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Abstract—The occurrence of anomalies and unexpected, 
process-related faults is a major problem for manufacturing 
systems, which has a significant impact on product quality. 
Early detection of anomalies is therefore of central importance 
in order to create sufficient room for maneuver to take 
countermeasures and ensure product quality. This paper 
investigates the performance of machine learning (ML) 
algorithms for anomaly detection in sensor data streams. For 
this purpose, the performance of six ML algorithms (K-means, 
DBSCAN, Isolation Forest, OCSVM, LSTM-Network, and 
DeepAnt) is evaluated based on defined performance metrics. 
These methods are benchmarked on publicly available datasets, 
own synthetic datasets, and novel industrial datasets. The latter 
include radar sensor datasets from a hot rolling mill. Research 
results show a high detection performance of K-means 
algorithm, DBSCAN algorithm and LSTM network for 
punctual, collective and contextual anomalies. A decentralized 
strategy for (real-time) anomaly detection using sensor data 
streams is proposed and an industrial (Cloud-Edge Computing) 
platform is developed and implemented for this purpose.  

Keywords—Data streams, radar sensors, anomaly detection, 
IIoT platform, cloud-edge computing 

I. INTRODUCTION

The detection of faults, such as sensor failures or wear 
problems, holds great potential with regard to process 
optimization in the manufacturing industry. The occurrence of 
anomalies and unexpected, process-related faults is a major 
problem for manufacturing systems, which has a significant 
impact on product quality. Early detection of anomalies is 
therefore of central importance in order to create sufficient 
room for maneuver to take countermeasures and ensure 
product quality. Accurate detection of anomalies is a 
particular challenge in dynamically changing data streams. 

Anomaly detection (or outlier detection) has been the topic 
of a number of surveys and review articles, as well as books. 
A comprehensive literature review on anomaly detection, 
analysis and prediction techniques is given in [1]. The authors 
of [2] extend these insights by applying anomaly detection to 
graphs for the identification of anomalous structures and 
present a comprehensive survey of deep learning methods. 
Recent anomaly detection survey papers [3], [4] were 
published in 2019 and 2020, respectively. Reference [5] 

provides a survey of deep learning-based anomaly detection 
techniques developed in recent years. Meng et al. [6] propose 
a traditional anomaly detection taxonomy that includes 
methods based on classification, clustering, distance, density 
and statistics. Munir et al. [7] analyzed and compared different 
(traditional and deep learning-based) anomaly detection 
methods on streaming datasets. Domingues et al. [8] survey 
unsupervised ML algorithms in the context of outlier 
detection. The recent books [9], [10] present the latest 
methods for outlier detection. 

Other surveys and comparative studies of anomaly 
detection techniques focused on specific application areas are 
given, e.g., in [11] (manufacturing systems), [12] (internet of 
things (IoT) networks), [13] (maritime video surveillance), 
[14] (IP multimedia subsystems), [15] (core router systems),
[16], [17] (network traffic attacks), and [18] (smart city
wireless sensor networks). Furthermore, several works [19],
[20], [21] investigate various implementation approaches for
anomaly detection in IIoT systems and using federated
learning [22] or deep learning [23], [24].

Fahim and Sillitti [1] state many research gaps and challenges 
in the research on the anomalous behavior, particularly: 

• Formalization of ways “to access data logs and
sensory data streams, to build a model and validate
it in real-life settings”.

• Missing investigation of new anomaly detection
model for industrial case studies.

This paper provides a promising contribution to closing 
these gaps. In addition, one goal is to develop a decentralized 
(Industrial IoT(IIoT)/Edge Cloud Computing) platform for 
anomaly detection that covers different algorithms and 
enables modular extensibility of the methods as well as easy 
scalability. Furthermore, the framework for concept drift 
detection is integrated in this platform and will be extended in 
future work. Moreover, a real-world case study from a hot 
strip mill is considered, where radar sensors are installed to 
realize a radar-based width measurement system of hot strips. 
Here, the radar sensor data were preprocessed through new 
detection methods presented in this paper. 
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The remainder of this paper is organized as follows. The 
anomaly detection methods investigated in this paper are 
briefly described in Section II. Section III presents and 
discusses the comparative study and its results. The industrial 
platform developed for anomaly detection based on ML 
algorithms using sensor data streams is described in Section 
IV. Section V is devoted to the industrial real-world case
study. Lastly, Section VI presents conclusions and future
work.

