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Abstract—Lung cancer is the leading cause of cancer death.
More than 238,340 new cases of lung cancer patients are
expected in 2023, with an estimation of more than 127,070
deaths. Choosing the correct treatment is an important element
to enhance the probability of survival and to improve patient’s
quality of life. Cancer treatments might provoke secondary
effects. These toxicities cause different health problems that
impact the patient’s quality of life. Hence, reducing treatments
toxicities while maintaining or improving their effectivenes is
an important goal that aims to be pursued from the clinical
perspective.
On the other hand, clinical guidelines include general knowledge
about cancer treatment recommendations to assist clinicians.
Although they provide treatment recommendations based on
cancer disease aspects and individual patient features, a statistical
analysis taking into account treatment outcomes is not provided
here. Therefore, the comparison between clinical guidelines with
treatment patterns found in clinical data, would allow to validate
the patterns found, as well as discovering alternative treatment
patterns.
In this work, we have analyzed a dataset containing lung cancer
patients information including patients’ data, prescribed treat-
ments and their outcomes. Using a Chi-square test and K-Modes
clustering algorithm in combination with Pattern Discovery
metrics we identify patterns, within the clusters, based on cancer
stage and treatment outcomes. Obtained results are analyzed
based on statistical and clinical relevance and compared with
lung cancer clinical guidelines. The comparison reveals that all
patterns found coincide with clinical guidelines recommendations,
assessing the validity of the proposed method for pattern discov-
ery in a clinical dataset.
Index Terms—Cancer treatment, Machine learning, Clustering,
Pattern Discovery

I. INTRODUCTION

Among the different types of cancer, lung cancer (LC) has
a high mortality being the leading cause of cancer death.
From the estimation of cases that will be in 2023, more than
238,340 new cases are expected to be of LC patients, with an
estimation of more than 127,070 deaths [1]. Although survival
of patients has significantly increased (”NSCLC 2-year relative
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survival increased from 34% for persons diagnosed during
2009 through 2010 to 42% during 2015 through 2016”) [2]),
greater efforts to improve screening methods and treatments
are still needed in order to improve patient’s survival and
quality of life.

Choosing the correct treatment is an important element to
enhance the probability of survival and to improve patient’s
quality of life. Cancer treatments might provoke secondary
effects. Variability found in patient’s toxicities depend on
several factors such as cancer stage and combination of treat-
ments [3]. These toxic outcomes can endanger the homeostatic
equilibrium of the body, causing different health problems
that impact patient’s quality of life. Hence, it is important to
reduce treatments toxicities while maintaining or improving
their effectiveness. Thus, clinical guidelines aim to collect
knowledge and best practices from oncologists proposing
recommendations in order to improve clinical practices for LC
treatment. Nevertheless, although LC clinicians are expected
to adopt these clinical recommendations [4], [5], the inter and
intrapatients’ variability of response to the different combi-
nations of treatments, makes it is necessary to personalize
different treatment-patterns on certain cases.

The identification of patterns on both the patients that have
been treated following the standard of care, or outside it, would
allow to identify potential treatment recommendations based
on the patient characteristics. As part of the so-called ”Preci-
sion Medicine”, some previous works have used data-driven
approaches to analyze how similarities and di-similarities in
patient’s profiles can affect cancer treatment outcomes [6]–
[8]. Within these approaches, descriptive machine learning
models can assist in result interpretation since these models
describe the represented domain in a meaningful manner, both
for humans and computers. Based on descriptive models, other
works have used a classifier to describe cluster groups based
on specific variable values [9]. On the other hand, more recent
works have tried to describe clusters using Treemaps [10] or
by computing the mode of clusters variables [11]. Another



work proposes the combination of subgroup discovery and
hierarchical clustering to obtain groups of frequent patterns
and select the most relevant patterns for describing each cluster
[12]. However, all these approaches lack validation of obtained
cluster descriptions. For that reason, in this paper we have
used K-Modes [13], a descriptive and unsupervised machine
learning method for finding patient and treatment patterns. In
this way, patterns from clusters with similar properties are
identified and validated against clinical treatment recommen-
dations. Nevertheless, clustering methods require the selection
of data features and identification of the adequate number
of clusters while providing meaningful interpretation of data
contained withing the clusters.
In order to overcome these limitations, we propose a way of
selecting data features through a statistical hypothesis test to
analyze the optimal number of clusters through a variance ratio
criterion, fully implemented in K-Modes Python Library [13].
Then, resulting clusters are filtered to obtain statistically and
clinically relevant groups, by identifying patterns associated
to each cluster and computing pattern-related metrics for each
cluster. Thus, patterns identified are used to provide inter-
pretability to the data contained on each cluster. Additionally,
discovered patterns have been compared with clinical guide-
lines as a reference for evaluating results and for identifying
new potential treatments. The clinical information about the
patients was provided by Hospital Universitario Puerta de
Hierro - Majadahonda and it is the result of previous work
extracting clinical information from electronic health records
[14], [15].

