CLEAN clinKEF by calcium looping for low-CO₂ cement

CLEA NKER

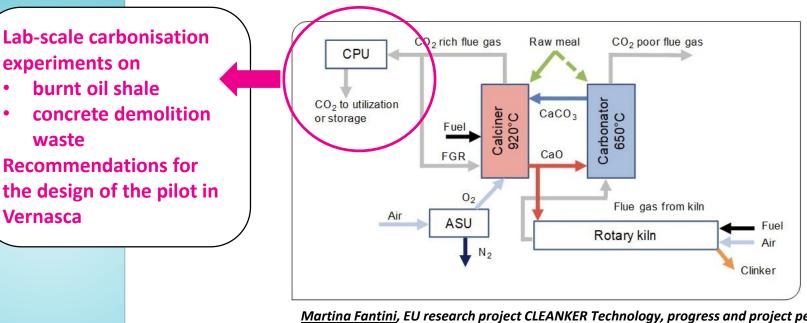
BARSRECCS-ENOS V meno Tallinn, Sept. 26, 20 CO₂ mineralization in cement sector: Lab scale experiments on burnt oil shale and concrete demolition wastes

<u>Mai Uibu</u>, Mustafa Cem Usta,

Kadriann Tamm, Anastassia Zuravljova, Juha Kallas, Rein Kuusik, Andres Trikkel Tallinn University of Technology

Layout

- Background
 - CLEANKER Project
 - Mineral Carbonation
 - Oil shale sector in Estonia
- Characterization of the materials
- Identifying the most promising materials for CO₂ capture
- Methodology of wet carbonisation
- Results
- Conclusion



CLEANKER project

CLEAN clinKEE by calcium looping for low-CO, cement

CLE

Background: CLEANKER project

<u>Martina Fantini</u>, EU research project CLEANKER Technology, progress and project perspectives, 17th October 2018, Brussel - Belgium ECRA/CEMCAP/CLEANKER Workshop "Carbon Capture Technologies in the Cement Industry"

Objective	Key indexes	Target
		 Cement plant CO₂ capture efficiency >90% Negative direct CO₂ emissions by biomass co-firing (Bio-CCS) Reduction of total CO₂ specific emissions (kg_{CO2} per ton of cement) >85%*
Economics	 Cost of cement Cost of CO₂ avoided 	 Increase of cement cost < 25 €/_{tcement} Cost of CO₂ avoided <30 €/t_{CO2}

Framework Programme of the European Union

CLEAN clinKER by calcium looping for low-CO, cement

CLE

Background: Mineral carbonation

- <u>Natural minerals</u>
- Mg-silicates: olivine, serpentine

+ Long storage time and large capacity

Large amount of mineral required (mining, transport)
1.6-3.7 t per 1 t CO₂

- Increased costs!

- Slow natural reaction (additives, extreme conditions)

• <u>Waste residues</u> from power plants, steel and cement industry

• Ca-silicates, CaO, Ca(OH)₂

CLEAN clinKER by calcium looping for low-CO, cemer

CLE

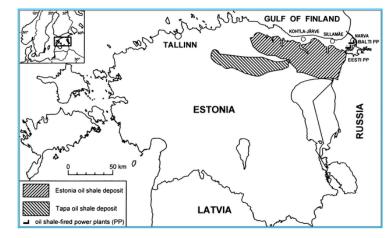
KER

+ Situated near the CO₂
emission source (No mining)
+ More reactive towards CO₂!
- Limited storage capacity

Further points:

- + Stabilization of wastes
- + Commercial by-products

Co-funded by the Horizon 2020


Framework Programme of the European Union

4

Background: Oil shale sector in Estonia

Estonian oil shale industry in 2016 [1]:

- Sales revenue: 742 mil. EUR
- Oil shale used: 15.2 Mt
- Energy content: 8 MJ/kg
- The lowest level on energy imports in EU - 8.9% dependent in 2014 [2]

CLEAN clinKEE by calcium looping for low-CO, cement

CLE

KER

Problem:

Ash produced: 7.0 Mt 95% of the ash generated is not utilized CO_2 generated: 11.5 Mt

[1] – Eesti Energia (2016). Annual Report 2016

[2] – Eesti Energia (2015). Estonian oil shale industry yearbook 2015

CLEANKER project

The aim of the study

- To study wastes (burnt oil shale BOS and concrete demolition wastes CDW) as sorbents in CO₂ wet mineralization process
 - To identify the most promising materials for CO₂ capture
 - To specify reaction kinetics and operating parameters for a scale up
- The mineralization pilot is planned to use CO₂ captured from the Calooping demo system in Vernasca Cement Plant. The re-carbonated wastes will be tested via concrete casting in order to demonstrate the quality of the commercial product in the following stages of the CLEANKER project.

ramework Programme of the European Union

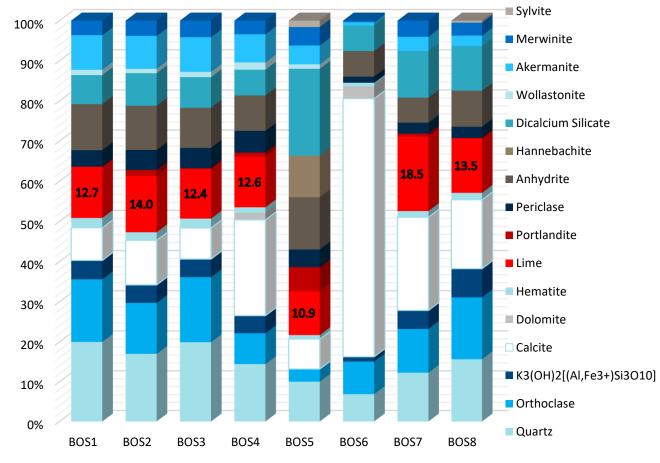
CLEAN clinKEE by calcium looping for low-CD, cemer

CLE

CLEAN clinKEE by calcium looping for low-CO, cement

ER

Characterization of the Materials

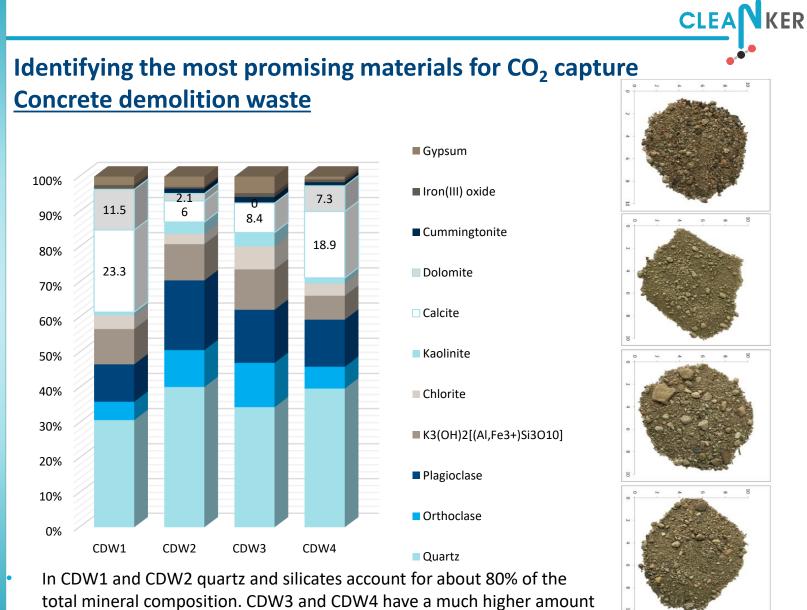

	d _{mean} [μm]	Std.Dev. [μm]	SSA [m²/g]
1. Burnt oil shale (Estonia)			
BOS1 (CFB ESPA from Eesti PP)	37.32	27.00	2.87
BOS2 (CFB total ash from Eesti PP)	44.02	38.47	3.12
BOS3 (CFB ESPA from Balti PP)	41.18	31.59	3.10
BOS4 (CFB total ash from Balti PP)	50.62	46.45	2.82
BOS5 (PF DeSOx)	14.85	11.73	1.77
BOS6 (total ash from Enefit 280)	280.8	420.64	2.55
BOS7 (CFB total ash from Auvere PP)	25.46	35.26	3.84
BOS8 (CFB ESPA from Auvere PP)	20.98	16.61	6.05
2. Concrete Demolition Wastes (Italy)			
CDW 1	0-8 mm sand		
CDW 2			
CDW 3			
CDW 4			

