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Prerequisites

1 Di�erential calculus and integrals with multiple variables

2 Linear algebra, from fundamentals to eigenvalues, eigenvectors, and

spectral theorem

3 All the previous notions extended to the complex �eld

4 Fundamentals of probability theory: distributions, expected value,

variance, covariance and their properties, Bayes theorem
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Basic concepts and notation

1 The least squares problem arises whenever one has a physical system described by a

model in the form b = Hθ

H is the response function describing the system, in this case a linear function, i.e.

a matrix, with θ as its argument

θ are the parameters or inputs of the system (independent variables)

b are the observations or outputs of the system (dependent variables)

2 Experimentally, observations are a�ected by uncertainty due to system and

measurement noise, and �nite measurement resolution: b 6= Hθ ) b = Hθ + ε

b is a column vector with N components, representing observations

θ is a column vector with p parameters that are characteristic of the system, and

that must be estimated

H is a known N � p matrix; N: number of equations, p number of parameters.

ε is the noise and generally it is assumed: E [ε] = 0, and cov [ε] = �2I a

aReminder: cov [X] = E
[
XX

T
]
� E [X]E

[
X
y
]
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Basic concepts and notation

3 Because of the noise, b = Hθ + ε is in general an inconsistent system of N equations

One then seeks the optimal solution that minimizes the cost function

� (θ) = kb� Hθk2 = (b� Hθ)T (b� Hθ)

Thus, the least squares estimator is θ̂ = argmin
θ

kb� Hθk2

Example

(a) :

 1 1

1 �1

1 3

(
�1

�2

)
=

 0

�2

2


(b) :

 1 1

1 �1

1 3

(
�1

�2

)
=

 1

�1

0



At this level, only b is a�ected by the uncertainty. When b is changed, lines are just translated, slopes are not changed.
When also H is a�ected by the uncertainty, slopes change: this is the Total Least Squares method, discussed later on.
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LS regression examples

Linear regression, N observations,
p = 2 parameters:

y = mx+ q =
(

x 1
)( m

q

)
b � y

H �
(

x 1
)

θ �

(
m

q

)

Polinomial regression, 3rd degree,
N observations, p = 4 parameters:

y = c0 + c1x+ c2x
2 + c3x

2 =
(

x 1
)

c0
c1
c2
c3


b � y H �

(
1 x x2 x3

)
θ �


c0
c1
c2
c3


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LS regression examples
Exponential regression, N observations,

p = 2 parameters:

y = Aebx
2

A non-linear problem. It can be linearized by

using logarithms

log y = logA+ bx2 =

= C + bx2 =
(

1 x2
)( C

b

)
Warning: the uncertainty estimated for C will

propagate non-linearly on A

F. Santoni (UPG) Lectures on Least Squares Methods Part I 9 / 82



Table of Contents

1 Introduction
Prerequisites

Basic concepts and notation

General terminology for estimators

2 Ordinary Least Squares
Review of linear algebra

Ordinary Least Squares - OLS

Properties of the OLS estimator

Weighted least squares

Summary on the OLS estimator

3 LS solution of an under-determined

linear system
A constrained optimization problem

4 Singular Value Decomposition

Review of linear algebra preliminary to

SVD

Singular Value Decomposition -

statement and proof

5 General LS solution for ANY linear

system
Introduction to the general LS solution

The general LS solution

Geometrical interpretation of LS

Properties of the general LS estimator

6 Generalized Gauss-Markov theorem
Introduction

Estimable linear functions

Generalized Gauss-Markov theorem

F. Santoni (UPG) Lectures on Least Squares Methods Part I 10 / 82



General terminology for estimators

1 A sample is a series of N observations z = (z1 � � � zN) of a random

variable Z

2 A statistic is any function of the observations g (z) = g (z1 � � � zN)

not dependent on unknown parameters

3 Typically, formulating a hypothesis means assuming that

observations are extracted from a probability density function p.d.f.

f (z jθ ) dependent on some parameters θ = (�1 � � � �N) that must be

determined
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General terminology for estimators

1 An estimator is a statistic used to estimate the parameters of a p.d.f. The

estimator of θ is typically denoted by the symbol θ̂

2 An estimate is the value of an estimator calculated for a given sample

3 The procedure by which one comes to an estimate of the θ parameters for a

given sample is also called parameter �tting

4 The bias (or polarization) of an estimator is de�ned as the di�erence:

b = E
[
θ̂
]
� θ

5 An estimator is termed biased (or polarized) when b 6= 0, otherwise it is termed

unbiased (or non-polarized)

6 Tipically, observations are independent, hence the p.d.f. is
fsample = f1 (z1) f2 (z2) : : : fN (zN). If the sample consists of repeated observations of
the same variable, then f1 = f2 = : : : = fN = f , and:

E
[
�̂ (z)

]
=

∫
D

�̂ (z) fsample (zj�) dz =

∫
: : :

∫
�̂ (z) f1 (z1) : : : fN (zN) dz1 : : : dzN
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General terminology for estimators

Unbiased estimator example: the sample (or arithmetic) mean

The sample mean is an unbiased estimator of the expected value of a
p.d.f. f (z), given a sample of N observations zi

� = E [z ] =

∫
zf (z) dz

�̂ = z̄ =
1

N

N∑
i=1

zi

E [�̂ (z)] = E

[
1

N

N∑
i=1

zi

]
=

1

N

N∑
i=1

E [zi ] =
1

N

N∑
i=1

� =
1

N
N� = �

b = E [�̂ (z)]� � = �� � = 0
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General terminology for estimators

Biased estimator example: the sample variance
The sample variance

s2 =
1

N

N∑
i=1

(zi � z̄)2

is a biased estimator of the variance �2, indeed, without performing all calculations

E
[
s2
]
=

N � 1

N
�2

An unbiased estimator can be easily obtained:

S2 =
1

N � 1

N∑
i=1

(zi � z̄)2 =
N

N � 1
s2

E
[
S2

]
=

N

N � 1
E
[
s2
]
= �2
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Review of linear algebra

1 Linearly independent vectors:
∑
i

civi = 0, 8i ; ci = 0

2 The rank of a matrix A 2 Cm�n is the maximum number of linearly independent

columns or rows: rank (A) � min (m; n); rank (A) = rank
(
Ay

)
.

3 The rank of a matrix is the dimension of the space generated by its columns:

rank (A) = dim [Span (a1; : : : ; an)], Span (a1; : : : ; an) �

{
v : v =

∑
i

ciai

}
4 Kernel of A:

ker (A) � fv : Av = 0g ; 8A; (v = 0) 2 ker (A) ; ker (A) � f0g ) dim [ker (A)] = 0

dim [ker (A)] is called the nullity of A.

Rank-nullity theorem

8A 2 Cm�n
; rank (A) + dim [ker (A)] = n
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Review of linear algebra

A useful lemma

8A 2 Cm�n
; rank (A) = rank

(
AyA

)

Proof.