II. MATERIALS AND METHODS

A. Data adquisition and preprocessing

In this study we exploit the structured information about
1,242 patients included in a dataset provided by the Medical
Oncology Department at Puerta de Hierro University Hospital
(HUPHM). It contains a detailed description of the diagnosis
and treatment phases, as well as personal and medical data
recorded during anamneses. The information comes from the
Electronic Health Records (EHRs) and is structured as follows:

• Patient information: demographic information, medical
history and diagnosis information. Only cancer initial
stage variable was considered in this study.

• Treatments: chemotherapy, radiotherapy, surgery, im-
munotherapy and drugs. A deeper description is presented
later on this paper (section II-B).

• Outcomes: cancer relapses and toxicities associated to the
treatments were taken into account for this study. They
are presented in a binary form as can be seen in the
section II-B.

During the initial exploratory analysis we detected some
irrelevant information, missing values and data inconsistencies
that were fixed or removed. This study is focused on NSCLC,
so data related to other cancer or histologic types was removed.
Also, patients who did not receive any treatment and patients
whose toxicity was unknown were discarded as they do not add

any relevant medical information. In addition, as temporality
is a key factor in our analysis, we cleaned data focusing on
treatment and diagnostic dates. Particularly, we checked that a
patient’s treatments have the corresponding dates associated,
or at least the starting date, as well as the coherency of
dates (i.e. starting date must be previous to end date, and
diagnostic date must be previous to treatment date). Therefore,
after carrying out a cleaning process eliminating irrelevant or
erroneous information, the number of patients was reduced
from 1,242 to 652.

B. Data description

This study aims to characterize lung cancer patients, focussing
on the initial stage of their tumors and the first treatment they
received, to find treatment patterns of clinical interest based
on treatment outcomes. Accordingly, a subset of variables was
selected from the original dataset described below.
Cancer initial stage was selected from patient information.
This variable follows the TNM staging system of the American
Joint Committee on Cancer [16] where different cancer stages
are identified depending on tumor size and organs affected
by metastasis. TNM estadification system was updated from
version 7 [17] to version 8 [16] in January 2017, but the dataset
refers to the stages established in both versions.
Table I shows distribution of patients across different cancer
initial stages and treatments, in the form of a cross table. It
can be clearly seen that our dataset presents patients in all
stages, but it is not balanced.
Regarding treatments presented in Table I, we observe five
different types: chemotherapy (CT), chemotherapy and radio-
therapy concurrencies (CT - RT), surgery (SUR), targeted oral
therapy (also named as Drugs) which is intended to treat
patients with driver mutations, and immunotherapy (Imm),
which prevents PD-1 from binding to PD-L1, making the
T-lymphocyte able to detect and reduce tumor cells. In the
analysis, the type, date, purpose, and application information
about the treatments were considered.
According to their intention, we can find curative surgeries
(SURCurat), which are oriented to remove all malignant
tissue, and palliative surgeries (SURPallia), targeted to reduce
symptoms. Similarly, we can distinguish between palliative
chemotherapy (CTPallia), which is aimed to improve symp-
toms and prolong survival and neoadjuvant chemotherapy
(CTNeoAdj), applied before any local treatment to reduce the
tumor size. Moreover, radiotherapy can be differentiated into
palliative radiotherapy (RTPallia), which aimed to improve
symptoms and prolong survival, and radical radiotherapy
(RTRad), employed to cure the disease and/or maintain the
function of the organ.
Chemotherapy and radiotherapy concurrencies (CT-RT) are
classified as: Neoadjuvant chemotherapy - radiotherapy (CT−
RTNeoadj) or Radical chemotherapy - radiotherapy (CT −
RTRadical). CT − RTNeoadj refers to the combination of
treatments aimed to reduce the tumor size before surgery
or a radical treatment while CT − RTRadical denotes the
combination of treatments aimed to reduce the tumor size and