II. INVESTIGATED ANOMALY DETECTION TECHNIQUES

Lai, Zhang, and Liu [25] categorize anomaly detection
methods in knowledge-based, statistics-based, and ML-based 
methods. In this paper, the focus is on the latter methods. A 
variety of ML-based methods can be used to detect anomalies. 
These differ primarily in the learning task of the underlying 
algorithm. A further distinction can be made based on the 
complexity of the mathematical formulation and the 
implementation of the methods; see Table I.  

A. Machine Learning-based Methods
This study includes the following ML-based anomaly

detection techniques: 

1) K-means Clustering: One of the well-known
(centroid-based) clustering algorithms for anomaly detection 
is using K-means clustering [26]. Clustering is an 
unsupervised learning process, thus clustering-based 
anomaly detection does not require fully-labeled dataset, 
which is difficult to obtain in many cases.  

2) Density-based Spatial Clustering of Applications with
Noise (DBSCAN): DBSCAN [27] is a density-based and 
unsupervised ML algorithm that classifies the data points into 
three different categories: core points, border points, and 
anomalies. In contrast to K-means, DBSCAN usually works 
well for noisy datasets and does not require the number of 
clusters as an input parameter; clusters can take any irregular 
shape. 

3) Isolation Forest (IForest): This ML approach
introduced by Liu et al. [28] to detect anomalies in time-
series using a sliding window is purely based on the concept 
of binary trees isolating data points without employing any 
distance or density measure. 

4) One-Class Support Vector Machines (OCSVM):
OCSVM is used for detecting anomalies in time-series data 
by projecting time-series data vectors on to phase spaces [29]. 
Such a classification-based techniques does not require prior 
knowledge of the underlying data distribution. 

5) Long Short Term Memory (LSTM) Networks: LSTM
networks, developed by Hochreiter and Schmidhuber [30], 
belong to the recurrent neural networks (RNN) architectures, 
which have a feedback connection enabling them to use the 
output information for the next input of the sequence. The use 
of LSTM networks for anomaly detction is proposed in [31]. 

6) Deep Learning-based Anomaly Detection Approach
(DeepAnt): Munir et al. [32] proposed deep convolutional 
neural networks (CNN) to forecast time-series and detect 
anomalies based on the error of the prediction. Deep learning 
neural networks have become very popular in the last decade, 
as they can model much more complex non-linear 
relationships than a shallow neural networks models. 

TABLE I. OVERVIEW OF THE SELECTED ANOMALY DETECTION 
METHODS 

Method Learning task Model Complexity 

K-means Cluster analysis Cluster controid  Low  

DBSCAN Cluster analysis Dense regions Low 

IForest Cluster analysis Ensemble of 
decision trees Medium  

OCSVM Classification Support vector 
machine Medium 

LSTM Regression Recurrent neural 
network High 

DeepAnt Regression Convolutional 
neural network High 

III. COMAPARATIVE STUDY: RESULTS AND ANALYSIS

A. Benchmark Datasets
Three datasets have been considered to evaluate the

performance of the selected anomaly detection methods 
described in Section II (some sample time-series are shown in 
Fig. 1): 

1) The Yahoo S5 anomaly detection dataset: The dataset
consists of a total of four separate datasets that contain real or 
synthetically generated data from the network traffic of the 
web service provider Yahoo [33]. The datasets consist of a 
large number of univariate time series that are labeled for 
performance investigation (or benchmarking) of anomaly 
detection methods. These datasets contain primarily point 
anomalies. 

2) The Numenta anomaly benchmark (NAB) dataset:
This consists of a variety of real and synthetic time series 
provided specifically for the study of anomaly detection 
methods by the company Numenta [34], [35]. The majority 
of the data it contains are univariate time series from real-
world use cases. A total of three real and three synthetic time 
series are selected from the NAB dataset for the comparative 
study. The datasets contain point and collective anomalies. 

3) Dataset from an artificial signal generator (ASG): In
order to support the evaluation of the algorithms with own 
datasets, artificial anomalous time series are generated. For 
this purpose, the CODESYS implementation of the Artificial 
Signal Generator (ASG) by Kirchhoff [36] is used. The main 
advantage of artificially generated time series is that, in 
contrast to real time series, all occurring anomalies are 
correctly labeled. As a result, errors due to incorrect class 
labels can be excluded. 

