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@ Differential calculus and integrals with multiple variables

© Linear algebra, from fundamentals to eigenvalues, eigenvectors, and
spectral theorem

© All the previous notions extended to the complex field

© Fundamentals of probability theory: distributions, expected value,
variance, covariance and their properties, Bayes theorem
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Basic concepts and notation

e The least squares problem arises whenever one has a physical system described by a

model in the form b = H@
@ H is the response function describing the system, in this case a linear function, i.e

a matrix, with @ as its argument

@ 0 are the parameters or inputs of the system (independent variables)

@ b are the observations or outputs of the system (dependent variables)
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Basic concepts and notation

Q The least squares problem arises whenever one has a physical system described by a

model in the form b = H@
@ H is the response function describing the system, in this case a linear function, i.e.
a matrix, with @ as its argument

@ 0 are the parameters or inputs of the system (independent variables)

@ b are the observations or outputs of the system (dependent variables)

9 Experimentally, observations are affected by uncertainty due to system and
measurement noise, and finite measurement resolution: b # H@ = b = HO + ¢
@ b is a column vector with N components, representing observations

@ 0 is a column vector with p parameters that are characteristic of the system, and
that must be estimated

@ His a known N x p matrix; N: number of equations, p number of parameters.

@ e is the noise and generally it is assumed: E[g] = 0, and cov [€] = 02/?

Reminder: cov [X] = E [XX"] — E[X] E [X']

F. Santoni (UPG) Lectures on Least Squares Methods



Basic concepts and notation

e Because of the noise, b = HO + € is in general an inconsistent system of N equations
@ One then seeks the optimal solution that minimizes the cost function

¢(8) = Ib — HO||> = (b — HO)T (b — HO)

@ Thus, the least squares estimator is & = arg min ||b — HO)?
0
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Basic concepts and notation

e Because of the noise, b = HO + € is in general an inconsistent system of N equations
@ One then seeks the optimal solution that minimizes the cost function

¢ (8) =|b— HO|>=(b—

HO)T (b — HO)

@ Thus, the least squares estimator is & = arg min ||b — HO)?
0

4
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At this level, only b is affected by the uncertainty. When b is changed, lines are just translated, slopes are not changed.
When also H is affected by the uncertainty, slopes change: this is the Total Least Squares method, discussed later on.
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LS regression examples

8 Linear regression, N observations,
. p = 2 parameters:

y=mx+qg=( x 1 )( r: )

y[AU]

b
H 1)
6

i (%)
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LS regression examples

y[AU]

Linear regression, N observations,
p = 2 parameters:

y=mx+qg=( x 1 )( r:

)

(e
=(7)

)

0 2 4 10
x[AU]
Polinomial regression, 3rd degree,
25 N observations, p = 4 parameters:
=]
_ y:co+c1x+czx2+C3x2:( x 1) 2
2 ©
>
b=y H= ( 1 x x2 x3 )
=)
o=| @
@
(=]
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LS regression examples

Exponential regression, N observations,
p = 2 parameters:

>
15 ’ " " = y = Ae™*

A non-linear problem. It can be linearized by
using logarithms

y [AU]

logy = log A + bx? =

=C+bx®=(1 x2)(i)

Warning: the uncertainty estimated for C will
propagate non-linearly on A
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General terminology for estimators

@ A sample is a series of N observations z = (z; - - - zy) of a random
variable Z
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General terminology for estimators

@ A sample is a series of N observations z = (z; - - - zy) of a random
variable Z

@ A statistic is any function of the observations g (z) = g(z1 - zn)
not dependent on unknown parameters
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General terminology for estimators

@ A sample is a series of N observations z = (z; - - - zy) of a random
variable Z

@ A statistic is any function of the observations g (z) = g(z1 - zn)
not dependent on unknown parameters

© Typically, formulating a hypothesis means assuming that
observations are extracted from a probability density function p.d.f.
f(z|@) dependent on some parameters @ = (61 - - - 6y) that must be
determined
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General terminology for estimators

© An estimator is a statistic used to estimate the parameters of a p.d.f. The
estimator of @ is typically denoted by the symbol 6
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General terminology for estimators

© An estimator is a statistic used to estimate the parameters of a p.d.f. The
estimator of @ is typically denoted by the symbol 6

@ An estimate is the value of an estimator calculated for a given sample
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General terminology for estimators

© An estimator is a statistic used to estimate the parameters of a p.d.f. The
estimator of @ is typically denoted by the symbol 6

@ An estimate is the value of an estimator calculated for a given sample

© The procedure by which one comes to an estimate of the 8 parameters for a
given sample is also called parameter fitting
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General terminology for estimators

An estimator is a statistic used to estimate the parameters of a p.d.f. The
estimator of @ is typically denoted by the symbol 6

An estimate is the value of an estimator calculated for a given sample

(1]

(2]

© The procedure by which one comes to an estimate of the 8 parameters for a
given sample is also called parameter fitting

(% ]

The bias (or polarization) of an estimator is defined as the difference:
b=F[0] -6
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General terminology for estimators

An estimator is a statistic used to estimate the parameters of a p.d.f. The
estimator of @ is typically denoted by the symbol 6

An estimate is the value of an estimator calculated for a given sample

The procedure by which one comes to an estimate of the @ parameters for a
given sample is also called parameter fitting

o
o
o
@ The bias (or polarization) of an estimator is defined as the difference:
b=F[0] -6

© An estimator is termed biased (or polarized) when b # 0, otherwise it is termed
unbiased (or non-polarized)
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General terminology for estimators

© An estimator is a statistic used to estimate the parameters of a p.d.f. The
estimator of @ is typically denoted by the symbol 6

@ An estimate is the value of an estimator calculated for a given sample

© The procedure by which one comes to an estimate of the 8 parameters for a
given sample is also called parameter fitting

@ The bias (or polarization) of an estimator is defined as the difference:
b=E [é} iy

© An estimator is termed biased (or polarized) when b # 0, otherwise it is termed
unbiased (or non-polarized)

© Tipically, observations are independent, hence the p.d.f. is
fsample = 11 (21) f2 (z2) ... Ty (zy). If the sample consists of repeated observations of
the same variable, then i = fH( = ... =fy = f, and:

9 (z / 9 (2) fsampie (26) dz = / /9 (2) A(z1)... v (zn)dzr .
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General terminology for estimators

Unbiased estimator example: the sample (or arithmetic) mean

The sample mean is an unbiased estimator of the expected value of a
p.d.f. f(z), given a sample of N observations z;

MZE[Z]:/zf(z)dz
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General terminology for estimators

Biased estimator example: the sample variance

The sample variance

N
> (z - 2)

i=1

s? =

=z~

is a biased estimator of the variance o2, indeed, without performing all calculations

N—-1

E[s’] = 2
[ = "o
An unbiased estimator can be easily obtained:
N
1 N
2 — 52 2
Nfll;(z’ =Nt
N
E[$?] = ——E[s?] =62
(57 = B[] =0

F. Santoni (UPG) Lectures on Least Squares Methods Part | 14 /82



Table of Contents

e Ordinary Least Squares

@ Review of linear algebra

F. Santoni (UPG) Lectures on Least Squares Methods



Review of linear algebra

@ Linearly independent vectors: S.cv; =0 Vi, ¢ =0
i
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Review of linear algebra

@ Linearly independent vectors: S.cv; =0 Vi, ¢ =0
i

@ The rank of a matrix A € C™" is the maximum number of linearly independent
columns or rows: rank (A) < min (m, n); rank (A) = rank (A).
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Review of linear algebra

@ Linearly independent vectors: S.cv; =0 Vi, ¢ =0
i
@ The rank of a matrix A € C™" is the maximum number of linearly independent
columns or rows: rank (A) < min (m, n); rank (A) = rank (A).
© The rank of a matrix is the dimension of the space generated by its columns:

rank (A) = dim [Span (a1, . . ., ap)], Span (ay, ..., ap) = {v v =) ¢a;
i
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Review of linear algebra

@ Linearly independent vectors: S.cv; =0 Vi, ¢ =0
i

@ The rank of a matrix A € C™" is the maximum number of linearly independent
columns or rows: rank (A) < min (m, n); rank (A) = rank (A).
© The rank of a matrix is the dimension of the space generated by its columns:
rank (A) = dim [Span (a1, . . ., ap)], Span (ay, ..., ap) = {v v=> c,-a,-}
i
© Kernel of A:

ker (A) ={v:Av =0}, VA, (v=0)€ ker(A), ker(A) = {0} = dim[ker (A)] =0
dim [ker (A)] is called the nullity of A.
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Review of linear algebra

@ Linearly independent vectors: S.cv; =0 Vi, ¢ =0
i

@ The rank of a matrix A € C™" is the maximum number of linearly independent
columns or rows: rank (A) < min (m, n); rank (A) = rank (A).
© The rank of a matrix is the dimension of the space generated by its columns:
rank (A) = dim [Span (a1, . . ., ap)], Span (ay, ..., ap) = {v v=> c,-a,-}
i
© Kernel of A:

ker (A) ={v:Av =0}, VA, (v=0)€ ker(A), ker(A) = {0} = dim[ker (A)] =0
dim [ker (A)] is called the nullity of A.

Rank-nullity theorem

VA € C™*" rank (A) + dim [ker (A)] = n
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Review of linear algebra

A useful lemma

VA € C™", rank (A) = rank (AA)
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Review of linear algebra

A useful lemma
VA € C™" rank (A) = rank (AA)

@ From the rank-nullity theorem, it follows that:

rank (A) + dim [ker (A)] = n = rank (ATA) + dim [ker (ATA)]
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Review of linear algebra

A useful lemma
VA € C™" rank (A) = rank (AA)

@ From the rank-nullity theorem, it follows that:

rank (A) + dim [ker (A)] = n = rank (AfA) + dim [ker (ATA)]

@ Then, one can prove that ranks are equal by proving that kernels are the same, i.e. by
showing that if v € ker (A), then v € ker (ATA), and vice versa:

veker(A):>Av:0:>ATAv:0:>v€ker(AJfA)

v € ker (ATA) = AtAv =0 = viATAv = 0 = ||AV][2 = 0 = Av = 0 = v € ker (A)
L]

v
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Ordinary Least Squares - OLS

OLS assumptions
@ System b = HO + € has more equations the parameters (N > p)
@ His a full-rank matrix: rank (H) = p.
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Ordinary Least Squares - OLS

OLS assumptions
@ System b = HO + € has more equations the parameters (N > p)
@ His a full-rank matrix: rank (H) = p.

