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A B S T R A C T

Hepatocellular carcinoma (HCC) is a major health problem around the world. The management of this disease
is complicated by the lack of noninvasive diagnostic tools and the few treatment options available. Better
clinical outcomes can be achieved if HCC is detected early, but unfortunately, clinical signs appear when the
disease is in its late stages. We aim to identify novel genes that can be targeted for the diagnosis and therapy
of HCC. We performed a meta-analysis of transcriptomics data to identify differentially expressed genes and
applied network analysis to identify hub genes. Fatty acid metabolism, complement and coagulation cascade,
chemical carcinogenesis and retinol metabolism were identified as key pathways in HCC. Furthermore, we
integrated transcriptomics data into a reference human genome-scale metabolic model to identify key reactions
and subsystems relevant in HCC. We conclude that fatty acid activation, purine metabolism, vitamin D, and
E metabolism are key processes in the development of HCC and therefore need to be further explored for the
development of new therapies. We provide the first evidence that GABRP, HBG1 and DAK (TKFC) genes are
important in HCC in humans and warrant further studies.
1. Introduction

Liver cancer is a major human health problem around the world.
It can be classified as primary, i.e., originating in the liver, or sec-
ondary, i.e., caused by metastasis of another type of cancer to the
liver. There were approximately 906,000 new cases of primary liver
cancer (4.7% of all new cancer cases) and 830,000 liver cancer deaths
(8.3% of all cancer deaths) in 2020 [1]. The 5-year prevalence statistics
show that liver cancer is more prevalent in Asia (73.6%), followed
by Europe (8.6%), Africa (8.4%), and North America (5%), with an
incidence at least two times higher in men compared to women [1].
The two most prevalent forms of primary liver cancer are hepatocellular
carcinoma (contributing approximately 80%) and cholangiocarcinoma
(approximately 10%–15%) [1]. Chronic infection with the hepatitis B
and/or C virus is known to be the major risk factor for hepatocellular
carcinoma (HCC). However, the prevalence of hepatitis B and C viruses
has decreased in recent years due to the development of effective vac-
cines and improved management strategies [2] but yet the prevalence
of HCC continues to increase. Furthermore, even with improvements
in diagnosis and management of liver cancers, especially HCC, major
challenges still remain due to the few treatment options available and
the lack of easy to use noninvasive diagnostic tools. This has made it
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necessary to search for novel biomarkers that can be targeted for the
diagnosis and/or treatment of HCC.

The diagnosis and treatment of HCC are difficult because clini-
cal symptoms are characteristically present when the disease is in
advanced stages. Current diagnostic tools are expensive, require spe-
cialized expertise and are often invasive. Imaging techniques such
as ultrasound, computed tomography (CT) and magnetic resonance
imaging (MRI) provide noninvasive means of diagnosing HCC [3] but
are expensive to set up and require specialized training for efficient
use. Digital subtraction angiography (DSA) is efficient at detailing the
tumor anatomy and its vascular supply [3] but is invasive, expensive
and requires specialized personnel. Histological diagnostic techniques
are a valuable tool in HCC diagnosis because they provide definitive
pathological diagnosis, information on nature of tumor and etiology of
the disease but are invasive, require specialized personnel and are not
applicable in all scenarios because of the risk of bleeding and needle
tract implantation during collection of biopsies [3]. Serum biomarkers
such as alpha feto protein (AFP) [4], prothrombin induced by the
absence of vitamin K or antagonist II (PIVKA-II) [5], and plasma-free
microRNA [6] are gaining momentum, but must be used in conjunction
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Table 1
Description of datasets.
Accession ID. Patients(M/F) HBV/

HCV %
Median age
(range)

