphism. Then for each prime p ∈ Spec(S), its inverse image f−1(p) ⊆ R
is in Spec(R).

Proof. Consider the following ring homomorphism given by concatenation:

R
f
−! S

π
−! S/p.

As the kernel of this homomorphism, f−1(p) is an ideal. By the funda-
mental homomorphism theorem for rings, we get an injective ring homo-
morphism R/f−1(p) ↪! S/p. Since p is prime, S/p is an integral domain.

32



Thus R/f−1(p) is an integral domain as well which implies that f−1(p) is
prime.

The previous proposition yields that for every ring homomorphism f : R!
S we get a map Spec(S)! Spec(R) by sending p ∈ Spec(S) to f−1(p). This
makes Spec into a contravariant functor:

Corollary 51. Spec : CRing! Set is a contravariant functor from the cat-
egory CRing of commutative rings to the category Set of sets.

Actually, one can even equip Spec(R) with a topology so that Spec be-
comes a functor into the category Top of topological spaces. This topology
is called Zariski topology.

In addition to the basic functorial properties, we will need the following
proposition:

Proposition 52. Let r : R! A be an injective ring homomorphism and let
A be integral as an R-module. Then the induced map Spec(A)! Spec(R) is
surjective.

Proof. See [Bou06, Chapitre V, §2, no 1, Théoréme 1].

We will see that representation rings of compact Lie groups belong to the
following large class of rings:

Definition 53 (Noetherian ring). A ring R is called Noetherian if it satisfies
the ascending chain condition. This means that for every sequence of ideals
of the form

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ In+1 ⊆ . . .

there exists an N ∈ N so that IN = In for all n ≥ N .

In many propositions in the following section we will need the assumption
that the respective ring is Noetherian.

A fundamental theorem concerning Noetherian rings is Hilbert’s Basis
Theorem:

Theorem 54 (Hilbert’s Basis Theorem). Let R be a Noetherian ring and
R[x1, . . . , xn] a polynomial ring over R. Then R[x1, . . . , xn] is Noetherian.

Proof. See [Eis04, Chapter 1.4, Theorem 1.2].

One may expand the term Noetherian to R-modules:
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Definition 55 (Noetherian module). A module M over a ring R is called
Noetherian, if for every sequence of submodules of the form

M1 ⊆M2 ⊆ · · · ⊆Mn ⊆Mn+1 ⊆ . . .

there exists an N ∈ N so that MN = Mn for all n ≥ N .

If we regard a ring R as a module over itself, this definition coincides with
the definition of Noetherian rings.

Proposition 56. Every finitely generated module over a Noetherian ring is
Noetherian.

Proof. See [Eis04, Chapter 1.4, Proposition 1.4].

Another term which we will frequently need is localization:

Definition 57 (localization of modules). Let M be an R-module and S ⊆ R
a multiplicatively closed subset. Then the localization of M at S is defined
as S−1M = (M ×S)�≈ with ≈ being the following equivalence relation: Two

elements (m,u), (n, v) ∈ M × S are equivalent if and only if there exists an
s ∈ S so that s(vm− un) = 0.

For M = R we can interpret R as a module over itself. Then the localiza-
tion S−1R of R at a multiplicatively closed subset S ⊆ R is a ring in which
the addition and multiplication are given by:

(r1, s1) + (r2, s2) = (s2r1 + s1r2, s1s2) and

(r1, s1) · (r2, s2) = (r1r2, s1s2).

The neutral elements of addition and multiplication are (0, 1) and (1, 1),
respectively.

For an R-module M , the localization S−1M has the structure of an S−1R-
module: The addition is obtained in a similar way as above. The scalar
multiplication with elements of S−1R is given by

(r, s1) · (m, s2) = (rm, s1s2)

where rm is the scalar multiplication of M . To obtain an R-module struc-
ture on S−1M , map r ∈ R to (r, 1) ∈ S−1R and use the previous scalar
multiplication.

A common choice for S is the set R r p for a prime ideal p ∈ Spec(R).
We also refer to this as the localization at the prime ideal p and write Mp

instead of (Rr p)−1M .
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Proposition 58. Any localization of a Noetherian ring is Noetherian.

Proof. See [Eis04, Chapter 2.1, Corollary 2.3]

We can interpret the localization of R-modules as a tensor product:

Proposition 59. Let M be an R-module and S ⊆ R multiplicatively closed.
Then S−1M is isomorphic to M ⊗R S−1R. An isomorphism is defined by the
map given on pure tensors by:

M ⊗R S−1R −! S−1M, (r, s)⊗m 7−! (rm, s).

Proof. See [Eis04, Chapter 2.2, Lemma 2.4].

As the tensor product −⊗S−1R is a functor, we see in particular that ev-
ery homomorphism of R-modules f : M ! N induces a map S−1f : S−1M !
S−1N .

Proposition 60. Localization is exact. This means that for every short exact
sequence of R-modules:

0! A
φ
! B

ψ
! C ! 0

the sequence localized at a multiplicatively closed set S ⊆ R:

0! S−1A
S−1φ
! S−1B

S−1ψ
! S−1C ! 0

is exact as well.

The proof is taken from [Eis04, Chapter 2.2, Proposition 2.5]:

Proof. Let 0 ! A ! B ! C ! 0 be exact. By Proposition 59 localization
can be interpreted as tensoring with S−1R. It is well-known that tensor
products are right exact. Thus the sequence S−1A! S−1B ! S−1C ! 0 is
exact.

So we have to show that S−1φ : S−1A! S−1B is injective. By assuming
otherwise let (a, s) ∈ S−1A be in the kernel of S−1φ. Thus (φ(a), s) =
(0, 1) in S−1B. That is the case if and only if there exists a t ∈ S so that
t(1 · φ(a)− s · 0) = tφ(a) is zero in B. Since φ is an injective homomorphism
tφ(a) = φ(ta) is zero if and only if ta is zero in A. However, if ta = 0 ∈ A
then (a, s) = (0, 1) in S−1A, because t(1 · a− s · 0) = ta = 0.

From the exactness of localization, we can conclude the following:
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Corollary 61. Let φ : M ! N be a homomorphism of R-modules and S ⊆ R
a multiplicatively closed subset. Then S−1 Ker(M ! N) ∼= Ker(S−1M !
S−1N) and S−1 Im(M ! N) ∼= Im(S−1M ! S−1N).

Proof. The homomorphism φ yields an exact sequence of the form:

0! Ker(φ)!M
φ
! Im(φ)! 0

After localization at S the sequence:

0! S−1 Ker(φ)! S−1M
S−1φ
! S−1 Im(φ)! 0

is exact as well. The map S−1φ comes from the localization S−1φ : S−1M !
S−1N . By the exactness of the second sequence it follows that S−1 Im(φ) ∼=
Im(S−1φ) and S−1 ker(φ) ∼= ker(S−1φ).

2.2 Support and Associated Primes

In this subsection, we will introduce the support and the associated primes
of R-modules. They will prove to be a very useful tool when showing that
certain modules vanish.

As we ended the previous subsection with the localization of modules, we
will start with the definition of the support:

Definition 62 (support of a module). Let M be an R-module. The support
of M is the set SuppR(M) = {p ∈ Spec(R) | Mp 6= {0}} of all primes in
Spec(R) at which the localized module Mp does not vanish.

The support of an R-module is an upward closed subset of Spec(R), in
the following sense:

Proposition 63. Let M be an R-module and p′ ∈ Supp(M). If a prime
ideal p ∈ Spec(R) contains p′, then p ∈ Supp(M).

Proof. If p′ is in the support of M , then Mp′ 6= 0, i.e. there exists an element
(m, s) ∈Mp′ that is not equivalent to (0, 1). This means that for all s′ ∈ Rrp′
we have s′(1 ·m− s · 0) = s′ ·m 6= 0. In particular, the element (m, 1) ∈Mp′

is not zero.
For a prime p ∈ Spec(R) with p′ ⊆ p, we have R r p ⊆ R r p′. Thus

(m, 1) ∈Mp is not equivalent to zero as s′ ·m 6= 0 holds for all Rr p′.

For introducing associated primes, we need annihilators :
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Definition 64. Let M be an R-module and S ⊆M . The annihilator of S is
the set annR(S) = {r ∈ R | rs = 0 for all s ∈ S} consisting of all elements
in r ∈ R for which rs vanishes for all s ∈ S.

If the set S is a singleton S = {a} we usually write annR(a) instead of
annR({a}). When the context is clear, we will sometimes omit R.

For finitely generated R-modules M , the support is characterized by the
annihilator of M :

Proposition 65. Let M be a finitely generated R-module and p ∈ Spec(R).
Then the following two statements are equivalent:

1. p ∈ Supp(M).

2. p contains ann(M).

Proof. See [Eis04, Chapter 2.2, Corollary 2.7].

Proposition 66. Let M be an R-module and S ⊆ M . Then ann(S) is an
ideal.

Proof. We have to show that ann(S) is an additive subgroup of R and closed
under multiplication with arbitrary elements of R. Obviously, the zero-
element of R is also in ann(S). Now let a, b be two elements in ann(S)
and r ∈ R. We have to show that ra − b is in ann(S). For s ∈ S we
have (ra − b)s = (ra)s − bs = r(as) − bs = 0 since a and b both annihilate
s ∈ S.

However, in general not every annihilator is prime:

Example 67. Consider R = M = Z/6Z with the canonical module structure.
The annihilator of the element [1] ∈ M is the zero ideal. This is not prime,
since [2] · [3] = [0] and [2], [3] 6= [0].

Now, we can define the associated primes of an R-module M :

Definition 68. Let M be an R-module. A prime p ∈ Spec(R) is called an
associated prime if there is a non-zero element m ∈M so that p annihilates
m. The set of all associated primes is written as:

AssR(M) = {p ∈ Spec(R) | ∃m ∈M r {0} with p = ann(m)}.

There is an equivalent characterization which we will also be using [Eis04,
Chapter 3.1, remark after first definition]:
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Proposition 69. Let M be an R-module and p ∈ Spec(R). Then the fol-
lowing two statements are equivalent:

1. p ∈ Ass(M).

2. R/p is isomorphic to a submodule of M (as R-module).

Proof. For the first implication, let p = ann(a) be in Ass(M). Then the
submodule generated by a is isomorphic to R/p.

If on the other hand R/p is isomorphic to a submodule of M , let a ∈M be
the image of the equivalence class of 1 in R/p under the inclusion R/p ↪!M .
Then p = ann(a).

Between Ass(M) and Supp(M), the following relation holds:

Proposition 70. Let R be a ring and M an R-module. Then Ass(M) ⊆
Supp(M).

Proof. If M is finitely generated, this follows directly by using Proposition 65
and noting that ann(M) ⊆ ann(m) for all m ∈M r {0}.

For the general case, take a prime a ∈ Ass(M) with a = ann(a) for an
a ∈ M . In Ma the element (a, 1) is not zero: If (a, 1) ≈ (0, 1) in Ma then
there exists an s ∈ R r a so that s(1 · a − 1 · 0) = 0 in M . So sa = 0 and
s annihilates the element a. Thus s ∈ ann(a) and s cannot be contained in
Rr ann(a). It follows that Ma 6= 0.

We can ask ourselves which annihilators are prime and thus associated,
and whether there even exist associated primes. Maximal elements among
the annihilators of elements in M are prime:

Proposition 71. Let R be a ring and M an R-module. Then every maximal
element of the set {ann(x) | x ∈M r {0}} is prime.