Consistent system
@ When € = 0 the system is:

01
P
b=HO=(hi hy - hy )| 1 | =D 6h
ép i=1

@ The system has a solution when b is a linear combination of the columns of H:

b € Span (H) & rank (H) =rank [( H b )]

When H is full-rank, the solution is unique.
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Ordinary Least Squares - OLS

Inconsistent system

@ In general € # 0 and the sistem is inconsistent: rank (H) #rank [( H b )]
@ According to the lemma on the rank of HtH: rank (H) = p = rank (H'H)

@ HPH is a full-rank square p x p matrix, hence it is invertible
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Ordinary Least Squares - OLS

Inconsistent system

@ In general € # 0 and the sistem is inconsistent: rank (H) #rank [( H b )]
@ According to the lemma on the rank of HtH: rank (H) = p = rank (H'H)

@ HPH is a full-rank square p x p matrix, hence it is invertible

Associated consistent system

@ For the previous assumptions, the following system is consistent:

o =il
H'b = HTHO = 6 = (HfH) Hib = H*b
@ The pseudo-inverse or Moore-Penrose matrix has been introduced:

-1
Ht = (HTH) HY = HYH =1, HH* £ 1

@ Hisa N x p matrix, and Ht is p x N. When H is square (N = p), then Ht = H~1

F. Santoni (UPG) Lectures on Least Squares Methods Part | 20 /82



Ordinary Least Squares - OLS

Inconsistent system

@ In general € # 0 and the sistem is inconsistent: rank (H) #rank [( H b )]
@ According to the lemma on the rank of HtH: rank (H) = p = rank (H'H)

@ HPH is a full-rank square p x p matrix, hence it is invertible

Associated consistent system

@ For the previous assumptions, the following system is consistent:

o =il
H'b = HTHO = 6 = (HfH) Hib = H*b
@ The pseudo-inverse or Moore-Penrose matrix has been introduced:

-1
Ht = (HTH) HY = HYH =1, HH* £ 1

@ Hisa N x p matrix, and Ht is p x N. When H is square (N = p), then Ht = H~1

What does the solution 8 = (HTH)_lHTb — H*b mean?
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Ordinary Least Squares - OLS

OLS problem

@ Full-rank (p) inconsistent system: b = HO +¢, 6 = argmin||b — H6)||?
[

@ Associated consistent system: Hib = HTHO
@ Cost function:

$(6) =|Ib— HO||> = (b— HO)' (b — HB) =
= 0'H'HO + b'b — bTHO — 6T Hb = 0T HTHO + bib — 2Re (g’r/_/’fb)

.
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Ordinary Least Squares - OLS

@ Full-rank (p) inconsistent system: b = HO +¢, 6 = argmin||b — H6)||?
6

@ Associated consistent system: Hib = HTHO
@ Cost function:

$(6) =|Ib— HO||> = (b— HO)' (b — HB) =
= 0'H'HO + b'b — bTHO — 0T HIb = 6THTHO + bTb — 2Re (gl‘H’rb)

OLS solution of the full-rank inconsistent system

The solution of the associated consistent system:

6= (HTH)_IHTb — H'b

is also the solution that minimizes the cost function
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Ordinary Least Squares - OLS

OLS solution of the full-rank inconsistent system

The solution of the associated consistent system:

6 — (HTH)_IHfb — H'b

is also the solution that minimizes the cost function ¢ (8) = ||b — HO||*
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Ordinary Least Squares - OLS

OLS solution of the full-rank inconsistent system

The solution of the associated consistent system:

6 — (HTH)_IH*b — H'b

is also the solution that minimizes the cost function ¢ (8) = ||b — HO||*

We give a simple proof for the real case. The complex case will be proved later in the
more general context of singular value decomposition. When H is real:

$(0)=0"H HO+b b —20"H b =" 6;HgHub + > _ b —2>  6;Hbx
Jkl J Jk
The minimum is attained where the jacobian matrix (the gradient in this case) is zero:

¢

% = > " (8iHuiHibr + 0 HigHiubi) — 2> 8ijHigbx = 2> HiiHbk — 2> _ Hjib;
Lk Jk i i

v,
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Ordinary Least Squares - OLS

OLS solution of the full-rank inconsistent system

The solution of the associated consistent system:

6 — (HTH>71Hfb — H'b

is also the solution that minimizes the cost function ¢ () = ||b — HO)|*

The minimum is attained where the jacobian matrix (the gradient in this case) is zero:

0 T 8 T, _ T s —
a—el__2(H He)i—Z(Hb),:89_2H HO —2Hb =0 = H' H8 = Hb

from which the solution follows. []
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Properties of the OLS estimator

We assumed: b= HO 4+, E[e] =0, and cov[e] = 0%/, N > p
Observations b are homoscedastic (from the greek homo “same” skedasis
“dispersion”, i.e. they all have the same variance) and uncorrelated

Expected value of the OLS estimator

The OLS estimator @ = H*b is unbiased: E [é] -0

F. Santoni (UPG)
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Properties of the OLS estimator

We assumed: b= HO 4+, E[e] =0, and cov[e] = 0%/, N > p
Observations b are homoscedastic (from the greek homo “same” skedasis
“dispersion”, i.e. they all have the same variance) and uncorrelated

Expected value of the OLS estimator

The OLS estimator @ = H*b is unbiased: E [é] —0

.

By a straightforward calculation:

E[9] =E {(HTH)_IHTb] —E [(HTH>_1HT(H0+5)] -

= (HJ’H)AHTHE 0] + (H*H)AH*E[E] =0
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Properties of the OLS estimator

We assumed: b= HO 4+ &, E[e] =0, and cov[e] = o?/, N > p
Observations b are homoscedastic (from the greek homo “same” skedasis
“dispersion”, i.e. they all have the same variance) and uncorrelated

Covariance of the OLS estimator

cov [é} =0 (HTH)A
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Properties of the OLS estimator

We assumed: b= HO + &, E[e] =0, and cov[e] = 0%/, N > p
Observations b are homoscedastic (from the greek homo “same” skedasis
“dispersion”, i.e. they all have the same variance) and uncorrelated

Covariance of the OLS estimator

cov [é} =0 (HTH)A

By a straightforward calculation?:
~ -1 =1
cov [8] = cov [(HTH) H*b} = cov {0+ (H'H) H*s] =

_ (H*H)_IH*COV [e] H(HTH)_1 = (H*H)_IH*UZIH(HTH)_1 =d’ (H*H)_1

?Reminder: cov [AX] = Acov [X] A
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Properties of the OLS estimator

A reminder on positive semi-definite and definite matrices

@ A Hermitian matrix A = A" is positive semi-definite (respectively definite)
iff zt Az > 0 (respectively zf Az > 0), Vz € C”
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Properties of the OLS estimator

A reminder on positive semi-definite and definite matrices

@ A Hermitian matrix A = A" is positive semi-definite (respectively definite)
iff zt Az > 0 (respectively zf Az > 0), Vz € C”

@ The diagonal elements of a positive semi-definite (respectively definite)
matrix A are always real positive semi-definite (respectively definite)
values, indeed, by using the standard basis on C", z=e;. Aj = e,-TAe,- >0
(respectively A;; > 0).
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Properties of the OLS estimator

A reminder on positive semi-definite and definite matrices

@ A Hermitian matrix A = A" is positive semi-definite (respectively definite)
iff zt Az > 0 (respectively zf Az > 0), Vz € C”

@ The diagonal elements of a positive semi-definite (respectively definite)
matrix A are always real positive semi-definite (respectively definite)
values, indeed, by using the standard basis on C", z=e;. Aj = e,-TAe,- >0
(respectively A;; > 0).

@ A matrix of the form ATA is always positive semi-definite, indeed
7t At Az = ||Az||* > 0 by definition of norm.
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Properties of the OLS estimator

Assumptions: b = HO + ¢, E[e] = 0, and cov[e] = 0%/, N > p

Gauss-Markov theorem

@ The OLS estimator @ is the unbiased linear estimator with minimum variance,
i.e., given any other unbiased linear estimator 8, = Ch, then

var 0] > var ]

@ The OLS estimator @ is the best linear unbiased estimator (BLUE), i.e., it has
minimum squared error:
. 2
B { 6 — eH ]

éL—eHz} ZE{
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Properties of the OLS estimator

@ For the first point: first we need an unbiased ;. C can always be written as
C = H" + D, for a suitable D:

~ -1
E[6]=E[Cb] =E K(H’w) H + D) (HO + e)}
-1
= ((HTH) H + D) HO = (I + DH) @
Hence @, is unbiased iff DH = 0. Then:

var [éL] = diag (cov [Cb]) = diag (Ccov [b] C‘L) = diag (02 CC‘L)

o?cct = o ((H*H)AHT + D) <H (HfH)d + D*)
e (H’fH)_1 +0 (HTH)_1 (DH)' + 6°DH (HTH)_1 +o°DD!
= cov [é] +o?DDt

Since DD' is positive semi-definite, then var [éL} > var [é}
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Properties of the OLS estimator

@ The second point follows from the first, and from the fact that 8, and 6 are
unbiased.
var [é ] > Vi [é]
> var [91,,-] - [HOL E [eL H ] >E “9 E Hz] Zvar
5|Joe | ze[lo-e] ©




Table of Contents

e Ordinary Least Squares

@ Weighted least squares

F. Santoni (UPG) Lectures on Least Squares Methods



Weighted least squares

@ Let us now consider the case: cov [b] = cov[e] = £ = 2§ (i.e. T is a diagonal matrix).
When the variances 0,2 have different values, the random variable is called
heteroscedastic.
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Weighted least squares

@ Let us now consider the case: cov [b] = cov[e] = £ = 2§ (i.e. T is a diagonal matrix).
When the variances 0,2 have different values, the random variable is called
heteroscedastic.

@ Without the homoscedasticity assumption, the Gauss-Markov theorem is not valid, but
the heteroscedastic b can be suitably corrected in order to become homoscedastic.
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Weighted least squares

@ Let us now consider the case: cov [b] = cov[e] = £ = 2§ (i.e. T is a diagonal matrix).
When the variances 0,2 have different values, the random variable is called

heteroscedastic.

@ Without the homoscedasticity assumption, the Gauss-Markov theorem is not valid, but
the heteroscedastic b can be suitably corrected in order to become homoscedastic.

@ Let us define the weight matrix W = 0%6,-1-, and the weighted observations by, = W%b.
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Weighted least squares

@ Let us now consider the case: cov [b] = cov[e] = £ = 2§ (i.e. T is a diagonal matrix).
When the variances 0,2 have different values, the random variable is called
heteroscedastic.

@ Without the homoscedasticity assumption, the Gauss-Markov theorem is not valid, but
the heteroscedastic b can be suitably corrected in order to become homoscedastic.

@ Let us define the weight matrix W = 0%6,-1-, and the weighted observations by, = W%b.
@ Accordingly: Hy = W%H, Ew = W%s, and
1 1 1
cov [bw] = cov [ew] = cov [Wzs] =Wa2xrwz =/,

i.e., by is homoscedastic.
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Weighted least squares

@ Let us now consider the case: cov [b] = cov[e] = £ = 2§ (i.e. T is a diagonal matrix).
When the variances 0,2 have different values, the random variable is called
heteroscedastic.

@ Without the homoscedasticity assumption, the Gauss-Markov theorem is not valid, but
the heteroscedastic b can be suitably corrected in order to become homoscedastic.

@ Let us define the weight matrix W = 0%6,-1-, and the weighted observations by, = W%b.
@ Accordingly: Hy = W%H, Ew = W%s, and
1 1 1
cov [bw] = cov [ew] = cov [Wzs] =Wa2xrwz =/,
i.e., by is homoscedastic.

@ Thus, the weighted LS estimator for the system b, = H,0 + &y is BLUE:

6 = (H,‘:VHW>71H§,,bw - (HTWH)ilHTWb = Hib
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Weighted least squares

@ Heteroscedastic observations b with non-diagonal covariance are called autocorrelated.
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Weighted least squares

@ Heteroscedastic observations b with non-diagonal covariance are called autocorrelated.
@ The weighted LS estimator can be generalized to any positive definite covariance.
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Weighted least squares

@ Heteroscedastic observations b with non-diagonal covariance are called autocorrelated.
@ The weighted LS estimator can be generalized to any positive definite covariance.

