
OneFile: A Wait-free Persistent Transactional Memory

Pedro Ramalhete
Cisco Systems

pramalhe@gmail.com

Andreia Correia, Pascal Felber
University of Neuchâtel

andreia.veiga@unine.ch, pascal.felber@unine.ch

Nachshon Cohen
EPFL

nachshoncohen@epfl.ch

1

Abstract—A persistent transactional memory (PTM) library
provides an easy-to-use interface to programmers for using
byte-addressable non-volatile memory (NVM). Previously pro-
posed PTMs have, so far, been blocking. We present OneFile,
the first wait-free PTM with integrated wait-free memory
reclamation. We have designed and implemented two variants
of the OneFile, one with lock-free progress and the other with
bounded wait-free progress. We additionally present software
transactional memory (STM) implementations of the lock-free
and wait-free algorithms targeting volatile memory. Each of
our PTMs and STMs is implemented as a single C++ file
with ∼1,000 lines of code, making them versatile to use.
Equipped with these PTMs and STMs, non-expert developers
can design and implement their own lock-free and wait-free
data structures on NVM, thus making lock-free programming
accessible to common software developers.

I. INTRODUCTION

Modern computer architectures are based on shared mem-
ory systems, where multiple threads or processes can si-
multaneously access the same data. Sharing data in such
a way leads to what is called the concurrency problem.
The simplest solution to this problem is to ensure mutual
exclusion using locks. As far back as 1963, Dijkstra was
the first to show a mutual exclusion algorithm, originally
made by Dekker [1]. Locks are by their very nature blocking
and it took more than 20 years for Treiber to publish,
in 1986, the first non-blocking data structure, a lock-free
stack [2]. Since then, a multitude of non-blocking data
structures have emerged over the years. Several of these data
structures contained minor errors, a few had fatal design
flaws, serving as a testament to the difficulty of designing
and implementing correct non-blocking data structures.

Researchers quickly realized that reasoning about lock-
free code was a difficult task and started to propose al-
ternatives. In 1991, Herlihy designed the first universal
construct (UC) with wait-free progress [3]. UCs with wait-
free progress can wrap sequential implementations of an
object or data structure, so as to provide wait-free progress
when accessing the methods and data of the underlying
object. Other UCs with lock-free and wait-free progress
have been proposed since then, though up until now their

1This is the author’s version of the work. It is posted here for your
personal use. The definitive Version of Record was published in DSN
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performance has been too low to be of practical usage,
remaining mostly the subject of theoretical work.

By their very nature, UCs imply no change to the se-
quential implementation of the underlying object. This is
an attractive property from a theoretical standpoint, but in
practice it can be reasonable to demand from the user some
sort of minor annotation on the sequential implementation.
Herlihy saw this opportunity in the design space and, two
years later, together with Moss, they proposed another
approach for non-blocking data structures [4], coining the
term transactional memory (TM). The intent was for CPU
manufacturers to implement TM as a set of hardware in-
structions (HTM). This dream only came to fruition many
years later and, even now, HTMs still do not provide non-
blocking progress guarantees.

In 1997, Shavit and Touitou presented the first software-
only TM capable of running on commodity hardware [5],
creating the first functional software transactional memory
(STM). Their proposal went mostly unnoticed, likely be-
cause the research community was busy developing “hand-
made” custom non-blocking data structures. However, by the
turn of the century, STMs started receiving more attention,
peaking in the decade of 2000-2010. Since then, many
STMs have been proposed though rarely claiming lock-
free progress and none with lock-free memory reclamation.
Emerging out of this gold rush, lock-based STMs have been
the winners when it comes to performance.

Until today, the role of STMs has been delegated to
providing a user-friendly interface for working with lock-
based concurrency. Making life easier for software engineers
working with locks is an important undertaking, yet, it is far
below the goal of what Herlihy originally thought UCs and
TMs should be: a way of letting non-expert developers create
their own lock-free data structures, safely and correctly.

