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* This presentation is a review talk on the potential applications and 
challenges for knowledge graphs in healthcare and life sciences.
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Doubling time of biomedical knowledge in 1950 was 50 years; 
in 1980, 7 years; in 2010, 3.5 years; in 2020, just 73 days;

and decreasing continuously after the COVID-19 pandemic 

Biomedical knowledge is expanding faster than the ability of 
professionals to aggregate, assimilate and apply it effectively 

during education, patient care, and research

1. Durack, DT. The weight of medical knowledge."New England Journal of Medicine (1978): 773-775.
2. Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc. (2011):122:48-58.
3. Else, H. How a torrent of COVID science changed research publishing--in seven charts. Nature (2020): 553-554.
4. Brainard, J. Scientists are drowning in COVID-19 papers. Can new tools keep them afloat. Science (2020): 1126.
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Explosion of Biomedical Knowledge and Data

Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine 
through linked open data." NPJ digital medicine 2.1 (2019): 1-14.

§ Unstructured sources (e.g., clinical trials, 
scientific publications, preprints, medical 
textbooks, flowcharts, guidelines, etc.)

§ Structured sources (e.g., drug targets, 
biochemical pathways, epidemiology, etc.)
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q The Hype and Historical Context behind Knowledge Graphs 

q The Knowledge Graph Ecosystem – Tools, Techniques, and Methods

q Applications for Knowledge Graphs

q Challenges and Opportunities

Knowledge Graphs in Life Sciences and Healthcare
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The Hype and Historical Context 
behind Knowledge Graphs

Those who do not learn history are doomed to repeat it.
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Biomedical Data and Knowledge as an Interconnected Graph

Rheumatoid 
Arthritis Methotrexate
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1. https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-
2022-gartner-hype-cycle

2. Noy, N., et al. Industry-scale Knowledge Graphs: Lessons and Challenges: Five 
diverse technology companies show how it’s done. Queue (2019), 48-75.

3. https://blog.google/products/search/introducing-knowledge-graph-things-not/
4. https://lod-cloud.net
5. https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-

explained-6ba5c6ac3fab
6. Berners-Lee, T., et al. "The semantic web." Scientific american 284.5 (2001): 34-43.

The Era of 
Knowledge 

Graphs

Emerging 
Technology for 
AI Innovation

https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle
https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://lod-cloud.net/
https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab
https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab
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1. Kulikowski, C. A. "Beginnings of artificial intelligence in medicine (AIM): 
computational artifice assisting scientific inquiry and clinical art–with 
reflections on present aim challenges." Yearbook of medical 
informatics 28.01 (2019): 249-256.

2. https://upload.wikimedia.org/wikipedia/commons/d/d2/The_seeds_of_artificia
l_intelligence_-_SUMEX-AIM_%28IA_seedsofartificia00frei%29.pdf

3. Shortliffe, E. H. Feature interview: Edward H. Shortliffe on the MYCIN expert 
system. Heuristic Programming Project, Stanford University (1984).

4. https://profiles.nlm.nih.gov/101584906X19473

Biomedical AI has been here earlier …

§ Since 1970s, investment cycles drove 
the development of semantic networks
and knowledge-based systems

§ Ideas involved: domain-specific 
knowledge, implicit and flexible 
encoding, multiple sources, networks, 
interoperability, explanation of reasoning

§ Challenges: Difficult to express all rules 
formally, interpret a domain expert’s 
mental model, scalability, and adoption

§ Lack of delivery often leads to AI winter

1970s

https://upload.wikimedia.org/wikipedia/commons/d/d2/The_seeds_of_artificial_intelligence_-_SUMEX-AIM_%28IA_seedsofartificia00frei%29.pdf
https://upload.wikimedia.org/wikipedia/commons/d/d2/The_seeds_of_artificial_intelligence_-_SUMEX-AIM_%28IA_seedsofartificia00frei%29.pdf
https://profiles.nlm.nih.gov/101584906X19473
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The Knowledge Graph Ecosystem –
Tools, Techniques, and Methods

It is not just about a graph database, but a graph ecosystem.
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Identify new sources with a constant eye out on the end use cases

Identify new 
sources Applications

§ Popular sources (e.g., SNOMEDCT, ICD-10, UMLS, UniProt, DrugBank)
§ Public/enterprise unstructured sources (e.g., scientific papers)
§ Public/enterprise structured sources (e.g., gene expression datasets)
§ Private secure sources (e.g., patient records, search and browsing history)
§ Other sources (e.g., common vernacular, slang terms, flowcharts etc.)

1. Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine through linked open data." NPJ digital medicine 2.1 (2019): 1-14.
2. Kamdar, Maulik R., et al. "An empirical meta-analysis of the life sciences linked open data on the web." Scientific data 8.1 (2021): 24.
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Identify the extraction and integration steps and processes 

Identify new 
sources

Extraction and 
Integration

§ Classical integration approaches (e.g., ETL pipelines)
§ Virtual integration approaches (e.g., data federation, OMOP, FHIR)
§ Automated extraction (e.g., ML/NLP approaches)

1. Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine through linked open data." NPJ digital medicine 2.1 (2019): 1-14.
2. Saleem, M., Kamdar M. R., et al. "Big linked cancer data: Integrating linked TCGA and Pubmed." Journal of web semantics 27 (2014): 34-41. 
3. Kamdar, Maulik R., et al. "Text snippets to corroborate medical relations: An unsupervised approach using a knowledge graph and embeddings." AMIA Summits on Translational Science Proceedings (2020): 288.
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Diagnosis of Common 
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most common cause 
of red eye …
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has 
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finding

Relation extraction
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1. Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine through linked open data." NPJ digital medicine 2.1 (2019): 1-14.
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Decide on the graph database and the model

Knowledge Graph
Identify new 

sources
Extraction and 

Integration

Several options for scalable graph database vendors:
§ Labelled property graphs
§ RDF triple stores
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Identify how domain experts will explore and curate the graph 

Knowledge Graph
Identify new 

sources

Exploration 
and Curation

Extraction and 
Integration

§ Terminology and ontology editors
§ Visualization platforms
§ Visual query systems

1. Kamdar, Maulik R., et al. "Interactive Exploration and Collaborative Curation of an Industry-Scale Healthcare Knowledge Graph Using the WebProtégé Cloud-Based Editor.” Preprint (2022).
2. Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R. et al. "The Reactome pathway knowledgebase." Nucleic acids research 42.D1 (2014): D472-D477.
3. Kamdar, Maulik R., et al. "ReVeaLD: A user-driven domain-specific interactive search platform for biomedical research." Journal of biomedical informatics 47 (2014): 112-130.
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Identify how developers will consume the graph for applications

Knowledge Graph
Identify new 

sources Applications

Exploration 
and Curation

Extraction and 
Integration

API Services deliver
knowledge to different
applications.
• REST
• JSON-LD
• HL7 FHIR
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Identify any external contextual data sources which are needed

Knowledge Graph
Identify new 

sources Applications

Exploration 
and Curation

Contextual Data

Extraction and 
Integration
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Continuously iterate as new applications and requirements emerge

Knowledge Graph
Identify new 

sources Applications

Exploration 
and Curation

Contextual Data

Extraction and 
Integration
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Applications for Knowledge Graphs in 
Life Sciences and Healthcare

The world is your oyster, but … to a man with a hammer, everything looks like a nail
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Personalized Search and Recommendations for 
Patients, Providers, and Researchers

Temozolomide dosage MGMT methylation

Clindamycine for Skin Infections

§ Document search: Retrieving precise, updated, trustworthy 
information from documents for short queries

§ Document recommendation: Browsing for information 
exploration based on related documents

§ Personalized search and recommendations: Use contextual 
information in a privacy-first approach

§ Complex search across multiple databases: Retrieving 
precise information with provenance (often datasets with 
specific entity identifiers and attributes for further analysis)

1. Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine through linked open data." NPJ digital medicine 2.1 (2019): 1-14.
2. Kamdar, Maulik R., et al.  “A Healthcare Knowledge Graph-based Approach to Enable Focused Clinical Search.” ISWC Industry Track (2021).
3. Kamdar, Maulik R. “Elsevier’s Healthcare Knowledge Graph: An Actionable Medical Knowledge Platform to Power Diverse Applications”, Knowledge Graph Conference (2021).
4. Kamdar, Maulik R., et al. "ReVeaLD: A user-driven domain-specific interactive search platform for biomedical research." Journal of biomedical informatics 47 (2014): 112-130.
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2. Kamdar, Maulik R., et al.  “A Healthcare Knowledge Graph-based Approach to Enable Focused Clinical Search.” ISWC Industry Track (2021).
3. Kamdar, Maulik R. “Elsevier’s Healthcare Knowledge Graph: An Actionable Medical Knowledge Platform to Power Diverse Applications”, Knowledge Graph Conference (2021).
4. Kamdar, Maulik R., et al. "ReVeaLD: A user-driven domain-specific interactive search platform for biomedical research." Journal of biomedical informatics 47 (2014): 112-130.
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Personalized Search and Recommendations for 
Patients, Providers, and Researchers

What are the medications prescribed 
to melanoma patients that have 
mutations in their BRAF gene?

§ Complex search across multiple databases: Retrieving 
precise information with provenance (often datasets with 
specific entity identifiers and attributes for further analysis)

1. Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine through linked open data." NPJ digital medicine 2.1 (2019): 1-14.
2. Kamdar, Maulik R., et al.  “A Healthcare Knowledge Graph-based Approach to Enable Focused Clinical Search.” ISWC Industry Track (2021).
3. Kamdar, Maulik R. “Elsevier’s Healthcare Knowledge Graph: An Actionable Medical Knowledge Platform to Power Diverse Applications”, Knowledge Graph Conference (2021).
4. Kamdar, Maulik R., et al. "ReVeaLD: A user-driven domain-specific interactive search platform for biomedical research." Journal of biomedical informatics 47 (2014): 112-130.
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Glioblastoma 
Multiforme IV

Temozolomide dosage MGMT methylation

Clindamycine for Skin Infections

Personalized Search and Recommendations for 
Patients, Providers, and Researchers

What are the medications prescribed 
to melanoma patients that have 
mutations in their BRAF gene?

§ Document search: Retrieving precise, updated, trustworthy 
information from documents for short queries

§ Document recommendation: Browsing for information 
exploration based on related documents

§ Personalized search and recommendations: Use contextual 
information in a privacy-first approach

§ Complex search across multiple databases: Retrieving 
precise information with provenance (often datasets with 
specific entity identifiers and attributes for further analysis)

1. Kamdar, Maulik R., et al. "Enabling web-scale data integration in biomedicine through linked open data." NPJ digital medicine 2.1 (2019): 1-14.
2. Kamdar, Maulik R., et al.  “A Healthcare Knowledge Graph-based Approach to Enable Focused Clinical Search.” ISWC Industry Track (2021).
3. Kamdar, Maulik R. “Elsevier’s Healthcare Knowledge Graph: An Actionable Medical Knowledge Platform to Power Diverse Applications”, Knowledge Graph Conference (2021).
4. Kamdar, Maulik R., et al. "ReVeaLD: A user-driven domain-specific interactive search platform for biomedical research." Journal of biomedical informatics 47 (2014): 112-130.
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§ Drug discovery and drug repurposing: Searching the space 
of potential ligands and drugs for prediction and docking models

§ Pharmacovigilance and drug safety: Integrating drug and 
protein interaction networks to predict adverse reactions

§ Clinical decision support: Knowledge-driven clinical pathways 
for next steps (e.g., differential diagnosis, prescriptions)

§ Summarization and other prediction models: Aggregating 
information for robust prediction models in epidemiology or 
outcomes research (e.g., Opioid epidemic, COVID-19, EVD)

Pathways and Predictions

1. Himmelstein, Daniel Scott, et al. "Systematic integration of biomedical knowledge prioritizes drugs for repurposing." Elife 6 (2017): e26726.
2. Kamdar, Maulik R., et al. "PhLeGrA: Graph analytics in pharmacology over the web of life sciences linked open data.” 26th World Wide Web Conference (2017).
3. Zitnik, Marinka et al. "Modeling polypharmacy side effects with graph convolutional networks." Bioinformatics 34.13 (2018): i457-i466. 
4. Kamdar, Maulik R., et al. "An Ebola virus-centered knowledge base." Database (2015).
5. Kamdar, Maulik R., et al. "A knowledge graph-based approach for exploring the US opioid epidemic." AI4SG Workshop, ICLR Conference (2019).
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§ Clinical decision support: Knowledge-driven clinical pathways 
for next steps (e.g., differential diagnosis, prescriptions)