A positive definite complex square matrix A is invertible. If A is positive semi-definite, but not
positive definite, it is not invertible.

If A is positive definite, it has only non-zero eigenvalues: Vz # 0, Az # 0. Hence

dim (kerA) = 0, and A is full-rank. Therefore, A is invertible. Otherwise, if A is positive

semi-definite but not definite, it has a O eigenvalue and dim (kerA) # 0 = A not invertible. [
v

F. Santoni (UPG) Lectures on Least Squares Methods



Weighted least squares

@ Heteroscedastic observations b with non-diagonal covariance are called autocorrelated.
@ The weighted LS estimator can be generalized to any positive definite covariance.

A positive definite complex square matrix A is invertible. If A is positive semi-definite, but not
positive definite, it is not invertible.

If A is positive definite, it has only non-zero eigenvalues: Vz # 0, Az # 0. Hence
dim (kerA) = 0, and A is full-rank. Therefore, A is invertible. Otherwise, if A is positive
semi-definite but not definite, it has a O eigenvalue and dim (kerA) # 0 = A not invertible. [

The covariance matrix cov [b] of a sample b is positive definite and invertible iff for any
non-zero z, var [2'b] # 0.

Since the covariance is positive semi-definite by definition, it is invertible only if it is also
positive definite. If cov [b] is positive definite, then var [zfb] # 0, indeed 0 # zfcov [b] z

= cov [z'b] = var [zfb], since z'b is a scalar. Conversely, if for any non-zero z, var [z'b] # 0,
then cov [b] is positive definite, hence invertible. [

d(?
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Weighted least squares

@ If ¥ = cov [b] is positive definite, its inverse can be factorized by Cholensky
decomposition as 1 = QQf, where Q is an invertible lower-triangular matrix.
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Weighted least squares

@ If ¥ = cov [b] is positive definite, its inverse can be factorized by Cholensky
decomposition as 1 = QQf, where Q is an invertible lower-triangular matrix.

. . 1
@ When the observations b are heteroscedastic but non-autocorrelated, then Q = W2,
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Weighted least squares

@ If ¥ = cov [b] is positive definite, its inverse can be factorized by Cholensky
decomposition as 1 = QQf, where Q is an invertible lower-triangular matrix.

@ When the observations b are heteroscedastic but non-autocorrelated, then Q = W%.
@ As above, let us define weighted quantities bq = Q'b, Ho = QTH, eq = Qfe
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Weighted least squares

@ If ¥ = cov [b] is positive definite, its inverse can be factorized by Cholensky
decomposition as 1 = QQf, where Q is an invertible lower-triangular matrix.

. . 1
@ When the observations b are heteroscedastic but non-autocorrelated, then Q = W2,

@ As above, let us define weighted quantities bq = Q'b, Ho = QTH, eq = Qfe

Generalized Weighted Least Squares

The weighted observations b are homoscedastic and non-autocorrelated, therefore, the
weighted LS estimator for the system b = Hq0 + eq is BLUE by Gauss-Markov theorem:

0= (H}ZHQ)le}ZbQ = (HTQQTH)ilHTQQTb = (HfZ’lH)ilHiZ’lb = Hgb

cov [8] = (HyHa) " = (Hiaain) ™ = (i)

@ E[eq] =E [Qfe] = QE[e] =0
@ covleq] = cov [Qfe] = Qfcov[e] 2 = @iz = of (2ah) ' =of (@) e la =1

@ The assumptions of the Gauss-Markov theorem are therefore satisfied.
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Summary on the OLS estimator

@ Given a system b = HO + €, with N observations, p parameters, rankH = p, E[e] =0,
cov [e] = X positive definite, the OLS estimator is:

6= (HTZ’1H>71HTZ’1b (: (HfH)ilHTb when ¥ = a%)

cov [é] = (HJFZAH)i1 (: o? (HTH>71 when ¥ = 02/>
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Summary on the OLS estimator

@ Given a system b = HO + €, with N observations, p parameters, rankH = p, E[e] =0,
cov [e] = X positive definite, the OLS estimator is:

6= (HTZ’1H>71HTZ’1b (: (HfH)ilHTb when ¥ = a%)

cov [é] = (HJFZAH)i1 (: o? (HTH>71 when ¥ = 02/>

@ 0 is unbiased, i.e., E [9‘] -9
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Summary on the OLS estimator

@ Given a system b = HO + €, with N observations, p parameters, rankH = p, E[e] =0,
cov [e] = X positive definite, the OLS estimator is:

6= (HTZ’1H>71HTZ’1b (: (HfH>71HTb when ¥ = a%)
cov [9‘] = (Hfzle)fl (: o2 (HTHYI when ¥ = 02/>

@ 0 is unbiased, i.e., E [9‘] -9

@ The Gauss-Markov theorem states that 6 is the minimum variance estimator and the
best linear unbiased estimator (BLUE), i.e., if 8, is any other linear unbiased estimator:

var [8.] > var ]

E [HéL —om > E[ é —om .
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Summary on the OLS estimator

@ Given a system b = HO + €, with N observations, p parameters, rankH = p, E[e] =0,
cov [e] = X positive definite, the OLS estimator is:

6= (HTZ’1H>71HTZ’1b (: (HfH>71HTb when ¥ = a%)
cov [9‘] = <HTZ’1H)71 (: o2 (HTH>71 when ¥ = 02/>

@ 0 is unbiased, i.e., E [9‘] -9

@ The Gauss-Markov theorem states that 6 is the minimum variance estimator and the
best linear unbiased estimator (BLUE), i.e., if 8, is any other linear unbiased estimator:

var [8.] > var ]

E [HéL —om > E[ é —om .

So far, so good! BUT when rankH < p, HTH is not invertible and 6 is not defined.
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Summary on the OLS estimator

@ Given a system b = HO + €, with N observations, p parameters, rankH = p, E[e] =0,
cov [e] = X positive definite, the OLS estimator is:

6= (HTZ’1H>71HTZ’1b (: (HfH>71HTb when ¥ = a%)
cov [9‘] = <HTZ’1H)71 (: o2 (HTH>71 when ¥ = 02/>

@ 0 is unbiased, i.e., E [9‘] -9

@ The Gauss-Markov theorem states that 6 is the minimum variance estimator and the
best linear unbiased estimator (BLUE), i.e., if 8, is any other linear unbiased estimator:

var [é,_] > var [é]
A 2 o 2
E[HGL—GH } ZE[ o—oH } .
So far, so good! BUT when rankH < p, HTH is not invertible and 6 is not defined.

How to proceed then when rank (H) < p?
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Under-determined linear system

@ In this section we consider the case N < p and rank (H) = N, i.e. a
system with less equations than parameters.

@ The most general case (rank (H) < min (N, p), VN and Vp) will be
treated later on.
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Under-determined linear system

@ In this section we consider the case N < p and rank (H) = N, i.e. a
system with less equations than parameters.

@ The most general case (rank (H) < min (N, p), VN and Vp) will be
treated later on.

e Since b € C" and rank (H) = N, then rank (H) =rank [( H b )],
and the undetermined system HO = b is consistent.
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Under-determined linear system

@ In this section we consider the case N < p and rank (H) = N, i.e. a
system with less equations than parameters.

@ The most general case (rank (H) < min (N, p), VN and Vp) will be
treated later on.

e Since b € C" and rank (H) = N, then rank (H) =rank [( H b )],
and the undetermined system HO = b is consistent.

@ For the rank-nullity theorem dim (kerH) = p — N, therefore, there
exist nonzero vectors v € kerH, s.t. Hv =0= H(0 +v) = HO = b,
i.e., the system has infinite solutions.
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Under-determined linear system

@ In this section we consider the case N < p and rank (H) = N, i.e. a
system with less equations than parameters.

@ The most general case (rank (H) < min (N, p), VN and Vp) will be
treated later on.

e Since b € C" and rank (H) = N, then rank (H) =rank [( H b )],
and the undetermined system HO = b is consistent.

@ For the rank-nullity theorem dim (kerH) = p — N, therefore, there
exist nonzero vectors v € kerH, s.t. Hv =0= H(0 +v) = HO = b,
i.e., the system has infinite solutions.

@ The solution can be made unique by requiring that ||@]|* = 870 is
minimum.

F. Santoni (UPG) Lectures on Least Squares Methods



Under-determined linear system

@ In this section we consider the case N < p and rank (H) = N, i.e. a
system with less equations than parameters.

@ The most general case (rank (H) < min (N, p), VN and Vp) will be
treated later on.

e Since b € C" and rank (H) = N, then rank (H) =rank [( H b )],
and the undetermined system HO = b is consistent.

@ For the rank-nullity theorem dim (kerH) = p — N, therefore, there
exist nonzero vectors v € kerH, s.t. Hv =0= H(0 +v) = HO = b,
i.e., the system has infinite solutions.

@ The solution can be made unique by requiring that ||@]|* = 870 is
minimum.

@ Hence we have the following constrained optimization problem:

6 = argmin 6|
0
g(@)=HO—-b=0
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Under-determined linear system

8 = argmin||6]?
[
g(@)=HO —b=0
@ The problem can be solved by using Lagrange multipliers. As for the the full-rank

system, we now treat only the system in the real field. The complex case will be treated
later on. Let us define the Lagrangian function with the Lagrange multiplier A € RV:

L(OXN=06T70+2Tg(8) =670+ AT (HO —b)
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Under-determined linear system

8 = argmin||6]?
[
g(@)=HO —b=0
@ The problem can be solved by using Lagrange multipliers. As for the the full-rank

system, we now treat only the system in the real field. The complex case will be treated
later on. Let us define the Lagrangian function with the Lagrange multiplier A € RV:

L(OXN=06T70+2Tg(8) =670+ AT (HO —b)
@ The constrained problem becomes an unconstrained problem. Imposing the gradient is
zero, the constraint is directly included in the second equation:
Ty —
{ aa =20+H'A=0
6}\ =HO-b=g(0)=0
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Under-determined linear system

8 = argmin||6]?
[
g(@)=HO —b=0
@ The problem can be solved by using Lagrange multipliers. As for the the full-rank

system, we now treat only the system in the real field. The complex case will be treated
later on. Let us define the Lagrangian function with the Lagrange multiplier A € RV:

L(OXN=06T70+2Tg(8) =670+ AT (HO —b)

@ The constrained problem becomes an unconstrained problem. Imposing the gradient is
zero, the constraint is directly included in the second equation:

{ 69720+HT)\—0
d=HO-b=g(0)=0

@ Therefore: 8 = —1H A= —1HHTA=b= A= —2(HHT) b, and finally:
~ -1
6=Ht (HHT) b
Transpose T has been substituted with conjugate transpose T, since the solution is

correct also in the complex field, as will be proved later on. HH' is invertible because it
isan N x N matrix and rank (H) = N
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Under-determined linear system

LS solution of the underdetermined linear system

The system b = HO + ¢, with N < p, rankH = N, E[e] = 0, cov[e] = 02/, has the following
LS solution: . .
6 =H! (HH') b= cov [6] =o?Hi (HH!) " H

A2
Furthermore, the norm HGH is minimum
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Under-determined linear system

LS solution of the underdetermined linear system

The system b = HO + ¢, with N < p, rankH = N, E[e] = 0, cov[e] = 02/, has the following
LS solution: . .
6= Hi (HHT) b = cov [é] = 24t (HHT) H
112
Furthermore, the norm HBH is minimum

Theorem already proved, except for the covariance:

cov [é] = cov [HTb] = cov |:H‘L (HH‘L)_1 b:| = Ht (HHJf)_1 cov [e] (HH‘L>_:l H=

— o2Ht (HHT)_l (HHT)_1 H = g2 Ht (HHT)_2 H

.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.
@ For OLS we saw HH' # [ and HTH = |.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.
@ For OLS we saw HH' # [ and HTH = |.