Year Tissue Platform Country

GSE19665 10 (9/1) 100 67 (51–74) 2009 Tumor
/nontumor

GPL570 - Affymetrix
Human Genome U133 Tokyo, Japan

GSE39791 72 (58/14) *83 57.5 (29–77) 2012 Tumor
/nontumor

GPL10558 - Illumina
HumanHT-12 V4.0

Daegu & Seoul,
Korea

GSE41804 20 100 – 2012 Tumor
/nontumor

GPL570-Affymetrix
Human Genome U133 Kanazawa, Japan

GSE57957 39 (*35/4) *61 *65 (35–85) 2014 Tumor
/nontumor

GPL10558-Illumina
HumanHT-12 V4.0 Singapore

GSE64041 60 (*53/7) *30 +*64 2016 Tumor
/nontumor

GPL6244-Affymetrix
Human Gene 1.0 ST Basel, Switzerland

GSE84402 14 (9/5) – 45 (35–67) 2016 Tumor
/nontumor

GPL570-Affymetrix
Human Genome U133 Shanghai, China

GSE84598 22 (*17/5) *47 – 2016 Tumor
/nontumor

GPL10558-Illumina
HumanHT-12 V4.0 Mainz, German

HCCDB15 49 (28/21) – 68 (20–81) ˜2015 Tumor
/nontumor RNA Seq USA

* Estimated from reference publication, +mean (not median). ‘‘Accession ID’’ is the identification of the dataset in the public database, ‘‘Patients’’ refers to the
number of patients with data from tumor and nontumor tissues, ‘‘HBV/HCV’’ is the percentage of patients with chronic hepatitis B/C infection, ‘‘median age’’
is the median age of the patients in a particular study, ‘‘year’’ refers to publication year, ‘‘tissue’’ is the liver tissue from tumor and surrounding nontumor,
‘‘platform’’ is the type of chip or technical platform used to measure gene expression in the samples, ‘‘country’’ is the country where patients originated.
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with more established tools. Early detection of this disease would
greatly improve patient management and thus better clinical outcomes.
Currently, there are several options for treating HCC, such as surgical
resection, local ablation, and liver transplantation, among others. These
treatments are expensive, often very aggressive to the patients and do
not treat HCC completely as the chances of recurrence are high. There-
fore, there is still an urgent need for easy and noninvasive diagnostic
tools and novel therapies for the management of HCC.

In all, there is a dire need to find novel biomarkers that can
be used as noninvasive diagnostic or drug targets. In this study, we
leveraged publicly available transcriptomics data from previous studies
that compared tumor and nontumor biopsies from the same patients.
We performed a meta-analysis to find differentially expressed genes
in all studies and performed a network analysis. Furthermore, we
applied genome-scale metabolic modeling to find enriched reactions
and subsystems. By comparing transcriptomics data from tumor and
surrounding nontumor tissue, the rationale was to find novel genes
and biological processes that are important in the development and
progression of HCC in humans. The identification of genes associated
with HCC in previous studies validates our modeling approach as
relevant.

2. Materials and methods

In this section, we describe the data used, their processing, and the
analytical methods applied, as summarized in Fig. 1.

2.1. The data

We searched the CancerLivER database [7] and the HCCDB database
[8] for transcriptomics datasets curated from public repositories and
the literature. The CancerLivER database provided information on
microarray datasets, while the HCCDB provided preprocessed RNA
seq datasets from The Cancer Genome Atlas (TCGA). We downloaded
datasets that contained both tumor and surrounding nontumor samples.
We considered only datasets that had 10 or more patients with at
least 20,000 genes analyzed. The final analysis included eight datasets
described in Table 1. The 8 datasets used for the meta-analysis all
together contained 286 patients with approximately 79% males and
21% females. Datasets were from samples collected from Europe, North
America, and Asia. Some of the samples were from people who had
chronic infection with hepatitis B or C viruses, a major risk factor in
2

HCC.
2.2. Differential gene expression analysis

Transcriptomics data were preprocessed following standard pro-
cedures. Briefly, data quality was assessed, expression values were
log2 transformed and normalized using quantile normalization. Gene
probes without gene annotation were removed. For multiple probes
that matched the same gene, the mean was used as the final expression
value. Gene expression values of tumor and nontumor tissue were
compared for analysis of differentially expressed (DE) genes using
linear models in limma library [9]. Log2 fold change (log2FC) and p-
alues were determined. P-values were corrected for multiple testing
sing the Benjamini–Hochberg (BH) method. All analyses in this section
ere performed in R software, version 4.0.5 [10].

.3. Meta-analysis of gene expression

Genes that were present in six or more datasets were considered for
eta-analysis. This is because the studies included in the analysis used
ifferent gene expression platforms, so we intended to work with genes
hat were common to most of the platforms. Meta-analysis of differen-
ially expressed genes was done by fitting random effects models for
ach gene using the rma.uni function of the metafor library [11,12] in
software. Log2 fold change (log2FC) was used as the effect size (𝑦𝑖)
hich was assumed to be an unbiased estimate of the true effect size
𝜃𝑖).

𝑖 = 𝜃𝑖 + 𝜖 (1)

where 𝑖 = 1...... 𝑘 independent effect size estimates, 𝜖 ∼ 𝑁(0, 𝜎2) with 𝜎2

enoting the variance in the 𝑖th study. Each 𝜃𝑖 consists of the true effect
𝜇) and the random effect (𝜇𝑖) that denotes the difference between 𝜃𝑖
nd 𝜇. Hence, the final model was formulated as:

𝑖 = 𝜇 + 𝜇𝑖 + 𝜖 (2)

𝑖 ∼ 𝑁(𝜇, 𝜏2), the true effect in the study population is normally
istributed with 𝜇 denoting the average true effect and 𝜏2 the variance
that is, the amount of heterogeneity) of the true effects in the study
opulation, and 𝜇𝑖 ∼ 𝑁(0, 𝜏2). The model provides an estimate for
(mean true effect) and 𝜏2 (heterogeneity). A gene was considered

ignificantly differentially expressed (SDE) if its mean |log2FC| >= 1
and unadjusted 𝑝-value was less than 0.05. KEGG enrichment analysis
of gene sets was done on SDE genes using the enrichKEGG function of