- Burnt oil shale delivered by AS Eesti Energia:
- from <u>Auvere PP, Eesti PP, Balti PP</u>, Enefit280
- Concrete demolition wastes CDW1 and CDW2 fromI.L.C. s.r.l (Rondissone, TO)
- Concrete demolition wastes CDW3 and CDW4 from Isoltrasporti (Isola Sant'Antonio, AL)

Framework Programme of the European Union

Identifying the most promising materials for CO₂ capture <u>Burnt oil shale</u>

Oil shale ashes delivered by AS Eesti Energia: from Auvere PP, Eesti PP, Balti PP, Enefit280, PF DeSOx


CLEANKER project

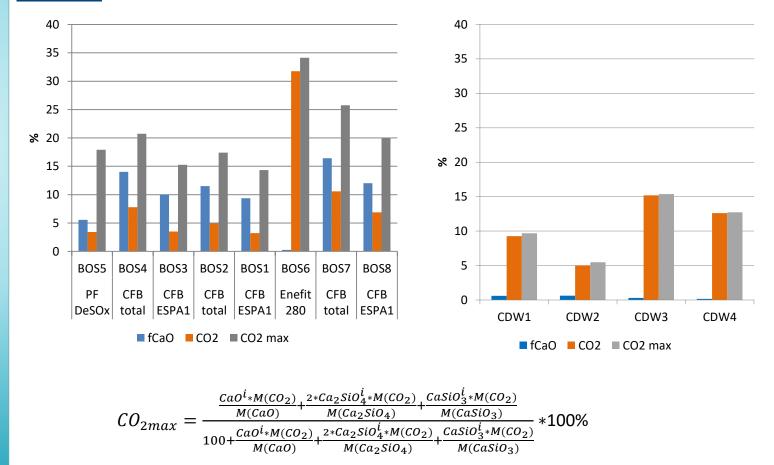
CLEAN clinKER by calcium looping for low-CO, cement

CLEA

KER

Co-funded by the Horizon 2020 Framework Programme of the European Union

of carbonates against a lower content of silicates.

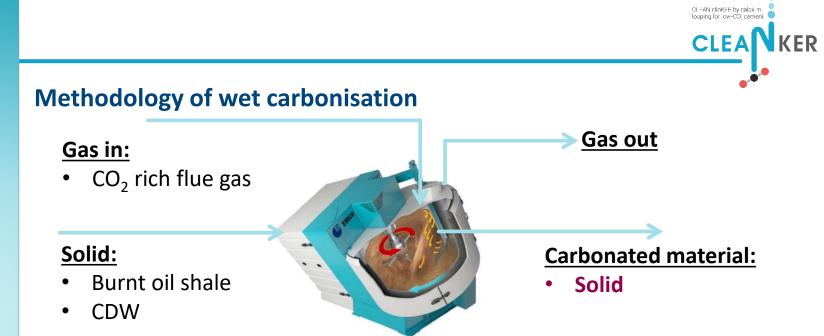

Framework Programme of the European Union

CLEANKER project

CLEAN clinKER by calcium looping for low-CO, cement

Identifying the most promising materials for CO₂ capture:

Free lime and CO₂ content of initial materials and max possible CO₂ content



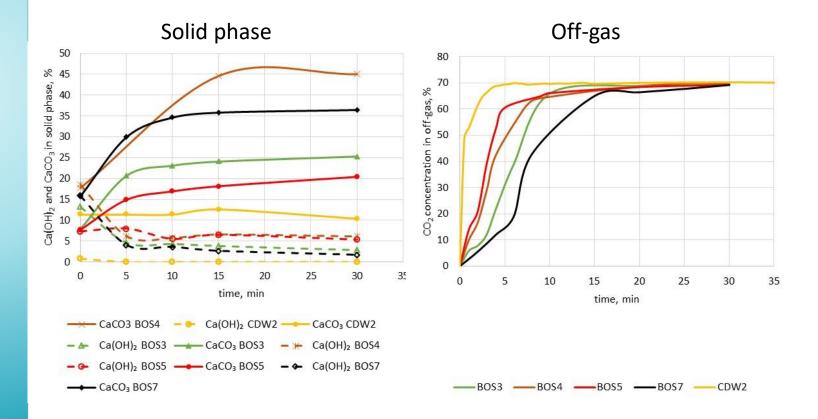
CLEANKER project

Co-funded by the Horizon 2020 Framework Programme of the European Union CLEAN clinKEE by calcium looping for low-CO, cement

CLE

Water:

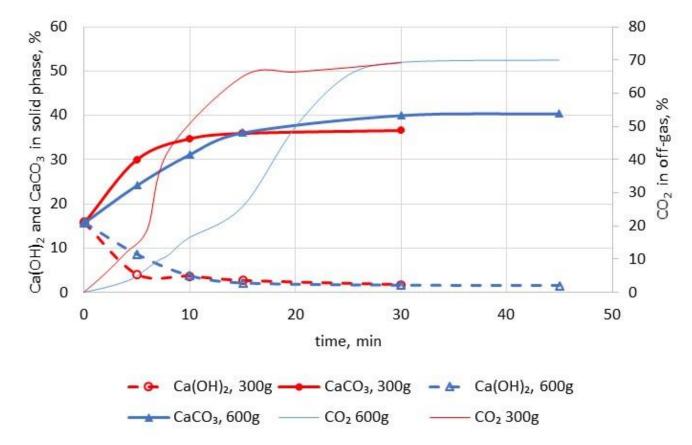
• Wet route: liquid to solid ratio = 0.2


Sample	Explanation	CO ₂ % in gas	V(gas), L/h	m(ash), g	Rotation speed, rpm
Burnt oil shale					· F · · ·
BOS1	Eesti PP ESPA1	20→70	30→200	200	300→3000
BOS2	Eesti PP total	20→70	30→200	200	300→3000
BOS3	Balti PP ESPA1	20→70	30→400	200→600	300→3000
BOS4	Balti PP total	20→70	30→200	200	300→3000
BOS5	DeSOx	20→70	30→200	200	300→3000
BOS6	Enefit280 total	20	100	200	3000
BOS7	Auvere PP ESPA1	20→70	30→400	200→600	300→3000
BOS8	Auvere PP total	20→70	30→200	200	300→3000
Concrete demolition wastes					
CDW2	l.L.C. s.r.l (Rondissone, TO)	20→70	30→200	200	300→3000

Framework Programme of the European Union

Wet carbonation of different samples

70% CO₂ in model gas, Vgas = 200 L/h, m(ash) =300 g, 300 rpm, L/S=0.2

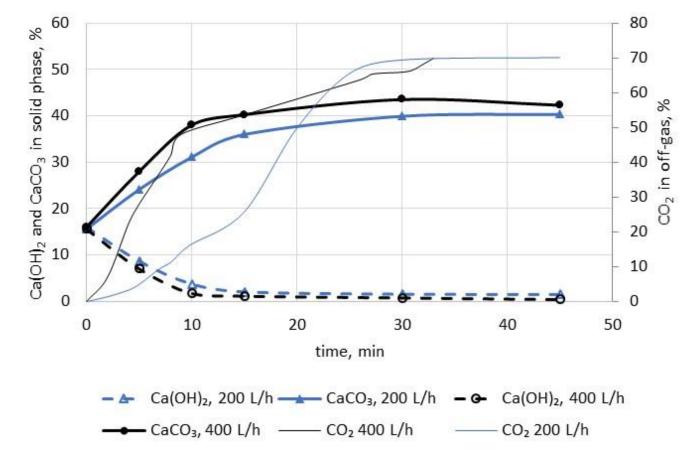

CLEANKER project

Co-funded by the Horizon 2020 Framework Programme of the European Union CLEAN clinKEE by calcium looping for low-CO, cement