§ Summarization and other prediction models: Aggregating 
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§ Summarization and other prediction models: Aggregating 
information for robust prediction models in epidemiology or 
outcomes research (e.g., Opioid epidemic, COVID-19, EVD)

Pathways and Predictions

1. Himmelstein, Daniel Scott, et al. "Systematic integration of biomedical knowledge prioritizes drugs for repurposing." Elife 6 (2017): e26726.
2. Kamdar, Maulik R., et al. "PhLeGrA: Graph analytics in pharmacology over the web of life sciences linked open data.” 26th World Wide Web Conference (2017).
3. Zitnik, Marinka et al. "Modeling polypharmacy side effects with graph convolutional networks." Bioinformatics 34.13 (2018): i457-i466. 
4. Kamdar, Maulik R., et al. "An Ebola virus-centered knowledge base." Database (2015).
5. Kamdar, Maulik R., et al. "A knowledge graph-based approach for exploring the US opioid epidemic." AI4SG Workshop, ICLR Conference (2019).
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§ Drug discovery and drug repurposing: Searching the space 
of potential ligands and drugs for prediction and docking models

§ Pharmacovigilance and drug safety: Integrating drug and 
protein interaction networks to predict adverse reactions

§ Clinical decision support: Knowledge-driven clinical pathways 
for next steps (e.g., differential diagnosis, prescriptions)

§ Summarization and other prediction models: Aggregating 
information for robust prediction models in epidemiology or 
outcomes research (e.g., Opioid epidemic, COVID-19, EVD)

Pathways and Predictions

1. Himmelstein, Daniel Scott, et al. "Systematic integration of biomedical knowledge prioritizes drugs for repurposing." Elife 6 (2017): e26726.
2. Kamdar, Maulik R., et al. "PhLeGrA: Graph analytics in pharmacology over the web of life sciences linked open data.” 26th World Wide Web Conference (2017).
3. Zitnik, Marinka et al. "Modeling polypharmacy side effects with graph convolutional networks." Bioinformatics 34.13 (2018): i457-i466. 
4. Kamdar, Maulik R., et al. "An Ebola virus-centered knowledge base." Database (2015).
5. Kamdar, Maulik R., et al. "A knowledge graph-based approach for exploring the US opioid epidemic." AI4SG Workshop, ICLR Conference (2019).
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Graph-powered API services for different applications

Knowledge Graph
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Graph-powered API services for different applications

Knowledge Graph

Semantic Annotation

Document similarity

Topic Identification
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Graph-powered API services for different applications

Knowledge Graph

Query Parsing
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Semantic Annotation

Document similarity
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Graph-powered API services for different applications

Knowledge Graph

Query Parsing

Spellchecking

Query Expansion

Semantic Annotation

Document similarity

Topic Identification

Entity Linking and 
Normalization

Schema Mappings

Concept Similarity

Pathway Inference

ML Prediction and 
Clustering Models

3D Docking Models

Data Projections
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Challenges and Opportunities

There is no such thing as a free lunch.
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Completeness, Correctness, and Freshness of Biomedical Knowledge

Completeness

Correctness

Freshness

3 metrics are in 
conflict for scaled 

biomedical knowledge 
graph platforms

1. http://iswc2018.semanticweb.org/panel-enterprise-
scale-knowledge-graphs/index.html

2. Noy, N., et al. Industry-scale Knowledge Graphs: 
Lessons and Challenges: Five diverse technology
companies show how it’s done. Queue (2019), 48-75.

http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
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Completeness, Correctness, and Freshness of Biomedical Knowledge

Completeness

Correctness

Freshness

3 metrics are in 
conflict for scaled 

biomedical knowledge 
graph platforms

Knowledge is continuously
evolving and expanding with
new research and discoveries

1. http://iswc2018.semanticweb.org/panel-enterprise-
scale-knowledge-graphs/index.html