The proof is from [Eis04, Chapter 3.2, Proposition 3.4]:

Proof. Let p = ann(x) be a maximal element. To show that p is prime we
have to prove that if ab ∈ p then a ∈ p or b ∈ p.

So take a, b ∈ R with ab ∈ p. Without loss of generality we can assume
that b /∈ p. So by definition abx = 0 while bx 6= 0. So a is in the annihilator of
bx ∈M . Let c ∈ p be an arbitrary annihilator of x. Then c(bx) = b(cx) = 0
since R is commutative. So p ⊆ ann(bx). If a is not in p this inclusion is
strict. This would be a contradiction to p being a maximal element.

In Noetherian rings, the respective maximal elements exist:
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Proposition 72. Let R be a Noetherian ring and M an R-module. Then
for every m ∈ M r {0} there exists an associated prime p ∈ Ass(M) with
ann(m) ⊆ p.

Proof. Let m 6= 0 be an element in M . Consider the set Φ = {a ⊆ R |
ann(m) ⊆ a and a = ann(a) for an a ∈ M}. Together with the inclusion ⊆
the set Φ is partially ordered. Let a1 ⊆ a2 ⊆ . . . be a chain in Φ. Since
R is Noetherian there exists an N ∈ N at which the chain stabilizes. Then
aN ∈ Φ is an upper bound of the given chain. So we can apply Zorn’s lemma
which yields that there is a maximal element p in Φ. It is clear that such an
element is maximal among the set of all annihilators of non-zero elements of
M as well. Together with Proposition 71 we get that p is prime and thus in
Ass(M).

In particular, for non-zero modules over Noetherian rings it follows that
associated primes exist:

Corollary 73. Let R be a Noetherian ring and M an R-module. Then the
following statements are equivalent:

1. M = 0.

2. AssR(M) = ∅.

Proof. If M = 0, it is trivial that the set of associated primes is empty. If
M 6= 0, we can apply Proposition 72 for an element m 6= 0 in M and get an
associated prime p ∈ Ass(M) containing ann(m). In particular, Ass(M) is
not empty.

One result which we will need is that injectivity can be checked at asso-
ciated primes [Eis04, Chapter 3.2, Corollary 3.5 (c)]:

Proposition 74. Let R be a Noetherian ring and M , N two R-modules. Let
φ : M ! N be an R-module homomorphism. The following two statements
are equivalent:

(1) φ : M ! N is injective.

(2) The localization φp : Mp ! Np is injective for all p ∈ Ass(M).

Proof. The implication (1) ⇒ (2) follows directly by the exactness of local-
ization shown in Proposition 60.

We will show the contraposition of (2) ⇒ (1). Assume that φ is not
injective. We have to show that there exists an associated prime in Spec(R)
for which the localized map is not injective as well. Then there exists an
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m ∈ M with m 6= 0 and φ(m) = 0. By Proposition 72 one can find a prime
b ∈ Ass(M) that contains ann(m).

We can take a look at the localized map Mb ! Nb. The element m =
(m, 1) ∈Mb is still sent to 0. If we show that (m, 1) 6= (0, 1) in Mb, it follows
that the localized map is not injective as well. Assume that (m, 1) ≈ (0, 1) ∈
Mb. Then there exists an s ∈ Rr b so that:

s · (m · 1− 0 · 1) = s ·m = 0.

Then s has to be in the annihilator of m. However, we chose b so that
Ann(m) ⊆ b and thus s /∈ Rr b which is a contradiction.

Short exact sequences of R-modules contain some information about the
associated primes of the respective modules:

Proposition 75. Let R be a ring and M,M ′ and M ′′ R-modules. In addition
let

0!M ′ !M !M ′′ ! 0

be a short exact sequence of R-modules. Then the following statements are
true:

1. Ass(M ′) ⊆ Ass(M) and

2. Ass(M) ⊆ Ass(M ′) ∪ Ass(M ′′).

In particular, if the sequence is split exact, then Ass(M) = Ass(M ′)∪Ass(M ′).

The proof is based on [Eis04, Chapter 3.2, Lemma 3.6]:

Proof. To prove this we will use the characterization of associated primes as
submodules of the form R/p. Let p be in Ass(M ′). Then there exists an
inclusion R/p ↪! M ′ of R-modules. Together with the inclusion M ′ ↪! M
given in the short exact sequence, we get an inclusion R/p ↪! M ′ ↪! M of
R-modules. Thus p is in Ass(M) and Ass(M ′) ⊆ Ass(M).

Now let p be in Ass(M)rAss(M ′). We have to show that p is in Ass(M ′′).
We have an inclusion of R-modules of the form R/p ↪!M . The images of M ′

and R/p in M intersect trivially: Assume this is not the case. Then there
exists an non-zero element m ∈ M that is contained in both submodules.
We consider the annihilator of m. As m is in the image of R/p, we have
p ⊆ ann(m). Since p is prime, there are no zero-divisors in R/p and thus
rm 6= 0 for all r ∈ R r p. So ann(m) = p. However, as m is in M ′ ⊆ M , it
follows that p is an associated prime of M ′. This is a contradiction.
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As the images of M ′ and R/p intersect trivially, the homomorphism of
R-modules given by R/p ↪!M �M ′′ is injective.

If the sequence is split exact then M ∼= M ′ ⊕M ′′. Using the map that
sends M ′′ to the respective summand of M ∼= M ′ ⊕M ′′ yields another short
exact sequence of the form:

0 −!M ′′ −!M −!M ′ −! 0.

Together with the previous short exact sequence, we get:

Ass(M ′)

Ass(M ′′)

}
⊆ Ass(M) ⊆ Ass(M ′) ∪ Ass(M ′′)

and thus Ass(M) = Ass(M ′) ∪ Ass(M ′′).

Using this we can directly conclude:

Corollary 76. Let R be a ring and N1, . . . , Nk a finite number of R-modules.
Then Ass(

⊕k
i=1Ni) =

⋃k
i=1 Ass(Ni).

Proof. Use the remark at the end of Proposition 75 and do an induction over
the number of summands in

⊕k
i=1Ni.

Again, we consider finitely generated modules over Noetherian rings:

Theorem 77. Let R be a Noetherian ring and M 6= 0 a finitely generated
R-module. Then each prime in Ass(M) contains annM and all minimal
primes among those that contain annM are in Ass(M).

Proof. It is clear that the annihilator of M is contained in each associated
prime in Ass(M). For the remaining part of the statement, see [Eis04, The-
orem 3.1].

For finitely generated R-modules, we can conclude the following:

Corollary 78. Let R be a Noetherian ring and M 6= 0 a finitely generated
R-module. Then the minimal primes in Ass(M) and Supp(M) coincide.

Proof. By Proposition 65 a prime p ∈ Spec(R) is in the support of a finitely
generated R-module M if and only if it contains ann(M). Together with
Theorem 77 the statement follows.
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2.3 The Tor Functors

Let R be a ring and M an R-module. By fixing the first term in the tensor
product of two R-modules, we gain a covariant functor of the form M ⊗R−.
It is right-exact, i.e. for a short exact sequence

0! A! B ! C ! 0

of R-modules, applying the functor yields an exact sequence of the form:

M ⊗R A!M ⊗R B !M ⊗R C ! 0.

R-modules M for which M⊗R− preserves injectivity are called flat. However
in general, for an injective homomorphism A ! B, after applying M ⊗R −
the homomorphism M ⊗R A! M ⊗R B might not be injective. One of the
simplest examples for this is:

Example 79. Consider the following short exact sequence of Z modules:

0! Z ·2
! Z! Z/2Z! 0.

After tensoring with Z/2Z, it is of the form:

0! Z/2Z⊗Z Z︸ ︷︷ ︸
∼=Z/2Z

·2
! Z/2Z⊗Z Z︸ ︷︷ ︸

∼=Z/2Z

! Z/2Z⊗Z Z/2Z! 0.

This is not a short exact sequence of Z-modules, because Z/2Z ·2
! Z/2Z is

the constant zero map and thus not injective.

Left derived functors yield a (canonical) way to make these types of se-
quences exact by adding terms on the left: Let F : A ! B be a right exact
functor between two abelian categories A,B. For certain A we can construct
functors LiF : A ! B with i ∈ N with the property that a short exact se-
quence 0 ! A ! B ! C ! 0 in A yields a long exact sequence of the
form:

. . . L2F (C)

L1F (A) L1F (B) L1F (C)

L0F (A)︸ ︷︷ ︸
∼=F (A)

L0F (B)︸ ︷︷ ︸
∼=F (B)

L0F (C)︸ ︷︷ ︸
∼=F (C)

0
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More details on derived functors and how they are constructed can be found
in [Wei94].

TorRi (M,N) are the left derived functors ofM⊗R− : ModR ! ModR eval-
uated at N . Equivalently, one can also view TorRi (M,N) as the left derived
functors of −⊗RN evaluated at M (see [Wei94, Chapter 2.7, Theorem 2.7.2]).
One can also show that Tor is symmetric, i.e. TorR∗ (M,N) ∼= TorR∗ (N,M) (see
[Wei94, Chapter 3.1, Remark (Balancing Tor)]).

A free resolution F of N is an exact sequence of R-modules of the form:

F : · · ·! Fn ! Fn−1 ! · · ·! F1 ! F0 ! N ! 0

in which every Fj, j ∈ N, is a free R-module. For an R-module N , we can
compute TorRi (M,N) by using a free resolution of N :

Proposition 80. Let M,N be two R-modules and let

F : · · ·! Fn ! Fn−1 ! · · ·! F1 ! F0 ! N ! 0

be an arbitrary free resolution of N . Then TorR∗ (M,N) is given by the ho-
mology of the following complex:

· · ·!M ⊗R Fn !M ⊗R Fn−1 ! · · ·!M ⊗R F1 !M ⊗R F0 ! 0.

Proof. See [Wei94, Chapter 3.2, Flat Resolution Lemma 3.2.8] and note that
free R-modules are in particular flat.

Tor commutes with flat base change:

Proposition 81. Let R be a ring, let T be a flat R-algebra, and let A, B be
two R-modules. Then

T ⊗R TorRi (A,B) ∼= TorTi (A⊗R T, T ⊗R B).

Proof. See [Wei94, Chapter 3.2, Corollary 3.2.10].

Corollary 82. Let R be a ring and let S ⊆ R be multiplicatively closed.
Then Tor commutes with localization, i.e.

S−1 TorRi (A,B) ∼= TorS
−1R

i (S−1A, S−1B)

for all R-modules A and B.
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Proof. In Proposition 59 we have seen that we can interpret localizing R-
modules at S as a tensoring over R with S−1R. By Proposition 60 local-
ization preserves exactness and thus S−1R is flat over R. So we can use
Proposition 81 and get:

S−1 TorRi (A,B) ∼= S−1R⊗R TorRi (A,B)

∼= TorS
−1R

i (A⊗R S−1R, S−1R⊗R B)

∼= TorS
−1R

i (S−1A, S−1B).

The scalar multiplication on the R-modules TorRi (M,N) is induced by
the respective multiplications on M and N :

Proposition 83. Let R be a ring, r ∈ R and A,B two R-modules. If
µ : A ! A is multiplication with r, then for all n ∈ N the induced map
µ∗ : TorRi (A,B) ! TorRi (A,B) is multiplication with r on TorRi (A,B) as
well. The same holds for multiplication maps on B.