@ We will see that, in general, it might be HH" # [ and HTH # I, but
HHTH = H is always true.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.
@ For OLS we saw HH' # [ and HTH = |.

@ We will see that, in general, it might be HH" # [ and HTH # I, but
HHTH = H is always true.

@ The most general case is rank (H) = r < min (N, p), VN and Vp.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.

@ For OLS we saw HH' # [ and HTH = |.

@ We will see that, in general, it might be HH" # [ and HTH # I, but
HHTH = H is always true.

@ The most general case is rank (H) = r < min (N, p), VN and Vp.

@ The general case can be treated by means of a powerful technique:
Singular Value Decomposition.
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Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.

@ For OLS we saw HH' # [ and HTH = |.

@ We will see that, in general, it might be HH" # [ and HTH # I, but
HHTH = H is always true.

@ The most general case is rank (H) = r < min (N, p), VN and Vp.

@ The general case can be treated by means of a powerful technique:
Singular Value Decomposition.

@ A general solution will be found that reduces to those already
obtained for the two special cases discussed so far.

F. Santoni (UPG) Lectures on Least Squares Methods



Under-determined linear system

@ So far, only the case N > p, rank (H) = p, and the case N < p,
rank (H) = N have been treated.

@ If we define the pseudo-inverse for the undetermined linear system
as Ht = HT (HH') ™", we see that HHT =/ and HtH # 1.
@ For OLS we saw HH' # [ and HTH = |.

@ We will see that, in general, it might be HH" # [ and HTH # I, but
HHTH = H is always true.

@ The most general case is rank (H) = r < min (N, p), VN and Vp.

@ The general case can be treated by means of a powerful technique:
Singular Value Decomposition.

@ A general solution will be found that reduces to those already
obtained for the two special cases discussed so far.

@ In the next section, Singular Value Decomposition will be introduced
and demonstrated.
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Review of linear algebra preliminary to SVD

@ Let be given A€ CV*P, rank (A) = r < min (N, p).
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Review of linear algebra preliminary to SVD

@ Let be given A€ CV*P, rank (A) = r < min (N, p).

@ Then, AtA € CP*P, AAT € CN*N are semi-positive definite, and
rank (A‘LA) = rank (AAJf) =r.
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Review of linear algebra preliminary to SVD

@ Let be given A€ CV*P, rank (A) = r < min (N, p).
@ Then, AtA € CP*P, AAT € CN*N are semi-positive definite, and
rank (A‘LA) = rank (AAJf) =r.
@ For the rank-nullity theorem:
dim (kerAfA) —p—r

dim (kerAAT) —N_r
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Review of linear algebra preliminary to SVD

@ Let be given A€ CV*P, rank (A) = r < min (N, p).

@ Then, AtA € CP*P, AAT € CN*N are semi-positive definite, and
rank (A‘LA) = rank (AAJf) =r.

@ For the rank-nullity theorem:

dim (kerAf A) —p—r

dim (kerAAT) —N-r

@ Then, AT A has p — r orthogonal eigenvectors associated with the eigenvalue 0, and AAT
has N — r orthogonal eigenvectors associated with the eigenvalue 0.
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Review of linear algebra preliminary to SVD

@ Let be given A€ CV*P, rank (A) = r < min (N, p).

@ Then, AtA € CP*P, AAT € CN*N are semi-positive definite, and
rank (A‘LA) = rank (AAJf) =r.

@ For the rank-nullity theorem:

dim (kerAf A) —p—r

dim (kerAAT> —N-r

@ Then, AT A has p — r orthogonal eigenvectors associated with the eigenvalue 0, and AAT
has N — r orthogonal eigenvectors associated with the eigenvalue 0.

@ Since AtA and AAT are Hermitian, they have an orthonormal basis of eigenvectors. E.g.:

ATAV = AtA[ w1 ... v ] = AALU=AAT [ w1 ... uy ] =
U% N ¢ 0% o]

vl vz o=u| T =Us2
: - o? . - o7
0 - - 0 pxp 0 - o 0 |n

@ Same symbols o2 have been used for both £% and X2, indeed, as it will be proved in the
following, the eigenvalues of ATA and AA' are the same.
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Singular Value Decomposition

Singular Value Decomposition

Any matrix A € CN*P, of any rank r < min (N, p), can be factorized in
the form A= UL VT,

@ Y € RV*? is a diagonal matrix with r positive elements that can always be
ordered as 0; > 0, > ... > 0,; 0; are the so called singular values

@ U e CN*N and V € CP*P are unitary matrices

@ U, V and X can be found by solving the eigenvalue problems AfTAV = VZ,%
and AATU = UX3, where Zf, =Y and ¥3 = £31.

v

A= U= V= X= = X
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Singular Value Decomposition

o Geometrical interpretation: rotation, scaling and rotation

A
=

vt A=UxVt U
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Singular Value Decomposition

@ Let us first consider the case N > p. Any matrix A € CV*P is a linear application that is
completely defined by the values it takes on a given basis vi_, of the domain CP:

AV1 =o1ux

Avp = opup

@ iu; € CN are unit vectors, o; > 0, and it is always possible to reorder the basis so that
the o, are in descending order.
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Singular Value Decomposition

@ Let us first consider the case N > p. Any matrix A € CV*P is a linear application that is
completely defined by the values it takes on a given basis vi_, of the domain CP:

AV1 =o1ux

Avp = opup

@ iu; € CN are unit vectors, o; > 0, and it is always possible to reorder the basis so that
the o, are in descending order.

@ A convenient choice of the basis is an orthonormal set of eigenvectors: ATAV = VA,
where A = X;j;, and V = [v1 --- vp] is unitary.
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Singular Value Decomposition

@ Let us first consider the case N > p. Any matrix A € CV*P is a linear application that is
completely defined by the values it takes on a given basis vi_, of the domain CP:

AV1 =o1ux

Avp = opup

@ iu; € CN are unit vectors, o; > 0, and it is always possible to reorder the basis so that
the o, are in descending order.

@ A convenient choice of the basis is an orthonormal set of eigenvectors: ATAV = VA,

where A = X;j;, and V = [v1 --- vp] is unitary.
@ This choice implies that also U = [uy --- up] are orthonormal. Indeed, if o;; # O:
1 by by i # = ulu;, =0
u:.fuj = V}LA‘LAVJ— = v:.fvj =215 = ) I #J ’r:> u; 3
oo 00 00; i=j=uu =yl =1

Ai = 0,2 because each u; is a unit vector by construction.
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Singular Value Decomposition

@ Let us first consider the case N > p. Any matrix A € CV*P is a linear application that is
completely defined by the values it takes on a given basis vi_, of the domain CP:

AV1 =o1ux

Avp = opup

@ iu; € CN are unit vectors, o; > 0, and it is always possible to reorder the basis so that
the o, are in descending order.

@ A convenient choice of the basis is an orthonormal set of eigenvectors: ATAV = VA,

where A = X;j;, and V = [v1 --- vp] is unitary.
@ This choice implies that also U = [uy --- up] are orthonormal. Indeed, if o;; # O:
; : T4 Ty —
v = Uilffj viA Ay = Ui‘i‘j v = %;J&j - { ’:; ij”?:ju;ulj\ujllg =1
Ai = 0,2 because each u; is a unit vector by construction.
@ When i>r, 0; =0, and it is always possible to complete [u; -+ u/] to [ug --- up] by

adding p — r orthonormal vectors however chosen (e.g., Gram-Schmidt).
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Singular Value Decomposition

@ We came up to: AV = Alvy --- vp] = [uy --- up]ldiag(oy -+ o Oppq -+ 0,) = US.

A\
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Singular Value Decomposition

@ We came up to: AV = Alvy --- vp] = [uy --- up]ldiag(oy -+ o Oppq -+ 0,) = US.

@ [ can be completed to a basis of CN:

>

(N—p)xp

AV =T u,,+1~-.u,\,]{0 }:uz

A\
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Singular Value Decomposition

@ We came up to: AV = Alvy --- vp] = [uy --- up]ldiag(oy -+ o Oppq -+ 0,) = US.

@ [ can be completed to a basis of CN:

>

(N—p)xp

AV =T u,,+1~-.u,\,]{0 }:uz

@ AV = UL = AWl =uUzvi= A=uUzVvi

A\
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Singular Value Decomposition

@ We came up to: AV = Alvy --- vp] = [uy --- up]ldiag(oy -+ o Oppq -+ 0,) = US.

@ [ can be completed to a basis of CN:

>

(N—p)xp

AV =T u,,+1~-.u,\,]{0 }:UZ
@ AV =US = AWl =UzVvi = A= UzVi
@ The eigenvalue problems for U, V and ¥ can be derived as follows:
vViAtav = STUtus = 11y = 52 = AlAv = vi2
AAt = usvivetut = usstut = us3 ut = aat = Uz}

A\
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Singular Value Decomposition

@ We came up to: AV = Alvy --- vp] = [uy --- up]ldiag(oy -+ o Oppq -+ 0,) = US.
@ [ can be completed to a basis of CN:
5 b
AV =| U upp1---uy { :|:UZ
[ ? ] O(n—p)xp

@ AV =US = AWl =UzVvi = A= UzVi
@ The eigenvalue problems for U, V and ¥ can be derived as follows:
vViAtav = STUtus = 11y = 52 = AlAv = vi2
AAt = usvivetut = usstut = us3 ut = aat = Uz}

@ For the case N < p, let us define N =p and p = N, and A = At € CV*P, N > p:

A=ULVt ATAV = V52 AATUS2
AATY = VEZ  ATAUSZ
V= U=V =%

A=Al =vstut= A=usvi O

A\
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Singular Value Decomposition

N>p=A=UZVi=

o1
t
\"}
° !
(“1 " “N) o : :
r . T
“ O=r)x(p-r) Ve
O(n—p)xp
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Singular Value Decomposition

N>p=A=UZVi=

o1
t
v
° !
( up e Uy ) : :
or : IT
“ O=r)x(p-r) Ve
O(n—p)xp
N<p=A=UzVi=
or e
1 VI
° .
(w o uy) _ :
or : ONX(p—N) Vl
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Singular Value Decomposition

N>p=A=UZVi=

o1
: t
. \"}
° ' !
( up e Uy ) : :
or : IT
O (p-n) Yo
O(n—p)xp
N<p=A=UzVi=
o1
:
\"2
° !

(w - uy)

Alternative expression of the SVD

p
A=UsVi =Y oun! VAe TN YN, Vp
=1
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Introduction to the general LS solution

@ For N > p and rank (H) = r = p, the OLS solution of the inconsistent system b = H@
is 6 = (HTH)_IHfb = HTb. A corrected observation vector b = H is defined, s.t. the

~12 112
cost function ¢ = Hb — bH = Hb — HBH is minimum.
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Introduction to the general LS solution

@ For N > p and rank (H) = r = p, the OLS solution of the inconsistent system b = H@
is 6 = (HTH)_IHfb = HTb. A corrected observation vector b = H is defined, s.t. the

~12 112
cost function ¢ = Hb — bH = Hb — HBH is minimum.