The introduction of byte-addressable non-volatile memory
(NVM) has added a new dimension to this old problem. Due
to its need for resilience to failures, application development
for NVM is particularly well suited to transactions, and
constructing an STM with efficient and durable (ACID)
transactions has become an important problem to solve [6].
Several persistent software transactional memory (PTM)
exist in the literature with none claiming lock-free progress,
at the exception of RomulusLR [7] which provides wait-free
progress but solely for its read-only transactions.

http://dx.doi.org/10.1109/DSN.2019.00028


In this paper we present OneFile, a novel PTM/STM
with wait-free progress. OneFile is specifically designed
to enable non-experts to conceive and implement their own
lock-free and wait-free data structures. OneFile comes with
integrated wait-free memory reclamation. With OneFile,
transforming a sequential implementation of a data structure
into a wait-free implementation is as easy as annotating the
types used internally in the data structure, replacing the allo-
cation and deallocation methods with the ones provided by
OneFile, and wrapping all methods in calls to updateTx
or readTx.

In short, with OneFile we make the following contribu-
tions. We introduce a novel transactional memory algorithm
that relies on a new multi-word CAS technique, with two
different PTMs, one with lock-free progress and the other
with bounded wait-free progress, which provide dynamic
transactions for NVM with durable linearizability, i.e., ACID
transactions. We present two STMs based on the same
design. Each of these four implementations is a single C++
header with ∼1,000 lines of code, simplifying the task of
integrating with any sequential implementation of a data
structure. Our STMs and PTMs have efficient lock-free
and wait-free memory reclamation. OneFile’s performance
is capable of rivaling that of hand-made lock-free data
structures, and it provides linearizable consistency for any
method, something notoriously difficult to achieve for hand-
made lock-free data structures.

The rest of the paper is organized as follows. We first
discuss related work in §II. We then introduce the lock-
free version of the OneFile algorithm in §III, followed by
the wait-free algorithm. We present details on our solutions
for providing efficient wait-free memory reclamation on
NVM and volatile memory in §IV. We provide an in-depth
evaluation of OneFile in §V and finally conclude in §VI.

II. RELATED WORK

Our goal is to provide a way for non-experts to design
durable linearizable [8] concurrent data structures that pre-
serve their state after a failure. As such, we focus our atten-
tion on PTMs whose transactions guarantee this property.

PTMs: Most of the existing PTM implementations
rely on one of two logging techniques: write-ahead logging
(WAL) with undo [9]–[11] or redo [6], [10] log. A persistent
log approach adds complexity to the implementation given
that the log used to revert to a consistent state must itself
be allocated in persistent memory and be reverted in case
of failure. Two notable algorithms based on undo log are
Atlas [12] and PMDK [13].

Atlas [12] requires an entry in the undo log for every
store to persistent memory. Each log entry has four words:
the destination address of the store, the original value at
the address, a pointer to the next node, and the size of
the store combined with the log type. This implies that a
persistent store in user code will cause a total of 5 stores to

NVM. To minimize cache line flushes, Atlas uses a helper
thread to aggregate memory locations and to guarantee that
a consistent state is persisted to memory. As with any undo
log approach, the algorithm has to guarantee that the log
entry is made persistent before any in-place modification.
Therefore, modifications are written-back to NVM using a
persistent write-back (pwb) instruction and a persistent fence
(pfence) [8] is used to stall until pwbs finish. Transactions
in Atlas are only buffered durable linearizable [8] since
some finished transactions may not be included in a post-
failure state.

PMDK [13] is a more recent undo log implementation that
reduces the number of persistent fences by aggregating all
modifications done on each object inside a transaction. The
persistent memory allocator is highly optimized to allow a
significant reduction on the number of pwb instructions.

Mnemosyne [6] was the first PTM. It uses a redo log and
is built on top of the lock-based TinySTM [14], [15].

Romulus [7] is a recent development that does not rely
in a persistent log but instead uses two replicas of the
data to guarantee consistent recovery from a non-corrupting
failure. The user code is executed directly in-place in the first
replica and at the end of the transaction the modifications
propagate to the second replica. To improve performance on
the copy procedure, Romulus uses a volatile log to record the
memory locations that were modified. Two implementations
are publicly available, one with a scalable reader-writer
lock, named RomulusLog, and the other using a universal
construct supporting wait-free read-only transactions, named
RomulusLR. Both variants use flat-combining [16] for their
update transactions. RomulusLR was the first PTM to
provide concurrent read transactions with wait-free progress.