CLEA

The effect of sample mass in 1 L reactor

70% CO₂ in model gas, Vgas = 400 L/h, 300 rpm, L/S=0.2


CLEANKER project

Co-funded by the Horizon 2020 Framework Programme of the European Union CLEAN clinKEE by calcium looping for low-CO, cement

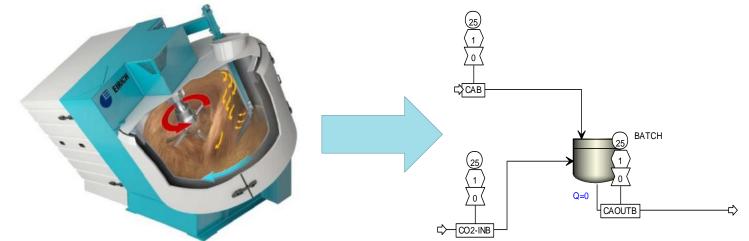
CLEA

The effect of gas flow rate in 1 L reactor

70% CO₂ in model gas, m(ash) = 600 g, 300 rpm, L/S=0.2

Framework Programme of the European Union

CLEANKER project


14

CLEAN clinKEE by calcium looping for low-CO, cement

CLEA

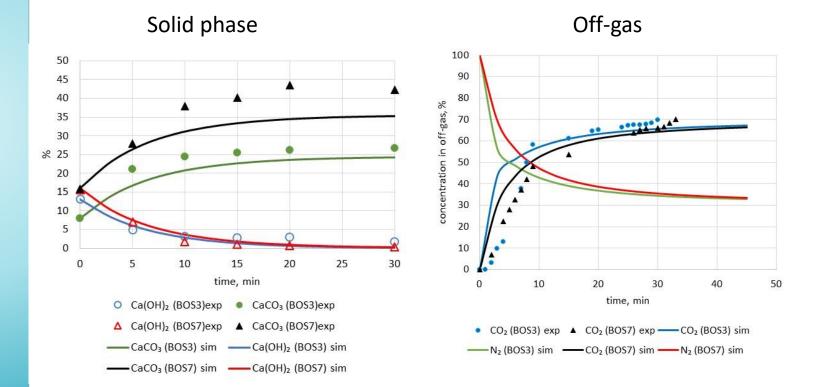
Results: Kinetic reaction model

No	Stoichiometry	k
1	$CO_2(MIXED) + H_2O(MIXED) \rightarrow HCO^{3-}(MIXED) + H^+(MIXED)$	$2.4 \times 10^{-2} \text{ s}^{-1}$
2	$H^+(MIXED) + HCO_3(MIXED) \rightarrow CO_2(MIXED) + H_2O(MIXED)$	$5.7 \times 10^4 \mathrm{L}(\mathrm{mol} \cdot \mathrm{s})^{-1}$
3	$CO_2(MIXED) + OH-(MIXED) \rightarrow HCO_3^-(MIXED)$	$8.4 \times 10^3 \mathrm{L(mol \cdot s)^{-1}}$
4	$HCO_3^{-}(MIXED) \rightarrow OH^{-}(MIXED) + CO_2(MIXED)$	$2 \times 10^{-4} \text{ s}^{-1}$
5	$OH^{-}(MIXED) + H^{+}(MIXED) \rightarrow H_2O(MIXED)$	$1.4 \times 10^{11} \mathrm{L}(\mathrm{mol} \cdot \mathrm{s})^{-1}$
6	$H_2O(MIXED) \rightarrow OH^-(MIXED) + H^+(MIXED)$	$1.3 \times 10^{-3} \text{ mol}(\text{L} \cdot \text{s})^{-1}$
7	$HCO_3^{-}(MIXED) + OH^{-}(MIXED) \rightarrow CO_3^{2-}(MIXED) + H_2O(MIXED)$	$6 \times 10^9 \text{L(mol} \cdot \text{s})^{-1}$
8	$\text{CO}_3^{2-}(\text{MIXED}) + \text{H}_2\text{O}(\text{MIXED}) \rightarrow \text{HCO}_3^{-}(\text{MIXED}) + \text{OH}^{-}(\text{MIXED})$	$1.2 \times 10^{6} \mathrm{s}^{-1}$
9	$Ca^{2+}(MIXED) + CO_3^{2-}(MIXED) \rightarrow CaCO_3(CISOLID)$	$1.9 \times 10^{6} \mathrm{L}(\mathrm{mol} \cdot \mathrm{s})^{-1}$
10	$CaCO_3(CISOLID) \rightarrow Ca^{2+}(MIXED) + CO_3^{2-}(MIXED)$	$9.0 \times 10^{-3} \operatorname{mol}(L \cdot s)^{-1}$
11	$CaCO_{3}(CISOLID) + H^{+}(MIXED) \rightarrow Ca^{2+}(MIXED) + HCO_{3}^{-}(MIXED)$	$0.1 imes 10^7 ext{ s}^{-1}$
12	$Ca^{2+}(MIXED) + HCO_{3}^{-}(MIXED) \rightarrow CaCO_{3}(CISOLID) + H^{+}(MIXED)$	$0.4 \times 10^3 \mathrm{L}(\mathrm{mol} \cdot \mathrm{s})^{-1}$
13	$Ca(OH)_2(CISOLID) \rightarrow Ca^{2+}(MIXED) + 2 OH^{-}(MIXED)$	$1.5 \times 10^{-3} s^{-1}$
14	$Ca^{2+}(MIXED) + 2 OH^{-}(MIXED) \rightarrow Ca(OH)_{2}(CISOLID)$	508.0 L(mol·s) ⁻¹

Co-funded by the Horizon 2020