From the rank-nullity theorem, it follows that:

rank (A) + dim [ker (A)] = n = rank
(
AyA

)
+ dim

[
ker

(
AyA

)]
Then, one can prove that ranks are equal by proving that kernels are the same, i.e. by

showing that if v 2 ker (A), then v 2 ker
(
AyA

)
, and vice versa:

v 2 ker (A)) Av = 0) AyAv = 0) v 2 ker
(
AyA

)
v 2 ker

(
AyA

)
) AyAv = 0) vyAyAv = 0) kAvk2 = 0) Av = 0) v 2 ker (A)
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rank (A) + dim [ker (A)] = n = rank
(
AyA

)
+ dim

[
ker

(
AyA

)]
Then, one can prove that ranks are equal by proving that kernels are the same, i.e. by

showing that if v 2 ker (A), then v 2 ker
(
AyA

)
, and vice versa:
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Ordinary Least Squares - OLS

OLS assumptions

System b = Hθ + ε has more equations the parameters (N � p)

H is a full-rank matrix: rank (H) = p.

Consistent system
When ε = 0 the system is:

b = Hθ =
(

h1 h2 � � � hp
)

�1
.
.
.

�p

 =

p∑
i=1

�ihi

The system has a solution when b is a linear combination of the columns of H:

b 2 Span (H), rank (H) = rank
[(

H b
)]

When H is full-rank, the solution is unique.
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Ordinary Least Squares - OLS

Inconsistent system

In general ε 6= 0 and the sistem is inconsistent: rank (H) 6= rank
[(

H b
)]

According to the lemma on the rank of HyH: rank (H) = p = rank
(
HyH

)
HyH is a full-rank square p � p matrix, hence it is invertible

Associated consistent system
For the previous assumptions, the following system is consistent:

Hyb = HyHθ ) θ̂ =
(
HyH

)�1
Hyb = H+b

The pseudo-inverse or Moore-Penrose matrix has been introduced:

H+ =
(
HyH

)�1
Hy ) H+H = I ; HH+ 6= I

H is a N � p matrix, and H+ is p � N. When H is square (N = p), then H+ = H�1

What does the solution θ̂ =
(
HyH

)�1
Hyb = H+b mean?
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Ordinary Least Squares - OLS

OLS problem

Full-rank (p) inconsistent system: b = Hθ + ε; θ̂ = argmin
θ

kb� Hθk2

Associated consistent system: Hyb = HyHθ

Cost function:

� (θ) = kb� Hθk2 = (b� Hθ)y (b� Hθ) =

= θyHyHθ + byb� byHθ � θyHyb = θyHyHθ + byb� 2Re
(
θyHyb

)

OLS solution of the full-rank inconsistent system
The solution of the associated consistent system:

θ̂ =
(
HyH

)�1
Hyb = H+b

is also the solution that minimizes the cost function
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Ordinary Least Squares - OLS

OLS solution of the full-rank inconsistent system
The solution of the associated consistent system:

θ̂ =
(
H
y
H

)�1
H
y
b = H

+
b

is also the solution that minimizes the cost function � (θ) = kb� Hθk2

Proof.
We give a simple proof for the real case. The complex case will be proved later in the

more general context of singular value decomposition. When H is real:

� (θ) = θT
H

T
Hθ + b

T
b� 2θT

H
T
b =

∑
jkl

�jHkjHkl�l +
∑
j

b
2
j � 2

∑
jk

�jHkjbk

The minimum is attained where the jacobian matrix (the gradient in this case) is zero:

@�

@�i
=

∑
jkl

(�ijHkjHkl�l + �jHkjHkl�il)� 2
∑
jk

�ijHkjbk = 2
∑
jk

HjiHjk�k � 2
∑
j

Hjibj
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Ordinary Least Squares - OLS

OLS solution of the full-rank inconsistent system
The solution of the associated consistent system:

θ̂ =
(
H
y
H

)�1
H
y
b = H

+
b

is also the solution that minimizes the cost function � (θ) = kb� Hθk2

Proof.
The minimum is attained where the jacobian matrix (the gradient in this case) is zero:

@�

@�i
= 2

(
H

T
Hθ

)
i
� 2(Hb)i )

@�

@θ
= 2HT

Hθ � 2Hb = 0) H
T
Hθ = Hb

from which the solution follows.
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Properties of the OLS estimator

We assumed: b = Hθ + ε, E [ε] = 0, and cov [ε] = �2I , N � p

Observations b are homoscedastic (from the greek homo \same" skedasis

\dispersion", i.e. they all have the same variance) and uncorrelated

Expected value of the OLS estimator

The OLS estimator θ = H+
b is unbiased: E

[
θ̂
]
= θ

Proof.
By a straightforward calculation:

E
[
θ̂
]
= E

[(
H
y
H

)�1
H
y
b

]
= E

[(
H
y
H

)�1
H
y(Hθ + ε)

]
=

=
(
H
y
H

)�1
H
y
HE [θ] +

(
H
y
H

)�1
H
yE [ε] = θ
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We assumed: b = Hθ + ε, E [ε] = 0, and cov [ε] = �2I , N � p

Observations b are homoscedastic (from the greek homo \same" skedasis

\dispersion", i.e. they all have the same variance) and uncorrelated

Covariance of the OLS estimator

cov
[
θ̂
]
= �

2
(
H
y
H

)�1

Proof.
By a straightforward calculationa:

cov
[
θ̂
]
= cov

[(
H
y
H

)�1
H
y
b

]
= cov

[
θ +

(
H
y
H

)�1
H
yε

]
=

=
(
H
y
H

)�1
H
ycov [ε]H

(
H
y
H

)�1
=

(
H
y
H

)�1
H
y
�
2
IH

(
H
y
H

)�1
= �

2
(
H
y
H

)�1

aReminder: cov [AX] = Acov [X]Ay
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Properties of the OLS estimator

A reminder on positive semi-de�nite and de�nite matrices

A Hermitian matrix A = A
y is positive semi-de�nite (respectively de�nite)

i� z
y
Az � 0 (respectively z

y
Az > 0), 8z 2 Cn

The diagonal elements of a positive semi-de�nite (respectively de�nite)

matrix A are always real positive semi-de�nite (respectively de�nite)

values, indeed, by using the standard basis on Cn, z � ei : Aii = e
T
i Aei � 0

(respectively Aii > 0).

A matrix of the form A
y
A is always positive semi-de�nite, indeed

z
y
A
y
Az = kAzk2 � 0 by de�nition of norm.
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Properties of the OLS estimator

Assumptions: b = Hθ + ε, E [ε] = 0, and cov [ε] = �2I , N � p

Gauss-Markov theorem

The OLS estimator θ̂ is the unbiased linear estimator with minimum variance,

i.e., given any other unbiased linear estimator θ̂L = Cb, then

var
[
θ̂L

]
� var

[
θ̂
]

The OLS estimator θ̂ is the best linear unbiased estimator (BLUE), i.e., it has

minimum squared error:

E

[∥∥∥θ̂L � θ
∥∥∥2] � E

[∥∥∥θ̂ � θ
∥∥∥2]
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Properties of the OLS estimator

Proof.