STMs: A single lock-free STM has been identified
in the literature, by [17], who proposed a modification of
JVSTM [18] with lock-free operations. Their implementa-
tion is for the Java virtual machine (JVM) and, therefore,
uses the JVM’s garbage collector for memory reclamation,
which is itself not lock-free.

[19] present a detailed review of many STMs. Among
those, we specifically focus on TinySTM [14], [15] and
ESTM [20] in our comparative evaluation. TinySTM uses ea-
ger locking and it deploys an array of locks to access shared
memory. Similarly to TL2 [21], it relies on a shared counter
as a “clock” to protect memory regions from conflicting
accesses and order updates. TinySTM maintains a write-set
as well as a read-set that is validated after the locks of the
write-set are acquired, at commit time. ESTM [20] provides
a variant of elastic transactions that support efficient imple-
mentations of search data structures. A key feature of ESTM
is that, during its execution, an elastic transaction can be cut
into multiple normal transactions, hence reducing the risk of
conflicts and improving performance.

Multi-Word CAS (MCAS) Algorithms: At the core
of the OneFile lies a technique that provides multi-word



compare-and-set operations. MCAS is a programming ab-
straction that allows a thread to update a series of memory
addresses in a single step [22]. This update is successful only
when the values at these addresses did not change between
the reading of those values and the call to MCAS.

The first practical lock-free MCAS was proposed in [23].
A CAS operation is used to replace the expected value at
an address with a pointer to a descriptor object. Two bits
of the word are reserved to distinguish between values and
pointers to descriptor objects. In order to prevent the “ABA”
synchronization problem, the authors designed a variant with
a double-compare single-swap.

Recently, Pavlovic et al. [24] have described an MCAS
technique for persistent memory. This technique is blocking,
requires HTM support, executes 4 persistence fences per
operation and steals one bit from each modified word.

Wang et al. [25] have shown an MCAS approach with
lock-free transactions and blocking memory reclamation,
which steals two bits from each word.

Other techniques have been proposed [23], [26]–[28] that
can work well for specific scenarios where MCAS are
typically deployed, however, to use it as a part of an STM,
a more versatile algorithm is needed, one that is ABA-free
and that uses no bit of the word. In §III we describe such
an algorithm and how to integrate it into an STM.

III. PERSISTENT TRANSACTIONAL MEMORY

We first describe in this section the basic OneFile lock-
free algorithm. We will then introduce a variant of the basic
design that provides bounded wait-free progress.

A. Principle and Architecture

OneFile is a redo-log, word-based PTM, which does not
maintain a read-set. Each thread uses and exposes a write-
set to the other threads, so that they are able to help apply
the current ongoing transaction. All mutative transactions are
effectively serialized (ordered) on a single variable named
curTx which is composed of a monotonically increasing
sequence number and an index. The sequence number
#curTx is unique and it allows read operations to have
fast and consistent operations, using a technique similar to
TL2 [21] and TinySTM [14]. The index indicates to which
write-set (i.e., thread identifier tid) the current transaction
pertains to. We name the 64 bit-wide combination of the
index and sequence the transaction identifier.

Each thread has its own write-set, however, other threads
may read from this write-set during the applying phase when
helping another transaction. To prevent ABA issues during
the re-usage of the log and as an optimization to quickly
identify when a transaction has been applied, each write-set
contains a request variable. The write-set can be correctly
re-used because if a thread A attempts to help another thread
B to complete B’s transaction, it first reads the request
of B, then makes a local copy of B’s write-set and after a

load-ordering fence, re-checks that B’s request has not
changed and matches the sequence of curTx. When the
value of request is the same as curTx, it indicates that
the write-set is to be applied, i.e., at least some of its entries
need to be executed with a double-word compare-and-set
(DCAS) instruction (CMPXCHG16B). If the request is
different from curTx, then the current transaction has been
applied and a new mutative transaction can now start. The
basic data type is denoted TMType. It is composed of two
64-bit adjacent words, the first word containing the actual
value, val, and the second word containing a numerical
sequence, seq. A DCAS instruction acts simultaneously on
the two adjacent 64-bit words of TMType.