Framework Programme of the European Union

CLEANKER project


15

OLEAN clinKER by calcium looping for low-CO, cement

CLEA

Simulation vs experiment

70% CO₂ in model gas, Vgas = 400 L/h, m(ash) = 600 g, 300 rpm, L/S=0.2

Framework Programme of the European Union

CLEAN clinKEE by calcium looping for low-CO, cement

CLEA

Conclusions

- Different types of burnt oil shale and concrete demolition wastes were tested via wet route direct carbonation.
- Tests showed that the free lime content could be exhausted with 30 min in the conditions of low range water to solid ratio (0.2 w/w) and gas flow of 70% CO₂ in air.
- The CO₂ uptake was mainly attributed by the free lime content.
- Comparing different types of BOS samples indicated that free lime content was almost fully utilized in case of electrostatic precipitator ashes from CFB boilers, as the free lime in coarser total ashes and non-porous PF ashes was only partially utilized.
- Increasing sample mass and gas flow rate accelerated the wet carbonation process, as changing the mixing speed from 300 to 3000 rpm had negligible effect.
- A kinetic model was built to predict the composition of solid and gas phase at given operating conditions.
- Based on the results, selected types of burnt oil shale could be used as effective sorbents in the proposed CO₂-mineralization process, binding up to 0.18 kg CO₂ per kg of waste. Utilizing re-carbonated wastes in concrete application would support closing the CO₂ cycle of a cement plant by trapping the carbon dioxide into concrete.

Programme of the European Union

CLEAN clinKER by calciu looping for low-CO. cem This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement n. 764816

This work is supported by the China Government (National Natural Science Foundation of China) under contract No.91434124 and No.51376105 www.cleanker.eu Twitter: @CLEANKER_H2020 Facebook: CLEANKER project @cleanker

The support from institutional research funding IUT (IUT33-19) of the Estonian Ministry of Education and Research, Eesti Energia AS, I.L.C. s.r.l (Rondissone, TO) and Isoltrasporti (Isola Sant'Antonio, AL) for providing the samples and from University of Tartu Department of Geology for providing quantitative XRD analysis is gratefully acknowledged.

Framework Programme of the European Union

CLEANKER project

CLEAN clinKEE by calcium Inoping for low-CO, certe