For the �rst point: �rst we need an unbiased θ̂L. C can always be written as

C = H+ +D, for a suitable D:

E
[
θ̂L

]
= E [Cb] = E

[((
H
y
H

)�1
H
y +D

)
(Hθ + ε)

]
=

((
H
y
H

)�1
H
y +D

)
Hθ = (I +DH)θ

Hence θ̂L is unbiased i� DH = 0. Then:

var
[
θ̂L

]
= diag (cov [Cb]) = diag

(
Ccov [b]C y

)
= diag

(
�
2
CC

y
)

�
2
CC

y = �
2

((
H
y
H

)�1
H
y +D

)(
H

(
H
y
H

)�1
+D

y

)
= �

2
(
H
y
H

)�1
+ �

2
(
H
y
H

)�1
(DH)y + �

2
DH

(
H
y
H

)�1
+ �

2
DD

y

= cov
[
θ̂
]
+ �

2
DD

y

Since DDy is positive semi-de�nite, then var
[
θ̂L

]
� var

[
θ̂
]
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Properties of the OLS estimator

Proof.

The second point follows from the �rst, and from the fact that θ̂L and θ̂ are

unbiased.

var
[
θ̂L

]
� var

[
θ̂
]

∑
i

var
[
�̂L;i

]
= E

[∥∥∥θ̂L � E
[
θ̂L

]∥∥∥2] � E

[∥∥∥θ̂ � E
[
θ̂
]∥∥∥2] =

∑
i

var
[
�̂i

]
E

[∥∥∥θ̂L � θ
∥∥∥2] � E

[∥∥∥θ̂ � θ
∥∥∥2]
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Weighted least squares

Let us now consider the case: cov [b] = cov [ε] = Σ = �2
i
�ij (i.e. Σ is a diagonal matrix).

When the variances �2
i
have di�erent values, the random variable is called

heteroscedastic.

Without the homoscedasticity assumption, the Gauss-Markov theorem is not valid, but

the heteroscedastic b can be suitably corrected in order to become homoscedastic.

Let us de�ne the weight matrix W = 1
�2
i

�ij , and the weighted observations bw = W
1

2 b.

Accordingly: Hw = W
1

2H, εw = W
1

2 ε, and

cov [bw ] = cov [εw ] = cov
[
W

1

2 ε
]
= W

1

2 ΣW
1

2 = I ;

i.e., bw is homoscedastic.

Thus, the weighted LS estimator for the system bw = Hwθ + εw is BLUE:

θ̂ =
(
H
y
wHw

)�1
H
y
wbw =

(
HyWH

)�1
HyWb = H+

w b
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w b
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Weighted least squares

Heteroscedastic observations b with non-diagonal covariance are called autocorrelated.

The weighted LS estimator can be generalized to any positive de�nite covariance.

Lemma 1
A positive de�nite complex square matrix A is invertible. If A is positive semi-de�nite, but not

positive de�nite, it is not invertible.

Proof.
If A is positive de�nite, it has only non-zero eigenvalues: 8z 6= 0, Az 6= 0. Hence

dim (kerA) = 0, and A is full-rank. Therefore, A is invertible. Otherwise, if A is positive

semi-de�nite but not de�nite, it has a 0 eigenvalue and dim (kerA) 6= 0) A not invertible.

Lemma 2
The covariance matrix cov [b] of a sample b is positive de�nite and invertible i� for any

non-zero z, var
[
zyb

]
6= 0.

Proof.
Since the covariance is positive semi-de�nite by de�nition, it is invertible only if it is also

positive de�nite. If cov [b] is positive de�nite, then var
[
zyb

]
6= 0, indeed 0 6= zycov [b] z

= cov
[
zyb

]
= var

[
zyb

]
, since zyb is a scalar. Conversely, if for any non-zero z, var

[
zyb

]
6= 0,

then cov [b] is positive de�nite, hence invertible.
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Weighted least squares

If Σ = cov [b] is positive de�nite, its inverse can be factorized by Cholensky

decomposition as Σ�1 = ΩΩy, where Ω is an invertible lower-triangular matrix.

When the observations b are heteroscedastic but non-autocorrelated, then Ω = W
1

2 .

As above, let us de�ne weighted quantities bΩ = Ωyb, HΩ = ΩyH, εΩ = Ωyε

Generalized Weighted Least Squares
The weighted observations bΩ are homoscedastic and non-autocorrelated, therefore, the

weighted LS estimator for the system bΩ = HΩθ + εΩ is BLUE by Gauss-Markov theorem:

θ̂ =
(
H
y
ΩHΩ

)�1
H
y
Ωb
 =

(
HyΩΩyH

)�1
HyΩΩyb =

(
HyΣ�1H

)�1
HyΣ�1b = H+

Ω b

cov
[
θ̂
]
=

(
H
y
ΩHΩ

)�1
=

(
HyΩΩyH

)�1
=

(
HyΣ�1H

)�1

Proof.

E [εΩ] = E
[
Ωyε

]
= ΩyE [ε] = 0

cov [εΩ] = cov
[
Ωyε

]
= Ωycov [ε] Ω = ΩyΣΩ = Ωy

(
ΩΩy

)�1
Ω = Ωy

(
Ωy

)�1
Ω�1Ω = I .

The assumptions of the Gauss-Markov theorem are therefore satis�ed.
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Summary on the OLS estimator

Given a system b = Hθ + ε, with N observations, p parameters, rankH = p, E [ε] = 0,

cov [ε] = Σ positive de�nite, the OLS estimator is:

θ̂ =
(
HyΣ�1H

)�1
HyΣ�1b

(
=

(
HyH

)�1
Hyb when Σ = �2I

)
cov

[
θ̂
]
=

(
HyΣ�1H

)�1 (
= �2

(
HyH

)�1
when Σ = �2I

)

θ̂ is unbiased, i.e., E
[
θ̂
]
= θ.

The Gauss-Markov theorem states that θ̂ is the minimum variance estimator and the

best linear unbiased estimator (BLUE), i.e., if θ̂L is any other linear unbiased estimator:

var
[
θ̂L

]
� var

[
θ̂
]

E

[∥∥∥θ̂L � θ
∥∥∥2] � E

[∥∥∥θ̂ � θ
∥∥∥2] :

So far, so good! BUT when rankH < p, HyH is not invertible and θ̂ is not de�ned.

How to proceed then when rank (H) < p?
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Under-determined linear system

In this section we consider the case N < p and rank (H) = N, i.e. a

system with less equations than parameters.

The most general case (rank (H) � min (N; p), 8N and 8p) will be

treated later on.

Since b 2 CN and rank (H) = N, then rank (H) = rank
[(

H b
)]
,

and the undetermined system Hθ = b is consistent.

For the rank-nullity theorem dim (kerH) = p � N, therefore, there

exist nonzero vectors v 2 kerH; s.t. Hv = 0) H (θ + v) = Hθ = b,

i.e., the system has in�nite solutions.

The solution can be made unique by requiring that kθk2 = θyθ is

minimum.

