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ABSTRACT 

The implementation of next generation beyond 5G use cases such as the Digital Twin (DT) requires the 

transportation of increasingly large amounts of sensor telemetry data. The reduction of the size of these time series 

shaped data through compression has many benefits, ranging from energy savings in systems where sensors have 

limited power to transport network bandwidth reduction. Both statistical analysis-based and machine learning 

(ML)-based approaches have been employed to tackle this task with varying degrees of success. In this paper, we 

compare two methods for time series data compression: a statistical similarity-based one, and an autoencoder 

(AE)-based one. 
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1. INTRODUCTION 

One of the most notable use cases of the beyond 5G (B5G) era is the Digital Twin (DT) [1]. It is a high bandwidth 

consuming application and requires innovation in the manner which the collected sensor telemetry data, essential 

for its operation. This data is typically transported from its distributed components to its central component, i.e., 

DT manager (DTM). This DT use case, as well as other B5G use cases, need from pervasive monitoring solutions 

to deal with efficient and reliable collection and processing of telemetry data from largely distributed and 

heterogeneous data sources [2]. 

One of the goals of telemetry data processing is to reduce the volume to be conveyed from sources to the central 

manager without losing neither veracity nor value of the collected data [3]. The reduction of the size of transported 

telemetry data is key in order to avoid overwhelming the transport layer, and to reduce the network operation cost 

and complexity. It also has other benefits such as reducing the amount of power the sensors consume during data 

transmission, which is extremely important in the cases where the sensors have a limited power source such as a 

battery [4]. Moreover, data analysis in order to perform compression at the sensor node offer the opportunity to 

perform important tasks, such as anomaly detection, which can provide early signs of problems [5].  

Traditionally, reducing the size of collected data can be achieved by either lowering the sampling rate, i.e., 

increasing the period between the collection of data points, or by compacting the volume of the data through 

compression [6]. Another approach is to use machine learning (ML) based models to perform the compression, 

which indeed is a recent trend in autonomous network operation, e.g., using auto-encoders (AE) with the potential 

to perform such compression tasks with higher efficiency [7]. 

This paper presents a comparison of two distinct approaches for telemetry data size reduction to be applied close 

to telemetry data sources. The first, named Zoom-In Zoom-Out (ZIZO) [8], exploits the redundancy in collected 

telemetry data to compress it by aggregating values of high similarity, with an algorithm called index bit encoding 

(IBE). In addition, ZIZO also tries to minimize collected data by adapting the sensing rate to the redundancy levels 

measured in a group of close proximity sensors through statistical analysis, using an algorithm called Sensing 

Rate Adaption (SRA). The second approach, named Adaptive AE-based Compression (AAC) [9] employs AEs 

for compression, while also performing localized anomaly detection. It makes use of their intrinsic dimensionality 

reduction abilities to reduce the size of transported data by sending through the network only the set of latent 

features encoded at the source. 

2. REFERENCE ARCHITECTURE 

Figure 1 presents the hierarchical architecture needed to run the proposed telemetry data compression and analysis. 

The first level is at the sensors layer where data is generated periodically. For the sake of simplicity, let us assume 

that sensors are those physical elements that are able to monitor one specific metric, e.g., temperature, pressure, 

etc. Then, a number of these sensors are integrated in a monitoring device, that provides the support (computing, 

power) to those sensors, as well as contains the needed transceivers and interfaces (wired or wireless) required to 

eject the data out of the device. Since the vast majority of multi-purpose monitoring devices are built on top of 

powerful boards, a software-based Device Agent (DA) is deployed in the device for several purposes including 

telemetry data processing and device control and management. Specifically, in the context of our work, we 

consider that the DA contains the algorithms necessary to compress the collected telemetry data. 



Then, the DA sends the compressed data to the DTM that is hosted in 

the remote location. Along with the compressed data, metadata 

containing device/sensors identification data and compression method 

metadata are included. 

The second element in the proposed hierarchical architecture is the 

Cluster Agent (CA) that runs as one of the processes in DTM, and 

aggregates the inputs received from a number of devices that form a 

group (cluster). The meaning of a cluster is open: can represent any 

subset of monitoring devices in a physical subsystem. Without loss of 

generality, we assume that the creation of clusters is part of the design 

of both the physical system and DT, which is out of the scope of this 

paper. 

Each CA is in charge of decompressing the data received from its 

nested DAs and store such decompressed data in the Data Lake. 

Moreover, it is also in charge of training models (if needed) as soon as 

new relevant data is collected and uploading new models to the DAs 

in an automatized manner. Finally, it processes other actions such as: 

higher level aggregation, anomaly detection diagnosis reports received 

from DAs, and multiple anomaly detection if needed. 
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Figure 1: Overall Architecture 

3. STATISTICAL SIMILARITY-BASED REDUNDANCY REDUCTION (ZIZO) 

In telemetry systems (such as most of sensing-based systems), there are some monitored parameters that have a 

slow variation rate in their values. As a consequence of this, the sensors collecting such monitoring data would 

have very high redundancy levels, especially if this is done periodically. The values could remain constant for a 

long period of time or vary only occasionally from this fixed value. ZIZO exploits this, and acts at two different 

stages. 

Firstly, the IBE algorithm runs in the DA and groups similar values in the set of measurements of fixed length Τ 

and saves the position of these similar values in an index byte. Thus, for telemetry data stream i, two different 

measurements ri
j and ri

k are similar if the absolute value of the difference between them is less than the parameter 

ɛ, which is formally defined in eq, (1). Figure 2 shows an illustrative example of the compression and 

decompression of the set of measurements through IBE using similarity function with parameter ε = 0.8 and T=8. 