A mutative transaction in the OneFile algorithm consists
of three phases: transform, commit and apply.

During the transform phase, the user code for that update
transaction is invoked, without the stores to TMType objects
being executed. Instead, a redo log (write-set) is created with
one entry for every store on a unique memory location, indi-
cating the address of the TMType and its corresponding new
value. The user code can be passed to the STM’s updateTx
method as a function pointer, a std::function, or a
lambda expression (closure). This step effectively transforms
the function containing the user code into a write-set [4]. A
store on a memory location already present in the write-
set will replace the previous value in the write-set with the
new value. The write-set is implemented as an array with
an intrusive hash-set, where short-sized transactions (less
than 40 stores) do a linear lookup in the array, while larger
transactions do a lookup on the hash-set. Unlike other STMs,
there is no read-set on OneFile.

After the user function returns from its invocation,
the transaction enters the commit phase. The updateTx
method will attempt to change the shared variable curTx
with a CAS, from the current transaction identifier to the
new transaction identifier, where the sequence advances by
one and the index becomes the current thread’s identifier. If
the CAS is successful, the transaction has effectively been
committed, otherwise this transaction has failed.

On the third phase, the currently committed transaction
is applied, by executing one DCAS for every entry in
the write-set of the last committed transaction, if it has
not already been applied. This write-set may belong to
the current thread, or to another thread which successfully
executed the CAS on curTx in its own commit phase.
Regardless of the case, one thread has made progress, thus
guaranteeing lock-free progress. To apply the write-set, we
execute a DCAS on each double-word location (TMType),
from the current value and sequence to the new value
with the current transaction’s sequence, as indicated in the
current transaction’s write-set. As explained in §III-C, this
MCAS technique guarantees there are no ABA issues even
if one thread lags behind on an older transaction’s write-set
during the apply phase. At the end of this phase, the write-



Algorithm 1: Write-set and TMType with interposition
1 struct WriteSetEntry {
2 TMType<uint64_t>* addr; // address of TMType to modify
3 uint64_t val; // desired value to change to
4 };

6 struct WriteSet {
7 WriteSetEntry writeSet[TX_MAX_STORES];
8 uint64_t numStores {0};
9 void apply(uint64_t seq, const int tid) {

10 for (uint64_t i = 0; i < numStores; i++) {
11 WriteSetEntry& e = log[(tid*8 + i) % numStores];
12 uint64_t lval = e.addr−>val.load(memory_order_acquire);
13 uint64_t lseq = e.addr−>seq.load(memory_order_acquire);
14 if (lseq < seq) DCAS(e.addr, lval, lseq, e.val, seq);
15 }
16 }
17 };

19 template<typename T> struct TMType {
20 std::atomic<uint64_t> val;
21 std::atomic<uint64_t> seq;
22 inline T load() { // load interposition
23 T lval = (T)val.load(memory_order_acquire);
24 uint64_t lseq = seq.load(memory_order_acquire);
25 if (lseq > seq(tl_oldTx)) throw AbortedTxException;
26 return (T)gOF.writeSets[tl_tid].lookup(this, lval);
27 }
28 inline void store(T newVal) { // store interposition
29 gOF.writeSets[tl_tid].addOrReplace(this, newVal);
30 }
31 };

set’s request’s sequence is advanced to indicate to other
threads that the corresponding apply phase is complete and
that a new transaction can now start.

In OneFile, read-only transactions begin by reading the
current value of curTx and helping in the apply phase if the
current transaction is not yet applied, so as to have a globally
consistent view. Then, the user function that was passed to
readTx will be invoked, with every load on a TMType
object allocated by the STM interposed, and a check done
of whether the sequence on each read word is no higher
than the one at the start of the function’s invocation. This
algorithm is similar to read-only transactions in TL2 [21].
If one of the loads fails the previous checks, the read-only
transaction is restarted via the exception mechanism, causing
the re-reading of the current value of curTx and restarting
of the user-provided read-only function.