TABLE I: Cross table for first treatment received per cancer stage

IA IB IIA IIB IIIA IIIB IIIC IV IVA IVB Total
SUR Curat 13,65% 10,74% 5,21% 6,13% 8,74% 0,77% 0,00% 1,38% 0,31% 0,31% 47,24%
CT Pallia 0,00% 0,00% 0,00% 0,46% 0,77% 3,22% 1,07% 5,83% 5,37% 6,29% 23,01%
CT NeoAdj 0,00% 0,15% 0,31% 0,31% 8,13% 2,15% 0,00% 0,31% 0,00% 0,00% 11,35%
Drugs 0,00% 0,15% 0,00% 0,00% 0,31% 0,15% 0,00% 2,30% 0,77% 2,76% 6,44%
CT-RT Rad 0,00% 0,00% 0,00% 0,00% 1,53% 1,99% 0,15% 0,15% 0,00% 0,00% 3,83%
Imm 0,00% 0,00% 0,00% 0,15% 0,00% 0,00% 0,00% 1,07% 0,77% 1,84% 3,83%
RT Rad 0,15% 0,31% 0,00% 0,31% 0,31% 0,00% 0,00% 0,15% 0,15% 0,00% 1,38%
RT Pallia 0,00% 0,00% 0,00% 0,00% 0,31% 0,15% 0,15% 0,00% 0,46% 0,15% 1,23%
CT-RT NeoAdj 0,00% 0,00% 0,00% 0,00% 0,46% 0,00% 0,00% 0,00% 0,15% 0,00% 0,61%
SUR Pallia 0,15% 0,15% 0,00% 0,00% 0,15% 0,00% 0,00% 0,15% 0,00% 0,00% 0,61%
CT-RT Adj 0,00% 0,00% 0,00% 0,00% 0,00% 0,31% 0,00% 0,00% 0,00% 0,00% 0,31%
CT-Refract NeoAdj 0,00% 0,00% 0,00% 0,00% 0,00% 0,15% 0,00% 0,00% 0,00% 0,00% 0,15%

curate it. Furthermore, we can find Drugs, which are aimed
to attack a specific mutation, and immunotherapy (IMM ),
which aims to target PD-L1 mutation.

TABLE II: Treatments outcome description
Outcome Percentage

Yes Prog-Rel, No Tox 40,49%
No Prog-Rel, No Tox 38,03%
Yes Prog-Rel, Yes Tox 14,88%
No Prog-Rel, Yes Tox 6,59%

In order to describe the outcomes, two binary variables
(have/not have) related to the first treatment were selected:
toxicities and progression/relapse. As can be seen in Table II
a large proportion (∼79%) of the population do not have
toxicities associated to initial treatments considered, where
almost half (∼47%) of these treatments consist of curative
surgery with reduced secondary effects (see Table I). On the
other hand, progression-relapses are quite balanced.

C. Clinical guidelines

Clinical guidelines include recommendations intended to opti-
mize patient care and therefore guidelines are essential to assist
clinicians in lung cancer treatment. These guidelines define
a set of treatment paths, where recommendations depend on
cancer disease aspects and individual features for a concrete
patient. Table III describes the aspects present in the guidelines
we have considered [18]–[25].

TABLE III: Aspects checked in clinical guidelines
Aspect Description Answers
Surgery (SUR) Can surgery be performed? Yes

No
Resectable (RES) Is the tumor resectable? Yes

No
Potentially

Mutations (MUT) Patient with driver mutations? Yes
No

We have defined a rule representation of clinical guidelines
paths to ease the comparison with the patterns obtained in this
paper. Thus, we propose a representation using the following
general notation:

STAGE (ASPECT )︸ ︷︷ ︸
antecedent

→ [TREATMENT LIST ]︸ ︷︷ ︸
consequent

(1)

The notation in (1) states that the list of treatments in the
consequent is advised when the antecedent is met, in terms
of cancer stage and cancer aspects (see Table III). Thus for
example, the following rule:

I (SUR? : Y ES) → [CT, SUR] (2)
Advises that, when tumor is in stage 1 (2) and is possible
to perform surgery (SUR? : YES), then apply two treatments,
one after another: first apply chemotherapy (CT), then perform
surgery (SUR).
On the other hand, clinical guidelines also specify treatments
within the different options, that must be applied jointly but
in two different ways: concurrently or sequentially. Examples
of these treatment applications can be seen in the following
stage III rules:
III (RES? : NO) → [conc(CT +RT ), DRUGS] (3)