Hence we have the following constrained optimization problem:{
θ̂ = argmin

θ
kθk2

g (θ) = Hθ � b = 0
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Under-determined linear system

{
θ̂ = argmin

θ
kθk2

g (θ) = Hθ � b = 0

The problem can be solved by using Lagrange multipliers. As for the the full-rank

system, we now treat only the system in the real �eld. The complex case will be treated

later on. Let us de�ne the Lagrangian function with the Lagrange multiplier λ 2 RN :

L (θ; �) = θTθ + λTg (θ) = θTθ + λT (Hθ � b)

The constrained problem becomes an unconstrained problem. Imposing the gradient is

zero, the constraint is directly included in the second equation:{
@L
@θ

= 2θ + HTλ = 0
@L
@λ

= Hθ � b = g (θ) = 0

Therefore: θ = � 1
2
HTλ) � 1

2
HHTλ = b) λ = �2

(
HHT

)�1
b, and �nally:

θ̂ = Hy
(
HHy

)�1
b

Transpose T has been substituted with conjugate transpose y, since the solution is

correct also in the complex �eld, as will be proved later on. HHy is invertible because it

is an N � N matrix and rank (H) = N.
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Under-determined linear system

LS solution of the underdetermined linear system

The system b = Hθ + ε, with N < p, rankH = N, E [ε] = 0, cov [ε] = �2I , has the following

LS solution:

θ̂ = Hy
(
HHy

)�1
b) cov

[
θ̂
]
= �2Hy

(
HHy

)�2
H

Furthermore, the norm
∥∥∥θ̂∥∥∥2 is minimum

Proof.
Theorem already proved, except for the covariance:

cov
[
θ̂
]
= cov

[
H+b

]
= cov

[
Hy

(
HHy

)�1
b

]
= Hy

(
HHy

)�1
cov [ε]

(
HHy

)�1
H =

= �2Hy
(
HHy

)�1 (
HHy

)�1
H = �2Hy

(
HHy

)�2
H
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Under-determined linear system

So far, only the case N � p, rank (H) = p, and the case N < p,

rank (H) = N have been treated.

If we de�ne the pseudo-inverse for the undetermined linear system

as H+ = Hy
(
HHy

)�1
, we see that HH+ = I and H+H 6= I .

For OLS we saw HH+ 6= I and H+H = I .

We will see that, in general, it might be HH+ 6= I and H+H 6= I , but

HH+H = H is always true.

The most general case is rank (H) = r � min (N; p), 8N and 8p.

The general case can be treated by means of a powerful technique:

Singular Value Decomposition.

A general solution will be found that reduces to those already

obtained for the two special cases discussed so far.

In the next section, Singular Value Decomposition will be introduced

and demonstrated.
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Review of linear algebra preliminary to SVD

Let be given A 2 CN�p, rank (A) = r � min (N; p).

Then, AyA 2 Cp�p, AAy 2 CN�N are semi-positive de�nite, and

rank
(
AyA

)
= rank

(
AAy

)
= r .

For the rank-nullity theorem:
dim

(
kerAyA

)
= p � r

dim
(
kerAAy

)
= N � r

Then, AyA has p � r orthogonal eigenvectors associated with the eigenvalue 0, and AAy

has N � r orthogonal eigenvectors associated with the eigenvalue 0.

Since AyA and AAy are Hermitian, they have an orthonormal basis of eigenvectors. E.g.:

AyAV = AyA
[

v1 : : : vp
]
=

= V


�2
1 � � � � � � 0
.
.
.

. . .
. . .

.

.

.
.
.
.

. . . �2
r

.

.

.

0 � � � � � � 0


p�p

= VΣ2
p

;

AAyU = AAy
[

u1 : : : uN
]
=

= U


�2
1 � � � � � � 0
.
.
.

. . .
. . .

.

.

.
.
.
.

. . . �2
r

.

.

.

0 � � � � � � 0


N�N

= UΣ2
N

Same symbols �2
i
have been used for both Σ2

N
and Σ2

p, indeed, as it will be proved in the

following, the eigenvalues of AyA and AAy are the same.
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Singular Value Decomposition

Singular Value Decomposition

Any matrix A 2 CN�p, of any rank r � min (N; p), can be factorized in
the form A = UΣV y,

Σ 2 RN�p is a diagonal matrix with r positive elements that can always be

ordered as �1 � �2 � : : : � �r ; �i are the so called singular values

U 2 CN�N and V 2 Cp�p are unitary matrices

U, V and Σ can be found by solving the eigenvalue problems AyAV = VΣ2

p

and AAyU = UΣ2

N , where Σ2

p = ΣyΣ and Σ2

N = ΣΣy.
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Singular Value Decomposition

Geometrical interpretation: rotation, scaling and rotation
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Singular Value Decomposition

Proof.

Let us �rst consider the case N � p. Any matrix A 2 CN�p is a linear application that is

completely de�ned by the values it takes on a given basis v1:::p of the domain Cp:
Av1 = �1u1

.

.

.

Avp = �pup

.
ui 2 C

N are unit vectors, �i � 0, and it is always possible to reorder the basis so that

the �i are in descending order.

A convenient choice of the basis is an orthonormal set of eigenvectors: AyAV = VΛ,
where Λ = �i�ij , and V = [v1 � � � vp] is unitary.

This choice implies that also Ũ = [u1 � � � up] are orthonormal. Indeed, if �i ;j 6= 0:

u
y
i
uj =

1

�i�j
v
y
i
AyAvj =

�j

�i�j
v
y
i
vj =

�j

�i�j
�ij )

{
i 6= j ) u

y
i
uj = 0

i = j ) u
y
i
uj = kuik

2 = 1

�i = �2
i
because each ui is a unit vector by construction.

When i > r , �i = 0, and it is always possible to complete [u1 � � � ur ] to [u1 � � � up] by
adding p � r orthonormal vectors however chosen (e.g., Gram-Schmidt).
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i
uj = kuik

2 = 1

�i = �2
i
because each ui is a unit vector by construction.

When i > r , �i = 0, and it is always possible to complete [u1 � � � ur ] to [u1 � � � up] by
adding p � r orthonormal vectors however chosen (e.g., Gram-Schmidt).
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Singular Value Decomposition

Proof.

We came up to: AV = A [v1 � � � vp] = [u1 � � � up]diag (�1 � � � �r 0r+1 � � � 0p) = ŨΣ̃.

Ũ can be completed to a basis of CN :

AV =
[
Ũ up+1 � � � uN

] [ Σ̃
0(N�p)�p

]
= UΣ

AV = UΣ) AVV y = UΣV y ) A = UΣV y

The eigenvalue problems for U, V and Σ can be derived as follows:

V yAyAV = ΣyUyUΣ = ΣyΣ = Σ2
p ) AyAV = VΣ2

p

AAy = UΣV yVΣyUy = UΣΣyUy = UΣ2
NU

y ) AAy = UΣ2
N

For the case N < p, let us de�ne N̄ = p and p̄ = N, and Ā = Ay 2 CN̄�p̄, N̄ > p̄:

Ā = ŪΣ̄V̄ y ĀyĀV̄ = V̄ Σ̄2
p̄ ĀĀyŪΣ̄2

N̄

AAyV̄ = V̄ Σ̄2
p̄ AyAŪΣ̄2

N̄

V̄ = U Ū = V Σ̄ = Σy

Ā = Ay = VΣyUy ) A = UΣV y
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V̄ = U Ū = V Σ̄ = Σy
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N̄
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Singular Value Decomposition

N � p ) A = UΣV y =

( u1 � � � uN )


�1 � � � � � � � � �
.
.
.