B. Lock-Free PTM

We first introduce the general operation of the lock-free
PTM. A persistent transaction executes the following steps:
1) Read curTx and store it locally in oldTx.
2) If there is an ongoing transaction, help apply it (see steps

8 to 10) and go to 1.
3) Execute user code, with loads and stores interposed.
4) Commit if write-set is empty (read-only transaction).
5) Open request by assigning it a new transaction identi-

fier newTx, with sequence #oldTx+1 and current tid.
6) Flush write-set to persistent memory, executing one pwb

for every cache line.
7) Commit transaction by CASing curTx from oldTx to

newTx, and flush it with a pwb.
8) Apply transaction, executing one DCAS for every entry

in write-set.

9) Flush modified words using one pwb for each address.
10) Close request by CASing it to newTx+1.
The algorithm for the STM is similar, minus the pwbs.

C. MCAS Algorithm

We now detail the operation of our new MCAS technique,
shown in Alg. 1. At the beginning of the apply phase,
the write-set has been created with one WriteSetEntry
per modified word, with a total of numStores entries.
Applying the write-set consists of attempting each DCAS
until all entries have been fully processed (lines 9–16).

Each operation is uniquely identified by a sequence, with
all modified words of that operation having this unique seq.
Seen as all update transactions are serialized in the commit
phase, if the seq on a TMType is equal (or higher) than
the seq initially read of the curTx, then some other thread
has already applied that DCAS. This MCAS is ABA-free
because any delayed thread will fail in the execution of its
DCAS due to the seq no longer matching.

Unlike other MCAS algorithms, in our technique no bit
is stolen [22] from the word containing the value or pointer
in TMType, which gives it maximum flexibility and allows
for easy deployment. On the other hand, it does require
hardware support for a DCAS or equivalent instruction,
which is supported for x86 although not implemented by all
CPU vendors (likely because it was initially not considered
useful for designing synchronization mechanisms [29]).

An alternative to using DCAS exists with a single word,
without the need to steal bits or to use a sequence, if the
store on the value can be made conditional with the load on
curTx. Although is it possible to implement this operation
as a short hardware transaction, e.g., with Intel’s TSX, as it
stands today, such approach does not provide the progress
guarantees necessary in the apply phase of OneFile for
maintaining lock-free progress. The lock-free progress will
hold as long as the hardware transaction implementation
guarantees, in case of conflict, that at least one thread
will eventually execute its transaction successfully. In our
implementation we opted for CMPXCHG16B instead of TSX.

Pseudo code for the load and store interposing methods
are also shown in Alg. 1 (lines 22 and 28).

D. Persistent Log and Recovery

Each thread contains a pre-allocated write-set in persistent
memory. Before the commit phase, the write-set is flushed
to persistence by executing one pwb for every four entries,
where each entry of the log occupies two words, addr and
val. On commit, the successful CAS acts as a pfence on
x86, guaranteeing ordering with the prior pwbs and implying
that if the new value of curTx is visible to other threads,
then the write-set of the thread that won the CAS is durable.

For every 64 bit word of modified data by the user written
to persistent memory, 3 other words are written: two words
for the write-set log and one more when executing the



DCAS, for the seq in the corresponding TMType. The write
amplification [7] in OneFile-PTM is of 300%.

Our PTMs need no recovery method, a characteristic
referred to as null recovery [8]. Either following a failure
or during normal execution, other threads will identify the
write-set of the last committed transaction and whether that
transaction is already closed. If the request is still open,
they will attempt to apply the missing DCAS and close the
corresponding request.

Null recovery is possible only if the DCAS instruction
guarantees that both words are written to NVM atomically,
which is the case for x86 because both words are on the same
cache line [30], [31]. In architectures that do not provide
such guarantee, the words must be written in order (val
first, then seq), or a recovery method executed upon restart.
Such a recovery method is trivially simple and consists
of applying the values in the write-set using stores, each
followed by a pwb, with a single final pfence.

E. Wait-Free PTM

We will now describe the modifications to the lock-free
PTM required to create a similar PTM with bounded wait-
free progress. Compared to the lock-free OneFile-PTM, the
wait-free implementation has two extra member variables:
an array of pointers to std::function where threads
publish their operation and an array of results where the
result of the operation is stored.