As can be observed, applying the similarity function will find three different groups of similar data (each one 

represented by a color). Then, the coding stores, for each group, the reference value and the coding of the bits 

defining the position. Note that, once the coded data is decompressed, the information lost by aggregation is not 

recovered. 

At a second stage, a set of measurements from different sensors are collected in the CA, where matrix MP is 

obtained (Eq. 2). This matrix is created by stacking the transposed sets, making each row of the matrix containing 

measurements of different sensors at the same instant, and making each couple of consecutive rows a set of paired 

observations. 

The statistical T-test is then used to calculate the level of similarity between all the possible pairs of consecutive 

rows. The test is formally described in Eq. (3), where �̅�𝑡,𝑡+1 is the mean of the difference set {𝑅𝑡+1 −  𝑅𝑡}, µ is 

the population mean of the whole matrix 𝑀𝑝, and 𝜎𝑡,𝑡+1 is the standard deviation of the difference set { 𝑅𝑡+1 −
 𝑅𝑡}.   

 
(1) 

 
Figure 2: IBE Example 

 

(2) 

𝑇 − 𝑡𝑒𝑠𝑡(𝑅𝑡 , 𝑅𝑡+1) =  
�̅�𝑡,𝑡+1 −  µ

𝜎

√𝑛

𝑡,𝑡+1  
(3) 

Finally, the redundancy ratio of the period is calculated through dividing the number of similar consecutive pairs 

of sets of measurements by the total number of possible successive pairs (Τ – 1). After calculating the redundancy 



ratio, the telemetry frequency can be adapted for all sensors and probes, increasing or decreasing within certain 

boundaries defined also by the application, with the aim of reducing the redundancy ratio in the next period. Other 

metrics such as the criticality of the application are also used to determine the rates. 

4. AUTOENCODER-BASED COMPRESSION (AAC) 

As already introduced, AAC uses AEs to perform time series data compression. It builds upon the innate ability 

of AEs to reduce the dimensionality of the input data through extracting a set of latent feature representations. 

Specifically, the DA contains a pool of AEs of different latent space size in order to perform such adaptive 

compression. Figure 3 sketches the main ACC procedure running at DA.  

At the end of each period, when a set of 

measurements equal to the input size of the 

AEs is ready, it passes it through all the AEs 

in the pool. Starting from the one with the 

smallest latent space size, the input data is 

compressed and then decompressed locally 

in order to compute the reconstruction error 

(RE) between the original and 

decompressed data. If RE is below the 

Acceptable Reconstruction Error (ARE) 

parameter, it selects such AE and uses its 

encoder part to perform the compression 

before sending the set latent space to the 

destination. Otherwise, if RE is higher than 

ARE, it moves on to the larger latent space 

AEs.  

 

Figure 3: ACC procedure 

Note that, if none of the AEs can compress with RE below ARE, raw uncompressed data is retrieved. Although 

this algorithm is ML-based and requires data for the models to be trained, generic models, using synthetic data, 

or data with characteristics like the ones to be collected by the deployed sensor, can be trained for early 

deployment. These can perform a compression under less strict constraints while data from the target sensor is 

being collected to train the specific models. Then, these models are introduced to the DA by the CA. 

5. PERFORMANCE COMPARISON 

Different datasets were used to evaluate the performance of each algorithm. In the case of ZIZO, two small datasets 

were considered: i) the Intel Berkeley Research Lab sensor data which contained sensors for temperature, 

humidity, and luminosity, and ii) experimental dataset using several telsoB sensors. The variables involved 

included the input size, the similarity threshold, and the application criticality. The dataset used to test AAC was 

a subset of the Water Distribution test bed dataset, selected sensors monitored the water pressure valve, measuring 

pressure, voltage, and flow. Figure 4 shows an illustrative example of the telemetry data included in the 

aforementioned data sets [10]. 

 

Figure 4: Example of considered telemetry data 



Table 1 shows the eventual configuration of each algorithm after exhaustive testing on the data described above. 

While the input size for ZIZO was variable between 32 and 64, it was fixed at 256 for AAC. This means longer 

data collection periods for AAC, however it makes it more scalable than ZIZO since IBE is constrained by the 

index bytes, while AAC can be scaled down to 128 or scaled up to 512, for example. The application criticality 

in ZIZO also is variable between low and high, which is reflected in the adapted sensing periods. However, the 

criticality of the application can be adjusted for by changing the ARE in AAC, from 0.01 being very strict and 

0.05 being very loose. Finally, the size of the compressed data depends on the similarity threshold only for ZIZO. 

In AAC, it depends both on the ARE and the available latent space sizes, with a possibility of having a compressed 

data size equal to 1% of the original data size if selected AE is the one with latent space size equal 4. 

Table 1: Parameter Ranges for each Algorithm 

ZIZO AAC 

Period Size 32 and 64 Input Size 256 

Application Criticality high and kow ARE [0.01, 0.05] 

Similarity Threshold 

temperature: 0.07, 0.1, 0.2  

humidity: 0.2, 0.5, 1  

light: 10, 15, 25 

Latent Space Size 4, 8, 16, 32 

6. CONCLUSIONS 

In this paper two algorithms for time series sensor data compression were compared, the first having a statistical 

analysis-based approach to aggregate values based on their similarity, and vary sensing rates based on redundancy, 

and the other using pools autoencoders to adaptively compress input data based on acceptable reconstruction 

errors. Figures that detail how the algorithms are applied were supplied. Table 2 summarizes the comparison of 

the characteristics of each algorithm. 

Table 2: Summary of characteristics 

 ZIZO AAC 

Basis Statistical Analysis ML 

Data Collection Periodic Periodic 

Requires Training No Yes 

Adaptive Yes Yes 

Scalable No Yes 

Configurable Yes Yes 
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