. . .
.
.
.

.

.

. �r
.
.
.

� � � � � � � � � 0(p�r)�(p�r)

0(N�p)�p


 v

y
1
.
.
.

v
y
p



N < p ) A = UΣV y =

( u1 � � � uN )


�1 � � � � � � � � �
.
.
.

. . .
.
.
.

.

.

. �r
.
.
. 0N�(p�N)

� � � � � � � � � 0(N�r)�(N�r)


 v

y
1
.
.
.

v
y
p


Alternative expression of the SVD

A = UΣV y =
r∑

i=1

�iuiv
y
i 8A 2 CN�p;8N; 8p
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Introduction to the general LS solution

For N � p and rank (H) = r = p, the OLS solution of the inconsistent system b = Hθ

is θ̂ =
(
HyH

)�1
Hyb = H+b. A corrected observation vector b̂ = Hθ̂ is de�ned, s.t. the

cost function � =
∥∥∥b� b̂

∥∥∥2 =
∥∥∥b� Hθ̂

∥∥∥2 is minimum.

When r < min (N; p), the rank-nullity theorem implies dim (kerH) = p � r > 0.

Hence, 9v0 6= 0 : Hv0 = 0.

Therefore, � =
∥∥∥b� Hθ̂

∥∥∥2 =
∥∥∥b� H

(
θ̂ + v0

)∥∥∥2 and the LS problem has an in�nite

number of solutions.

The solution can be made unique and it will be shown that:

General SVD pseudo-inverse

The general form of the pseudo-inverse of H = UΣV y is H+ = VΣ+Uy.

The unique LS solution θ̂ = H+b is s.t. both
∥∥∥b� Hθ̂

∥∥∥2 and
∥∥∥θ̂∥∥∥2 are minimum.

HH+H = H is always true, but H+H = I or HH+ = I do not hold in general.

OLS : r = p � N ) H+ =
(
HyH

)�1
Hy, r = N < p ) H+ = Hy

(
HHy

)�1
.

HH+ = (HH+)y, H+H = (H+H)y
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General LS solution

General SVD pseudo-inverse

The general form of the pseudo-inverse of H = UΣV y is H+ = VΣ+Uy.

The unique LS solution θ̂ = H+b is s.t. both
∥∥∥b� Hθ̂

∥∥∥2 and
∥∥∥θ̂∥∥∥2 are minimum.

HH+H = H is always true, but H+H = I or HH+ = I do not hold in general.

OLS : r = p � N ) H+ =
(
HyH

)�1
Hy, r = N < p ) H+ = Hy

(
HHy

)�1
.

HH+ = (HH+)y, H+H = (H+H)y

Remark: as it will be shown, the pseudo-inverse of Σ, Σ+ is obtained by transposing Σ
and by replacing the elements of the diagonal with the reciprocals of their respective

nonzero elements of Σ. E.g.:

Σ =


3 0 0

0 2 0

0 0 0

0 0 0

) Σ+ =

 1/3 0 0 0

0 1/2 0 0

0 0 0 0


N � p; r = p ) Σ+Σ = I ;

N � p; r = N ) ΣΣ+ = I ;

r < min (N; p)) Σ+Σ 6= I , and ΣΣ+ 6= I , but ΣΣ+Σ = Σ is always true.

ΣΣ+ = (ΣΣ+)T = Σ+T

ΣT ; Σ+Σ = (Σ+Σ)T = ΣTΣ+T
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General LS solution

An explanatory example on Σ and Σ+

If Σ is N � p, then Σ+ is p � N, Σ+Σ is p � p and ΣΣ+ is N � N. E.g.:

Σ =


3 0 0

0 2 0

0 0 0

0 0 0

 ; Σ+ =

 1=3 0 0 0

0 1=2 0 0

0 0 0 0

 ; ΣΣ+ =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


Matrices in the same form as ΣΣ+, with only 0 and 1, can be called selection matrices

of rank r , and denoted by the symbol I rn , where the superscript denotes rank, while the

subscript denotes dimensions. Hence, ΣΣ+ = I r
N
and Σ+Σ = I rp ; obviously,

tr (ΣΣ+) = tr (Σ+Σ) = r . In this example ΣΣ+ = I 24 .
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General LS solution

Proof.

H = UΣV y =
r∑

i=1

�iuiv
y
i

Unitarity: v
y
i
vj = u

y
i
uj = �ij

j > r ) Hvj =
r∑

i=1

�iuiv
y
i
vj = 0) vj are an orthonormal basis of kerH.

Cost function with SVD: kb� Hθk2 =
∥∥b� UΣV yθ

∥∥2 =
∥∥Uyb� ΣV yθ

∥∥2
By de�ning y � V yθ and c � Uyb:

kb� Hθk2 = kc� Σyk2 =
r∑

i=1

jci � �iyi j
2 +

p∑
i=r+1

jci j
2.

The cost function is minimum for yi = ci=�i , i = 1; : : : ; r :

y =


c1/�1

.

.

.

cr/�r
0

 ; c =


c1
.
.
.

cN

 = Uyb =


u
y
1
.
.
.

u
y
N

 b
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General LS solution

Proof.
The cost function is minimum for yi = ci=�i , i = 1; : : : ; r :

V yθ � y =


u
y
1

/
�1

.

.

.

u
y
r

/
�r

0

 b = Σ+Uyb

θ̂ = V y = VΣ+Uyb =
r∑

i=1

1
�i
viu

y
i
b.

Any other solution can be written in the form: θ̂ + vker =
r∑

i=1

u
y
i
b

�i
vi+

p∑
i=r+1

aivi .

Since i � r ; j > r ) v
y
i
vj = 0, then θ̂?vker )

∥∥∥θ̂ + vker

∥∥∥2 =
∥∥∥θ̂∥∥∥2 + kvkerk

2 �
∥∥∥θ̂∥∥∥2
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General LS solution

Remark 1

In general the pseudoinverse A+ of a matrix A is exactly the inverse A�1 when A is

invertible, i.e. when A is a full-rank square matrix.

Indeed, be A = UΣV y and A+ = VΣ+Uy; since A is square, both Σ and Σ+ are square;

since A is full-rank, all the diagonal elements of both Σ and Σ+ are non-zero, hence

ΣΣ+ = Σ+Σ = I .

Thus:

AA+ = UΣV yVΣ+Uy = UΣΣ+Uy = UIUy = I

A+A = VΣ+UyUΣV y = VΣ+ΣV y = VIV y = I
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General LS solution

Remark 2

In general (AB)+ 6= B+A+, but for some special cases the equality holds true.

Later on, the following inverses should be expressed as a function of U, Σ and V :(
HyH

)�1
for H 2 CN�p; rankH = p � N;(

HHy
)�1

for H 2 CN�p; rankH = N � p;(
HyH

)�1
=

(
HyH

)+
= H+H+y and

(
HHy

)�1
=

(
HHy

)+
= H+yH+ are valid.