Proof. See [Wei94, Chapter 3.2, Lemma 3.2.11].

The next Proposition will be crucial for the main part of this thesis:

Proposition 84. Let R be a Noetherian ring, N an R-module with a free
resolution of length r of the form:

0 −! Rnr −! Rnr −! . . . −! Rn0 ! N −! 0

with nj ∈ N, 0 ≤ j ≤ r and nr 6= 0 and let M be an arbitrary R-module.
Then the following statements are true:

1. TorRi (M,N) = 0 for all i > r.

2. If Supp(N) ∩ Ass(M) = ∅ then TorRr (M,N) = 0.

Proof. By assumption, N has a free resolution of the form

0 −! Rnr −! Rnr−1 −! . . . −! Rn0 ! N −! 0

with nj ∈ N, 0 ≤ j ≤ r and nr 6= 0. We use Proposition 80 to calculate
TorRi (M,N). For this we consider the complex

0 −! Rnr ⊗RM︸ ︷︷ ︸
∼=Mnr

−! Rnr ⊗RM︸ ︷︷ ︸
Mnr−1

−! . . . −! Rn0 ⊗RM︸ ︷︷ ︸
Mn0

−! 0
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and calculate its homology:

TorRi (M,N) = ker(Mni !Mni−1)/ Im(Mni+1 !Mni).

(To cover all cases, set ni = 0 for i > r and i = −1.)
The first statement follows directly, since for i > r the kernel ker(Mni !

Mni−1) = ker({0}!Mni−1) always vanishes.
It is left to show that TorRr (M,N) = 0 if Supp(N) ∩ Ass(M) = ∅. The

image Im(Mnr+1 !Mnr) is zero since nr+1 = 0. So TorRr (M,N) is the kernel
ker(Mnr !Mnr−1), and hence the following two statements are equivalent:

1. TorRr (M,N) = 0.

2. Mnr !Mnr−1 is injective.

In Proposition 74 we have seen that injectivity can be checked at asso-
ciated primes, i.e. Mnr ! Mnr−1 is injective if and only if the localization
(Mnr)p ! (Mnr−1)p is injective at every associated prime p in Ass(Mnr). By
Corollary 76, the set of associated primes of Mnr equals Ass(M). Thus

3. (Mnr)p ! (Mnr−1)p is injective for all p ∈ Ass(M).

is equivalent to the second statement.
For a fixed prime p ∈ Ass(M) the map (Mnr)p ! (Mnr−1)p is injective

if and only if its kernel is zero. As we have seen in Corollary 61, localiza-
tion commutes with kernels, so ker((Mnr)p ! (Mnr−1)p) = 0 if and only if
ker(Mnr ! Mnr−1)p vanishes. Since TorRr (M,N) = ker(Mnr ! Mnr−1) the
following statement is equivalent to the third statement:

4. TorRr (M,N)p = 0 for all p ∈ Ass(M).

Now suppose Supp(N) ∩ Ass(M) = ∅. Let p be in Ass(M) and con-
sider TorRr (M,N)p. By Corollary 82, Tor commutes with localization, i.e.
TorRr (N,M)p ∼= TorRp

r (Np,Mp). The right side vanishes since Np = {0} by
the previous assumption. Since this is the case for all p ∈ Ass(M) we can
conclude that TorRr (M,N) = 0, which proves the second statement.

2.4 Regular Sequences and the Koszul Com-

plex

The Koszul complex will be of great use when computing the Tor functors
in our setting. We will introduce regular sequences and the Koszul complex
using the corresponding chapter of Matsumura [Mat87, Chapter 6.16] as a
reference.
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Definition 85 (regular sequences). Let R be a ring and M an R-module. A
sequence a1, a2, . . . , an of elements in R is called M -regular if the following
conditions are true:

1. a1 is not a zero divisor in M , i.e. a1 annihilates no element m ∈
M r {0}.

2. ai is a not a zero divisor in M/(a1, . . . , ai−1)M for all 2 ≤ i ≤ n.

3. M/(a1, . . . , an)M 6= 0.

For M = R we will call the sequence a1, . . . , an regular.

In this thesis, the regular sequences with which we work will appear as
generators of kernels:

Proposition 86. Let T be a torus and T ′ a subtorus of T . Then we can
find an RT -regular sequence of the form λ1, λ2, . . . , λrank(T )−rank(T ′) ∈ RT
generating the kernel of the map i∗ : RT ! RT ′ induced by the inclusion
T ′ ⊆ T .

The following proof is based on the notes in [Zib]:

Proof. In Proposition 43 we have seen that the representation rings of RT
and RT ′ are given by:

RT = Z[x±1 , . . . , x
±1
rank(T ′), y

±1
1 , . . . , y±1rank(T )−rank(T ′)]

RT ′ = Z[x±1 , . . . , x
±1
rank(T ′)]

with i∗ sending xi ∈ RT to xi ∈ RT ′ and yj ∈ RT to 1 ∈ RT ′. Then
the sequence given by λj = yj − 1 for 1 ≤ j ≤ rank(T ) − rank(T ′) is
an RT -regular sequence generating the kernel of i∗. The regularity can
be seen in the following way: As a Laurent ring, the ring RT is an inte-
gral domain, i.e. RT has no zero divisors. So for λ1 the first condition of
Definition 85 is fulfilled. RT/(λ1) is isomorphic to the Laurent ring given
by Z[x±1 , . . . , x

±1
rank(T ′), y

±1
2 , . . . , y±1rank(T )−rank(T ′)]. So one can inductively argue

that the second condition of Definition 85 is true for all λi, i > 1.

Now, we define the Koszul complex:

Definition 87 (Koszul complex). Let R be a ring and a1, a2, . . . , an a se-
quence of elements in R. The Koszul complex K•(a1, . . . , an), or K•(a) for
short, corresponding to this sequence is given by:

1. K0(a) = R
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2. Ki(a) = 0 for i < 0 or i > n.

3. Kk(a) = ⊕Rei1...ik is the free R-module of rank
(
n
k

)
with basis {ei1,...,ik |

1 ≤ i1 < i2 < . . . < ik ≤ n}.

4. Differentials dk : Kk(a)! Kk−1(a), 1 ≤ k ≤ n, given on the basis by:

dk(ei1,...,ik) =
k∑
r=1

(−1)r−1airei1,...,ir−1,îr,ir+1,...,ik

(The notation îr means that the r-th index is deleted. In addition, if
there is no index left we set e = 1.)

5. For every remaining index dk : Kk(a) ! Kk−1(a) is the constant zero
map.

This definition yields a chain complex:

Proposition 88. The Koszul complex is a chain complex, i.e. the differential
fulfills dk−1 ◦ dk = 0 for all k ∈ N.

Proof. For k < 1 and k > 1 this is clear since one of the occurring maps is
zero. Now, let 1 ≤ k ≤ n. It suffices to show that dk−1 ◦ dk vanishes on all
basis elements ei1,...,ik :

dk−1 ◦ dk(ei1,...,ik) = dk−1

(
k∑
r=1

(−1)r−1airei1,...,ir−1,îr,ir+1,...,ik

)

=
k∑
r=1

(−1)r−1airdk−1

(
ei1,...,ir−1,îr,ir+1,...,ik

)
=

k∑
r=1

(−1)r−1air

( ∑r−1
s=1(−1)s−1aisei1,...,îs,...,îr,...,ik

+
∑k

t=r+1(−1)t−2aitei1,...,îr,...,ît,...,ik

)

=

( ∑k
r=1

∑r−1
s=1(−1)r+sairaisei1,...,îs,...,îr,...,ik

+
∑k

r=1

∑k
t=r+1(−1)r+t−1airaitei1,...,îr,...,ît,...,ik

)

=

( ∑
1≤s<r≤k(−1)r+sairaisei1,...,îs,...,îr,...,ik

+
∑

1≤r<t≤k(−1)r+t−1airaitei1,...,îr,...,ît,...,ik

)
= 0 (by renaming the indices in the second sum).
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It is also common to construct the Koszul complex K•(a) as a tensor prod-
uct of chain complexes. For this we take the Koszul complexes corresponding

to the respective elements of the sequence K•(ai) =
(

0! R
·ai! R! 0

)
and

set K•(a) = K•(a1) ⊗ K•(a2) ⊗ . . . ⊗ K•(an) as their tensor product. This
definition yields the same complex as we defined before.

Definition 89. For an R-module M and a sequence a1, . . . , ar ∈ R we set
K•(a,M) = K•(a)⊗M .

When taking the homology of a Koszul complex K•(a) or K•(a,M), we
write Hk(K•(a)) = Hk(a) and Hk(K•(a,M)) = Hk(a,M), respectively.

Theorem 90. Let R be a ring and M an R-module. Let a1, . . . , an ∈ R be
M-regular. Then:

Hk(a,M) = 0 for k > 0 and H0(a,M) = M/aM .

Proof. See [Mat87, Chapter 6.16, Theorem 16.5(i)].

Proposition 91. Let R be a ring and a1, . . . , an a regular sequence in R.
Then the Koszul complex yields a free resolution of R/(a1, . . . an) of length n
as an R-module.

Proof. Theorem 90 yields that the Koszul complex:

K•(a) = (0! Kn(a)! Kn−1(a)! · · ·! K1(a)! K0(a)! 0)

is exact everywhere except at K0(a). In addition, we know that H0(a) =
R/aR = R/(a1, . . . , an). So by adding H0(a) at the left end of the complex,
we gain a chain complex:

0! Kn(a)! Kn−1(a)! · · ·! K1(a)
d1! K0(a)

d0! H0(a)! 0

that is exact everywhere, because by definition H0(a) = ker(d0)/ Im(d1).
Since every Ki(a) is a free R-module, the chain complex above is a free
resolution of R/(a1, . . . , an).
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Chapter 3

A Generalization of a Theorem
of Pittie

The first section of the third chapter, the main part of this thesis, deals with
biquotient manifolds, a type of manifolds that appears as the orbit space of
two closed subgroups acting freely on a compact Lie group. We will also
consider some examples for these types of group actions appearing in the
studies of Eschenburg [ZK09].

In the next section, the strict double coset condition is introduced. We will
see that this condition is equivalent to the biquotient action of the previous
section being free. In addition, we will consider some examples and check
if they satisfy the strict double coset condition. To simplify the verification
of the strict double coset condition, we will see that for closed connected
subgroups of compact Lie groups, one may equivalently check if two maximal
tori of the respective subgroups satisfy the condition.

In Section 3, we will again state the conjecture while taking a look at
the theorems of Singhof, Pittie and Steinberg that served as motivation and
evidence for the conjecture. In addition, we will prove that is suffices to only
consider subtori as closed subgroups.

The fourth section deals with the study of primes in AssRG(RH) and
SuppRG(RH) for closed subgroups H of compact Lie groups G. We will
present some of Segal’s work in [Seg68] which allows us to build a bridge
between the strict double coset condition and the supports of the respective
representation rings. We will study the intersection Supp(RH1)∩Supp(RH2)
for two subgroups H1 and H2 satisfying the strict double coset condition and
see that none of the ideals appearing in this intersection are associated primes
of nontrivial, closed connected subgroups of compact connected Lie groups.