the clusterProfiler library in R software [13]. Pathways were considered
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Fig. 1. Analysis workflow. On the right, we did a meta-analysis and generated a network (supp Fig. 4) by searching SDE genes (p value < 0.05) in STRING db. SDE genes were
then searched in DisGeNET db to select only genes that are not associated with liver cancer or diabetes. Selected genes were then searched in Drug Repurposing Hub to select a
set of genes that is being targeted for treatment of other ailments. This final set of genes was then used to mine the network above to yield a subnetwork which was analyzed
for hub genes. On the left, transcriptomics data was integrated into Human-GEM to yield context specific models. This was followed by flux sampling and analysis of differential
reactions and subsystems. Genes involved with significantly differentiated reactions and were also in the list of SDE genes from the meta-analysis were selected and used to extract
a subnetwork. The subnetwork was analyzed for hub genes. All hub genes were considered as the final set of candidate genes. SDE: Significantly Differentially Expressed, KEGG:
Kyoto Encyclopedia of Genes and Genomes, PPI: Protein–Protein Interaction, STRING db: STRING database.
significantly enriched if their Benjamini–Hochberg (BH) adjusted 𝑝-
value was less than 0.1. Furthermore, SDE genes were searched in the
DisGeNET database [14] (on 9 and 10 January 2022) to determine if
there has been any previous association of a gene with any form of
liver cancer or diabetes. We consider the DisGeNET database to be a
well curated and up-to-date database for gene–disease associations and
therefore used to identify new genes associated with HCC. Diabetes
was included in the elimination of genes because it is known to be a
precursor of several conditions, including cancers [15]. The remaining
genes were then searched in a drug re-purposing database, the Drug
Repurposing Hub (DRH) of Broad Institute [16], to identify genes being
3

targeted in other ailments. Genes that were being targeted in other
ailments were considered to be viable drug targets.

2.4. Protein–protein interaction (PPI) analysis

To derive Protein–Protein interaction networks, the SDE genes (and
corresponding proteins) of the meta-analysis were searched in STRING
db [17] with default settings. This yielded what we referred to here as
the ‘‘parent’’ network. The genes that were found to be targetable in the
DRH were used to extract a subnetwork from the parent network. This
was done by querying the parent network in Cytoscape application.
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Fig. 2. There was no separation of patients by gender using PCA. Plots are showing two out of eight datasets.
he aim was to identify hub genes among the targetable genes or
heir immediate neighbors. This analysis was done in Cytoscape version
.8.2, and STRING db was accessed on 07th January 2022 using the
tringApp version 1.7.0.

.5. Genome-scale metabolic modeling

Extraction of genome-scale metabolic models (GEMs) was per-
ormed in Matlab R2019b (MathWorks Inc., Natick, Massachusetts,
SA) using the COBRA toolbox [18], RAVEN [19] and gurobi solver
20]. This was done following and extending the protocol described by
alakira et al. [21]. The GSE39791 dataset was chosen because it had
sufficient number of patients, that is, 72 patients with each patient

aving two samples, thus 72 tumor samples and 72 nontumour tissue
amples. Transcriptomics data from the 144 samples were integrated
nto the human reference genome-scale model called Human-GEM [22]
version 1.9.0). Human-GEM model used has 8370 metabolites, 13,078
eactions, 3625 genes and no dead-end metabolites or blocked reac-
ions. Different model extraction methods (MEMs) were applied to
enerate personalized models for each patient (a recent review of
hese methods is available in [23]). The extraction process yielded 144
odels from each MEM. The models were extracted using five MEMs
amely; Gene Inactivity Moderated by Metabolism and Expression
GIMME) [24,25], Integrative Metabolic Analysis Tool (iMAT) [26],
ASTCORE, Integrative Network Inference for Tissues (INIT) [27] and
ask Integrative Network Inference for Tissues (tINIT) [28].

Different within patient thresholds were set to define low- and
ighly expressed genes. A lower and upper percentile (L–U) of the gene
xpression within a patient was used to set the thresholds for lowly
nd highly expressed genes as shown: 40th–80th, 50th–80th, 60th–
0th, 50th–90th, 70th–90th, and 80th–90th. We used within patient
hresholds because, for any gene, the degree of expression is different
etween patients, since individuals are biologically distinct even under
imilar conditions. For every model, a matrix was generated showing if
reaction was present (1) or absent (0). Reactions that were present or
bsent in all observed models were removed and the matrix were zero-
entered on row means. Then, a principal component analysis (PCA) of
he reactions was performed to determine which models separated the
est between tumor and nontumor tissue. The t-distributed stochastic
eighbor embedding (t-SNE) algorithm was used to confirm the model
eparation in PCA as used in [29,30]. Models extracted using the
IMME method produced the best separation by tissue type, i.e. tumor
s nontumor tissue (see Fig. 5) and thus these models were used for
ownstream analysis.