Indeed, in the �rst case, HyH =
(
VΣTUy

) (
UΣV y

)
= VΣTΣV y, and

H+H+y =
(
VΣ+Uy

) (
UΣ+TV y

)
= VΣ+Σ+TV y

Since Σ is N � p, and all the elements on the main diagonal are non-zero, then

ΣTΣ = Σ2
p = diag

(
�2
1 � � ��

2
p

)
. Similarly, Σ+Σ+T = Σ+2

p = diag
(
1=�2

1 � � � 1=�
2
p

)
. Hence

Σ2
pΣ

+2
p = Σ+2

p Σ2
p = I .

With these expressions it is easy to verify that

H+H+y = VΣ+Σ+TV y =
(
HyH

)�1
=

(
HyH

)+

Similarly, it can be proved that:

H+yH+ = UΣ+TΣ+Uy =
(
HHy

)�1
=

(
HHy

)+
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Remark 2

In general (AB)+ 6= B+A+, but for some special cases the equality holds true.

Later on, the following inverses should be expressed as a function of U, Σ and V :(
HyH

)�1
for H 2 CN�p; rankH = p � N;(

HHy
)�1

for H 2 CN�p; rankH = N � p;(
HyH

)�1
=

(
HyH

)+
= H+H+y and

(
HHy

)�1
=

(
HHy

)+
= H+yH+ are valid.

Indeed, in the �rst case, HyH =
(
VΣTUy

) (
UΣV y

)
= VΣTΣV y, and

H+H+y =
(
VΣ+Uy

) (
UΣ+TV y

)
= VΣ+Σ+TV y

Since Σ is N � p, and all the elements on the main diagonal are non-zero, then

ΣTΣ = Σ2
p = diag

(
�2
1 � � ��

2
p

)
. Similarly, Σ+Σ+T = Σ+2

p = diag
(
1=�2

1 � � � 1=�
2
p

)
. Hence

Σ2
pΣ

+2
p = Σ+2

p Σ2
p = I .
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HyH

)�1
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HyH
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Proof.

HH+H = UΣV yVΣ+UyUΣV y = UΣΣ+ΣV y = UΣV y = H

N � p; r = p ) Σ+Σ = I ) H+H = VΣ+UyUΣV y = VΣ+ΣV y = VV y = I ;

N � p; r = p )
(
HyH

)�1
Hy =

(
HyH

)+
Hy = VΣ+Σ+TV yVΣTUy = VΣ+Uy

N � p; r = N ) ΣΣ+ = I ) HH+ = UΣV yVΣ+Uy = UΣΣ+Uy = UUy = I ;

N � p; r = N ) H
y
(
HH

y
)�1

= H
y
(
HH

y
)+

= VΣTUyUΣ+TΣ+Uy = VΣ+Uy

Proof that HH+ = (HH+)y, H+H = (H+H)y is now obvious

General SVD pseudo-inverse

The general form of the pseudo-inverse of H = UΣV y is H+ = VΣ+Uy.

The unique LS solution θ̂ = H+b is s.t. both
∥∥∥b� Hθ̂

∥∥∥2 and
∥∥∥θ̂∥∥∥2 are minimum.

HH+H = H is always true, but H+H = I or HH+ = I do not hold in general.

OLS : r = p � N ) H+ =
(
HyH

)�1
Hy, r = N < p ) H+ = Hy

(
HHy

)�1
.

HH+ = (HH+)y, H+H = (H+H)y
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General LS solution

Example
With Matlab, the SVD can be obtained by using the command [U, S, V] = svd(H)
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General LS solution

An explanatory example on V

In the following we will have to deal with product of the form V yVr or V
y
r V , where Vr is

the matrix formed by taking the �rst r columns of V , hence it is useful to visualize these

products. If V is p � p:

V yVr =




1 0 0

0
. . . 0

0 0 1


r�r(

0 � � � 0

0 � � � 0

)
(p�r)�r

 =

[
Ir
0(p�r)�r

]

V
y
r V =




1 0 0

0
. . . 0

0 0 1


r�r


0 0
.
.
.

.

.

.

0 0


r�(p�r)

 =
[
Ir 0r�(p�r)

]

They can be called expansion or selection matrices and denoted by the symbol Ip�r or

Ir�p. Obviously, entirely similar results apply to U.
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Geometrical interpretation of LS

Let us de�ne the residual: r = b� Hθ̂ = b� HH+
b =

(
I � HH+

)
b = PH?b

Let us also de�ne PHk = (I � PH?) = HH+

PH? and PHk are orthogonal projections

It is straightforward to prove they are

idempotent and symmetric

PH?PH? = PH?, PHkPHk = PHk idempotency

PH?
y = PH?, PHk

y = PHk symmetry

Also PH?PHk = 0

Since PHkb = Hθ̂, PHk projects b onto column space C (H) of H

PH? projects b onto space C? (H) orthogonal to C (H)

The residual r accounts for the observed component of b that are not accounted

for by the model Hθ̂
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Geometrical interpretation of LS

Since r = PH?b, PH? is also called residual maker matrix.

Also PH?H =
(
I � HH+

)
H = H � HH+H = H � H = 0.

Hence, r = PH?b = PH? (Hθ + ε) = PH?ε

Thus, the cost function is � = krk2 = r
y
r = εyPy

H?PH?ε = εyPH?ε

The expected value can be computed easily:

E
[
�

(
θ̂
)]

= E
[
εyPH?ε

]
= E

[
tr
(
εyPH?ε

)]
= E

[
tr
(
PH?εε

y
)]

=

= tr
(
PH?E

[
εεy

])
= tr (PH?cov [ε]) = tr

(
PH?�

2
I
)
= �

2trPH?

trPH? = tr
(
IN � HH

+
)
= tr

(
IN � UΣΣ+

U
y
)
= N � tr

(
Σ+

U
y
UΣ

)
=

= N � tr
(
Σ+Σ

)
= N � trI rp = N � r

Estimator of �2

If �2 is not known a priori, an unbiased estimator can be obtained from the residual:

�̂
2 =

�

(
θ̂
)

N � r
=

∥∥∥r (θ̂)∥∥∥2
N � r

) E
[
�̂
2
]
=

E
[
�

(
θ̂
)]

N � r
=

�2 (N � r)

N � r
= �

2
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Hence, r = PH?b = PH? (Hθ + ε) = PH?ε

Thus, the cost function is � = krk2 = r
y
r = εyPy

H?PH?ε = εyPH?ε

The expected value can be computed easily:

E
[
�

(
θ̂
)]

= E
[
εyPH?ε

]
= E

[
tr
(
εyPH?ε

)]
= E

[
tr
(
PH?εε

y
)]

=

= tr
(
PH?E

[
εεy

])
= tr (PH?cov [ε]) = tr

(
PH?�

2
I
)
= �

2trPH?