During the transform phase, an update transaction starts
by encapsulating the code pertaining to its transaction in
a std::function object and publishing a pointer to it
in its thread’s entry of the operations array. If there is an
ongoing transaction that was committed but not yet applied,
it will help apply that transaction, otherwise, it will aggregate
all the functions in the operations array and invoke them
one by one, including its own, producing a single write-
set with all these operations. It will then attempt a commit,
similar to the lock-free algorithm. The transform step will
be repeated at most two times, because by the second
iteration, its own operation is guaranteed to have been
executed. This approach is inspired by Herlihy’s wait-free
universal construction [32], [33]. Unlike previous universal
constructions, our technique is capable of executing dynamic
transactions.

In our algorithm, the entries of the operations and results
arrays are TMTypes, implying that each has its own se-
quence number. When the sequence number of a function
pointer is equal to the sequence number of the corresponding
result entry, this signifies that the function was not yet
committed. This is the state when operations are published.
When the transaction executes, the result of the operation
is written to the result entry using a standard transactional
write. Therefore, when the result is produced during the
apply phase, the sequence number of the result will be
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Figure 1: Main components of OneFile wait-free and its 3 phases.

higher than the sequence number of the function pointer.
This indicates that the operation has been committed.

As for read-only transactions, they are similar to the lock-
free algorithm. If the read-only operation fails more than
n attempts (4 in our implementation) then the operation is
placed on the array of operations as if it was an update,
and then attempt to execute two more times. The algorithm
guarantees that after n+2 failed iterations, one of the threads
executing an update transaction has executed the read-only
transaction and its result is available in the results array, thus
ensuring bounded wait-free progress.

In the OneFile lock-free algorithm threads share their
write-set with other threads, while in the wait-free algorithm
threads share their transactions by encapsulating them in a
std::function. This matches the result by [34] which
shows that wait-freedom for a TM is not possible unless the
code of each transaction is accessible to the other threads.
Their result does not apply to lock-freedom.

To allow a better understanding of the algorithm, Fig. 1
represents the main components when a transaction in
OneFile Wait-Free is used to provide concurrent access
to a sequential implementation of a stack. The stack has
two methods, push() and pop(), that are published by
each thread in the operations array. In this example
there was already an execution of a previous transaction
that pushed element a and b to the stack. For simplicity we
show only 3 threads and each has a writeSet that records
the modifications required by the update transaction. In this
scenario, all three published operations (push(c), pop(),
and push(d)) are grouped inside a transaction simulated
by thread t2. At the start of the transform phase, the last
committed transaction was simulated by thread t1 with
sequence 2, represented by curTx. Once the simulation of
the transaction is finished, the request field is set to the
next sequence concatenated with t2 identifier.

The next phase is the commit phase, which will allow the
transaction simulated by t2 to take effect.

Finally, the apply phase starts the moment the modifi-
cations recorded on the write-set are effectively written at



the addr memory locations. It is then that the element
d is added to the stack. At the end of the apply phase,
request will transition to sequence 4 concatenated with
t2 identifier, announcing the end of this phase and the end
of the transaction whose sequence is 3.

IV. MEMORY MANAGEMENT

Allocating, de-allocating, tracking and reclaiming objects
in dynamic memory are challenging problems, particularly
on NVM. Sequential code de-allocates an object immedi-
ately after removing it from a data structure. In general, lock-
free reclamation requires tracking accesses of other threads
to ensure that an object is safe to de-allocate. Many schemes
have been proposed over the course of the years [35]–[47].
However, most of these are applicable only to some specific
data structures, require the data structure’s algorithm to be
adapted or rely on blocking code.

Supporting dynamic memory allocation on NVM has to
be carefully considered because a PTM must handle non-
corrupting failures (crashes). If an object is allocated but not
yet inserted into a data structure, it might end up marked
as allocated but unreachable by the application, leading
to a permanent leak in the NVM heap. A similar leak
happens if a crash occurs after a object is removed from
a data structure but before it is de-allocated [48]. Although
blocking techniques exist for reclaiming objects in NVM [7],
[48], [49], no lock-free memory reclamation scheme for
NVM has been presented in the literature.