@ When r < min (N, p), the rank-nullity theorem implies dim (kerH) = p — r > 0.
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Introduction to the general LS solution

@ For N > p and rank (H) = r = p, the OLS solution of the inconsistent system b = H@
is 6 = (HTH)_IHfb = HTb. A corrected observation vector b = H is defined, s.t. the

~112 112
cost function ¢ = Hb — bH = Hb — HBH is minimum.
@ When r < min (N, p), the rank-nullity theorem implies dim (kerH) = p — r > 0.
@ Hence, Jvg #0: Hvg =0.
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Introduction to the general LS solution

@ For N > p and rank (H) = r = p, the OLS solution of the inconsistent system b = H@
is 6 = (HTH)_IHfb = HTb. A corrected observation vector b = H is defined, s.t. the

~112 112
cost function ¢ = Hb — bH = Hb — HBH is minimum.
@ When r < min (N, p), the rank-nullity theorem implies dim (kerH) = p — r > 0.
@ Hence, Jvg #0: Hvg =0.

~l12 N 2
@ Therefore, ¢ = Hb - HGH - Hb —H (9 +vo) H and the LS problem has an infinite
number of solutions.
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Introduction to the general LS solution

@ For N > p and rank (H) = r = p, the OLS solution of the inconsistent system b = H@
is 6 = (HTH)_IHTb = HTb. A corrected observation vector b = H is defined, s.t. the

~112 ~112
cost function ¢ = Hb — bH = Hb — HBH is minimum.
@ When r < min (N, p), the rank-nullity theorem implies dim (kerH) = p — r > 0.
@ Hence, Jvg #0: Hvg =0.

~l12 N 2
@ Therefore, ¢ = Hb - HGH - Hb —H (9 +v0) H and the LS problem has an infinite
number of solutions.

@ The solution can be made unique and it will be shown that:

General SVD pseudo-inverse

@ The general form of the pseudo-inverse of H = UX V1 is HT = v+ uUt,
= ~l12 12
The unique LS solution @ = H+b is s.t. both Hb —_ HOH and He” are minimum.

o
@ HHTH = H is always true, but HYH =/ or HH* = | do not hold in general.
@ OLS:r=p<N= H*=(HH)"Hi, r = N < p= H+ = Ht (HH1) ",
@ HHt = (HH), HtH = (H+H)!
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General LS solution

General SVD pseudo-inverse

@ The general form of the pseudo-inverse of H = UX VT is Ht = vX+tyt,

@ The unique LS solution & = HTb is s.t. both Hb - HéH2 and Hé”2 are minimum.
@ HH*H = H is always true, but H*H =/ or HH*T = | do not hold in general.

@ OLS:r=p<N= H*=(HH)'HI, r = N < p= Ht = Ht (HH)) ™",

@ HHt — (HH+)“, HH — (H+H)J‘

Remark: as it will be shown, the pseudo-inverse of ¥, ¥ is obtained by transposing ¥
and by replacing the elements of the diagonal with the reciprocals of their respective
nonzero elements of . E.g.:

g g 8 /3 0 0 0

Y= =¥t = 0 1/2 0 0
0 00 0 0 0 0
0 0 0

N>p, r=p=>Xty =1,

N<p, r=N=IYt=1;

r<min(N,p) = XFX #/,and T # /, but TXTY = ¥ is always true.
yy+ = () =2+ 5T st = (2ty) = 275+
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General LS solution

An explanatory example on X and ¥+

@ IfFZisNxp thenXTispx N, XX ispxpand XXt is N x N. E.g.:

Y= 3 T = 0 1/2 0 0 |; Ixt=
0 0 0 o 6 9 6 0 0 0 O
0 0 0 0 0 0O

@ Matrices in the same form as >+, with only 0 and 1, can be called selection matrices
of rank r, and denoted by the symbol /7, where the superscript denotes rank, while the
subscript denotes dimensions. Hence, X<+ = /f, and XtX = J]; obviously,
tr(ZX+) = tr (X+X) = r. In this example ZX+ = /2.
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General LS solution

p
@ H=UsVi=> cuy
i=1

@ Unitarity: V}ij = uTuj =9

i
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General LS solution

p
@ H=UsVi=> cuy
i=1

@ Unitarity: V}ij = u;ruj =9

;
Q@ j>r=Hvi=3 a,-u,-v;rvj = 0 = v; are an orthonormal basis of kerH.

i=
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General LS solution

p
@ H=UsVi=> cuy
i=1

@ Unitarity: V}ij = uTuj =9

i

;
Q@ j>r=Hvi=3 a,-u,-v;rvj = 0 = v; are an orthonormal basis of kerH.

i=

@ Cost function with SVD: ||b — H8||*> = ||b — UTV16|]” = ||UTb — TVT6)”
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General LS solution

@ H=Uxvi= Zo,uv

@ Unitarity: V.!—Vj = uTuj =9

Q@ j>r= Hvj= Z oju; vTvJ = 0 = v; are an orthonormal basis of kerH.

i=1
@ Cost function with SVD: ||b — HO|]> = b — UZV‘LGH =||ufb - ZV‘L(:"H2
@ By defining y = V10 and ¢ = U'h:

r
Ib — HOJ? = [l — EyI> = 3 lei — o’ + 3> lal.
i=1 i=r+1
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General LS solution

@ H=Uxvi= Zo,uv
ety wiv, — ufy, — 5.
@ Unitarity: v;v; = uju; = §;

Q@ j>r= Hvj= Z oju; vTvJ = 0 = v; are an orthonormal basis of kerH.

i=1

@ Cost function with SVD: [|b — HO| = [|b — USV16|]° = |Utb — =V16|

@ By defining y = V10 and ¢ = U'h:
r
lIb— H6II> = llc — ZylI* = 3 & — oiyil* + Z |cil.
i=1

i=r+1
@ The cost function is minimum for y; = ¢i/oj, i=1,...,r:
Cc1/0
1/ ! C1 u];
y = : . c= : — Ulp = : b
cr/or ; ;
0 CN u],LV
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General LS solution

@ The cost function is minimum for y; = ¢;/oj, i=1,...,r:
u1]:/0'1
vig=y= : b=3x"U'b
UI/O'r
0
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General LS solution

@ The cost function is minimum for y; = ¢;/oj, i=1,...,r:
uJ{/al
vig=y = : b=3x*Ub
UI/O'r
0
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General LS solution

@ The cost function is minimum for y; = ¢;/oj, i=1,...,r:

uJ{/al

vig=y = b=3x*Ub
UI/O'r
0
~ r
@ 6=Vy=VvEtUb=73 Lvulb.
i=1 "'
) ) ) ~ " ulb L
@ Any other solution can be written in the form: 0 + vger = > (;—Iv,'—i- > ajvi.
i=1 i=r+1

F. Santoni (UPG) Lectures on Least Squares Methods Part | 56 /82



General LS solution

i=1,...,r:

@ The cost function is minimum for y; = ¢;/oj, i =1,

uJ{/al
vig=y = : b=xtUb
UI/O'r
0

~ r
@ 6=Vy=VvEtUb=73 Lvulb.
i=1 "'

-~ r Tb P
@ Any other solution can be written in the form: 0 + vger = > u(;—v,'—i- > ajvi.
i=1 ' i=r+1

<o+ et > o

@ Sincei<r,j>r= v;'vj =0, then 0 Lvye, = Hé + Vier
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General LS solution

@ In general the pseudoinverse AT of a matrix A is exactly the inverse A~! when A is
invertible, i.e. when A is a full-rank square matrix.
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General LS solution

@ In general the pseudoinverse AT of a matrix A is exactly the inverse A~! when A is
invertible, i.e. when A is a full-rank square matrix.

@ Indeed, be A= UX V't and AT = VIt UT; since A is square, both ¥ and £ are square;
since A is full-rank, all the diagonal elements of both ¥ and T are non-zero, hence
Syt =3ty =1
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General LS solution

@ In general the pseudoinverse AT of a matrix A is exactly the inverse A~! when A is
invertible, i.e. when A is a full-rank square matrix.

@ Indeed, be A= UX V't and AT = VIt UT; since A is square, both ¥ and £ are square;
since A is full-rank, all the diagonal elements of both ¥ and T are non-zero, hence
Syt =3ty =1

@ Thus:

AAT = usvivstut = usstut = viut =1
ATA=vstutusvi = vetsvi= vivi =

F. Santoni (UPG) Lectures on Least Squares Methods



General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.
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General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.

@ Later on, the following inverses should be expressed as a function of U, ¥ and V:

(HTH) for H € CV*P, rankH = p < N

—1
(HHT) for H € CN*P, rankH = N < p;
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General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.

@ Later on, the following inverses should be expressed as a function of U, ¥ and V:

(HTH) for H € CV*P, rankH = p < N;
(HHT) for H € CN*P, rankH = N < p;

@ (HtH) ™' = (HTH)" = H+H*t and (HHY) ™! = (HHD) T = H*tH* are valid.
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General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.

@ Later on, the following inverses should be expressed as a function of U, ¥ and V:
=il
(HTH) for H € CV*P, rankH = p < N
(HHT) for H € CN*P, rankH = N < p;
@ (HtH) ™' = (HTH)" = H+H*t and (HHY) ™! = (HHD) T = H*tH* are valid.

@ Indeed, in the first case, HTH = (V=T Ut) (UzV1) = VETE VT, and
HtH* = (vEtul) (UztTvh) = vEre+T vl
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General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.

@ Later on, the following inverses should be expressed as a function of U, ¥ and V:

(HTH) for H € CV*P, rankH = p < N;
(HHT) for H € CN*P, rankH = N < p;

@ (HtH) ™' = (HTH)" = H+H*t and (HHY) ™! = (HHD) T = H*tH* are valid.

@ Indeed, in the first case, HTH = (V=T Ut) (UzV1) = VETE VT, and
HtH* = (vEtul) (UztTvh) = vEre+T vl

@ Since X is N X p, and all the elements on the main diagonal are non-zero, then
Ty = 2 :2diag (63---02). Similarly, +=+7 = ¥3? = diag (1/07 - - 1/02). Hence
PIDMUEE W WS
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General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.

@ Later on, the following inverses should be expressed as a function of U, ¥ and V:

(HTH) for H € CV*P, rankH = p < N;
(HHT) for H € CN*P, rankH = N < p;

@ (HtH) ™' = (HTH)" = H+H*t and (HHY) ™! = (HHD) T = H*tH* are valid.
@ Indeed, in the first case, HTH = (V=T Ut) (UzV1) = VETE VT, and

HtH* = (vEtul) (UztTvh) = vEre+T vl
@ Since X is N X p, and all the elements on the main diagonal are non-zero, then

Ty = 2 :2diag (63---02). Similarly, +=+7 = ¥3? = diag (1/07 - - 1/02). Hence

PIDMUEE W WS
@ With these expressions it is easy to verify that

-1 +
HEHH = vEFEHT VI = (HTH) T = (HiH)
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General LS solution

@ In general (AB)" # BT AT, but for some special cases the equality holds true.