trPH? = tr
(
IN � HH

+
)
= tr

(
IN � UΣΣ+

U
y
)
= N � tr

(
Σ+

U
y
UΣ

)
=

= N � tr
(
Σ+Σ

)
= N � trI rp = N � r

Estimator of �2

If �2 is not known a priori, an unbiased estimator can be obtained from the residual:

�̂
2 =

�

(
θ̂
)

N � r
=

∥∥∥r (θ̂)∥∥∥2
N � r

) E
[
�̂
2
]
=

E
[
�

(
θ̂
)]

N � r
=

�2 (N � r)

N � r
= �

2
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Properties of the general LS estimator

Covariance of the general LS estimator
1 For the general LS estimator, when cov [ε] = �2I :

θ̂ = VΣ+Uyb) cov
[
θ̂
]
= �2VΣ+Σ+TV y

2 When N � p, and rankH = p (OLS):

θ̂ =
(
HyH

)�1
Hyb) cov

[
θ̂
]
= �2

(
HyH

)�1
3 When N < p, and rankH = N:

θ̂ = Hy
(
HHy

)�1
b) cov

[
θ̂
]
= �2Hy

(
HHy

)�2
H

The general covariance expression 1 yields the same values as the particular expressions 2 and

3, valid under the speci�ed assumptions.
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Properties of the general LS estimator

Proof.
1 cov [b] = cov [ε] = �2I )

cov
[
θ̂
]
= cov

[
H+b

]
= cov

[
VΣ+Uyb

]
= VΣ+Uycov [ε]UΣ+TV y = �2VΣ+Σ+TV y

2 cov
[
θ̂
]
= �2

(
HyH

)�1
= �2

(
HyH

)+
= �2VΣ+UyUΣ+TV y = �2VΣ+Σ+TV y

3 cov
[
θ̂
]
= �2Hy

(
HHy

)�1 (
HHy

)�1
H =

�2VΣTΣ+TΣ+Σ+TΣ+ΣV y = �2VΣ+ΣΣ+Σ+TΣ+ΣV y

Since ΣΣ+ = I when rankH = N, we get

�2VΣ+Σ+TΣ+ΣV y = �2VΣ+Σ+TΣTΣ+TV y = �2VΣ+Σ+TΣTΣ+TV y =

= �2VΣ+
(
ΣΣ+

)T
Σ+TV y = �2VΣ+Σ+TV y
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Properties of the general LS estimator

Is the Gauss-Markov theorem valid for the general LS estimator θ̂ = VΣ+Uy
b?

Gauss-Markov theorem assumptions:

Homoscedasticity: OK (always attainable by using weigths)

LS estimator is unbiased: let's check...

E
[
θ̂
]
= E

[
VΣ+

U
y
b

]
= E

[
VΣ+

U
y (Hθ + ε)

]
= E

[
VΣ+

U
y
(
UΣV yθ + ε

)]
=

= VΣ+ΣV yθ + VΣ+
U
yE [ε] = VΣ+ΣV yθ

If r = rankH = p then Σ+Σ = I ) E
[
θ̂
]
= θ but in general, for any r, E

[
θ̂
]
6= θ

Gauss-Markov is not valid for the general LS estimator, hence in general θ̂ is not

BLUE.

We will see how, for any rank r , it is always possible to extract r independent

BLUE estimators from θ̂.
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Generalized Gauss-Markov theorem

C (H) and R (H) are respectively the column space and the row space of the matrix H.

dimC = dimR = rankH = r

Any vector λy 2 R (H) can be written as λy = ayH , λ = Hya for some a, i.e.,

λy 2 R (H), λ 2 C
(
Hy

)
Statement of the theorem (proof will require an additional theoretical framework):

Generalized Gauss-Markov theorem
Given any system b = Hθ + ε with N equations and p unknown parameters, s.t.

E [ε] = 0 and cov [ε] = �2IN .

Be r = rankH � min (N; p) and θ̂ = H+b = VΣ+Uyb the generalized LS estimator.

Be λy
i
; i = 1 � � � r , any set of linearly independent vectors 2 R (H).

Then, λy
i
θ̂ are unbiased minimum variance estimators of λy

i
θ and are BLUE.

The theorem states that it is always possible to �nd at most r linear combinations of

the components of θ̂, which are BLUE estimators.

There are in�nite possible choices of λy
i
.
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Estimable linear functions

De�nition of estimable linear function

A linear function � (θ) � λyθ of the unknown parameter θ is estimable if, given observations b

s.t. E [b] = E [Hθ + ε] = Hθ, there exists an unbiased linear estimator ayb for some a, s.t.

E
[
ayb

]
= λyθ.

Lemma on the estimability of linear functions

A linear function � (θ) � λyθ is estimable i� λy 2 R (H), i.e. i� 9a s.t. λy = ayH.

Proof.

If λy = ayH, then:

E
[
ayb

]
= ayE [b] = ayHθ = λyθ

If E
[
ayb

]
= λyθ, then:

E
[
ayb

]
= ayHθ = λyθ; 8θ ) ayH = λy
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If λy = ayH, then:

E
[
ayb

]
= ayE [b] = ayHθ = λyθ

If E
[
ayb
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[
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Estimable linear functions

Lemma: uniqueness of the unbiased estimator

If a linear function � (θ) � λyθ is estimable, there exists a unique unbiased estimator a
y
k
b, s.t.

ak 2 C (H), and E
[
a
y
k
b
]
= λyθ

Proof.
Existence:

Since λyθ is estimable, 9a 2 CN , s.t. λy = ayH, and E
[
ayb

]
= λyθ.

a = PHka+ PH?a = ak + a?, where ak 2 C (H) and a? 2 C? (H).

E
[
a
y
?b

]
= a

y
?Hθ = ayP

y
H?H = ayPH?H = 0 (a? is orthogonal to the columns of H).

λyθ = E
[
ayb

]
= E

[
a
y
k
b
]
+ E

[
a
y
?b

]
= E

[
a
y
k
b
]
.

Uniqueness:

If 9ck 2 C (H), s.t. E
[
c
y
k
b
]
= λyθ, then 0 = E

[
a
y
k
b
]
� E

[
c
y
k
b
]
=

(
ak � ck

)y
Hθ; 8θ.(

ak � ck
)y
H = 0)

(
ak � ck

)
2 C? (H); but, by assumption:

(
ak � ck

)
2 C (H)

The only vector that is in both C (H) and C? (H) is
(
ak � ck

)
= 0, then ak = ck.
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Estimable linear functions

Lemma: estimator of minimum variance

The unique unbiased estimator a
y
k
b has minimum variance, i.e., for any other unbiased

estimator ayb s.t. E
[
ayb

]
= λyθ, then var

[
ayb

]
� var

[
a
y
k
b
]
.

The unique unbiased estimator a
y
k
b is BLUE, i.e. E

[∣∣ayb� λyθ
∣∣2] � E

[∣∣∣ay
k
b� λyθ

∣∣∣2].

Proof.