Then, in Section 5 we prove the conjecture in the case that one of the
subgroups is of rank 1 or lower using our results in the previous sections.
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Finally, in the last section, we will conclude by discussing an approach
for the general case.

3.1 Biquotient Manifolds

Let G be a compact connected Lie group and H1, H2 two closed subgroups
of G. Then H1 ×H2 operates on G from the right by:

G× (H1 ×H2) −! G, (g, (h1, h2)) 7−! h−11 gh2.

We are interested in the orbit space G/(H1×H2) of this action. The following
theorem states under which conditions the orbit space admits the structure
of a smooth manifold:

Theorem 92 (Quotient Manifold Theorem). Let M be a smooth manifold
and G a Lie group acting smoothly, freely and properly on M (from left or
right). Then the orbit space M/G admits the structure of a smooth topological
manifold of dimension dimM − dimG. There is a unique smooth structure
such that G!M/G is a smooth submersion.

Proof. See [Lee13, Chapter 21, Theorem 21.10].

In our setting, the smooth manifold is the compact Lie group G and
H1 ×H2 acts on it. The action is smooth since multiplication in Lie groups
is a smooth map. As H1 and H2 are closed subspaces of the compact space
G, they are compact as well. In particular, G × (H1 × H2) is compact. So
the action is proper because it is a continuous map from a compact space to
a Hausdorff space. So if the action above is free, we get the desired smooth
structure on the orbit space G/(H1 ×H2).

The orbit space G/(H1 × H2) of this group action is also denoted as
H1 \ G/H2. This notation is used, because the quotient can be seen in the
following way: Consider the right action of H2 on G given by (g, h2) 7! gh2.
This action is clearly free and fulfills the remaining conditions of Theorem 92
because of similar reasons as above. So G/H2 admits the structure of a
smooth manifold. Then we can let H1 act on the orbit space from the left
by h1(gH2) and the biquotient H1 \ G/H2 has the structure of a smooth
manifold if this action is free. If the action is free, one also calls the resulting
smooth manifold a (strict) double coset manifold.

Many examples for these types of manifolds can be extracted from Eschen-
burgs study and classification of biquotients [Esc84] that was summarized by
Ziller and Kerin [ZK09]:

50



Example 93 ([ZK09], Section 5, Remark 2 after Theorem 5.1). Consider
the group G = SU(2m) for m ∈ N>0. Then the subgroups

H1 =




z
...

z
z−1

...
z−1

 ∈ SU(2m)

∣∣∣∣∣∣∣∣ z ∈ S1

 and

H2 =


 (w1...w2m−2)−1

w1

...
w2m−2

1

 ∈ SU(2m)

∣∣∣∣∣∣ w1, . . . , w2m−1 ∈ S1


yield a free action on G and thus the orbit space H1 \ G/H2 admits the
structure of a smooth manifold. The proof that this action is free will be
given in the next section.

We state another example resulting from this classification:

Example 94 ([ZK09], Section 5, Theorem 5.2). Consider the group G =
Sp(n) for n ≥ 3. Then for the subgroups H1, H2 given by:

H1 =

{(
A

A

) ∣∣∣∣∣ A =

(
1

...
1
z

)
with z ∈ S1

}
and

H2 =


(
A

A

) ∣∣∣∣∣∣ A =

 w1

...
wn−1

(w1...wn−1)−1

with w1, . . . , wn−1 ∈ S1


the orbit space H1 \G/H2 has the structure of a smooth manifold.

More examples can be found in Eschenburg’s classification of biquotient
actions of maximal rank (see [ZK09, Section 6, Table A and Table B]). It is
important to take into account that Eschenburg’s definition of biquotients is
a bit more general than ours: He takes a closed subgroup U of G×G together
with the projections pl and pr to the left and right factor, respectively. The
action of U on G is then given by:

G× U −! G, (g, u) 7−! pl(u)−1gpr(u).

If U is of the form H1 × H2 for two closed subgroups H1, H2 of G, this
coincides with our definition. However, in his classification there also occur
groups U ⊆ G×G that are not of this form (see for example [ZK09, Section
6, Table A (1) and Table B (9)]).
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3.2 Strict Double Coset Condition

The strict double coset condition arises from the double coset manifolds in-
troduced in the previous section:

Definition 95 (strict double coset condition). Let G be a group and H1, H2

two subgroups of G. If H1 intersects every conjugate of H2 trivially we say
that the pair of subgroups H1, H2 satisfies the strict double coset condition.

If G is abelian, for instance G = T k, this condition reduces to the require-
ment that H1 and H2 intersect trivially.

Demanding H1 and H2 to fulfill the strict double coset condition means
demanding the action of H1 ×H2 on G to be free [Sin93, Section 1, (1.1)]:

Proposition 96. Let G be a group and H1, H2 two subgroups of G. We
consider the right group action of H1 × H2 on G given by (g, (h1, h2)) 7!
h−11 gh2. This group action is free if and only if H1 and H2 satisfy the strict
double coset condition.

Proof. Assume that H1 and H2 fulfill the strict double coset condition. Let
(h1, h2), (h

′
1, h
′
2) ∈ H1 × H2 and g ∈ G so that h−11 gh2 = h′−11 gh′2. To prove

that the action is free we have to show that h1 = h′1 and h2 = h′2. We have:

h−11 gh2 = h′−11 gh′2 ⇐⇒ h′1h
−1
1 g = gh′2h

−1
2

⇐⇒ h′1h
−1
1 = gh′2h

−1
2 g−1.

The element h′1h
−1
1 is in H1 and gh′2h

−1
2 g−1 is an element of H2 conjugated

with g. Because of the strict double coset condition, these elements have to
be the neutral element 1 ∈ G. It follows directly that h1 = h′1 and h2 = h′2.

Now, let the action of H1 × H2 be free. Let h1 ∈ H1 and h2 ∈ H2 be
conjugate. We have to show that h1 = h2 = 1. By definition there exists
a g ∈ G so that gh1g

−1 = h2. Equivalently (h−11 )−1g−1 = g−1h2. Thus
(h−11 , 1), (1, h2) ∈ H1×H2 have the same action on g−1 ∈ G. Since the action
of H1 ×H2 is free, it follows that h1 = 1 and h2 = 1.

So for compact Lie groups G and two closed subgroups H1 and H2 of G we
are able to check whether the coset space H1 \G/H2 admits the structure of
a smooth manifold by checking if the strict double coset condition is fulfilled.
We illustrate this by again considering Example 93:

Example 97. Let G = SU(2m), m ∈ N>0, and let H1 and H2 be as in Ex-
ample 93. We show that H1 and H2 satisfy the strict double coset condition:
Let A ∈ H1 and B ∈ H2 and suppose that they are conjugate. We have to
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show that both A and B are the identity. The elements are of the following
form:

A =


z

...
z
z−1

...
z−1

 and B =

 (w1...w2m−2)−1

w1

...
w2m−2

1


with z, w1, . . . , w2m−1 ∈ S1. The eigenvalues of a matrix are invariant under
conjugation. As matrix B has 1 as an eigenvalue with multiplicity at least
1, matrix A has to fulfill the same. Thus z = z−1 = 1 and A is the identity
matrix. The same follows for B.

To verify that two subgroups satisfy the strict double coset condition it
often suffices to restrict oneself to tori [Sin93, Section 1, (1.4)]:

Proposition 98. Let G be a compact Lie group and H1, H2 two closed con-
nected subgroups of G. Let T1 and T2 be maximal tori of H1 and H2, respec-
tively. Then the following statements are equivalent:

1. H1 and H2 satisfy the strict double coset condition.

2. T1 and T2 satisfy the strict double coset condition.

Proof. The implication (1) ⇒ (2) is trivial. Now assume that T1 and T2
satisfy the strict double coset condition. Let h1 ∈ H1, h2 ∈ H2 and g ∈ G so
that h1 = gh2g

−1. We have to show that h1 = h2 = 1. Since T1 is a maximal
torus of H1 there exist elements a ∈ H1 and t1 ∈ T1 so that h1 = at1a

−1 (see
Proposition 8). Similarly there are b ∈ H2 and t2 ∈ T2 satisfying h2 = bt2b

−1.
Then we have:

at1a
−1 = h1 = gh2g

−1 = gbt2b
−1g−1 = (gb)t2(gb)

−1

and thus t1 and t2 are conjugate in G. Since T1 and T2 satisfy the strict
double coset condition it follows that t1 = t2 = 1 yielding h1 = h2 = 1.

So far, we only considered examples in which at least one of the occurring
groups is of rank 1. However, there also exist examples, in which this is not
the case. The following example was brought to our attention by Jason
DeVito:
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Example 99. Let G = SU(6) and consider the subgroups H1 = H2 = SU(3)
embedded into G in the following ways:

H1 = SU(3)
i1−! SU(6), A 7−!

(
A 0
0 A

)

H2 = SU(3)
i2−! SU(6), B 7−!

(
B 0
0 I3

)
Then the action is of the form:

G× (H1 ×H2) −! G, (C, (A,B)) 7−!

(
A−1 0

0 A−1

)
C

(
B 0
0 I3

)
.

To show that this action is free, it suffices to consider maximal tori T1 and
T2 of H1 and H2, respectively. For SU(3) we can choose the maximal torus
consisting of elements of the form:

T =


a 0 0

0 b 0
0 0 c

 ∣∣∣∣∣∣ a, b, c ∈ S1 with c = a−1b−1

 .

We will show that i1(T ) and i2(T2) satisfy the strict double coset condition.
For this take two elements A ∈ i1(T ) and B ∈ i2(T2) which are conjugate.
They have to be of the following form:

A =

( a
b
c
a
b
c

)
and B =

( x
y
z
1
1
1

)
with a, b, c, x, y, z ∈ S1 such that abc = 1 and xyz = 1. The eigenvalues
are invariant under conjugation, thus A and B share the same eigenvalues.
For diagonal matrices, the eigenvalues are exactly the diagonal entries. Thus
matrix B has the eigenvalue 1 with a multiplicity of at least 3. So at least
three diagonal entries of matrix A have to be 1. Since we have at most three
distinct entries a, b, c ∈ S1 and each one occurs two times, we know that
two of them have to be 1. Since the product abc is 1, we can conclude that
a = b = c = 1. As both matrices share the same eigenvalues, it follows for B
that x = y = z = 1. So H1 and H2 satisfy the strict double coset condition,
and both of them are of rank 2.

3.3 Motivation and Evidence for the Conjec-

ture

We start by outlining the setting of the conjecture. When introducing the
representation ring, we have seen that it has some functorial properties: Any
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homomorphism f : H ! G of Lie groups induces a ring homomorphism
f ∗ : RG ! RH. In particular, for every closed subgroup H ⊆ G, the inclu-
sion i : H ↪! G induces a ring homomorphism i∗ : RG! RH which restricts
representations of G to H. Using this we can equip RH with an RG-module
structure in the following way:

RG×RH −! RH

(a, b) 7−! i∗(a) · b.

Instead of i∗(a) · b we may also write a · b or ab.
In this thesis, our aim is to show the following conjecture proposed by

Marcus Zibrowius in [Zib]:

Conjecture 100. Let G be a compact connected Lie group with RG isomor-
phic to a tensor product of a polynomial algebra and a Laurent algebra. In
addition let H1, H2 ⊆ G be two closed connected subgroups that satisfy the
strict double coset condition. Then:

TorRGi (RH1, RH2) = 0 for all i > rankG− (rankH1 + rankH2).