2. Noy, N., et al. Industry-scale Knowledge Graphs: 
Lessons and Challenges: Five diverse technology
companies show how it’s done. Queue (2019), 48-75.

http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
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Completeness, Correctness, and Freshness of Biomedical Knowledge

Completeness

Correctness

Freshness

3 metrics are in 
conflict for scaled 

biomedical knowledge 
graph platforms

Knowledge must be
trusted and accurate
for use in products

1. http://iswc2018.semanticweb.org/panel-enterprise-
scale-knowledge-graphs/index.html

2. Noy, N., et al. Industry-scale Knowledge Graphs: 
Lessons and Challenges: Five diverse technology
companies show how it’s done. Queue (2019), 48-75.

http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
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Completeness, Correctness, and Freshness of Biomedical Knowledge

Knowledge can arise from several
different heterogeneous sources

Completeness

Correctness

Freshness

3 metrics are in 
conflict for scaled 

biomedical knowledge 
graph platforms

1. http://iswc2018.semanticweb.org/panel-enterprise-
scale-knowledge-graphs/index.html

2. Noy, N., et al. Industry-scale Knowledge Graphs: 
Lessons and Challenges: Five diverse technology
companies show how it’s done. Queue (2019), 48-75.

http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/index.html
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Knowledge Extraction Challenges 

Status asthmaticus, or acute severe asthma, is a
refractory state that does not respond to standard
therapy such as inhaled beta-agonists or
subcutaneous epinephrine

Acute severe asthma Epinephrine
has drug

Asthma Epinephrine
has drug

§ Medical language is complex: 
Speculation, negation, context 
(e.g., age, ethnicity), multiple entities etc.

§ Provenance and confidence metrics 
can be stored within the knowledge graph 
and used for querying (e.g., thresholding 
or combining on metrics)
§ Human-in-the-loop can decide depending 

on the use case(s) and the risk(s).

Kamdar, Maulik R., et al. "Text snippets to corroborate medical relations: An unsupervised approach using a knowledge graph and embeddings." AMIA Summits on Translational Science Proceedings 2020 (2020): 288.
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Knowledge Extraction Challenges 
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Knowledge Extraction Challenges 
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§ Medical language is complex: 
Speculation, negation, context 
(e.g., age, ethnicity), multiple entities etc.
§ NLP is getting more advanced with the 

advent of GPT-based models

§ Provenance and confidence metrics 
can be stored within the knowledge graph 
and used for querying (e.g., thresholding 
or combining on metrics)
§ Human-in-the-loop can decide depending 

on the use case(s) and the risk(s).
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Knowledge Extraction Challenges 
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Representation, Storage, and Querying Challenges

§ Modeling, representation, and querying of
temporal sequences, probabilistic data,
grouped set of concepts
§ Reification, RDF*/SPARQL*, labelled property

graphs, hypergraph formalisms

§ Data copies and redundant duplication
across enterprise with knowledge graphs

§ Privacy and security with patient and user
context data (e.g., search histories)
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1. https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
2. Whang, J. J., et al (2020). MEGA: Multi-view semi-supervised clustering 

of hypergraphs. Proceedings of the VLDB Endowment, 13(5), 698-711.
3. Fatemi, B., et al. Knowledge hypergraphs: Prediction beyond binary 

relations. arXiv preprint (2019).

https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
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Representation, Storage, and Querying Challenges
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Representation, Storage, and Querying Challenges

§ Modeling, representation, and querying of
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Representation, Storage, and Querying Challenges
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The Social Factor in Enterprise Knowledge Graphs (KGs)

Knowledge 
Graph 

Stakeholders

External 
Collaborators

Knowledge 
Representation 

Specialists
Enterprise 
Architects

Technology 
Developers

International 
Stakeholders

Business 
Developers

Product 
Owners

Medical 
Informaticists

NLP / ML 
Scientists

KGs can be made more 
tangible – user-friendly 
visualization interfaces, 
developer-friendly API 

services, business use case-
driven KG development, etc.

Stakeholder buy-in needed 
for development, quality 
assurance, maintenance, 
and adoption of the KGs 

in business products
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Email: maulik_kamdar@optum.com

Twitter: @maulikkamdar

Thank you!
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