Each vector a de�ning an unbiased estimator for λyθ can be written as a = ak + a?,

where ak is unique by the previous lemma.

var
[
ayb

]
= aycov [b] a = �2 kak2 = �2

(∥∥ak∥∥2 + ka?k
2
)
=

= var
[
a
y
k
b
]
+ �2 ka?k

2 � var
[
a
y
k
b
]
:

var
[
ayb

]
= E

[∣∣ayb� E
[
ayb

]∣∣2] = E
[∣∣ayb� λyθ

∣∣2], and BLUEness follows from the

�rst part of the lemma.
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Estimable linear functions

Lemma: de�nition of the unbiased estimator

The unique unbiased estimator a
y
k
b for λyθ, where λy = a

y
k
H 2 R (H) is de�ned as

a
y
k
b = λyθ̂, where θ̂ is the general LS estimator θ̂ = H+b = VΣ+Uyb.

Proof.

Since ak 2 C (H) and ak = PHkak:

a
y
k
b = a

y
k
P
y
Hk

b = a
y
k
PHkb = a

y
k
Hθ̂ = λyθ̂:
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Generalized Gauss-Markov theorem

We can now easily prove the:

Generalized Gauss-Markov theorem
Given any system b = Hθ + ε with N equations and p unknown parameters, s.t.

E [ε] = 0 and cov [ε] = �2IN .

Be r = rankH � min (N; p) and θ̂ = H+b = VΣ+Uyb the generalized LS estimator.

Be λy
i
; i = 1 � � � r , any set of linearly independent vectors 2 R (H).

Then, λy
i
θ̂ are unbiased minimum variance estimators of λy

i
θ and are BLUE.

Proof.

Since dimR (H) = rankH = r , it is possible to arbitrarily choose at most r linearly

independent vectors λy
i
2 R (H) ; i = 1 � � � r .

For each λy
i
, the estimable linear function �i (θ) � λy

i
θ can be de�ned.

By all the previous lemmas, λy
i
θ̂ is the unbiased, minimum variance, and BLUE

estimator of λy
i
θ.
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Generalized Gauss-Markov theorem

Covariance of the generalized Gauss-Markov estimator
Let us de�ne Λ = [λ1 � � � λr ]. Hence, the generalized Gauss-Markov estimators can be

collected in the single expression Λyθ̂.

In general, cov
[
Λyθ̂

]
= Λycov

[
θ̂
]
Λ = �2ΛyVΣ+Σ+TV yΛ.

The expression of covariance depends on the arbritrary choice of Λ. Some choices of Λ
yield particularly simple expressions of covariance.

Since θ 2 Cp, if r = p, then dimR (H) = p, and it is possible to choice the standard

basis λi = ei ) Λyθ̂ = θ̂, whose covariance was already obtained: �2
(
HyH

)�1
.

By noticing that R (H) = R
(
HyH

)
, it is possible to choose λy

i
= a

y
i
HyH, ai 2 C (H).

Let us de�ne A = [a1 � � � ar ]) Λy = AyHyH. The covariance is then

cov
[
Λyθ̂

]
= cov

[
AyHyHH+b

]
= �2AyHyHH+

(
HyHH+

)y
A =

= �2AyHyHH+HH+HA = �2AyHyHA

If Λ = Vr , where Vr are the �rst r columns of V , the covariance is diagonal, and V
y
r θ̂

are the principal components of θ̂:

cov
[
Λyθ̂

]
= �2V

y
r VΣ+Σ+TV yVr = �2Ir�pΣ

+Σ+T Ip�r = �2diag
(
1=�2

1 � � � 1=�2
r

)
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Generalized Gauss-Markov theorem

Remark on Vr

λ 2 R (H). Are we con�dent that the columns v of Λ = Vr are in R (H)?

v are eigenvectors of HyH, i.e.

H
y
Hv = �v = H

y (Hv)

The last equality makes it clear that v is a linear combination of the colums of

Hy, where the coe�cients of the combination are the components of the vector

Hv. Hence v 2 C
(
Hy

)
Since C

(
Hy

)
� R (H), it is proved that v 2 R (H).
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Generalized Gauss-Markov theorem

Example
Let us consider the following system:

Hθ =


1 1 0

1 1 0

1 0 1

1 0 1


 �1

�2
�3

 =


b1
b2
b3
b4



Clearly, it is r = rankH = 2. SVD yields the following matrices:

U =


�0:5 �0:5 �0:5 �0:5

�0:5 �0:5 0:5 0:5

�0:5 0:5 0:5 �0:5

�0:5 0:5 �0:5 0:5

 V =

 �8:165 0 �0:5774

�0:4082 �0:7071 0:5774

�0:4082 0:7071 0:5774



Σ =


2:4495 0 0

0 1:4142 0

0 0 0

0 0 0

 Σ+ =

 0:4082 0 0 0

0 0:7071 0 0

0 0 0 0



F. Santoni (UPG) Lectures on Least Squares Methods Part I 80 / 82



Generalized Gauss-Markov theorem

Example
Let us consider the following system:

Hθ =


1 1 0

1 1 0

1 0 1

1 0 1


 �1

�2
�3

 =


b1
b2
b3
b4


Clearly, it is r = rankH = 2. SVD yields the following matrices:

U =


�0:5 �0:5 �0:5 �0:5

�0:5 �0:5 0:5 0:5

�0:5 0:5 0:5 �0:5

�0:5 0:5 �0:5 0:5

 V =

 �8:165 0 �0:5774

�0:4082 �0:7071 0:5774

�0:4082 0:7071 0:5774



Σ =


2:4495 0 0

0 1:4142 0

0 0 0

0 0 0

 Σ+ =

 0:4082 0 0 0

0 0:7071 0 0

0 0 0 0



F. Santoni (UPG) Lectures on Least Squares Methods Part I 80 / 82



Generalized Gauss-Markov theorem

Example
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�2
�3

 =
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b1
b2
b3
b4


Let us assume θ = [1 1 1]y, hence b0 = Hθ = [2 2 2 2]y.

The LS estimator yields θ̂ = VΣ+Uy =
[
1:3̄ 0:6̄ 0:6̄

]y
, and b̂0 = [2 2 2 2]y.

Thus,
∥∥b0 � b̂0

∥∥2 = 0 is e�ectively minimized, but even without noise, it is not possible

to estimate parameters correctly, since the system is under-determined.

But if check principal components: V
y
r θ = [�1:633 0]y and V

y
r θ̂ = [�1:633 0]y,

perfectly matching.
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�2
�3

 =
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b1
b2
b3
b4


We add Gaussian noise with � = 0:1: b = b0 + ε = [1:9196 2:0697 2:0835 1:9756]y.

The LS estimator yields θ̂ = VΣ+Uy = [1:3414 0:6532 0:6882]y, with covariance:

cov
[
θ̂
]
= �2VΣ+Σ+TV y =

 0:0011 0:0006 0:0006

0:0006 0:0028 �0:0022

0:0006 �0:0022 0:0028


Principal components: V

y
r θ = [�1:633 0]y and V

y
r θ̂ = [�1:6429 0:0247]y, with:

cov
[
V
y
r θ̂

]
= �2V

y
r VΣ+Σ+TV yVr = �2diag

(
1=�2

1 � � � 1=�2
r

)
=

[
0:0017 0

0 0:0050

]
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