The ASG is used to generate and record synthetic time 
series during runtime in 18 experiments. To meet the 
requirement for plausibility of the artificially generated time 
series, sine, square and sawtooth waveforms are selected as 
base signals, respectively. These often occur in industrial 
applications and can be traced back to real voltage waveforms 
of sensor signals. The basic signals are then superimposed 
with white noise as well as with point, collective or contextual 
anomalies. Finally, the anomalous signals are sampled at 100 
Hz. From the acquired data, a sequence of a total of 1500 
contiguous data points is extracted for each experiment and 
stored as a time series. Finally, all 18 time series are combined 
into the ASG dataset.  



B. Parameter Settings 
All parameters of the compared approaches are set either 

according to the default setting or by trial-and-error to get an 
overall satisfactory performance; see Table II.  

TABLE II.  HYPERPARAMETERS USED FOR THE ANOMALY DETECTION 
ALGORITHMS  

Model Hyperparameter* Value 
K-means init 

n_clusters 
max_iter 

random_state 

random 
1 

100 
0 

DBSCAN min_samples 
leaf_size 

p 
n_jobs 
ε 

window_size 

20 
0 
0 
0 

0.05 
8 

IForest number of estimators 
contamination 
max_samples 
max_features 

bootstrap 
random_state 

25 
0.075 
Auto 

1 
False 

0 
OCSVM degree 

max_iter 
upper bound of errors nu 

2 
500 
0.01 

LSTM number of nodes 
number of hidden layer 

number of units in dense layer 
batch_size 
n_features 

activation function 
optimizer 

loss function 
dropout rate  

50 
2 
1 

64 
1 

relu 
adam 

mean absolute error 
0.2 

number of epochs 20 
DeepAnt number of input nodes w 

number of output nodes pw 
number of filters (kernels) 

n_features 
activation function 

optimizer 
loss function 
dropout rate 

number of epochs 

8 
1 

32 
1 

relu 
adam 

mean absolute error 
0.5 
20 

* Hyperparameters not mentioned refer to the corresponding default values. 

C. Performance Measures 
A common quality criterion for measuring the 

performance of a classification is the F1-score, defined as: 

 𝐹𝐹1 = 2∙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

= 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹2
 , (1) 

where 𝑇𝑇𝑇𝑇 is the number of true positives, 𝐹𝐹𝑇𝑇 the number of 
false positives, and 𝐹𝐹𝐹𝐹  the number of false negatives. F1-
score should be as high as possible, perfectly unity (1.0). This 
evaluation metric is particularly suitable for use cases that 
have an unbalanced class distribution, as it is generally the 
case for anomaly detection applications [37]. For this reason, 
the F1 score is preferred over the commonly used Accuracy 
metric for performance evaluation of ML algorithms. 

Moreover, the model quality is judged by finding the 
receiver operating characteristic (ROC) curve, which 
indicates the relation between the false positive rate and the 
true positive rate as the threshold is changed. A practical 
metric to quantify the information provided by the ROC curve 
is the area under the curve (AUC) [38]. The AUC is higher for 
the ROC curves approaching the perfect classifier.  

  
a) Yahoo S5-A1        b) Yahoo S5-A2 

 

  
c) NAB                d) ASG 

Fig. 1. Sample time-series from Yahoo Webscope (a, b), NAB (c) and ASG (d) datasets 



D. Results and Discussion 
The performances of the algorithms on all the datasets are 

presented by using the scores F1 and AUC in Table III, as well 
as the ROC graphs in Fig. 2. 

TABLE III.  EVALUATION METRICS FOR THE INVESTIGATED 
ALGORITHMS (THE BEST THREE ARE MARKED IN BOLD.) 

 Yahoo S5-
A1 

Yahoo S5-
A2 NAB ASG 

Method F1 AUC F1 AUC F1 AUC F1 AUC 

K-means 0.941 0.981 1.000 1.000 0.530 0.740 0.899 0.945 

DBSCAN 0.894 0.966 1.000 1.000 0.659 0.686 0.839 0.845 

IForest 0.884 0.947 0.836 0.983 0.585 0.831 0.688 0.837 

OCSVM 0.679 0.896 0.435 0.815 0.303 0.711 0.591 0.773 

LSTM 0.894 0.974 1.000 1.000 0.570 0.839 0.888 0.953 

DeepAnt 0.803 0.952 0.897 0.998 0.448 0.796 0.801 0.866 

For the Yahoo S5-A1 dataset, good results (AUC ≥ 95%) 
are obtained with most algorithms. The ROC curves of K-
means, DBSCAN, and LSTM are very close to each other, 
with the K-means algorithm standing out with a slightly better 
result. Since the ML methods can infer the inner context of the 
examined time series, good results are obtained with all three 
ML algorithms in the detection of punctual anomalies. The 
highest F1-score of 0.941 is achieved by K-means, the highest 
AUC of 0.981 as well. 