@ Later on, the following inverses should be expressed as a function of U, ¥ and V:

(HTH) for H € CV*P, rankH = p < N;
(HHT) for H € CN*P, rankH = N < p;

(HtH) ™' = (HtH)* = H+*H* and (HHT) ™" = (HHT)" = HHTH* are valid.

e o

Indeed, in the first case, H'H = (VT Ut) (UxVT) = vETZVH, and
HtH* = (vEtul) (UztTvh) = vEre+T vl

Since X~ is N X p, and all the elements on the main diagonal are non-zero, then
Ty = 2 :2diag (63---02). Similarly, +=+7 = ¥3? = diag (1/07 - - 1/02). Hence
PIDMUEE W WS

With these expressions it is easy to verify that

HHHH = ve+s+Tyt = (HHL/)_1 = (H*H)+
Similarly, it can be proved that:

HH H = Us+TE Ut = (HH*)_1 - (HH*)+

(]

F. Santoni (UPG) Lectures on Least Squares Methods Part | 58 /82



General LS solution

@ HHtH =UZVivEtutuzvi = Uzxtzvi = Uuzvi=H
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General LS solution

@ HHtH =UZVivEtutuzvi = Uzxtzvi = Uuzvi=H

@ N>p, r=p=3ty == HH=vstutuzvi=vtzvi=vvi=y
@ N>p, r=p= (HH) 'Hf = (HTH)"H = vE+S+TvivETuf = v+t
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General LS solution

HHtH = UusvivItutuzvi = usxtsvi = uzvi = H

N>p r=p=>XtY=]= HtH=VEtUlusvi=vtyvli=vvi=y;
N>p, r=p= (HH) 'Hf = (HTH)TH = vE+S+TvivETuf = v+t
N<p, r=N=3¥t=/=HHt = USVIivItul = usstut = uut = ;

=il +
N<p r=N= H*(HH*) = H*(HH‘) — vETUtUSHTE+ut = vE+Ut
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General LS solution

HHTH = Usvivstutusvi = usstsvi = usvi =
N>p r=p=>XtY=]= HtH=VEtUlusvi=vtyvli=vvi=y;
N>p, r=p= (HH) 'Hf = (HTH)TH = vE+S+TvivETuf = v+t

N<p, r=N=3¥t=/=HHt = USVIivItul = usstut = uut = ;
-1 +
@ N<p, r:N:>H*(HHT) :HT(HHT) — vETUtUSHTE+ut = vE+Ut

@ Proof that HH+ = (HH+)!, HTH = (H+H)! is now obvious O

General SVD pseudo-inverse
@ The general form of the pseudo-inverse of H = UX V1 is HT = v+ ut,

A 112 112
The unique LS solution 6 = H+b is s.t. both Hb _ HOH and HaH are minimum.

OLS:r=p< N= H* = (HIH) 'Hi, r= N < p= H+ = Ht (HHT) ",

o
@ HHTH = H is always true, but HYH =/ or HH' = | do not hold in general.
o
@ HH* = (HH)!, HtH = (HTH)T

v
— = = = Sake
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General LS solution

@ With Matlab, the SVD can be obtained by using the command [U, S, V] = svd(H)
1 1 0 1 1 0
6, A~ (=025 A A 6, ~
Ho=|1 -1 =|-1|=b 0= b=H0=|-0.5 Ho=|1 -1 =[-0.5|=b
0, 0.25 0,
1 3 - 0 0.5 1 3 0.5
0.3651 0.4472 -0.8165 3.4641 0
03162  0.9487
U=|-0.1826 0.8944 0.4082 = 0 1.4142 V=
0.9487 -0.3162
0.9129 0 0.4082 0 0
3
HO=b
2 0, -0,=-1
EN
. * LS solution 01+ 6,=1
0, +30,=0
-1
2 1 0 1 2
01
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General LS solution

An explanatory example on V

@ In the following we will have to deal with product of the form ViV, or V,JfV, where V; is
the matrix formed by taking the first r columns of V, hence it is useful to visualize these
products. If V is p X p:

[ 1 0 0
0 - 0 |
viv, = = ¥ ]
r 0 0 1 rxr [ O(p—r)xr
(22 3)
L 0 0 (p—r)xr
[ /1 0 o 00
viv = o . @ 2 o =[ I Orxp-n) ]
0 0 1 0 O
L rxr rx(p—r)

@ They can be called expansion or selection matrices and denoted by the symbol /,x, or
Irxp. Obviously, entirely similar results apply to U.
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Geometrical interpretation of LS

@ Let us define the residual: r=b— HO =b— HH b = (I—HH*)b = Pu.ib

F. Santoni (UPG) Lectures on Least Squares Methods



Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*
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Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*

@ Py1 and Py are orthogonal projections

cany
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Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*

@ Py1 and Py are orthogonal projections

@ It is straightforward to prove they are
idempotent and symmetric

@ PuiPHL = Pui, PyyPry = Ppy idempotency ”
® Py’ =Py, Pyt = Py symmetry can /

F. Santoni (UPG) Lectures on Least Squares Methods



Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*

Pui and Py are orthogonal projections

It is straightforward to prove they are
idempotent and symmetric

PHiPr1 = PHi, PuyPr = Pry idempotency

PHJ_]L = Pu1, PH”Jr = PH” symmetry C(H) /
Also PHJ_PHH =0
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Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*

@ Py1 and Py are orthogonal projections

@ It is straightforward to prove they are
idempotent and symmetric

@ PuiPHL = Pui, PyyPry = Ppy idempotency ”
® Py’ =Py, Pyt = Py symmetry Can /
@ Also PyiPy =0

@ Since Pyb = Hé, Py projects b onto column space C (H) of H
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Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*

@ Py1 and Py are orthogonal projections

@ It is straightforward to prove they are
idempotent and symmetric

@ PuiPHL = Pui, PyyPry = Ppy idempotency

@ Pyt =Py, Pyt = Py symmetry e /
@ Also PyiPy =0

@ Since Pyb = Hé, Py projects b onto column space C (H) of H

@ Py, projects b onto space C. (H) orthogonal to C (H)
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Geometrical interpretation of LS

@ Let us define the residual: r=b—HO =b— HH'b = (| — HH")b = Pn.b
@ Let us also define Py = (/ — Py1) = HH*

@ Py1 and Py are orthogonal projections

@ It is straightforward to prove they are
idempotent and symmetric

@ PuiPHL = Pui, PyyPry = Ppy idempotency

@ Pyt =Py, Pyt = Py symmetry e /
@ Also PyiPy =0

@ Since Pyb = Hé, Py projects b onto column space C (H) of H

@ Py, projects b onto space C. (H) orthogonal to C (H)

@ The residual r accounts for the observed component of b that are not accounted
for by the model HO
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Geometrical interpretation of LS

@ Sincer = Py, b, Py is also called residual maker matrix.
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Geometrical interpretation of LS

@ Sincer = Py, b, Py is also called residual maker matrix.
@ Also PyiH=(I—HH"YH=H—HH'H=H—H=0.

F. Santoni (UPG) Lectures on Least Squares Methods



Geometrical interpretation of LS

@ Sincer = Py, b, Py is also called residual maker matrix.
@ Also PyiH=(I—HH"YH=H—HH'H=H—H=0.
@ Hence, r = Py b= PHJ_(H9+€) = Py.ie
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Geometrical interpretation of LS

@ Since r = Py1b, Pyy is also called residual maker matrix.

@ Also PyiH=(I—HH"YH=H—HH'H=H—H=0.

@ Hence, r = Pyib = Pui (HO +€) = Puie

@ Thus, the cost function is ¢ = ||r||> = rfr = &' P}, Puie = elPuie
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Geometrical interpretation of LS

@ Since r = Pyib, Py is also called residual maker matrix.

@ Also PyiH=(I—HH"YH=H—HH'H=H—H=0.

@ Hence, r = Pyib = Pui (HO +€) = Puie

@ Thus, the cost function is ¢ = ||r||> = rfr = &' P}, Puie = elPuie
@ The expected value can be computed easily:

E [d) (9)] =E |:€]LPHJ_5i| =E [tr (ETPHJ_E)] = [ (Pmea )] -
—tr (PHLE [sef]) = tr (Puicov[e]) = tr (Puio’l) = o”trPuy
trPus = tr (v — HH") = tr (I = UEE*UT) = N —
=N—tr(ZE)=N—trly =N—r

(z+ ut Uz)
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Geometrical interpretation of LS

@ Since r = Pyib, Py is also called residual maker matrix.

@ Also PyiH=(I—HH"YH=H—HH'H=H—H=0.

@ Hence, r = Pyib = Pui (HO +€) = Puie

@ Thus, the cost function is ¢ = ||r||> = rfr = &' P}, Puie = elPuie
@ The expected value can be computed easily:

E [d) (9)] =E |:€]LPHJ_5i| =E [tr (ETPHJ_E)] = [ (Pmea )] -
—tr (PHLE [sef]) = tr (Puicov[e]) = tr (Puio’l) = o”trPuy
trPus = tr (v — HH") = tr (I = UEE*UT) = N —
=N—tr(ZE)=N—trly =N—r

(z+ ut Uz)

Estimator of o2

If o2 is not known a priori, an unbiased estimator can be obtained from the residual:

_¢(9)_H()H ] O PR

N—r N-—r N—r
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e General LS solution for ANY linear
system

@ Properties of the general LS estimator
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Properties of the general LS estimator

Covariance of the general LS estimator

@ For the general LS estimator, when cov [€] = o /:
6= VEtUlb = cov [6] = ?vErE TV
@ When N > p, and rankH = p (OLS):
6= (HfH)_1 Hib = cov [é] =2 (HTH>_1
© When N < p, and rankH = N:
6= Ht (HHT)_1 b = cov [é] =o2Ht (HHT)_2 H

The general covariance expression 1 yields the same values as the particular expressions 2 and
3, valid under the specified assumptions.
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Properties of the general LS estimator

© covb] =cove] =0 =

cov [8] = cov [H*b] = cov [VETUlb] = vE* Ulcov [e] USHT VI = o2 VEF STV
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Properties of the general LS estimator

© covb] =cove] =0 =

cov [8] = cov [H*b] = cov [VETUlb] = vE* Ulcov [e] USHT VI = o2 VEF STV

Q cov [6] =02 (HiH) ™ = 02 (HIH)" = e?VEHUIUEHT VI = Vst s+ T Vi
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Properties of the general LS estimator

© covb] =cove] =0 =

cov [8] = cov [H*b] = cov [VETUlb] = vE* Ulcov [e] USHT VI = o2 VEF STV
Q cov [6] =02 (HiH) ™ = 02 (HIH)" = e?VEHUIUEHT VI = Vst s+ T Vi
Q cov [6] = o2HT (HHT) ™! (HHN) ' H =
cPvE Tyt TetetTytyvi = o2vyteytstTetryt
Since Xt = | when rankH = N, we get

vt tTytyyl = 2vststTsTstT vt = g2ystet Ty TetTyt =
=2Vt (xxt) stV = g2vEtEtTvi
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?

@ Gauss-Markov theorem assumptions:

o Homoscedasticity: OK (always attainable by using weigths)
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?

@ Gauss-Markov theorem assumptions:

o Homoscedasticity: OK (always attainable by using weigths)
@ LS estimator is unbiased: let’s check...
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?

@ Gauss-Markov theorem assumptions:

o Homoscedasticity: OK (always attainable by using weigths)
@ LS estimator is unbiased: let’s check...

E [é} —E [vz+ U*b] -E [vz*uT (HO + e)] —E [vz*uT (U)ZVTO + e)] -
=VItrVvig+ VETUE[] = vETE VG
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?

@ Gauss-Markov theorem assumptions:

o Homoscedasticity: OK (always attainable by using weigths)
@ LS estimator is unbiased: let’s check...