A. Allocation and de-allocation in NVM

To support a wait-free, fault-tolerant, simple memory
reclamation scheme for OneFile, we use a combination
of two ideas: allocating and de-allocating memory inside
a transaction and optimistic access to reclaimed objects.
All allocations and de-allocations are assumed to be part
of a transaction that inserts or removes a node (or object)
from a data structure. The destructor is also invoked as part
of the transaction. In the OneFile PTMs we use our own
sequential implementation of an allocator whose metadata
types have been annotated with TMType. Other sequential
allocator implementations can be used. This design ensures
that memory is never leaked during a crash. However, the
concurrency problem remains: while one thread de-allocates
an object and destructs it, other threads may access the object
inappropriately.

To solve the concurrency issue, we use an optimistic
technique. The main observation is that when a thread
accesses a removed object, its current transaction conflicts
with the removal transaction and will abort. It remains
to show that the thread aborts its transaction correctly,
despite accessing a removed object. Unlike standard virtual
memory, NVM memory is not returned to the OS after de-
allocation, being instead managed by a PTM-specific user-
level allocator. Thus, accessing a de-allocated object does

not trigger a page fault. Furthermore, the NVM memory
is accessed only through the PTM interface, preserving the
TMType structure, including the (ever increasing) sequence
numbers. Next, we show that either reading from or writing
to a de-allocated object results in aborting the transaction,
without unexpected side effects.

Proposition 1: If a thread reads from a TMType of a de-
allocated memory block, it either reads the value before de-
allocation or the transaction aborts without returning the
read value.

Sketch of proof: Let T be a transaction that accessed
a field F on a de-allocated memory block and let R
be the transaction that de-allocated it. Clearly T started
before R committed, since otherwise T would not observe
the de-allocated block. According to the read-interposition
algorithm (Alg. 1, line 22), T first reads F , then read
F ’s sequence number and aborts if it is higher than the
current transaction number. If F was modified during or after
de-allocation, then F ’s sequence number must be higher
than T ’s transaction number (recall that T started before R
committed), and T would abort without using the content
of F . Notice that the members of the allocated objects
are TMTypes, thus preserving sequence numbers after de-
allocation. On the other hand, if F was not modified during
or after de-allocation, then the content of F observed by T
is unaffected by de-allocation. Thus, the returned content of
F represents a snapshot of F before the de-allocation.

Proposition 2: A thread never successfully writes to a
TMType if this write pertains to a transaction that has
already been applied.

Sketch of proof: The contents of a TMType can only be
modified by a thread calling the apply() method, when
executing a DCAS and only if the sequence number of
the transaction to which the modification corresponds is
higher than the sequence currently in that TMType (Alg. 1,
line 14). Consider a transaction Ti that was already applied,
the modifications of the TMTypes pertaining to Ti now have
a sequence number that is equal to the sequence of Ti,
or higher in the case of TMTypes modified by subsequent
transactions. Any (delayed) thread T attempting to apply
one of the modifications pertaining to Ti will fail the DCAS,
because the sequence number currently in the TMType will
be equal to or higher than the sequence of Ti.

Our memory reclamation scheme relies on internal man-
agement of the NVM memory. Despite being de-allocated,
a chunk of NVM memory continues to be managed by the
NVM allocator and does not lose its sequence numbers. In
our technique, the entire NVM region consists of 16-byte
aligned TMType entries, including all allocator metadata
used by our system. In other words, if we were to number
each of the 64-bit words in the memory region starting
at zero, all even-numbered words would be a value and
all odd-numbered words would be a sequence. The only



annotation provided to the user is the TMType, which
means that all data types must have this annotation for safe
concurrent usage and all such object instances must therefore
reside in NVM. This constraint in memory allocation ensures
correctness when a memory block is re-allocated, i.e., the
allocator reuses a memory region previously occupied.
Proposition 3: A thread never successfully writes to a de-
allocated object.

Sketch of proof: Let T be a transaction that writes to a
TMType field F of a de-allocated object and let R be the
transaction that de-allocated the object. If T is attempting
a write to the field F , then T must be applying the
modifications from a transaction Q that committed before
R. Otherwise, T cannot observe the de-allocated object.
Since the object was de-allocated, clearly R was committed
successfully. Therefore, Q must have already been applied,
and by proposition 2 the DCASes executed by T in Alg. 1
will fail because the sequence number in F was already
increased when Q was applied.