As we already mentioned in the introduction, results from Singhof served
as a major motivation and inspiration for the conjecture. In [Sin93], Singhof
studied topological properties of double coset manifolds. One of his results
was:

Theorem 101. Let G be a compact connected Lie group and H1, H2 two
closed connected subgroups of G satisfying the strict double coset condition.
Let EG be the total space and BG = (EG)/G the base space of a fixed
universal G-bundle. Take BH1 = (EG)/H1 and BH2 = (EG)/H2 as the
classifying spaces of H1 and H2, respectively. Then for cohomology with
coefficients in Q, we have

Tors,∗H∗(BG)(H
∗(BH1), H

∗(BH2)) = 0

for s < rankH1 + rankH2 − rankG.

Proof. See [Sin93, Section 6, (6.4) Proposition] and note that the required
conditions are fulfilled for R = Q.

While the theorem of Singhof served as a motivation for the conjecture,
the theorems which we will now study can be considered as an evidence for
it. For this, we consider the special case that H1 = T for a maximal torus
T in G and H2 = {1}. In Theorem 44, we have seen that in this case the

55



induced map RG ! RT is an inclusion and RG consists of all elements in
RT that are invariant under the action of the Weyl group W in G. The
Theorem of Pittie yields a condition under which the resulting RG-module
RT is free over RG:

Theorem 102 (Theorem of Pittie). Let G be a compact connected Lie group
with π1(G) free and T a maximal torus of G. Then RT is a free RG-module
of rank equal to the order |W | of the Weyl group.

Proof. See [Pit72, Theorem 1].

However, in general this is not an equivalence. Steinberg generalized this
theorem by giving a full characterization of the cases in which RT is free
over RG:

Theorem 103. Let G be a compact connected Lie group and S its semisimple
component. Then the following conditions are equivalent:

1. RG′ is free over RG for every connected subgroup G′ of maximal rank.

2. RT is free over RG for some maximal torus T .

3. RG is the tensor product of a polynomial algebra and a Laurent algebra.

4. RS is a polynomial algebra.

5. S is a direct product of simple groups, each simply connected or of type
SO(2r + 1).

Proof. See [Ste75, Theorem 1.2].

In our conjecture, the third condition of the previous theorem appears as
an assumption for G. So for a maximal torus T of G it follows that RT is
free as an RG-module. As free RG-modules are in particular flat over RG,
for all i > 0 it follows:

TorRGi (RT,R({1})) ∼= TorRGi (RGm,Z) = 0.

So the theorems of Pittie and Steinberg can be seen as a special case of the
conjecture.

Next, we quickly list some groups for which the conditions of Theorem 103
are fulfilled: The classical groups which we considered in Subsection 1.5 have
the following fundamental groups:

� π1(U(n)) = Z,
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� π1(SU(n)) = 0,

� π1(Sp(n)) = 0,

� π1(SO(n)) = Z/2Z for n > 2.

So we can apply the Theorem of Pittie for G = U(n), SU(n) and Sp(n). For
SO(2n+ 1) with n > 0 the fifth condition of Theorem 103 is true.

We will conclude the section by showing that one may assume that H1

and H2 are tori:

Proposition 104. Let G be a compact connected Lie group with RG iso-
morphic to a tensor product of a polynomial algebra and a Laurent algebra.
In addition let H1, H2 ⊆ G be two closed connected subgroups that satisfy the
strict double coset condition. Let T1 ⊆ H1 and T2 ⊆ H2 be two maximal tori
of H1 and H2, respectively. Then the following implication holds:

TorRGi (RT1, RT2) = 0 =⇒ TorRGi (RH1, RH2) = 0.

The following proof is bases on notes in [Zib]:

Proof. The two inclusion maps of the maximal tori into the subgroups

i1 : T1 ↪! H1 i2 : T1 ↪! H2

induce the following ring homomorphisms:

i∗1 : RH1 ↪! RT1 i∗2 : RH2 ↪! RT2.

These ring homomorphisms can be seen as RG-linear maps, because the RG-
module structure on RTj comes from the ring homomorphism RG! RHj ↪!
RTj factoring over RHj.

Atiyah [Ati68, Proposition (4.9) and the following Remark (1)] proved
that there exist homomorphisms ij∗ : RTj ! RHj of RHj-modules splitting
the restriction maps above, i.e. ij∗ ◦ i∗j = id for j = 1, 2. The morphisms
i1∗ and i2∗ are RG-linear as well: Consider i1∗ : RT1 ! RH1. As an RH1-
linear map, we have i1∗(h · t) = h · i1∗(t) for all h ∈ RH1 and t ∈ RT1. The
RH1-module structure comes from i∗1, so i1∗(h · t) = i1∗(i

∗
1(h)t). In RH1,

h · i1∗(t) is the multiplication of the respective elements. Write i : H1 ! G
for the inclusion of H1 in G. Then the inclusion of T1 in G is given by the
concatenation i ◦ i1. Then

i1∗(g · r) = i1∗((i ◦ i1)∗(g)r) = i1∗(i
∗
1(i
∗(g))r) =︸︷︷︸

RH1-linear

i∗(g)i1∗(r) = g · i1∗(r)
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for all g ∈ RG and all r ∈ RT1 and thus i1∗ is RG-linear. The same argument
can be used for i2∗.

Now assume TorRGi (RT1, RT2) = 0. As we have seen above there are
RG-module homomorphisms so that the following diagram commutes:

RH1

id

!!
// RT1 // RH1 .

If we apply the functor TorRGi (−, RH2) we get a diagram of the following
form:

TorRGi (RH1, RH2)

id

))
// TorRGi (RT1, RH2) // TorRGi (RH1, RH2) .

The diagram shows that the vanishing of TorRGi (RT1, RH2) implies that
TorRGi (RH1, RH2) is zero as well since its identity factors over zero. Now
consider the corresponding diagram for RH2:

RH2

id

!!
// RT2 // RH2 .

Applying the functor TorRGi (RT1,−) yields:

TorRGi (RT1, RH2)

id

))
// TorRGi (RT1, RT2) // TorRGi (RT1, RH2) .

By assumption we have TorRGi (RT1, RT2) = 0. Similarly, this implies
TorRGi (RT1, RH2) = 0. Together with the previous observation it follows
that TorRGi (RH1, RH2) = 0, which proves the proposition.

3.4 Prime Ideals of Closed Subgroups

We want to prove Conjecture 100 using means of commutative algebra. More
accurately, we want to use that if H1, H2 fulfill the strict double coset condi-
tion, we are able to understand the associated primes and the primes in the
support better.

To build this bridge between prime ideals and the strict double coset
condition, one of Segal’s works [Seg68] is crucial. In this subsection we will
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start by outlining the results of Segal which will be used to further study the
associated primes.

Proposition 105. Let G be a compact Lie group and H a closed subgroup
of G. Then the RG-module RH given by the restriction is finitely generated.
In particular, RG is Noetherian.

Proof. See [Seg68, Proposition (3.2) and Corollary (3.3)].
The second part can be concluded in the following way: By Theorem 20

and Proposition 28, we know that G has a faithful unitary representation
ψ : G ! U(n) for an n ∈ N. Since G is compact, its image ψ(G) ⊆ U(n)
is compact as well. As a compact subspace of a Hausdorff space, the image
ψ(G) is closed in U(n). Using that ψ is faithful, i.e. injective, we get that G
is a closed subgroup of U(n). So the first part of the proposition yields that
RG is finitely generated as an R(U(n))-module.

In Proposition 48 we have seen thatR(U(n)) = Z[σ1, . . . , σn, σ
−1
n ] in which

σj is the j-th elementary symmetric polynomial over n variables. The ring
Z[σ1, . . . , σn] is a polynomial ring (see [Mac95, Chapter I.2, (2.4)]) over a
Noetherian ring and thus by Hilbert’s Basis Theorem Noetherian. R(U(n))
is the localization of this ring at the multiplicatively closed subset given by
the powers of σn and thus Noetherian by Proposition 58.

By the first part of the proposition, it follows that RG is a finitely gener-
ated R(U(n))-module. As R(U(n)) is Noetherian, Proposition 56 yields that
RG is Noetherian as an R(U(n))-module. Every ideal of RG is a submodule
over R(U(n)), because the scalar multiplication with elements in R(U(n)) is
given by multiplication with elements in RG. Thus RG being Noetherian
over R(U(n)) implies that RG is Noetherian as a ring.

Let p ∈ Spec(RG) be a prime in RG. Consider the following set of closed
subgroups of G:

Jp =

{
H ⊆ G

∣∣∣∣ H is a closed subgroup of G with
p ∈ Im(Spec(RH)! Spec(RG))

}
.

This set is upward closed in the following sense:

Proposition 106. If H is in Jp and H ′ is a closed subgroup of G with
H ⊆ H ′ then H ′ ∈ Jp.

Proof. Since the inclusion of H ⊆ G factors over H ′ the restriction map
RG ! RH factors over RH ′. After applying Spec we get Spec(RH) !
Spec(RH ′)! Spec(G) and thus the image Im(Spec(RH)! Spec(RG)) is a
subset of Im(Spec(RH ′)! Spec(RG)).
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Proposition 107 ([Seg68]). Let G be a compact Lie group. Then the set Jp

has minimal elements.

Proof. Closed subgroups of compact Lie groups satisfy the descending chain
condition, i.e. if there is a chain:

G ⊇ H1 ⊇ H2 ⊇ . . . ⊇ Hi ⊇ . . .

of closed subgroups Hi of G, then there exists an index N ∈ N so that
Hn = HN for all n ≥ N . The proof of this is based on the fact that a
closed subgroup of a Lie group is an embedded submanifold. If we have a
proper inclusion then either the dimension or the (finite) number of connected
components decreases. A proof can be found in [AM07, Chapter 5.7, Lemma
5.7.9].

Now we can view Jp as a partially ordered set with respect to the inclusion
⊇. The set is not empty since for every p ∈ Spec(RG) it contains G. Because
of the descending chain condition, every chain has a lower bound in Jp. Zorn’s
lemma yields the existence of a minimal element.

Segal [Seg68] showed the following theorem:

Theorem 108. Let G be a compact Lie group and p ∈ Spec(RG). Then any
two minimal elements of Jp are conjugate.

Proof. See [Seg68, Proposition (3.7) (i)].

Based on this, Segal defined the support of a prime p ∈ Spec(RG):

Definition 109. Let G be a compact Lie group and p ∈ Spec(RG). Then
the support of p is an arbitrary (but fixed) minimal element H in Jp.

By Theorem 108, the support of p is unique up to conjugation. As a con-
sequence of Theorem 108, Segal concludes the following [Seg68, Proposition
(3.7)(iv)]:

Proposition 110. Let G be a compact Lie group, H a closed subgroup of G
and p ∈ Spec(RG). Then the following statements are equivalent:

1. p ∈ Im(Spec(RH)! Spec(RG)).

2. p contains ker(RG! RH).

3. p ∈ SuppRG(RH).

4. The support of p is conjugate to a subgroup of H.
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As this Proposition will be crucial for studying the primes of subgroups
fulfilling the strict double coset condition, we will prove this in detail:

Proof. (1) ⇔ (2): If p is in Im(Spec(RH) ! Spec(RG)), then there exists
a prime a ∈ Spec(RH) so that i∗−1(a) = p with i∗ : RG ! RH the map
induced by the inclusion H ⊆ G. Since 0 ∈ a we have ker(RG ! RH) =
i∗−1(0) ⊆ i∗−1(a) = p.