We performed flux sampling using the artificial centering hit-and-
4

un (ACHR) algorithm [31] on the extracted models. This was done
to assess their dynamic response. 1000 flux samples were generated
for each of the models. Flux samples from models of the same patient
i.e., tumor and nontumor were compared for enriched reactions using
Mann–Whitney U test. The change in flux (flux change) was assessed as
described in [32]. Reactions were considered statistically significantly
different if their BH adjusted 𝑝-value was less than 0.05 and the flux
change was 10-fold or higher, and were used to identify key genes.
Reactions with adjusted 𝑝-value < 0.05 were then used to perform the
enrichment analysis of metabolic subsystems using the hypergeometric
test and p-values adjusted using BH. Subsystems with 𝑝-value < 0.05
were considered as enriched.

2.6. Gene signatures

We assessed the prognostic potential of selected genes of HCC using
the Kaplan–Meier plotter (KM plotter) [33], at default settings. The
HCC dataset used was contained in the KM plotter tool and is described
in [34]. For each gene, patients were separated into high and low
expression groups. A cut-off value to determine the groups of high and
low gene expression was calculated by iterating over all values between
the upper and lower quantiles of gene expression while computing the
Cox regression for each setting. The most significant value was used
as the cutoff point to identify the two groups. The two patient cohorts
were then compared by a Kaplan–Meier survival plot, the hazard ratio
with 95% confidence intervals and log rank p-values were calculated.

Furthermore, we assessed the potential of the selected genes to
classify between tumor and nontumor tissue samples from an indepen-
dent RNA-Seq dataset (the HCCDB18 dataset) which was not previously
used in this analysis. This dataset presents transcriptomic data be-
tween tumor tissues and nontumor tissues collected from the Japanese
population (median age 69 years, age range 31–86 years, 86% had
HBV/HBV infection, 75% were men). Seven algorithms were applied
using the CMA package in R software [35]; linear discriminant analy-
sis (LDA), diagonal linear discriminant analysis (LDA), random forest
(RF), elastic net (EN), L1 penalized logistic regression (Lasso), Partial
Least Squares followed by logistic regression (PLS-LR), L2 penalized
logistic regression (P-LR). Learning and training sets were generated
using Monte-Carlo cross validation with 90% of observations used for
learning at each iteration for 5000 iterations, misclassification error
(MCE) and area under curve (AUC) were used to assess classification.

3. Results

This study used eight datasets for the meta-analysis, contributing
286 patients in total, 79% males and 21% females. Table 1 summarizes

information about the eight datasets used. More than 70% of the
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Fig. 3. KEGG enriched pathways.
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amples were from patients infected with hepatitis B or C virus. The
ge distribution of the samples ranged from 20 to 86 years, with
he majority of patients aged 50 years or older. For datasets where
e had information on age, the age distribution is summarized in
upplementary Figure 1. There was a good separation of the samples by
issue type (tumor versus nontumor) using PCA on the transcriptomics
ata (Supplementary Figure 2). However, patients did not separate by
ender on the PCA plot (Fig. 2).

Differential gene expression analysis was performed for each dataset
sing limma in R software. This produced a log2 fold change for
ach gene, and this was used as the effect size in the meta-analysis.
here were 16,625 genes that were common in six or more datasets
nd these are the ones that were analyzed in the meta-analysis. 690
enes were significantly differentially expressed after the meta-analysis,
00 genes were downregulated while 190 genes were upregulated
Supplementary Figure 3 and Supplementary Table 1). Significantly
ifferentially expressed (SDE) genes for KEGG-enriched pathways were
nalyzed. 30 pathways were found to be enriched. The majority of
nriched pathways were those involved in metabolism while others
re involved in signaling, synthesis of biomolecules, mineral absorption
nd immunity (Fig. 3).

The SDE (690) genes were searched in the DisGeNET database
o remove genes associated with any form of liver cancer or dia-
etes. We remained with 128 genes without any prior association with
iver cancer or diabetes. The 128 genes were searched in the DRH
atabase to identify genes that are being targeted for the treatment
f any other disease. Genes namely PIPOX, HBG1, P2RY13, GABRP,
YP3A43, HAO1, IGJ, PDE2 A, PROZ, RDH5, S100P, C7, C8 A, IYD,
XT were identified to be viable targets. These genes were assigned to

he ‘‘parent’’ network (Supplementary Figure 4) to extract a subnetwork
howing their connectivity and immediate neighbors. C8 A, C7, HAO1,
5

PIPOX, RDH5, OXT, IYD, CYP3A43, DAK, GABRP, P2RY13, HBG1 and
PROZ were identified as key hub genes in the subnetwork (Fig. 4) and
were all downregulated in the meta-analysis.