E [é} —E [vz+ U*b] -E [vz*uT (HO + e)] —E [vz*uT (U)ZVTO + e)] -
=VItrVvig+ VETUE[] = vETE VG

@ Ifr=rankH = pthen 5" = | = E [é} — 6 but in general, for any r, E [é] 46
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?

@ Gauss-Markov theorem assumptions:

o Homoscedasticity: OK (always attainable by using weigths)
@ LS estimator is unbiased: let’s check...

E [é} —E [vz+ U*b] -E [vz*uT (HO + e)] —E [vz*uT (U)ZVTO + e)] -
=VItrVvig+ VETUE[] = vETE VG
® If r =rankH = pthen &L = | = E [é} — @ but in general, for any r, E [é] £0

@ Gauss-Markov is not valid for the general LS estimator, hence in general 8 is not
BLUE.
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Properties of the general LS estimator

@ |s the Gauss-Markov theorem valid for the general LS estimator 0 =vstuin?

@ Gauss-Markov theorem assumptions:

o Homoscedasticity: OK (always attainable by using weigths)
@ LS estimator is unbiased: let’s check...

E [é} —E [vz+ U*b] -E [vz*uT (HO + e)] —E [vz*uT (U)ZVTO + e)] -
=VItrVvig+ VETUE[] = vETE VG

@ Ifr=rankH = pthen 5" = | = E [é} — 6 but in general, for any r, E [é] 46

@ Gauss-Markov is not valid for the general LS estimator, hence in general 8 is not
BLUE.

@ We will see how, for any rank r, it is always possible to extract r independent
BLUE estimators from 6.
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6 Generalized Gauss-Markov theorem
@ Introduction
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.

@ dimC = dimR = rankH =r
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.

@ dimC = dimR =rankH = r
@ Any vector AT € R (H) can be written as AT = afH & X\ = Hta for some a, i.e.,
AteR(H) & xe C(H)
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.

@ dimC = dimR = rankH = r

@ Any vector AT € R (H) can be written as AT = afH & X\ = Hta for some a, i.e.,
AteR(H) & xe C(H)

@ Statement of the theorem (proof will require an additional theoretical framework):
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.
@ dimC = dimR = rankH = r

@ Any vector AT € R (H) can be written as AT = afH & X\ = Hta for some a, i.e.,
AteR(H) & xe C(H)

@ Statement of the theorem (proof will require an additional theoretical framework):

Generalized Gauss-Markov theorem

@ Given any system b = HO + £ with N equations and p unknown parameters, s.t.
E[e] = 0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and § = Htb = VX Ulb the generalized LS estimator.
@ Be A}L, i=1---r, any set of linearly independent vectors € R (H).

@ Then, A}Lé are unbiased minimum variance estimators of A/.TO and are BLUE.
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.
@ dimC = dimR = rankH = r

@ Any vector AT € R (H) can be written as AT = afH & X\ = Hta for some a, i.e.,
AteR(H) & xe C(H)

@ Statement of the theorem (proof will require an additional theoretical framework):

Generalized Gauss-Markov theorem

@ Given any system b = HO + £ with N equations and p unknown parameters, s.t.
E[e] = 0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and § = Htb = VX Ulb the generalized LS estimator.

@ Be A}L, i=1---r, any set of linearly independent vectors € R (H).

@ Then, A}Lé are unbiased minimum variance estimators of A/.TO and are BLUE.

@ The theorem states that it is always possible to find at most r linear combinations of
the components of @, which are BLUE estimators.
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Generalized Gauss-Markov theorem

@ C(H) and R (H) are respectively the column space and the row space of the matrix H.
@ dimC = dimR = rankH = r

@ Any vector AT € R (H) can be written as AT = afH & X\ = Hta for some a, i.e.,
AteR(H) & xe C(H)

@ Statement of the theorem (proof will require an additional theoretical framework):

Generalized Gauss-Markov theorem

@ Given any system b = HO + £ with N equations and p unknown parameters, s.t.
E[e] = 0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and § = Htb = VX Ulb the generalized LS estimator.

@ Be A}L, i=1---r, any set of linearly independent vectors € R (H).

@ Then, A}Lé are unbiased minimum variance estimators of A/.TO and are BLUE.

@ The theorem states that it is always possible to find at most r linear combinations of
the components of @, which are BLUE estimators.

@ There are infinite possible choices of A}L.
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6 Generalized Gauss-Markov theorem

@ Estimable linear functions
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Estimable linear functions

Definition of estimable linear function

A linear function X (8) = A0 of the unknown parameter 6 is estimable if, given observations b
s.t. E[b] = E[H + €] = H, there exists an unbiased linear estimator afb for some a, s.t.
E [a'b] = AT6.
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Estimable linear functions

Definition of estimable linear function

A linear function X (8) = A0 of the unknown parameter 6 is estimable if, given observations b
s.t. E[b] = E[H + €] = H, there exists an unbiased linear estimator afb for some a, s.t.
E [a'b] = AT6.

Lemma on the estimability of linear functions
A linear function X (8) = A'@ is estimable iff AT € R (H), i.e. iff Ja s.t. At =afH.
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Estimable linear functions

Definition of estimable linear function

A linear function X (8) = A0 of the unknown parameter 6 is estimable if, given observations b
s.t. E[b] = E[H + €] = H, there exists an unbiased linear estimator afb for some a, s.t.
E [a'b] = AT6.

Lemma on the estimability of linear functions
A linear function X (8) = A'@ is estimable iff AT € R (H), i.e. iff Ja s.t. At =afH.

@ If At = afH, then:

E [afb] —alE[b] = aTHO = Al
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Estimable linear functions

Definition of estimable linear function

A linear function X (8) = A0 of the unknown parameter 6 is estimable if, given observations b
s.t. E[b] = E[H + €] = H, there exists an unbiased linear estimator afb for some a, s.t.
E [a'b] = AT6.

Lemma on the estimability of linear functions
A linear function X (8) = A'@ is estimable iff AT € R (H), i.e. iff Ja s.t. At =afH.

@ If At = afH, then:

E [afb] —alE[b] = aTHO = Al

@ If E [afb] = At, then:

E [aTb] —atHe = Ate, Vo = atH = At O
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
@ a=Pya+Pyla=aj+ay, wherea € C(H)anda; € Cy (H).
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
@ a=Pya+Pyla=aj+ay, wherea € C(H)anda; € Cy (H).

Q@ E [alb] = alHB = afPLLH =afPy H =0 (a, is orthogonal to the columns of H).
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
@ a=Pya+Pyla=aj+ay, wherea € C(H)anda; € Cy (H).

Q@ E [alb] = alHB = afPLLH =afPy H =0 (a, is orthogonal to the columns of H).

® X6 =E[alb] =E [alb| + E [al b] = [a]b].
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
@ a=Pya+Pyla=aj+ay, wherea € C(H)anda; € Cy (H).

Q@ E [alb] = alHB = afPLLH =afPy H =0 (a, is orthogonal to the columns of H).

® X6 =E[alb] =E [alb| + E [al b] = [a]b].

Unigueness:

® If 3¢ € C (M), st. E [c[b] = AT6, then 0 = E [afb] — B [¢[b] = (a) - c)" He. V6.
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
@ a=Pya+Pyla=aj+ay, wherea € C(H)anda; € Cy (H).

Q@ E [alb] = alHB = afPLLH =afPy H =0 (a, is orthogonal to the columns of H).

® X6 =E[alb] =E [alb| + E [al b] = [a]b].
Unigueness:

® If 3¢ € C (M), st. E [c[b] = AT6, then 0 = E [afb] — B [¢[b] = (a) - c)" He. V6.

(] (aH — C||)Jr H=0= (a” — CH) € C; (H); but, by assumption: (a” — CH) € C(H)
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function X (@) = At is estimable, there exists a unique unbiased estimator a‘flb, s.t.

aj € C (M), and E [afb] = xT6

v

Existence:
@ Since A6 is estimable, Ja € CV, s.t. At = afH, and E [afb] = Af6.
@ a=Pya+Pyla=aj+ay, wherea € C(H)anda; € Cy (H).

Q@ E [alb] = alHB = afPLLH =afPy H =0 (a, is orthogonal to the columns of H).

® X6 =E[alb] =E [alb| + E [al b] = [a]b].
Unigueness:

® If 3¢ € C (M), st. E [c[b] = AT6, then 0 = E [afb] — B [¢[b] = (a) - c)" He. V6.

(] (aH — C||)Jr H=0= (a” — CH) € C; (H); but, by assumption: (a” — CH) € C(H)
@ The only vector that is in both C (H) and Cy (H) is (a —¢)) =0, then a =¢. [

- = = = SR
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Estimable linear functions

Lemma: estimator of minimum variance

@ The unique unbiased estimator aﬁb has minimum variance, i.e., for any other unbiased

estimator afb s.t. E [afb] = At@, then var [atb] > var [aﬁb].

. : . T . 2 i ol
@ The unique unbiased estimator ajb is BLUE, i.e. E [|afb o\ ] >E ‘a”b Y 9‘ :
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Estimable linear functions

Lemma: estimator of minimum variance

@ The unique unbiased estimator aﬁb has minimum variance, i.e., for any other unbiased

estimator afb s.t. E [afb] = At@, then var [atb] > var [aﬁb].

. : . T . 2 i ol
@ The unique unbiased estimator ajb is BLUE, i.e. E [|afb o\ ] >E ‘a”b Y 9’ :

@ Each vector a defining an unbiased estimator for AT can be written as a = a|+ay,
where a) is unique by the previous lemma.
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Estimable linear functions

Lemma: estimator of minimum variance

@ The unique unbiased estimator aﬁb has minimum variance, i.e., for any other unbiased

estimator afb s.t. E [afb] = At@, then var [atb] > var [aﬁb].

. : . T . 2 i ol
@ The unique unbiased estimator ajb is BLUE, i.e. E [|afb o\ ] >E ‘a”b Y 9’ :

@ Each vector a defining an unbiased estimator for AT can be written as a = a|+ay,
where a) is unique by the previous lemma.

® var [afb] — afcov[b]a = o2 |[a|]? = o2 (||aH||2 + HaJ_HQ) =

= var [aﬁb] +0o?jaL]]® > var [ar‘b] .
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Estimable linear functions

Lemma: estimator of minimum variance

@ The unique unbiased estimator aﬁb has minimum variance, i.e., for any other unbiased

estimator afb s.t. E [afb] = At@, then var [atb] > var [aﬁb].

. : . T . 2 i ol
@ The unique unbiased estimator ajb is BLUE, i.e. E [|afb o\ ] >E ‘a”b Y 9’ :

@ Each vector a defining an unbiased estimator for AT can be written as a = a|+ay,
where a) is unique by the previous lemma.

® var [afb] — afcov[b]a = o2 |[a|]? = o2 (||aH||2 + HaJ_HQ) =

= var [aﬁb] +0o?jaL]]® > var [ar‘b] .

® var [a'b] = E [[a’b — E [a’b] |*] = E [[a’b — A16]°], and BLUEness follows from the
first part of the lemma. [
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Estimable linear functions

Lemma: definition of the unbiased estimator

@ The unique unbiased estimator aﬁb for AT@, where A = al‘LlH € R(H) is defined as
a‘flb = A0, where 0 is the general LS estimator 8 = Htb = V=t Ulb.
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Estimable linear functions

Lemma: definition of the unbiased estimator

@ The unique unbiased estimator aﬁb for AT@, where A = al‘LlH € R(H) is defined as

a‘flb = A0, where 0 is the general LS estimator 8 = Htb = V=t Ulb.