Now assume that p ∈ Spec(RG) contains the kernel of i∗ : RG ! RH.
We have to show that p is in the image of Spec(RH) ! Spec(RG), i.e. we
have to show that there exists an element a ∈ Spec(RH) so that i∗−1(a) = p.
For this we consider the map:

RG −! RG/ ker(i∗) −! RH.

The contravariant functor Spec maps this to:

Spec(RH) −! Spec(RG/ ker(i∗)) −! Spec(RG).

The primes in RG/ ker(i∗) correspond to the primes in RG that contain
ker(i∗) and the map Spec(RG/ ker(i∗))! Spec(RG) is injective with image
{q ∈ Spec(RG) | ker(i∗) ⊆ q}. In particular, p is in the image. If we show
that Spec(RH)! Spec(RG/ ker(i∗)) is surjective we are finished. By Propo-
sition 105, RH is finitely generated as an RG-module. The injective ring ho-
momorphism RG/ ker(i∗)! RH makes RH into an RG/ ker(i∗)-module. It
is still finitely generated since the images of RG and RG/ ker(i∗) coincide and
thus we can pick the same generating set as for RH as an RG-module. Since
every finitely generated module is also integral, we can apply Proposition 52
which yields the surjectivity of Spec(RH)! Spec(RG/ ker(i∗)).

(2) ⇔ (3): By Proposition 105, we know that RH is a finitely generated
RG-module. Clearly, the kernel ker(RG ! RH) is contained in ann(RH).
This is an equality, because the element 1 ∈ RH is not annihilated by any
other element in RG r ker(i∗). The equivalence of (2) and (3) is given by
Proposition 65.

(1) ⇔ (4): If p is in Im(Spec(RH) ! Spec(RG)) we can consider the
set Jp ∩ {H ′ | H ′ ⊆ H}. Similarly to Jp it can be shown that this set has a
minimal element H ′ ⊆ H. Since H ′ is also minimal in Jp it is conjugated to
the support of p and thus the fourth statement holds.

If on the other hand, the support of p is conjugated to a subgroup
H ′ ⊆ H then H ′ is a minimal element in Jp. In particular we have p ∈
Im(Spec(RH ′)! Spec(RG)). This map comes from RG! RH ′ which fac-
tors over RH. Thus the respective map on the spectra factors over Spec(RH)
and it follows that p ∈ Im(Spec(RH)! Spec(RG)).
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If G is a compact connected Lie group and H a closed connected subgroup
of G, the associated primes of the RG-module RH can be described very
easily:

Proposition 111. Let G be a compact connected Lie group and H ⊆ G a
closed connected subgroup. Then AssRG(RH) is a singleton, more precisely
AssRG(RH) = {ker(RG! RH)}.

Proof. As a closed subgroup of a Lie group, H is a Lie group as well. In
addition, H is compact since it is a closed subspace of a compact space. So
H is a compact connected Lie group as well. Thus by Corollary 45 the ring
RH is an integral domain.

The RG-module structure on RH is given by the ring homomorphism
i∗ : RG ! RH induced from the inclusion i : H ↪! G. Now, let a ∈ RH be
non-zero. The annihilator annRG(a) consists of all elements g ∈ RG so that
i∗(g) · a = 0. Since RH is an integral domain and a is non-zero it follows
that i∗(g) = 0 and thus g ∈ ker(i∗). So for every non-zero element a ∈ RH
we have ann(a) = ker(i∗).

As RH is an integral domain, the zero ideal (0) is prime. Thus the kernel
ker(i∗) ⊆ RG is prime as it is the inverse image of a prime ideal.

Now based on Segal’s results, we will prove some statements that will
help us to prove the conjecture. For this, we start by classifying the primes
of RG which have trivial support:

Proposition 112. Let G be a compact Lie group. The primes p ∈ Spec(RG)
that have trivial support are given by:

{p ∈ Spec(RG) | Supp(p) = 1} = {I} ∪ {I + (p) | p ∈ Z prime }

with I being the augmentation ideal of RG.

Proof. By definition, the support H of p satisfies p ∈ Im(Spec(RH) !
Spec(RG)). For H = {1} this map arises from the inclusion {1} ↪! G.
On the representation rings this inclusion induces the rank map RG ! Z.
The map Spec(Z)! Spec(RG) is then obtained by taking the inverse images
of the primes of Z under the previous map. The spectrum of Z consists of the
following ideals Spec(Z) = {(0)}∪ {(p) | p ∈ Z prime}. The inverse image of
the zero-ideal is the kernel of the map RG! Z, the augmentation ideal I of
RG. By Proposition 47 the inverse image of (p) ∈ Spec(Z) under the rank
map is given by I + (p).

So a prime with trivial support has to be of the form I or I + (p). As
H = 1 is the smallest subgroup of G, both I and I + (p), p ∈ Z prime, have
trivial support.
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Using this, we can link the strict double coset condition with the supports
of the respective representation rings of the subgroups:

Proposition 113. Let G be a compact Lie group and H1, H2 ⊆ G two closed
subgroups that satisfy the strict double coset condition. Then

SuppRG(RH1) ∩ SuppRG(RH2) = {I} ∪ {I + (p) | p ∈ Z prime }

Proof. We use Proposition 110: The third statement is fulfilled for H1 and
H2 since p ∈ Supp(RT1) ∩ Supp(RT2). It follows that there exist g1, g2 ∈ G
and subgroups H ′1 and H ′2 of H1 and H2, respectively, so that

g1 Supp(p)g−11 = H ′1 ⊆ H1 and g2 Supp(p)g−12 = H ′2 ⊆ H2.

This yields that g2g
−1
1 H ′1(g2g

−1
1 )−1 = H ′2 and thus H ′1 ⊆ H1 and H ′2 ⊆ H2

are conjugate. We assumed that H1 and H2 satisfy the strict double coset
condition. Thus H ′1 = H ′2 = {1} and it follows that the support of p is trivial.
Applying Proposition 112 yields:

SuppRG(RT1) ∩ SuppRG(RT1) ⊆ {I} ∪ {I + (p) | p ∈ Z prime }.

For the remaining inclusion, use implication (4) ⇒ (3) from Proposi-
tion 110 and Proposition 112: As I and I + (p) have trivial support, it in
particular a subgroup of H1 and H2. Thus they are in both Supp(RH1) and
Supp(RH2).

We conclude this subsection by showing, that none of the ideals that
appeared in the prior propositions are associated primes of the representation
rings of closed connected subgroups of compact connected Lie groups:

Proposition 114. Let G be a compact connected Lie group and H ⊆ G a
closed connected subgroup of G with rank(H) ≥ 1. Then the augmentation
ideal I of RG is not an associated prime of RH, nor is I+(p) for any prime
p ∈ Z

Proof. We write i : H ↪! G for the inclusion H ⊆ G. In Proposition 111 we
have seen that Ass(RH) is a singleton consisting only of the ideal ker(i∗ : RG!
RH).

Now assume that one of the ideals stated above is an associated prime of
RH. Since every ideal above has the augmentation ideal I as a subset we
can conclude that i∗(a) = 0 for all a ∈ I and thus I ⊆ Ker(i∗).

Since G is a compact Lie group, the equivalence classes of representations
of G correspond to the elements in R(G)+. We have seen this when intro-
ducing the representation ring in Definition 36. Under the restriction i∗ the
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trivial representations of G in RG are sent to the respective trivial repre-
sentations of H in RH ′ preserving their rank. So for an element ρ ∈ RG+

corresponding to a representation of G the element ρ − rank(ρ) ∈ I is sent
to 0 = i∗(ρ− rank(ρ)) = i∗(ρ)− rank(ρ). So in RH we have i∗(ρ) = rank(ρ).
Because of the 1-1 correspondence of equivalence classes of representations
of H and elements in RH this means precisely that restricting an arbitrary
representation of G to H results in a representation that is isomorphic to a
trivial representation.

Two representations are isomorphic if and only if after choosing respective
bases, their matrix representations are conjugate. So it follows that there
exists an A ∈ GLrank(ρ)(C) so that for all h ∈ H: AIrank(ρ)A

−1 = (ρ ◦ i)(h).
The left hand side of this equation clearly can be simplified to Irank(ρ). So on
H the map ρ ◦ i is constant. As G is a compact Lie group, by Theorem 20
there exists a faithful representation ρ : G! Aut(V ) for a finite-dimensional
vector space V . As a composition of injective maps, the map ρ◦ i is injective.
This is a contradiction to ρ ◦ i being a constant map.

3.5 The Rank 1 Case

In this section we will prove Conjecture 100 in the case that one of the
occurring subgroups is of rank 1 or lower.

Theorem 115. Let G be a compact connected Lie group satisfying the equiv-
alent conditions in Theorem 103. Let H1, H2 ⊆ G be two closed subgroups
of G which satisfy the strict double coset condition. In addition, assume that
rank(H1) ≤ 1 or rank(H2) ≤ 1. Then Conjecture 100 holds, i.e.

TorRGi (RH1, RH2) = 0 for all i > rankG− (rankH1 + rankH2).

Proof. By Proposition 104 it suffices to consider maximal tori T1, T2 of H1

and H2, respectively. Without loss of generality, assume that rank(T2) ≤ 1.
By Proposition 7 there exists a maximal torus T of G containing T1. Propo-
sition 86 yields that we can choose an RT -regular sequence λ1, λ2, . . . , λn−n1

with n = rank(T ) and n1 = rank(T1) which generates the kernel of the pro-
jection RT ! RT1. Since the sequence is regular, by Proposition 91 we get
a free resolution for RT/(λ1, . . . λr) over RT from the corresponding Koszul
complex which has the form:

0! RTmn−n1 ! RTmn−n1−1 ! · · ·! RTm0 ! RT/(λ1, . . . , λn−n1)! 0.

We want to use this sequence to calculate the TorRGi terms. We can
consider this sequence of RT -modules as a sequence of RG-modules. This
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can be done by restricting the existing RT -module structure to RG which is
embedded in RT by the inclusion RG ↪! RT . By doing this, every RT -linear
map is RG-linear as well.

By the Theorem of Pittie, the module RT is free over RG and thus
RT = RGm for an m ∈ N. In addition, we have RT/(λ1, . . . , λn−n1)

∼= RT1.
So the previous resolution yields a free resolution of RT1 as an RG-module
of the form:

0! RGm·mn−n1 ! RGm·mn−n1−1 ! · · ·! RGm·m0 ! RT1 ! 0.

Proposition 84 (1) yields that TorRGi (RT1, RT2) = 0 for i > n− n1. So if
rank(H2) = 0 we are already finished. Now assume that rank(H2) = 1. In
this case it remains to show that TorRGn−n1

(RT1, RT2) vanishes as well. This
follows from Proposition 84 (2) if Supp(RT1) ∩ Ass(RT2) = ∅.

By assuming otherwise, take p ∈ Supp(RT1)∩Ass(RT2). Since Ass(RT2) ⊆
Supp(RT2) the prime p is contained in the support of both RG-modules. T1
and T2 satisfy the strict double coset condition, so by Proposition 113 the
ideal p is either the augmentation ideal I ⊆ RG or of the form I + (p) for
p ∈ Z prime. In Proposition 114 we have seen that neither I nor I + (p) are
in Ass(RT2). So p /∈ Supp(RT1) ∩ Ass(RT2) which is a contradiction.