III (RES? : NO) → [seq(CT +RT )] (4)

The first rule (3) advises that, if tumor is in stage III and tumor
is not resectable (RES? : NO), apply two treatments, one after
another: the first one a concurrent application (conc(. . . )) of
chemotherapy (CT) and radiotherapy (RT), then apply targeted
oral therapy (DRUGS). The second rule (4) advises that, if
tumor is in stage III and tumor is not resectable, then use
one treatment consisting on a sequential application (seq(. . . ))
of chemotherapy (CT) and radiotherapy (RT). Based on this
notation, the full set of clinical guidelines paths we have
obtained, is listed on the right most column in Table V,
grouped by cancer stage.

D. Machine Learning methods

Different types of cluster analysis methods are found in
literature [26]. We can distinguish partitioning methods (de-
noted as flat) which optimize assignment of objects into a
certain number of clusters, and methods for hierarchical cluster
analysis with graphical outputs which make assignment of
objects into different numbers of clusters. In the first group,
k-centroids and k-medoids methods are used for disjunctive
clustering. The former is based on initial assignment of the
objects into k clusters. For this purpose, k initial centroids
are selected which are the geometric centers of the k clusters.
After that, the distances of each object from all centers are
calculated to assign each cluster object to the closest centroid.
Later, centroids are updated based on assignment of objects



to clusters. In a next step, the distances from each object to
all centroids are re-calculated again, and if an object is found
to be closer to the centroid of a different cluster, the object is
re-assigned to that cluster. This process is repeated a number
of given iterations or while objects can be re-assigned.
On the other hand, hierarchical clustering methods can be clas-
sified as agglomerative (step-by-step clustering of objects and
groups to larger groups) or divisive (step-by-step splitting of
the whole set of objects into the smaller subsets and individual
objects). Furthermore, we can distinguish monothetic (only
one variable is considered in individual steps) and polythetic
(all variables are considered in individual steps) clustering.
Among the different methods described, we have used
partitioning-based clustering adapted to categorical data due
to the nature of the variables present in the clinical dataset
used (see Section II-B). Concretely, the selected method is
K-Modes, where distance between categories is measured
by means of special coefficients based on the chi-square
dissimilarity measure [26].
We have combined K-Modes with the use of WRAcc
(Weighted Relative Accuracy), a quality measure from Pattern
Discovery methods [27]. According to this metric, statistically
significant clusters that fulfill a given target property are
found. Thus, we defined the clustering target based on two
binary variables of the input dataset (i.e. disease progression-
relapse and toxicity). In this way, our target contains the
information of both binary variables, i.e. Progression −
Relapse=[YES/NO] & Toxicity=[YES/NO], obtaining four
different targets as a result of the combination of variables
values. A sub-population fulfilling each target is defined and
clustering using K-Modes is perform for each one. For the
clusters obtained, WRAcc is described as the balance between
the group coverage and its accuracy gain, and can be computed
for each subgroup as follows:

WRAcc(G,T ) = p(G)× (p(T & G)− p(T )) (5)

where term p(G) represents the subgroup coverage computed
as the probability of belonging to a particular subgroup G. On
the other hand, term p(T&G) - p(T) represents the accuracy
gain, where p(T) is the probability of fulfilling the cluster input
target T and p(T&G) is the probability of jointly being part of
a particular subgroup G and fulfilling the input target T.
Finally, we have relied on p-value statistical measure as a
clustering filtering criterion which is calculated using the Chi
Square statistical test [28]. Thus, the combination of p-value
along with the WRAcc metric, described before, enables the K-
Modes method to discover statistically and clinically relevant
clusters in the medical field [29].
Clustering analysis has been implemented using K-modes
Python library [13]. This library allows to handle the major-
ity of K-Modes parameters found in literature. Furthermore,
WRAcc and p-value were calculated following general formu-
lation described in literature.
In order to find most promising patterns using K-Modes, we
have define the following process. Initially, we perform feature
selection using chi-square test of independence in order to