The evaluation results for the Yahoo S5-A2 dataset turn 
out very well for all algorithms, except OCSVM. This is 
probably due to the fact that the dataset contains only 
synthetically generated time series and point anomalies. As a 
result, three algorithms (K-means, DBSCAN, and LSTM) 
achieve an F1-score of 1.0 and an AUC score of 1.0. 

The NAB dataset has a small number of positive class 
labels (anomalies). This directly affects the evaluation result, 
since the class labels are an essential basis for calculating the 

evaluation metrics. Nevertheless, it can be seen in the test 
results that the selected methods have a good performance. 
The F1-scores of DBSCAN, Isolation Forest, and LSTM are 
0.659, 0.585, and 0.570, respectively. The AUC scores 
suggest Isolation Forest (0.831), DeepAnt (0.796), and LSTM 
(0.839) as the best performing algorithms. 

The ASG dataset poses the greatest challenge to anomaly 
detection methods. While K-means and LSTM allow the 
detection of collective and contextual anomalies, the IForest 
algorithm reaches its limits here. Due to the basic idea of 
isolation, contextual anomalies cannot be detected, so that 
when examining the ASG dataset, IForest achieves an F1-
score that is about 20% lower compared to K-means, 
DBSCAN, and LSTM. 

In total, the results demonstrate that the algorithms 
DBSCAN, K-means, and LSTM outperform the other 
algorithms. DBSCAN is preferred over K-means because 
DBSCAN is more robust against noise and irregularities in the 
shape of clusters. 

Based on these results, the K-means and DBSCAN 
algorithms are selected for implementation at the edge, and the 
LSTM and DeepAnt for implementation at the cloud. The 
reason for separating the algorithms into different levels of 
automation is due to the level of complexity / computation 
time of the learning procedures (computation time for training 
or execution). Further details on the implementation of the 
algorithms and the realization of the overall IIoT system are 
discussed in Section IV. 

IV. INDUSTRIAL PLATFORM FOR DECENTRALIZED 
ANOMALY DETECTION 

Within IIoT, more and more devices have been joined 
together and produce massive industrial data every day, which 
requires powerful computing resources. When these data are 
transmitted to the cloud, network latency and bandwidth 
become a bottleneck. [39] 

To overcome these problems, a decentralized strategy for 
(real-time) anomaly detection using sensor data streams is 
proposed and an industrial platform has been developed and 
implemented for this purpose. Some necessary computing 
tasks / algorithms are made close to the machine, i.e., in the 
sensor or in the edge. Other tasks / algorithms are performed 
or results are delivered and stored in the cloud center. In this 
way, workloads of the cloud center can be reduced massively.  

For this purpose, the design of a suitable system 
architecture is required. Furthermore, a large number of 
software components are needed to implement the functional 
scope of the overall system. The development of the 
associated application levels, interfaces, and software 
modules are presented in this section.  

A. Design of the Overall System 
The design of the overall system is carried out considering 

the following requirements placed on the IIoT platform:  

• Interfaces to all relevant automation levels. 
• Hierarchy design of an IIoT platform. 

• Modular expandability of algorithms. 
• Scalability. 
• Validation of anomaly detection against simulation 

environment. 

 
Fig. 2. ROC curves for the investigated anomaly detection methods 

 



• User-friendly application and maintenance. 

The system design follows the topology of an IIoT 
platform with edge-cloud computing architecture. 
Accordingly, it is necessary to couple a local system level with 
a superordinate cloud system via interfaces. The fusion of both 
layers couples the advantages of edge computing of low 
latency and real-time capability as well as high data-transfer 
rates [40] with the advantages of cloud computing [41] in the 
form of scalable computing capacities and location-
independent data access. The overall structure of the platform 
is schematically illustrated in Fig. 3, which is divided into 
three basic levels: the field level, the control level, and the 
supervisory level.  