Transcriptomics data, GSE39791, were integrated into the Human-
GEM reference human model. Context specific models were extracted
using five MEMs as described in methods Section 2.5. Models ex-
tracted using GIMME at the 50th and 80th percentiles per patient
as thresholds for lowly and highly expressed genes separated best by
tissue type (Fig. 5, see also Supplementary Figure 5). These models
were analyzed per patient by comparing 1000 flux samples of each
reaction of the model from tumor and nontumor tissue. Reactions
were considered significantly enriched if their BH adjusted 𝑝-value
was < 0.05 and the flux change was 10 fold or higher. Reaction
nrichment analysis identified 1128 reactions as significantly enriched
n at least one patient. Downstream analysis to identify key reactions
xcluded transport and exchange/demand reactions. Reactions that
ere fully up or downregulated in all patients were considered as the

inal set of reactions of interest (Fig. 6). Reactions in red are upreg-
lated while reactions in blue are downregulated. All reactions (19)
n fatty acid activation were up regulated except MAR00425, which
ields docosapentaenoyl-CoA and AMP but not ATP in the cytosol.
of 8 reactions (MAR04020, MAR04452, MAR04603) belonging to

urine metabolism producing guanosine monophosphate, guanine and
eoxyguanosine, respectively, in cytosol, 1 of 2 reactions (MAR08011)
f vitamin D metabolism producing provitamin D3, and 4 of 7 reac-
ions of vitamin E metabolism (MAR03047, MAR04007, MAR06457,
AR06460) that produced alpha-tocopheryl quinone, alpha-hydroxy-

amma-tocopherone, gamma-tocopheroxyl-radical, and gamma-
ocopherol, respectively, were downregulated. All other reactions were
pregulated and belonged to aminoacyl-tRNA biosynthesis, nicoti-
amide metabolism, and Oxidative phosphorylation in addition to
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Fig. 4. Subnetwork derived by searching viable targets on the ‘‘parent’’ network. Genes in orange are considered important genes in HCC. SLC2A2 gene is a major hub gene on
the parent network.
the subsystems mentioned above (see Supplementary Table 2). The
genes associated with these reactions were identified from the gene
rules and searched among the SDE genes from the meta-analysis. 7
genes were identified to be common between the two analyses. Six
genes, namely ACSM3, ACSL1, ACSL4, SLC27A2, ACSM5, ACSM2A,

ere involved in fatty acid activation and one gene, COX7B2, was
nvolved in oxidative phosphorylation. Of the six genes involved in
atty acid activation, ACSL4 (Acyl-CoA Synthetase Long Chain Family
ember 4) was upregulated, while the others were downregulated.
OX7B2 (Cytochrome C Oxidase Subunit 7B2), involved in oxidative
hosphorylation was upregulated. The 7 genes were mapped to the
arent network to extract a subnetwork, Fig. 7. HAO1, PIPOX genes
ere common to the two subnetworks.

Subsystem enrichment was done per patient similar to reaction
nrichment analysis, but here we considered all subsystems in the
uman reference model. 18 subsystems were significantly enriched
Fig. 8) and included subsystems involved in oxidation and activation
f fatty acids and cholesterol biosynthesis, among others.

We assessed the prognostic potential of genes identified as relevant
n HCC (Table 2). All selected genes (except COX7B2 and ACSL4)
howed prognostic potential at log rank 𝑝-value < 0.05 (see Supplemen-
ary Figure 6). Furthermore, we used the 17 selected genes to develop a
lassifier for tumor vs nontumor HCC samples. Using the random forest
lgorithm, transcriptomics data for the 17 genes effectively classified
umor and nontumor samples in HCC (median MCE: 3.4%, median
6

UC: 98%, see Supplementary Figure 7).
4. Discussion

We aimed to unravel the molecular markers and mechanisms that
drive HCC in humans by comparing transcriptomics data from tumor
and nontumor tissues. A total of 286 patients from eight datasets
were included in the meta-analysis. Most of the samples, 79%, were
from male patients. HCC disproportionately affects males more than
females [1] but the factors responsible for this trajectory are not well
understood and were not the focus of this study. Infection with hepatitis
B or C viruses is known to be a major risk factor in HCC [59,60].
72% of the patients included in this analysis had chronic hepatitis B or
C infection. The patients were from populations in Europe, Asia, and
North America.

We performed a differential gene expression analysis on each of
the datasets in the limma in the R software. We did not consider
confounders such as age and gender because the public datasets used
were not complete in this regard. Furthermore, we did not see a
separation of tumor tissue by gender (see Fig. 2) thus calming our
concerns. Differential gene expression analysis was followed by meta-
analysis of the results using random-effects models (REM). We used
REM because it accounts for heterogeneity since the samples were from
different populations and gene expression analysis was carried out on
different platforms. Furthermore, the conclusions from REM can be
extended beyond the samples used, that is, REM gives an unconditional

inference about a larger set of studies from which the studies used are
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Fig. 5. PCA on models extracted using GIMME MEM. 70% of tumor and 92% of nontumor models separated well according to tissue type.
Fig. 6. Significantly enriched reactions at 5% level of significance, and a 10-fold flux change. Reactions in red are up regulated, while those in blue are down regulated.
ssumed to be a random sample [12]. Genes were considered signifi-
antly differentially expressed (SDE) if their |mean log2FC| >= 1 and
nadjusted 𝑝-value was less than 0.05. We cautiously used unadjusted
-value because of its lower stringency, which allowed us to remain
ith an appropriate number of SDE genes for downstream analyses.
nrichment analysis exposed key pathways known to be involved in
ancer, for example, the cell cycle and p53 signaling pathways. Un-
ontrolled cell division is a known characteristic of cancers [61]. p53
ignaling pathway is known to control the cell cycle, among other
unctions in the body [62]. Several cancers have been associated with
7

