

CLEANKER

This project has received funding from the European Union's Horizon 2020 Framework Programme under GA n^o 764816

Clean clinker production via calcium looping process

CLEANKER is a Horizon 2020 project that will demonstrate the integrated calcium looping process at TRL 7, in a new demo system connected to the 1300 kton/year cement plant, operated by Buzzi Unicem, in Vernasca (Piacenza, Italy).

Main Features:

Starting date: October 1st 2017 Duration: 48 months

- Two cement producers
- One technology provider

Number of partners: 13 from five EU member states plus Switzerland and China Budget: 9.237.851 € EC contribution: 8.972.201 € Chinese government funding: 265.650 € Coordinator: LEAP scarl - Laboratory of Energy and Environment Piacenza

- One SME
- One environmental association
- Eight universities/research
- organizations

Concept

Integrated configuration (to be tested in Vernasca cement plant)

- CO₂ from kiln flue gases captured in the carbonator;
- The calciner of the CaL process is oxy-fired (in the full-scale plant the oxy-fired CaL calciner will act also as pre-calciner).

 Q_{out} is the heat made available by cooling (1) the calciner flue gases; (2) the calcined raw meal to be used in the carbonator; (3) the CO_2 -poor gases exiting the carbonator and (4) the kiln flue gases. Q_{in} is the heat required for (1) fresh raw meal pre-heating up to the carbonation temperature; (2) if applicable, further fresh raw meal pre-heating beyond the carbonation temperature.

Integration of the Demonstrator within the existing cement plant (Vernasca)

Objective	Key indexes	Target		
CO ₂ emissions	 CO₂ capture efficiency CO₂ specific emissions 	 Cement plant CO₂ capture efficiency >90% Negative direct CO₂ emissions by biomass co-firing (Bio-CCS) Beduction of total CO specific emissions (kg per top of total) 	WP1 - Management	
		cement) >85%	WP2 – Demonstration system design	WP3 – Demonstration of CaL process
Economics	 Cost of cement Cost of CO₂ avoided 	 Increase of cement cost < 25 €/t_{cement} Cost of CO₂ avoided <30 €/t_{CO2} 		
Main CLEANKER targets			WP4 – Comparative characterization of raw meals for CaL	WP5 – Process integration and modelling
Core activity: design, construction and operation of a calcium looping				

demonstration system.

Other activities:

(i) screening of different raw meals to assess their properties as CO_2 sorbent; (ii) reactors and process modelling; (iii) scale-up study; (iv) economic analysis; (v) LCA; (vi) CO_2 transport, storage and utilization study; (vii) demonstration of the complete value chain, including mineral carbonation of waste ash; (viii) exploitation study for the demonstration of the technology at TRL>7.

Poster - contacts: <u>martina.fantini@polimi.it</u> <u>matteo.romano@polimi.it</u> <u>lbuzzi@buzziunicem.it</u> volker.hoenig@vdz-online.de Web site: www.cleanker.eu

Follow us on:

Laboratorio Energia e Ambiente Piacenza

LEAP - contacts: Prof. Stefano Consonni Dr. Eng. Martina Fantini Dr. Eng. Maurizio Spinelli