In the edge controller, measurement data are recorded, 
analyzed (preprocessing, feature extraction), and cyclically 
transferred to the cloud. The primary task of the cloud is the 
storage of structured data from the sensors, parameters for the 
algorithms, and status parameters for control. Another task of 
this level is the training process for the algorithms. Due to the 
flexible computing capacity, the algorithms are trained 
decentrally in the cloud and their parameters are 
communicated to the edge layer as a result. Finally, the overall 
system is completed by a human machine interface (HMI) 
application, allowing the user to intervene in the entire 
process. Thus, the user is able to observe current measured 
values of the sensors as well as predictions of the models. In 
addition, the model parameters can be modified manually or 
the training process be initialized to optimize the parameters.  

B. Anomaly Detection at Edge  
In the context of the automation pyramid, the edge 

controller represents an interface to the field level and the 
cloud. The goal is to move the measurement data analysis as 
close as possible to the node of measurement data collection. 
In this way, critical measurement data can be analyzed in a 
timely manner.  

For implementing the algorithms in the edge controller, a 
database library and an algorithm library were developed. The 
database library enables the communication with a MySQL 

database and is highlighted in [42]. In this application, it is 
first used for cyclic updating of the model parameters, signal 
parameters, and the control flanks. The result of the 
measurement data collection as well as analysis by the 
algorithms is finally transferred to the MySQL database. 

In addition to data acquisition, data preprocessing and 
anomaly detection are further functionalities of the edge 
controller (i.e. the preprocessing and anomaly detection 
algorithms are implemented in the edge). Since K-means and 
DBSCAN show promosing results in the early development 
stages (see Section III.D), both algorithms were implemented 
in the edge controller. The anomaly detection is divided into 
the training and testing components. In this case, the test 
component corresponds to the implementation of the 
algorithm in the edge controller. The model (re)training is 
outsourced to the cloud, the result of which represents the 
kernel points of the normal cluster in the feature space. Both 
the sequence length parameter and the kernel points are 
transferred as parameters to the edge controller. Using a 
control variable, the parameters can be transferred from the 
database to the edge controller either at the beginning of the 
runtime or when needed again. According to the definitions 
of the DBSCAN algorithm, each new data instance counts to 
the cluster of core points, as far as they are density reachable 
to one of the core points. In the first step, the features are 
calculated from the last sequence using a feature extractor. 

C. Anamoly Detection at Cloud 
The cloud system is primarily used for data backup as well 

as long-term data analytics. In this context, the ML models are 
(re)trained for bigger data amounts. As an interface to the 
edge controller, the parameters of the models are 
communicated, whereas control signals for training the 
algorithms are transmitted from the HMI application to the 
cloud. For the structure of the database, reference is made to 
[42]. 

Short-term prediction of anomalies is implemented close 
to the sensors at the edge. To achieve a long-term overview of 
the data, analysis as well as prediction is embedded in the 
cloud system characterized by flexible computing capacity. 
Thus, even complex (deep) learning models / algorithms can 
be used for prediction or anomaly detection, here LSTM (or 
DeepAnt) in a “confirmation” stage. A data pipeline along the 
lines of an ETL (extraction-transformation-loading) pipeline 
provides a batch of the last recorded measurement data from 
the first step. In addition, the current model parameters and 
scaling factors are transferred. In the next step, the data are 
transformed into the form suited for the application in the 
model. In the case of the DeepAnt model, the time series are 
divided into sequences as well as their target value. Then, the 
current model is used to make predictions over a subset from 
a specific time interval (window) of the data stream. These are 
communicated to the database to provide them to the user as 
information of the model prediction quality. 

 
Fig. 3 Structure and functioning of the IIoT platform for decentralized 
anomaly detection in data streams  

    



To ensure robust anomaly detection despite process 
changes, the predictions have to be analyzed in the context of 
a concept drift detection. The purpose of the detection is to 
find out if the distribution of the signal has changed. In this 
paper, the platform has been prepared for implementing 
concept drift detection and adaptation methods, but 
implementation is still a work in progress. 

D. Supervisory Level  
The third component of the overall system is the HMI 

application in the supervisory level, the user's interface to the 
cloud system. It allows setting control signals and monitoring 
the acquired signals as well as the related predicted signal 
curves. The user interface (Fig. 4) is divided into different 
subsystems. In the left part of the user interface, the user can 
start the database communication. In addition, the signal and 
anomaly parameters can be adjusted. If the system has to be 
(re)started, there are checkboxes that update the control 
signals in the database. If it is necessary to change the anomaly 
detection parameters, they can be adjusted for both the 
DBSCAN (or K-means) and LSTM (or DeepAnt) algorithms. 
There are also two graphs on the right side prepared for 
concept drift detection.  