the down regulation of genes in p53 pathway leading to uncontrolled
cell division and hence these genes have been considered potential
drug targets [62,63]. 16 of the enriched pathways, including fatty
acid degradation, are associated with the metabolism of fatty acids,
drugs, xenobiotics, glucose, among others. Unraveling the metabolic
characteristics of cancer cells remains an unresolved challenge, because
tumors dynamically adapt their metabolic characteristics at each step
during metastasis, leading to the utilization of unconventional sources
of energy [64,65]. Fatty acid degradation is an important pathway that
generates acetyl-CoA, the entry molecule for the citric acid cycle that
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Fig. 7. ACSM3, ACSL1, ACSL4, SLC27A2, ACSM5, ACSM2A and COX7B2 were used to extract a subnetwork from the parent network.
Fig. 8. Significantly enriched subsystems at 5% level of significance.
generates adenosine triphosphate (ATP), the biological form of energy.
Enrichment of this pathway indicates a high demand for energy in
8

tumor tissue.
In Table 2, we summarize the genes found in our analysis to be
important in HCC. These genes were found to have prognostic potential

in HCC (see Supplementary Figure 6) and effectively classified tumor
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Table 2
Genes identified as important in HCC and are recommended for further studies.
Gene Gene full name Association with HCC KEGG pathway

ACSL1 &
ACSL4

Acyl-CoA Synthetase
Long Chain Family
Member 1 & Acyl-CoA
Synthetase Long Chain
Family Member 4

These genes encode Long chain acyl-CoA synthetase enzymes and
have been associated with HCC. ACSL1 gene was identified as a
member of a prognostic signature of genes in HCC [36] and its
disruption with aspirin suppressed abnormal lipid metabolism in
liver cancer cells [37]. ACSL4 gene is known to be upregulated in
HCC samples [38].

Fatty acid
biosynthesis,
Fatty acid
metabolism,
Fatty acid
degradation

ACSM3 Acyl-CoA Synthetase
Medium Chain Family
Member 3

This gene encodes a subunit of CoA ligases. Downregulation of this
gene has been implicated in HCC and is associated with poor
prognosis [39]

Butanoate
metabolism,
Metabolic
pathways

C8A & C7 Complement C8 Alpha
Chain & Complement
C7

These genes are involved in formation of the membrane attack
complex that plays a key role in innate and adaptive immunity.
Downregulation of these genes impairs the immune system thus
enabling tumor growth. One study reported that down regulation of
the C7 gene was associated with advanced cancer stages and high
tumor grades in HCC [40].

Complement and
coagulation
cascades

COX7B2 Cytochrome C Oxidase
Subunit 7B2

There is little information about its role in HCC but has been
identified as a potential prognostic marker in combination with
other genes [41]

Metabolic
pathways,
Oxidative
phosphorylation

CYP3A43 Cytochrome P450
Family 3 Subfamily A
Member 43

CYP3A43 gene encodes enzymes of the cytochrome P450
superfamily which catalyze reactions involved in drug metabolism,
and synthesis of steroids, lipids and cholesterol. Low expression of
CYP3A43 gene was associated with reduced survival among HCC
patients [42].

Chemical
carcinogenesis -
DNA adducts

DAK/TKFC Dihydroxyacetone
kinase

DAK/TKFC gene encodes enzymes which belong to the family of
dihydroxyacetone kinases which catalyze formation of riboflavin
4’,5’-phosphate. Expression of this gene was reduced in advanced
compared to mild stages of fibrosis in hepatitis B patients [43].

RIG-I-like
receptor
signaling
pathway

GABRP Gamma-Aminobutyric
Acid Type A Receptor
Subunit Pi

this gene has been associated with ovarian [44], pancreatic [45]
and breast cancer [46]. We did not find any studies that robustly
associated this gene with HCC. Among genes that encode GABA,
the gamma-aminobutyric acid A receptor 𝜃 subunit GABRQ has
been associated with HCC [47]

GABAergic
synapse

HAO1 Hydroxyacid oxidase 1 HAO1 gene is primarily expressed in the liver and pancreas, and it
encodes an enzyme that catalyzes the oxidation of glycolate into
glycine which is an important step in the detoxification of
glyoxylate. Glyoxylate reductase enzyme has previously been
reported to be a potent prognostic marker in HCC [48,49]

Peroxisome,
Metabolic
pathways,
Glyoxylate and
dicarboxylate
metabolism

HBG1 hemoglobin subunit
gamma 1

There is no information we came across that robustly associates this
gene to HCC. However, increase in fetal hemoglobin has been
observed in many cancers [50,50]

–

IYD Iodotyrosine Deiodinase IYD gene encodes iodotyrosine deiodinase enzyme. Over expression
of this gene in HCC cells reduced their utilization of glucose thus
exhibiting a tumor suppressive effect [51].