verify that our variables are related with each sub-population
target, and select only those having p-value below 0.05. Then,
we make combinations of the selected variables in order to
evaluate K-Modes to find the optimal number of clusters.
This is assessed using Calinski-Harabasz (CH) score, since
it has been proposed as a well suited metric to identify the
best cluster configuration as the one with the highest CH
score [30]. Each cluster centroid can be considered as a
pattern that fulfills the target of the sub-population analyzed.
In order to compare cluster patterns with clinical guidelines,
cluster centroids are extended with the mode, within the
cluster, of Initial Cancer stage or First Treatment variables.
In this way, obtained patterns are ensured to contain the main
driver variables used for treatment recommendations in clinical
guidelines. Then, obtained patterns are filtered using a WRAcc
threshold greater than 0.0 in order to avoid patterns with small
coverage or insufficient accuracy gain. The described analysis
is performed for each of the four targets mentioned before,
obtaining four sets of patterns. Finally, the four pattern sets are
statistically filtered using a p-value measure lower or equals
than 0.05. In this way and as mentioned before, we combine
the WRAcc pattern metric and the p-value statistical measure
to filter clusters, and obtain the most reliable patterns of each
set [25].

III. RESULTS

This section describes the results obtained after applying
K-Modes to the clinical dataset considered (Section II-B).
Table IV shows clusters and CH measures obtained for all
combinations of target variables, as described in Section II-D.
According to Table IV, First Treatment, Toxicity and
Prog/Rel variables are chosen for Prog=NO Tox=NO and
Prog=YES Tox=NO targets, whereas Initial Stage, Toxicity
and Prog/Rel variables are selected for Prog=NO Tox=YES
and Prog=YES Tox=YES targets. Thus, the selected combi-
nations of variables are used to perform clustering for each
specific target.
Table V shows discovered patterns stating the relation between
LC stage and initial prescribed treatments along with disease
progression-relapse and treatment toxicity. Thus, Table V gath-
ers the patterns found (second and third columns), progression-
relapse and toxicity information (fourth and fifth columns),
WRAcc and p-value measures (sixth and seventh columns)
and clinical guidelines recommendations (eighth column) ac-
cording to notation described in Section II-C. Additionally,
subgroups and clinical guidelines paths are grouped by cancer
stage.
Looking at patterns found for stage I, the association pre-
sented SURCurat as first treatment and the target no pro-
gression/relapse - no toxicities. In addition, the association
has reported a p-value significantly below 5.0e − 02, which
can be statistically considered as highly significant subgroup.
Moreover, the high WRAcc value obtained indicates a strong
dependence between the subgroup pattern and the associated
target. According to clinical guidelines, if the surgery is
possible at stages I or II, the application of CTNeoAdj before
surgery will be optional depending on tumor characteristics.



TABLE IV: Variables combination and Calinski-Harabasz score

Target
Prog=No Tox=No Prog=No Tox=Yes Prog=Yes Tox=No Prog=Yes Tox=Yes

Idx Variables Nº Clust CH Score Nº Clust CH Score Nº Clust CH Score Nº Clust CH Score
0 [First Treatment, Toxicity, Prog/Rel] 5 591.42 6 1.0 8 818.83 6 282.37
1 [Cancer Stage, Toxicity, Prog/Rel] 7 553.18 6 119.91 8 569.51 5 357.8
2 [First Treatment, Cancer Stage, Toxicity, Prog/Rel] 3 97.69 6 18.18 5 59.19 3 24.35

TABLE V: Cluster patterns and Clinical Guidelines recommendations

Stage I
Patterns Target Measures

Index Cancer stage First Treatment Progression/Relapse Toxicity WRAcc p-value Clinical guidelines

1 IA SURCurat NO NO 4.9 % 1.62e− 03
I (SUR? : YES) → [CT, SUR]
I (SUR? : NO) → [RT, CT]

Stage III
Patterns Target Measures

Index Cancer stage First Treatment Progression/Relapse Toxicity WRAcc p-value Clinical guidelines

2 IIIA SURCurat YES NO 1.86 % 6.68e− 04 III (RES? : YES) → [CT]
IIIA (RES? : POT) → [CT, SUR]
III (RES? : POT) → [conc(CT+RT), SUR]
III (RES? : NO) → [conc(CT+RT), DRUGS]
III (RES? : NO) → [seq(CT+RT)]

3 IIIA CTNeoAdj NO YES 1.0 % 4.86e− 04

4 IIIB CT - RTRadical YES YES 0.63 % 3.63e− 03

Stage IV
Patterns Target Measures

Index Cancer stage First Treatment Progression/Relapse Toxicity WRAcc p-value Clinical guidelines