@ Since aj € C(H) and aj = Pyyja:

b=al

alb=al Pl I

—alHO = 21O
I A PH”b_a H6 = X\'6. [
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6 Generalized Gauss-Markov theorem

@ Generalized Gauss-Markov theorem
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Generalized Gauss-Markov theorem

We can now easily prove the:

Generalized Gauss-Markov theorem

@ Given any system b = HO + € with N equations and p unknown parameters, s.t.
E[e] =0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and = HTb = VX U'b the generalized LS estimator.
@ Be A}L, i=1---r, any set of linearly independent vectors € R (H).

@ Then, A;’é are unbiased minimum variance estimators of /\,.TB and are BLUE.

F. Santoni (UPG) Lectures on Least Squares Methods



Generalized Gauss-Markov theorem

We can now easily prove the:

Generalized Gauss-Markov theorem

@ Given any system b = HO + € with N equations and p unknown parameters, s.t.
E[e] =0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and = HTb = VX U'b the generalized LS estimator.
@ Be Aj, i=1---r, any set of linearly independent vectors € R (H).

@ Then, A;‘é are unbiased minimum variance estimators of /\,.TB and are BLUE.

@ Since dimR (H) = rankH = r, it is possible to arbitrarily choose at most r linearly
independent vectors )x;f ER(H), i=1---r.
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Generalized Gauss-Markov theorem

We can now easily prove the:

Generalized Gauss-Markov theorem

@ Given any system b = HO + € with N equations and p unknown parameters, s.t.
E[e] =0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and = HTb = VX U'b the generalized LS estimator.
@ Be Aj, i=1---r, any set of linearly independent vectors € R (H).

@ Then, A;‘é are unbiased minimum variance estimators of /\,.TB and are BLUE.

@ Since dimR (H) = rankH = r, it is possible to arbitrarily choose at most r linearly
independent vectors )x;f ER(H), i=1---r.

@ For each )\;f, the estimable linear function X; (6) = Af@ can be defined.
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Generalized Gauss-Markov theorem

We can now easily prove the:

Generalized Gauss-Markov theorem

@ Given any system b = HO + € with N equations and p unknown parameters, s.t.
E[e] =0 and cov [e] = o?/y.

@ Be r = rankH < min (N, p) and = HTb = VX U'b the generalized LS estimator.
@ Be Aj, i=1---r, any set of linearly independent vectors € R (H).

Then, A;‘é are unbiased minimum variance estimators of A,.TG and are BLUE.

@ Since dimR (H) = rankH = r, it is possible to arbitrarily choose at most r linearly
independent vectors )x;f ER(H), i=1---r.

@ For each )\;f, the estimable linear function X; (6) = A;‘G can be defined.

@ By all the previous lemmas, A}Lé is the unbiased, minimum variance, and BLUE
estimator of )\}LB. O

F. Santoni (UPG) Lectures on Least Squares Methods



Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator

@ Let us define A = [A1 --- A/]. Hence, the generalized Gauss-Markov estimators can be
collected in the single expression Af@.
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Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator

@ Let us define A = [A1 --- A/]. Hence, the generalized Gauss-Markov estimators can be
collected in the single expression Af@.

@ In general, cov [/\Té] = (o [é] A=At VErEHT VAL
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Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator

@ Let us define A = [A1 --- A/]. Hence, the generalized Gauss-Markov estimators can be
collected in the single expression Af@.

@ In general, cov [/\Té] = (o [é] A=At VErEHT VAL

@ The expression of covariance depends on the arbritrary choice of A. Some choices of A
yield particularly simple expressions of covariance.
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Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator

@ Let us define A = [A1 --- A/]. Hence, the generalized Gauss-Markov estimators can be
collected in the single expression Af@.

@ In general, cov [/\Té] = (o [é] A=At VErEHT VAL

@ The expression of covariance depends on the arbritrary choice of A. Some choices of A
yield particularly simple expressions of covariance.

@ Since 0 € CP, if r = p, then dimR (H) = p, and it is possible to choice the standard
basis A\; = e; = AT@ = 8, whose covariance was already obtained: o2 (HTH)fl.
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Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator

@ Let us define A = [A1 --- A/]. Hence, the generalized Gauss-Markov estimators can be
collected in the single expression Af@.

@ In general, cov [/\Té] = (o [é] A=At VErEHT VAL

@ The expression of covariance depends on the arbritrary choice of A. Some choices of A
yield particularly simple expressions of covariance.

@ Since 0 € CP, if r = p, then dimR (H) = p, and it is possible to choice the standard
basis A\; = e; = AT@ = 8, whose covariance was already obtained: o2 (HTH)fl.

@ By noticing that R (H) = R (HTH), it is possible to choose )x;f = a;rHTH, aj € C(H).
Let us define A= [a; --- a,] = AT = ATHTH. The covariance is then
A i
cov [/\T 0] = cov [AT Ht HH+b] — 2 AT H HHT (H‘r HH+) A=
= 02 ATH  HHT HHT HA = 02 ATHTHA
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Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator

@ Let us define A = [A1 --- A/]. Hence, the generalized Gauss-Markov estimators can be
collected in the single expression Af@.

In general, cov [/\Té] = (o [é] A= 2ATVE+HSHT VA,

The expression of covariance depends on the arbritrary choice of A. Some choices of A
yield particularly simple expressions of covariance.

@ Since 0 € CP, if r = p, then dimR (H) = p, and it is possible to choice the standard
basis A\; = e; = AT@ = 8, whose covariance was already obtained: o2 (HTH)fl.

@ By noticing that R (H) = R (HTH), it is possible to choose )x;f = a;rHTH, aj € C(H).
Let us define A= [a; --- a,] = AT = ATHTH. The covariance is then
A i
cov [/\T 0] = cov [AT Ht HH+b] — 2 AT H HHT (H‘r HH+) A=

= 02 ATH  HHT HHT HA = 02 ATHTHA
@ If A =V,, where V, are the first r columns of V, the covariance is diagonal, and Vjé
are the principal components of 6:

cov [/\fé] = 2VIVETS TV, = 621,551 T I, = o2diag (1/0% --- 1/0?)
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Generalized Gauss-Markov theorem

Remark on V,

@ )\ € R(H). Are we confident that the columns v of A =V, are in R(H)?

.
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Generalized Gauss-Markov theorem

Remark on V,

@ )\ € R(H). Are we confident that the columns v of A =V, are in R(H)?

@ v are eigenvectors of HTH, i.e.

H'Hv = ov = H' (Hv)

.
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Generalized Gauss-Markov theorem

Remark on V,

@ )\ € R(H). Are we confident that the columns v of A =V, are in R(H)?
@ v are eigenvectors of HTH, i.e.
H'Hv = ov = H' (Hv)
@ The last equality makes it clear that v is a linear combination of the colums of

H', where the coefficients of the combination are the components of the vector
Hv. Hence v € C (H')

.
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Generalized Gauss-Markov theorem

Remark on V,

@ )\ € R(H). Are we confident that the columns v of A =V, are in R(H)?
@ v are eigenvectors of HTH, i.e.
H'Hv = ov = H' (Hv)
@ The last equality makes it clear that v is a linear combination of the colums of

H', where the coefficients of the combination are the components of the vector
Hv. Hence v € C (H')

@ Since C (H') = R(H), it is proved that v € R (H).

.
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Generalized Gauss-Markov theorem

Example

@ Let us consider the following system:

I

S~

Il
e
== O O

O O = =

A\
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Generalized Gauss-Markov theorem

Example

@ Let us consider the following system:

1 10 o by

N L b
HO=11 o 1 32 | b3
1 0 1 g ba

@ Clearly, it is r = rankH = 2. SVD yields the following matrices:

-05 -05 -05 -05
_05 -05 05 0.5 —8.165 0 —0.5774

U= V=] —0.4082 -0.7071 0.5774
—-0.5 05 0.5 0.5
—05 05 —05 05 —0.4082 0.7071 0.5774

2.4495 0

0
0.4082 0 0 0
Y = 0 14142 0 rt = 0 0.7071 0 0
o v S 0 0 0 0

0 0 0

A\
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

= = O O

6, br

by
6 | =1,
03 g

@ Let us assume @ = [1 1 1], hence by = HO = [2 2 2 2] .

e
O O - =
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

I

D

Il
e
= = O O

8 | =
0 bs
3 ba

@ Let us assume @ = [1 1 1], hence by = HO = [2 2 2 2] .

O O - =

@ The LS estimator yields 6 = VX +Uf = [1.3 0.6 0.8]", and by = [2 2 2 2]'.
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

1 1 0 0 by
1 1 0 L by
HO=1| 3 ¢ 1 32 = | b3
1 0 1 g ba

@ Let us assume @ = [1 1 1], hence by = HO = [2 2 2 2] .
@ The LS estimator yields 6 = VX +Uf = [1.3 0.6 0.8]", and by = [2 2 2 2]'.

a2 : : o ) o .
@ Thus, ||bo — bo||” = 0 is effectively minimized, but even without noise, it is not possible
to estimate parameters correctly, since the system is under-determined.
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

1 1 0 0 by
1 1 0 L by
HO=1| 3 ¢ 1 32 = | b3
1 0 1 g ba

@ Let us assume @ = [1 1 1], hence by = HO = [2 2 2 2] .

@ The LS estimator yields 6 = VX +Uf = [1.3 0.6 0.8]", and by = [2 2 2 2]'.

a2 : : o ) o .
Thus, ||bo — bo||” = 0 is effectively minimized, but even without noise, it is not possible
to estimate parameters correctly, since the system is under-determined.

@ But if check principal components: v,/ = [—1.633 0]" and V{6 = [-1.633 0],
perfectly matching.
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

1
1
1
1

= = O O

{ : } "
8 | =

0 bs
3 ba

@ We add Gaussian noise with o = 0.1: b = by + & = [1.9196 2.0697 2.0835 1.9756])'.

O O = =
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

1 1 0 0 b1
1 1 0 L by
HO=1| 3 ¢ 1 32 = | bs
1 0 1 g ba

@ We add Gaussian noise with o = 0.1: b = by + & = [1.9196 2.0697 2.0835 1.9756]J’.

@ The LS estimator yields = VX + Ut = [1.3414 0.6532 0.6882]f, with covariance:

0.0011 0.0006  0.0006
cov [0] —o2vsty+Tyt — | 0.0006 0.0028 —0.0022
0.0006 —0.0022 0.0028
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Generalized Gauss-Markov theorem

@ Let us consider the following system:

1 1 0 0 b1
1 1 0 L by
HO=1| 3 ¢ 1 32 = | bs
1 0 1 g ba

@ We add Gaussian noise with o = 0.1: b = by + & = [1.9196 2.0697 2.0835 1.9756]J'.

@ The LS estimator yields = VX + Ut = [1.3414 0.6532 0.6882]f, with covariance:

0.0011 0.0006  0.0006
cov [0] —o2vsty+Tyt — | 0.0006 0.0028 —0.0022
0.0006 —0.0022 0.0028

@ Principal components: V{6 = [—1.633 0]' and V{6 = [—1.6429 0.0247]", with:

0.0017 0
0 0.0050 | |

cov [Vjé] = 2VIvEtstTviy, = o2diag (1/07 -+ 1/02) =

r
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