Thyroid
hormone
synthesis

OXT Oxytocin OXT gene encodes oxytocin, a hormone that contracts smooth
muscles. Alterations in this gene were associated with reduced
survival of HCC patients [52]

Oxytocin
signaling
pathway

P2RY13 purinergic receptor
P2Y, G-protein coupled,
13

encodes a receptor which is involved in signaling. Was identified as
one of the genes in an HCC prognostic gene signature [53]

Neuroactive
ligand–receptor
interaction

PIPOX Pipecolic Acid And
Sarcosine Oxidase

PIPOX gene encodes an enzyme which is involved in the catabolic
process to acetyl-CoA via L-pipecolate. Its downregulation is
associated with lung and breast cancer [54] and prostate cancer
[55]. It has also been identified as a potential prognostic marker in
HCC [48]

Metabolic
pathways,
Peroxisome,
Glycine, serine
and threonine
metabolism

PROZ Protein Z, Vitamin K
Dependent Plasma
Glycoprotein

PROZ gene encodes a vitamin -K-dependent glycoprotein produced
in the liver, and was found to be a biomarker in HCC [56].
Reduced expression of this gene in HCC has been suggested as a
prognostic marker for early HCC [57].

–

RDH5 Retinol Dehydrogenase
5

RDH5 gene encodes retinol dehydrogenase enzyme which catalyzes
the biosynthesis of retinaldehyde used in vision. A study showed
that increased expression of RDH5 gene suppressed metastasis in
HCC cell lines [58].

Retinol
metabolism,
Metabolic
pathways

Genes identified to be important in HCC. ACSL1, ACSM3, C7, C8A, CYP3A43, DAK (TKFC), GABRP, HAO1, HBG1, IYD, OXT, P2RY13, PIPOX, PROZ and RDH5
were downregulated and ACSL4, COX7B2 were upregulated in the meta-analysis. ACSL1, ACSL4, COX7B2, CYP3A43, HAO1 and RDH5 genes are being targeted
in the treatment of other ailments thus are worth studying as viable drug targets in HCC.
9
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and nontumor samples in an independent dataset (see Supplemen-
tary Figure 7). Genes in this list are associated with KEGG metabolic
pathways linked to HCC such as fatty acid metabolism (including
biosynthesis and degradation), complement and coagulation cascade,
chemical carcinogenesis and retinol metabolism, which additionally
confirms their importance in this disease. Majority of these genes were
already linked to HCC pathology either directly or through in vitro as-
says and this validates our analysis approach. To our knowledge, three
genes, DAK (TKFC), GABRP and HBG1 were not previously associated
with HCC. DAK (TKFC) gene encodes dihydroxyacetone kinase enzyme
that catalyzes the formation of riboflavin cyclic 4,5-phosphate and was
downregulated in the meta-analysis. This gene has been reported to
be associated with liver fibrosis in rats [66] and liver dysfunction in
the multi-disease state in humans [67]. DAK (TKFC) is involved in
the regulation of innate antiviral immunity by suppressing melanoma
differentiation-associated gene-5 (MDA5) and its deficiency results in
impaired innate immunity in response to viruses [68]. It is important
to explore the role of DAK (TKFC) in HCC and to determine whether
differences in its expression are strictly associated with viral-related
HCC, as this would determine its application as a biomarker. HBG1 en-
odes the gamma subunit 1 of fetal hemoglobin and was downregulated
n the meta-analysis. The 𝛾-globin gene has previously been reported
o be hypomethylated in colon and breast cancer [69]. Furthermore,
lder studies (published before 2000) observed an increase in fetal
emoglobin in some cancers [50,70] but it is not clear if this is due
o malignancies or treatment. Therefore, it is important to explore the
ole of fetal hemoglobin in HCC because it is easy to measure in blood
nd thus a good candidate biomarker. GABRP (Gamma-Aminobutyric
cid Type A Receptor Subunit Pi) has previously not been linked to
CC pathology, but is reported to induce growth of pancreatic cancer
ell lines through calcium mobilization and ERK1/2 signaling [71].
t has also been associated with ovarian [44], pancreatic [45] and
reast cancer [46] in humans. A related gene, the gamma-aminobutyric
cid A receptor 𝜃 subunit GABRQ has been associated with HCC [47].
herefore, it is worth exploring the role of the GABRP gene in HCC.

Transcriptomics data, GSE39791, were integrated into the human
eference GEM, Human-GEM. Models were analyzed per patient, i.e.,
omparing flux samples of models from tumor and nontumor tissue for
ach patient. We opted for a personalized approach because individuals
re biologically distinct and tumors are highly heterogeneous; there-
ore, some reactions and subsystems may be enriched in one individual
ut not in the other. Analysis of the enriched reactions revealed that
he biosynthesis of aminoacyl-tRNA was upregulated in tumor tissues,
ndicating increased translation of RNA to peptides (proteins). This is
xpected in cancer since the biomass accumulation of tumors is higher
han that of normal tissues and thus require increased expression of pro-
eins for their growth. Oxidative phosphorylation reaction (MAR06916)
ielding ATP and reactions involved in nicotinamide metabolism were
pregulated indicating the high energy requirements in tumor com-
ared to nontumor tissue. The gene COX7B2, involved in the reaction
AR06914, which is one of the upregulated reactions of oxidative

hosphorylation, was upregulated in the meta-analysis. Together, these
esults confirm the high energy consumption in tumor tissues.