5 IV CTPallia YES NO 1.64 % 3.03e− 04 IV (MUT? : YES) → [DRUGS]
IV (MUT? : YES) → [conc(DRUGS+CT)]
IV (MUT? : YES) → [seq(DRUGS+CT)]
IV (MUT? : NO) → [conc(DRUGS+CT)]
IV (MUT? : NO) → [conc(CT+IMM)]
IV (MUT? : NO) → [IMM]

6 IV CTPallia YES YES 0.85 % 1.6e− 02

7 IVA CTPallia YES YES 0.76 % 2.6e− 02

8 IVB Drugs YES YES 0.83 % 7.9e− 04

Thus, the subgroup obtained for stage I agrees with clinical
guidelines recommendations.
For stage III, three patterns were obtained using K-modes.
Pattern 2 and Pattern 3 have reported SURCurat and CTNeoAdj

as first treatment respectively in IIIA cancer stage. However,
Pattern 2 developed progression-relapse on the cancer status
without toxicities as a side effect, since SURCurat can not
produce any toxicity; meanwhile, Pattern 3 did not develop
progression-relapse on the cancer status but develop toxicities
as a side effect. On the other hand, Pattern 4 has reported CT
- RTRadical as first treatment in IIIB cancer stage, as well
as developing progression-relapse on the cancer status and
toxicities as a side effect. All these patterns have reported a
p-value below 1.0e−02, which can be considered statistically
relevant, being Pattern 2 and Pattern 3 the most significant ones
since they provided the lowest p-values. Moreover, Pattern 2
has the highest WRAcc value indicating a stronger Pattern-
target dependence than the others. All Pattern found for stage
III match with clinical guidelines since Pattern treatments are
also suggested as treatment recommendations.
For stage IV, four Patterns are obtained from Cluster analysis.
Pattern 5, Pattern 6, and Pattern 7 have reported CTPalliat as
the first treatment and developed progression-relapse on the
cancer status. Toxicity information is not shared among them,
but as Pattern 5 has a higher WRAcc value, this outcome is
more reliable as it shows higher subgroup-target dependence
than the others. Pattern 8 has reported Drugs as first treatment,

which according to clinical guidelines, is prescribed when
patients have driver mutations. This subgroup has developed a
progression-relapse in the cancer status and toxicities as a side
effect. In addition, all these patterns have reported a p-value
below 1.0e−02, which can be considered statistically relevant,
being Pattern 5 and Pattern 8 the most significant ones since
they provided the lowest p-values.

IV. CONCLUSIONS

In this work we have proposed a method based on K-Modes
clustering to find clinically relevant patterns considering pa-
tient profiles, treatments prescribed and their outcomes. Clus-
tering has proven to be useful for identifying, within our cohort
of patients, treatment patterns of high clinical interest, taking
treatment results as a reference. Even with an unbalanced
toxicity distribution, most of the patterns show toxicity as an
outcome. In addition, discovered patterns have been compared
with clinical guidelines as a reference for evaluating results
and for identifying new potential treatments.
The comparison reveals that for stage I, surgery is the first
prescribed treatment in agreement with clinical recommenda-
tions. This group did not developed progression-relapses on
the cancer status nor toxicities as a side effect. Several studies
have demonstrated that curative-intent surgery, when coupled
with regional lymph node examination, is generally associated
with the best long-term overall survival in patients with early-
stage NSCLC [31].



Stage III NSCLC is a heterogeneous and complex disease
that could be classified into subgroups: resectable, potentially
resectable and unresectable locally advanced NSCLC [4].
In patients with potentially resectable disease, the optimal
treatment strategy remains unclear. Several phase III trials
and a meta-analysis showed that induction therapy followed
by surgery might be better than surgery alone [32]. Alos,
obtained results reveal that chemotherapy and surgery are
prescribed as first treatments for stage III. Although the
patterns are in line with guidelines recommendations, different
progression-relapse and toxicity outcomes were found for the
recommended treatments.
Regarding stage IV, agreement with clinical guidelines is
observed in most of the cases since chemotherapy and targeted
oral therapy are prescribed as initial treatments. Also, different
progression-relapse and toxicity targets were found in these
subgroups, but in most of the cases progression-relapse and
toxicities were obtained.
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