In the first part of the proof, we did not use any assumption on the rank
of H1. So the following corollary can be directly concluded:

Corollary 116. Let G be a compact connected Lie group satisfying the equiv-
alent conditions of Theorem 103. Let H1 and H2 be two closed connected
subgroups of G satisfying the strict double coset condition. Then:

TorRGi (RH1, RH2) = 0 for all i > rankG−max(rankH1, rankH2).

3.6 Ideas for the General Case

We were able to prove the conjecture in case that one of the occurring sub-
groups is of rank ≤ 1. In this section, we present some attempts to prove the
general case. The idea is to inductively find a proof for higher ranks using
the rank 1 case as the base case. It is based on the following proposition:

Proposition 117. Let G be a compact Lie group and H1, H2 two closed
subgroups of G satisfying the strict double coset condition. In addition, let
I ⊆ RG be the augmentation ideal of RG and i ∈ N>0. If there exists an
element a ∈ I for which the multiplication

TorRGi (RH1, RH2)
·a
−! TorRGi (RH1, RH2)
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is injective, then TorRGi (RH1, RH2) = 0.

Proof. In Corollary 73 we have seen that modules over Noetherian rings
vanish if and only if they have no associated primes. This can be applied
here, because we have seen in Proposition 105 that RG is Noetherian.

So we need to show that Ass(TorRGi (RH1, RH2)) is empty. By Proposi-
tion 70 we know that the set of associated primes Ass(TorRGi (RH1, RH2)) is
a subset of Supp(TorRGi (RH1, RH2)). In Corollary 82 we have seen that Tor
commutes with localization, i.e. for all primes p ∈ Spec(RG) we have

TorRGi (RH1, RH2)p ∼= Tor
RGp

i (RH1p, RH2p).

In particular, if RH1p = 0 or RH2p = 0, it follows that TorRGi (RH1, RH2)p =
0. So we can conclude that:

Ass(TorRGi (RH1, RH2)) ⊆ Supp(TorRGi (RH1, RH2))

⊆ Supp(RH1) ∩ Supp(RH2)

Prop. 113
= {I} ∪ {I + (p) | p ∈ Z prime }.

So it suffices to show that neither I nor I + (p), with p ∈ Z prime, are
associated primes of TorRGi (RH1, RH2). By assumption, there exists an el-
ement a ∈ I for which the multiplication on TorRGi (RH1, RH2) is injective.
In particular, for all elements m ∈ TorRGi (RH1, RH2) r {0} the annihilator
ann(m) does not contain a and thus the augmentation ideal I is not a subset
of ann(m). So neither I nor I + (p) is associated.

So our goal is to find elements ai ∈ I for i > rank(G) − (rank(H1) +
rank(H2)) so that the respective multiplication on TorRGi (RH1, RH2) is in-
jective. The next three lemmas yield an approach on how to find these
elements:

Lemma 118. Let G be a compact Lie group and H1, H2 two closed subgroups.
Write i : H1 ↪! G for the inclusion of H1 in G. In addition, let a be an
element in RG for which the image under i∗ is given by i∗(a) =

∏k
j=1 bj with

bj ∈ RH1, 1 ≤ j ≤ k. If for an s ∈ N>0 and all 1 ≤ j ≤ k the maps

TorRGs (RH1, RH2)
·bj
−! TorRGs (RH1, RH2)

induced by the multiplication with bj ∈ RH1 on RH1 are injective, then the
scalar multiplication

TorRGs (RH1, RH2)
·a
−! TorRGs (RH1, RH2)

with a ∈ RG is injective as well.
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Proof. By Proposition 83 the induced map on TorRGs (RH1, RH2) by the mul-
tiplication with the scalar a ∈ RG on H1 is exactly the multiplication with
a on TorRGs (RH1, RH2) as an RG-module.

By the construction of the RG-module structure on RH1, multiplica-
tion with a ∈ RG is the same as multiplication with i∗(a) ∈ RH1 in the
ring RH1. As i∗(a) is the product

∏k
j=1 bj, this map decomposes as a

concatenation of the maps given by the multiplication with bj ∈ RH1,
1 ≤ j ≤ k. Since TorRGs (−, RH2) is a functor, the multiplication with i∗(a)
on TorRGs (RH1, RH2) decomposes in the same way. So multiplication with
the scalar a on TorRGr (H1, H2) is the same as the induced map by multipli-
cation with i∗(a) which is by assumption a concatenation of injective maps
and thus injective.

By symmetry, the lemma is also true if we formulate it in terms of H2.
In general, the elements bj of the previous lemma may not be in the image
of the map i∗ : RG ! RH1. The lemma suggests that it might be useful to
analyze the induced maps on Tor by arbitrary elements of RH1 as well:

Lemma 119. Let G be a compact Lie group and H1, H2 two closed subgroups
of G and let RH1 be an integral domain. Let b ∈ RH1 be a nonzero element.
If TorRGk+1(RH1/(b), RH2) vanishes, then the induced multiplication

TorRGk (RH1, RH2)
·b
−! TorRGk (RH1, RH2)

is injective. This is also true, if we reformulate the statement in terms of
H2.

Proof. Since RH1 is an integral domain and b ∈ RH1 a nonzero element, the
multiplication with b on RH1 is injective and we get a short exact sequence
of RH1-modules (that restricts to a short exact sequence of RG-modules) of
the form:

0 −! RH1
·b
−! RH1 −! RH1/(b) −! 0.

We take a look at the long exact Tor sequence resulting from the short exact
sequence above:
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. . . TorRGk+1(RH1/(b), RH2)

TorRGk (RH1, RH2) TorRGk (RH1, RH2) TorRGk (RH1/(b), RH2)

TorRGk−1(RH1, RH2) . . .

·b

By assumption, TorRGk+1(RH1/(b), RH2) = 0 and thus by the exactness of the
sequence, the map

TorRGk (RH1, RH2)
·b
−! TorRGk (RH1, RH2)

is injective. An analog proof works for H2.

Lemma 120. Let G be a compact connected Lie group and H1, H2 two closed
connected subgroups that satisfy the strict double coset condition. Assume
that the conjecture holds if one of the occurring subgroups is of a lower rank
than rank(H1). If for b ∈ RH1 the RG-module RH1/(b) is isomorphic to the
representation ring of a closed connected subgroup H ′1 of H1 with rank(H ′1) =
rank(H1)− 1, then the induced multiplication given by

TorRGi (RH1, RH2)
·b
−! TorRGi (RH1, RH2)

is injective for all i > rank(G)− (rank(H1) + rank(H2)).

Proof. Let the setting be as described in the lemma. It follows directly from
the definition of the strict double coset condition, that for every subgroup H ′1
of H1, the groups H ′1 and H2 satisfy the strict double coset condition as well.
We assumed that the conjecture holds if one of the occurring subgroups
is of lower rank than H1. So for a closed connected subgroup H ′1 ⊆ H1

with rank(H ′1) = rank(H1) − 1, we have TorRGi (RH ′1, RH2) = 0 for all i >
rank(G)− (rank(H1)+rank(H2))+1. Applying Lemma 119 yields the proof.

To apply the previous lemma, it is important to understand the quotient
RH1/(b). In the following example, we analyze RT/(b) for a torus T and
different choices of b:

Example 121. Let T be a torus of rank k with representation ring RT ∼=
Z[x±11 , . . . , x±1k ].
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1. For b = (xj − 1), 1 ≤ j ≤ k, the quotient RT/(b) is isomorphic to RT1
with T1 = {(a1, . . . , ak) ∈ (S1)k | aj = 1} ⊆ T .

2. For b = xi − xj, 1 ≤ i 6= j ≤ k, the RG-module RT/(b) is isomorphic
to the representation ring of the subtorus T2 = {(a1, . . . , ak) ∈ T1 | ai =
aj} ⊆ T .

3. For b = (x21−1), the ring RT/(b) is not the representation ring of a com-
pact connected Lie group: It contains x1, an element satisfying x21 = 1
that is neither 1 nor −1. Thus we have (x1 − 1)(x1 + 1) = x21 − 1 = 0.
This cannot occur in integral domains, in particular not in representa-
tion rings of compact connected Lie groups (see Corollary 45).

We quickly sum up the current results: By Proposition 117 we can
show that TorRGi (RH1, RH2) vanishes by finding an element a ∈ I ⊆ RG
for which the induced multiplication on TorRGi (RH1, RH2) is injective. In
Lemma 118 we have seen that it suffices to consider the image of a in
RH1 under i∗ : RG ! RH1. If i∗(a) decomposes as a product of elements
in RH1, showing that every factor induces an injective multiplication on
TorRGi (RH1, RH2) is sufficient. The same is true if we replace RH1 by
RH2. Lemma 119 and Lemma 120 yield a way to show that elements in
RH1 (or RH2) induce an injective multiplication on TorRGi (RH1, RH2) for
i > rank(G)−(rank(H1)+rank(H2)). For b ∈ RH1 this is the case if RH1/(b)
is isomorphic to the representation ring of a closed connected subgroup H ′1
of H1 with rank(H ′1) = rank(H1)− 1 and if additionally the conjecture holds
if one of the occurring subgroups is of rank lower than rank(H1).

Ideas on how to choose the element a:

By Proposition 104 it suffices to only consider tori as subgroups. So let G by
a compact connected Lie group and let T1, T2 be two subtori satisfying the
strict double coset condition. We assume that Conjecture 100 is true if one
of the occurring subgroups is of rank lower than rank(T1). We can choose a
maximal torus T in G that contains T1. As we have seen in Proposition 43,
the representation rings of T and T1 can be expressed in the following form:

RT = Z[x±11 , . . . , x±1n ]

RT1 = Z[x±11 , . . . , x±1k ]

with k = rank(T1), n = rank(G) ≥ k and with xj corresponding to the
projection to the j-th factor. Then the map RT ! RT1 is given by setting
xj = 1 for all j > k. By Theorem 44, we know that RG consists of all
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elements in RT which are invariant under the action of the Weyl group W
of G. So the map RG! RT1 is given by restricting RT ! RT1 to RG.

Consider the element x1 ∈ RT . It maps to the respective element x1 ∈
RT1. As we have seen in Example 121, multiplication with (x1−1) is of the de-

sired form and thus by Lemma 120, the multiplication TorRGi (RT1, RT2)
·(x1−1)
−!

TorRGi (RT1, RT2) is injective for i > rank(G)− (rank(T1) + rank(T2)). How-
ever, in general (x1 − 1) is not invariant under the action of the Weyl group
and thus not in I ⊆ RG.

Let Wx1 ⊆ W be the subset of the Weyl group W given by:

Wx1 = {w ∈ W | wx1 − 1 /∈ ker(RT ! RT1)}.

Then consider the following element:

a =
∑

W ′ ⊆W
|W ′| = |Wx1 |

∏
w′∈W ′

(w′x1 − 1) ∈ RT.

Lemma 122. The element a is in I ⊆ RG.