V. APPLICATION TO REAL-WORLD DATASETS: RADAR 
SENSOR DATA FROM HOT STRIP MILL 

Flat steel production is a multistage process including steel 
making, continuous casting, hot and cold rolling stages. 
Today's hot rolling mills handle heavier loads and oprerate 
with faster velocities than ever before, leading to high 
temperatures, pressures, and degradation [43]. Fault and 
anomaly detection is thus very important to ensure highest 
product quality and highest production rates.  

Due to the extreme working conditions in metal 
production, essential measurement technologies, e.g., optical 
and laser-based, reach their physical limits. Thus, observation 
of relevant process parameters stays fragmented over the 
whole process chain. Still, hot strip production requires 
perceptible strip width, which directly lead to increased 
material, raw material, and energy consumption. Only with a 

precise width measurement, it is possible to perform an exact 
pre-calculation or adjustment of the pre-strip width. 

Radar-based measurement systems are inherently 
insensitive to harsh conditions (e.g., high temperature, dust, 
air humidity, mist from rolling emulsion or oil) and thus 
highly suitable for recording necessary measurement variables 
with sufficient precision. Due to advancement in innovative 
signal processing algorithms, this will be achieved without 
any discernible disadvantages in the future compared to 
existing measurement technologies for material detection and 
tracking, width measurement and other geometric property 
measurements for quality assurance during production, as 
proven in [44]. 

 
Fig. 4 User interface of the developed platform 

   



Figure 5 shows typical (normalized) radar sensor data 
acquired in the commissioning phase of a newly developed 
radar-based width measurement system for strip in front of a 
roughing (hot strip) mill. At that stage, temporary sensor 
failures often occurred, due to harsh working conditions 
(strong steam development, high temperature, etc.), strip edge 
texture, and strip deformations, etc., leading to anomalies in 
the data streams (distance measurement data). Exemplarily, 
different faulty and non-faulty behaviors are depicted and 
examined via the different algorithms. 

Figure 6 shows the ROC curves obtained for the examined 
methods and radar datasets. It can be ascertained that IForest 
and OCSVM provide the best performance; K-means, 
DeepAnt, and LSTM are also good enough and show an 
increasing tendency for larger datasets; DBSCAN gives the 
worst performance in this case study. This practical example 
shows that the selection of a suitable method cannot be 
determined in a generalized way, as this result contrasts with 
the results of the Comparitve Study in Section III. Therefore, 
a differentiated consideration is necessary depending on the 
application area, the size of the data set and the expected type 
of anomalies, in order to obtain an optimal result. In principle, 
it is advisable to perform tests of different methods and make 
an assessment with regard to their accuracy, complexity and 
model speed. 

 

VI. CONCLUSIONS AND FUTURE WORK 
This paper investigates the performance of ML algorithms 

with respect to anomaly detection in sensor data streams. A 

comparative study of six ML algorithms (K-means, 
DBSCAN, Isolation Forest, OCSVM, LSTM-Network, and 
DeepAnt) has been performed on publicly available datasets, 
own synthetic datasets, and novel industrial datasets. The 
results revealed a high detection performance of K-means 
algorithm, DBSCAN algorithm and LSTM network for 
punctual, collective and contextual anomalies. Moreover, a 
decentralized strategy for (real-time) anomaly detection using 
sensor data streams was proposed and an industrial (Cloud-
Edge Computing) platform was developed and implemented 
for this purpose.  

The platform developed here does not claim to include 
state of the art, but compare methods of different complexity 
levels, and will be extended by further anomaly detection 
methods in the next step. Especially, the investigation of deep 
learning methods like different transformer variants [45], [46], 
but also the consideration of methods like Xgboost [47], [48] 
offer further insights in the field of anomaly detection. 
Furthermore, concept drift represents a central challenge, 
which will be addressed by the implementation and evaluation 
of concept drift detection algorithms. In addition, the 
implementation and evaluation of the platform in real 
industrial factories are targeted. 

Moreover, the ML algorithms for anomaly detection need 
to be analyzed in more detail and compared to other hybrid 
approaches for anomaly detection under drifting concepts, 
such as those recently developed in [49], [50]. 
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