Generally, purine production was upregulated in tumor tissue, and
his supports tumor growth. Purines are known to be the building
locks of DNA and RNA and also promote cell proliferation and survival
hen they function as energy molecules and cofactors [72,73]. Vitamin
metabolism was enriched in tumors and therefore may play an

mportant role in HCC. In fact, vitamin D is known to reduce the risk
f many types of cancer [74]. Production of vitamin D starts with
onversion of provitamin D3 (7-dehydrocholesterol) to previtamin D3
hich is finally converted to vitamin D3. The conversion of provi-

tamin D3 to previtamin D3 was downregulated in tumors. This may
imply a reduction in vitamin D3 production in tumors. However, the
upregulation of conversion of previtamin to vitamin D3 is an attempt
10

by the body to produce it since its needed for key functions such
as maintaining calcium and phosphate levels and regulation of cell
proliferation and differentiation hence whatever little previtamin D3
available is quickly converted to vitamin D3. Furthermore, vitamin D
is known to be a key regulator of the innate and adaptive immune
system hence its deficiency creates a weakened immune system thus
a conducive environment for tumor growth. Vitamin E metabolism
was generally downregulated in tumor tissues (4 of 7 reactions were
downregulated). Vitamin E is a major antioxidant, yet reactive oxygen
species have been implicated in the cause of cancers through oxidative
stress [75,76] thus downregulating the reactions that process vitamin
E favoring tumor growth.

The 20 reactions involved in fatty acid activation (except MAR00
425) were upregulated in tumor tissue. Fatty acid activation is the
first step in the utilization of fatty acids and produces fatty acyl-
CoA which is then entered in the second stage where it is converted
into ATP via 𝛽-oxidation (catabolic metabolism) or used as building
blocks for triacylglycerol, phospholipids and cholesterol esters (an-
abolic metabolism). There is a growing body of evidence showing an
increased role of fatty acids in tumor proliferation [38,77]. 3 of the
18 significantly enriched subsystems are involved in 𝛽-oxidation of
fatty acids (Fig. 8). Furthermore, all upregulated fatty acid activation
reactions yield ATP, the chemical form of energy in cells. ACSL4, a
gene that encodes an enzyme that catalyzes fatty acid activation reac-
tions, was upregulated in our meta-analysis. This gene is also involved
in metabolism of eicosanoids and leukotrienes, both of which are
mediators of inflammation, a major characteristic of HCC and its pre-
stages. Dysregulation of the ACSL4 gene has previously been associated
with tumor proliferation, invasion, and evasion of programmed cell
death [38]. Another gene, ACSM3, which is involved in a few fatty
acid activation reactions in the cytosol was down regulated in our
meta-analysis. This result is in agreement with a previous experimental
study [39] in which downregulation of ACSM3 was associated with
increased metastasis and a poor prognosis in HCC. This gene is mainly
active in the mitochondria and thus plays a minor role in the activation
of fatty acids in the cytosol, but could be involved in other biological
processes relevant to HCC. In all, the results show that fatty acids are
important for tumor growth and are mainly used by tumor cells as a
source of energy.

The limitation of GEM analysis is that it is still a young field; hence,
the reference models are not fully developed, e.g., the Human-GEM
used in this analysis contained only 3625 genes, which is a small
fraction of more than 20,000 genes known to be active in humans.
This limits their application. However, several groups have shown that
GEMs are a very useful computational tool to gain insight into systems
biology [78,79]. In the present manuscript, we adapted Human-GEM
to specific contexts using transcriptomics data and different MEMs. In
the future, we plan to extend this analysis by additionally integrating
proteomics and metabolomics studies of HCC. Analysis using GEMs can
be used to gain insight into potentially useful proteins and metabolites
in a disease condition. In this context, GEM-based analyses could be po-
tentially combined with the protocols and tools, such as POSREG [80],
NOREVA [81–83], ANPELA [84], MetaFS [85], LargeMetabo [86], and
MMEASE [87].

5. Conclusion

We used a robust integrated analysis framework to show that fatty
acid activation is a critical process in the development of HCC and
that this process is a major source of energy (ATP) for tumors. We
conclude that fatty acid activation can be targeted for the development
of new therapies. Vitamin D and E supplementation may provide some
relief, but it is not clear to what extent and therefore needs to be
explored further. Upregulation of ACSL1, ACSM3, C7, C8 A, CYP3A43,
DAK (TKFC), GABRP, HAO1, HBG1, IYD, OXT, P2RY13, PIPOX, PROZ
and RDH5 and downregulation of ACSL4, COX7B2 may slow tumor
progression. In our study, we provide the first evidence that GABRP,

HBG1 and DAK (TKFC) genes are important in HCC in humans.
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