Proof. To begin with, we show that a is in RG. By Theorem 44, it suffices
to check that a is invariant under the action of the Weyl group W of G: Let
w ∈ W be an arbitrary element of the Weyl group. The action of the Weyl
group commutes with products and sums, so:

wa =
∑

W ′ ⊆W
|W ′| = |Wx1 |

∏
w′∈W ′

((ww′)x1 − 1) =
∑

W ′ ⊆W
|W ′| = |Wx1 |

∏
w′∈wW ′

((w′)x1 − 1)

with wW ′ = {ww′ | w′ ∈ W ′}. Since W is a group, ww′ = ww′′ for
w,w′, w′′ ∈ W if and only if w′ = w′′. So for w ∈ W and W ′ ⊆ W we
have |W ′| = |wW ′|. In addition, wW ′ = wW ′′ for W ′,W ′′ ⊆ W of the same
cardinality if and only if W ′ = W ′′. Thus w permutes the subsets W ′ ⊆ W
of cardinality |Wx1|. It follows that wa = a and thus a ∈ RG.

The element a is in the augmentation ideal I of RG as well, since every
(w′x1− 1) maps to zero under the rank map as the action of the Weyl group
does not change the rank of a representation.

By construction of Wx1 , every subset W ′ 6= Wx1 of cardinality |Wx1|
contains an element w′ so that (w′x1 − 1) ∈ ker(RT ! RT1). So under
i∗ : RT ! RT1, the element a maps to:

b =
∏

w∈Wx1

(i∗(wx1)− 1) ∈ RT1.
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If we could prove that for each w ∈ W only the following two cases can
occur, we would have proven the conjecture:

� wx1 − 1 ∈ ker(RT ! RT1).

� RT1/(wx1 − 1) is isomorphic to the representation ring of a subtorus
T ′1 ⊆ T1 of rank k − 1 as RG-module.

As the action of W does not change the rank of a representation, using
Proposition 40, we get that the element wx1 has to be of the form wx1 =∏n

r=1 x
sr
r with sr ∈ Z.

Lemma 123. If there exists an index 1 ≤ t ≤ k so that st = ±1, then
RT1/(i

∗(wx1) − 1) is isomorphic to the representation ring of a subtorus of
T1 of rank k − 1.

Proof. The image of wx1 =
∏n

r=1 x
sr
r under i∗ is i∗(wx1) =

∏k
r=1 x

sr
r . In

RT1/(wx1 − 1), we have
∏n

r=1 x
sr
r = 1. If there exists an 1 ≤ t ≤ k with

st = 1, we can multiply the previous equation by x−1t and get x−1t =
k∏
r=1
r 6=t

xsrr .

As all xj correspond to the respective projections, this is the representation
ring of the subtorus T ′1 of T1 given by

T ′1 =

(a1, . . . , ak) ∈ T1 = (S1)k

∣∣∣∣∣∣∣ at =
k∏
r=1
r 6=t

a−srr

 ∼= (S1)k−1.

A similar argument works for st = −1.

However, if for example wx1 = x22, then non of the two cases above would
occur, as seen in Example 121.

When does the idea work?

In the case that G = T is a torus, the Weyl group W is trivial. Thus we have

a =
∑

W ′ ⊆W
|W ′| = |Wx1 |

∏
w′∈W ′

(w′x1 − 1) = (x1 − 1)

and b = (i∗(x1)− 1) = (x1 − 1) ∈ RT1 which induces an injective multiplica-
tion on TorRTi (RT1, RT2) for i > rank(G)− (rank(T1) + rank(T2)).

So if we have two subtori T1 and T2 of T with rank(T1) = 2, we can
use the previous procedure to find an element a ∈ I ⊆ RT that induces an

71



injective multiplication on TorRTi (RT1, RT2) for i > rank(T )−(2+rank(T2)).
By Proposition 117 it follows that TorRTi (RT1, RT2) = 0 for i > rank(T ) −
(2 + rank(T2)). Which proves the case that one of the occurring subgroups
is of rank 2 or lower. We can go on inductively and gain:

Proposition 124. Conjecture 100 holds if G = T is a torus.

We are also interested in how well this works for groups G that are not
tori. So we again take a look at Example 99:

Example 125. G = SU(6) with the (standard) maximal torus T given by the
diagonal matrices in SU(6), i.e. diagonal matrices with entries in S1 whose
product is 1. The inclusions of the two subtori T1 and T2 were given by:

i∗1(T1) =

{( a
b
c
a
b
c

) ∣∣∣∣∣ a, b, c ∈ S1 with c = a−1b−1

}

i∗2(T2) =

{( a
b
c
1
1
1

) ∣∣∣∣∣ a, b, c ∈ S1 with c = a−1b−1

}
.

The representation ring of T is given by RT = Z[x±11 , . . . , x±16 ]/(x1 · · ·x6−1)
where xj is the projection to the j-th diagonal entry. One could also rewrite
this as a Laurent ring with 5 variables, but to retrace the action of the Weyl
group W , this form is the better choice. The Weyl group W of SU(6) is S6

and acts on the given maximal torus by permuting the entries of the diagonal.
So the corresponding action on RT permutes the indices of the variables.

The inclusions T1, T2 ⊆ T yield the following homomorphisms on the
respective representation rings:

RT = Z[x±11 , . . . , x±16 ]/(x1 · · ·x6 − 1) −! Z[x±11 , x±12 , x±13 ]/(x1x2x3 − 1) = RT1

xi 7−! xi mod 3

RT = Z[x±11 , . . . , x±16 ]/(x1 · · ·x6 − 1) −! Z[x±11 , x±12 , x±13 ]/(x1x2x3 − 1) = RT2

xi 7−!

{
xi if i = 1, 2, 3

1 else.

We take a look at the element x1 ∈ RT . The orbit of x1 under the action of
the Weyl group is W · x1 = {x1, . . . , x6}.

Now, we can directly compute the elements a and b which we defined pre-
viously. We will do this for both subtori T1 and T2 and denote the respective
elements with aj and bj, j = 1, 2.
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We start with T1: There is no w ∈ W for which the element wx1 − 1 is
in the kernel of RT ! RT1. So Wx1 is the whole Weyl group and

a1 =
∏
w∈W

(wx1 − 1) =
6∏
j=1

(xj − 1)120.

For the occurring coefficients, note that S6 consists of 6! = 720 elements and
if we fix sending 1 to i ∈ {1, . . . , 6}, then there remain 5! = 120 possibilities
to split up the remaining elements. So for b1 we have:

b1 =
∏
w∈W

(wx1 − 1) =
6∏
j=1

(i∗1(xj)− 1)120 =
3∏
j=1

(xj − 1)240.

Every occurring factor is of the form (xj − 1) and fulfills that RT1/(xj − 1)
is the representation ring of the subtorus of T1 of rank 1 given by restricting
the respective entry to 1 ∈ S1. So the our idea works in this case.

Now, we will calculate a2 and b2 for T2: Under i∗2 : RT ! RT2, the ele-
ments xj − 1 with j = 4, 5, 6 are sent to 0. It follows:

Wx1 = {π ∈ S6 | π(1) 6= {4, 5, 6}} and |Wx1 | = 360.

The elements a2 and b2 are given by:

a2 =
∑

W ′ ⊆W
|W ′| = 360

∏
w∈W ′

(wx1 − 1)

b2 =
∏

w∈Wx1

(wx1 − 1) =
3∏
j=1

(i∗2(xj)− 1)120 =
3∏
j=1

(xj − 1)120.

Again, the factors (xj − 1), j = 1, 2, 3, are of the desired form and the idea
works for T2 as well.

More generally, consider G = U(n), SU(n), SO(2n+ 1) or Sp(n) together
with the standard maximal tori T which we studied in Subsection 1.5. If the
subtori T1 or T2 result from T by either equalizing some diagonal entries (or
blocks, as in the SO(n)-cases) or setting some entries to 1, the idea works as
well, because the Weyl group acts by permuting the respective entries (and
thus permutes the elements xj in RT ).

However, it is possible that there also exist closed subgroups H1 and H2

that satisfy the strict double coset condition for which the respective maximal
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tori are not embedded like this. We can embed S1 in the maximal torus of
U(2) by:

S1 −! TU(2), z 7−!

(
z 0
0 z2.

)
On the representations rings, the embedding yields the following map:

RTU(n)
∼= Z[x±11 , x±12 ] −! RS1 ∼= Z[x±1 ], x1 7−! x1

x2 7−! x21.

with xj, j = 1, 2 corresponding to the projections to the respective diagonal
entry. The action of the Weyl group WU(2) = S2 permutes the entries of the
diagonal. So for the transposition w ∈ WU(2) the element wx1 is sent to x21,
an element that is not of the desired form. This is not yet a counter example
for the procedure as we only have one group given. Yet, it suggests that it
might be necessary to deal with further cases.
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Conclusion

To start with, we quickly sum up the results of this thesis. We were able to
prove our conjecture in the case that one of the occurring subgroups is of rank
1 or lower. The proof worked as follows: Restricting ourselves to considering
only subtori, we were able to gain a free resolution of the representation
ring of the subtorus of higher rank using a Koszul complex. We used this
resolution to calculate TorRGi (RT1, RT2). The crucial part was to show the
vanishing for i = rank(G) − (rank(T1) − rank(T1)) + 1. This was done by
studying the primes in the respective supports and the associated primes. For
this, some results of Segal’s study of primes in compact Lie groups [Seg68]
were of great importance as they allowed us to build a bridge between the
strict double coset condition and the primes in the supports of the respective
representation rings.

Afterwards, we presented an idea for a more general proof. The idea is
based on the fact that modules over Noetherian rings are zero if and only if its
set of associated primes is empty. For the vanishing of TorRGi (RH1, RH2) it
thus suffices to show that it has no associated prime. We showed that only I
and I+(p), with p ∈ Z prime, can be associated primes of TorRGi (RH1, RH2).
So if there exists an element a ∈ I ⊆ RG for which the multiplication
on TorRGi (RH1, RH2) is injective, it follows that neither of the previously
mentioned ideals is associated. So the goal was to find such an element. We
saw that for proving the injectivity of the multiplication on TorRGj (RH1, RH2)
it suffices to consider the image of a under RG ! RH1. If the image is a
product of elements in RH1, each inducing an injective multiplication on
TorRGj (RH1, RH2), then a ∈ RG does so as well. A way to show that certain
elements b in RH1 induce such a multiplication is to consider RH1/(b). If
our conjecture is true if one of the subgroups is of rank lower than H1 and
if RH1/(b) is isomorphic to the representation ring of a subgroup of H ′1 ⊆
H1 of with rank(H ′1) = rank(H1) − 1, then the induced multiplication on
TorRGj (RH1, RH2) is injective for j > rank(G)− (rank(H1) + rank(H2)). We
then presented an idea for a possible choice of a and verified that it works
if G = T is a torus and for an example we previously regarded. However,
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in general it is highly dependent on the embedding of the subtori in the
maximal torus and the respective Weyl group action and thus there might
possibly be examples in which it does not work.

To further study this topic, it might be a good idea to examine the van-
ishing of TorRGi (RH1/(wx1 − 1), RH2) for arbitrary elements w of the Weyl
group W , i.e. without assuming that RH1/(wx1 − 1) is isomorphic to the
representation ring of a closed connected subgroup. For this, it might be
necessary to drop the condition, that all involved groups are connected and
study representation rings of general compact Lie groups and their closed
subgroups. Like this, we cannot reduce the problem to maximal tori, but
representation rings that are not integral domains may appear as well.
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