B. Closure Reclamation

On the wait-free algorithm, each thread publishes its
transaction as a function that other threads can execute, a
std::function. The function is stored as a stream of
executable bytes and might not be anymore executable after
rebooting the machine. Furthermore, the executable byte
stream cannot be stored in TMTypes, so this function must
be allocated in the transient memory. But this object must
also be de-allocated, despite being accessed by (possibly
many) concurrent threads.

To manage transient memory without foiling the wait-
freedom guarantee of our algorithm and without introducing
a high overhead, we use the hazard eras (HE) [41] algorithm.
With HE, each thread publishes an era. All objects that
were alive during this era cannot be reclaimed by concurrent
threads since they might be accessed by the publisher thread.
An object can only be reclaimed if the period of time
during which it was alive does not overlap with the currently
published era of a thread.

The HE scheme inter-operates well with the OneFile
algorithm, utilizing the transaction number (the sequence
number of curTx) as the era number. The thread publishes
the transaction number it is using at the beginning of the
transaction. According to the HE scheme, every object that
is still accessible during this era (i.e., still accessible during
this transaction) must not be reclaimed. Objects that are not
accessible in the current era (i.e., by the current transaction)
of any thread are reclaimed by the HE scheme. When a
thread reads a new pointer to an object, it first checks
whether it was installed by a newer era, in which case it is
unsafe to access since the object might have been reclaimed.
But reading a pointer published in a newer era (i.e., by
a newer transaction) also breaks the isolation property of
the transaction. Thus, the load-interposition algorithm used

by OneFile is also sufficient to ensure that no reclaimed
memory is accessed.

The HE scheme guarantees wait-freedom for the reclama-
tion procedure, but only lock-freedom for reading a pointer
from the heap. After a new pointer is read, the HE scheme
checks if the era was changed and, if so, re-reads the pointer.
Thus, a thread may starve reading a pointer while other
threads progress to new eras. Still, the helping mechanism
we designed for OneFile guarantees wait-freedom also for
the HE scheme. A thread is unable to progress only if a
new era was announced. However, after two attempts, other
threads must have executed the current operation on behalf
of the current thread, thus ensuring progress for any thread
in the system. To our knowledge, this is the first wait-free
algorithm supporting full memory reclamation.

V. EVALUATION

We now present a detailed evaluation of OneFile, di-
vided in two subsections, volatile (transient) and non-volatile
memory. Except for the latency plots in Fig. 7, all other
microbenchmarks were executed on an AWS c5.9xlarge
instance with 36 virtual cores, running Ubuntu LTS and
using gcc 7.3 with the -O3 optimization flag. This instance
is hosted on a 3 GHz Intel Xeon (Skylake-SP) Platinum
8124M and it supports the new CLWB instruction as pwb.

A. Evaluation of Volatile Memory techniques

The only other known lock-free STM with dynamic trans-
actions has been implemented in the JVM [17], for which
there is no DCAS operation, making unfeasible a direct
comparison with OneFile. Moreover, memory reclamation
on the JVM is not lock-free. As such, we compare our
STM implementations with lock-based (blocking) STMs,
choosing two well known, fast, and easy to use STM
implementations: ESTM [20] and TinySTM [14], [15].

To act as a baseline, we also evaluate lock-free data struc-
tures where appropriate. For the linked list based queues, we
compare with Michael and Scott’s lock-free queue [50], with
two wait-free queues SimQueue [33] and Turn Queue [51].
For the array based queues, we compare with Morrison and
Afek’s lock-free queue [52] based on DCAS named LCRQ,
and with the FAA lock-free queue based on single-word
CAS by Correia and Ramalhete [53]. For the linked list set,
we compare with Michael’s lock-free linked list set [54]
based on Harris [55]. For trees, we compare with the lock-
free tree by Natarajan and Mittal [56] shown as NataHE,
a relaxed tree. We chose this relaxed (non-balanced) tree
because despite the existence of balanced lock-free trees in
the literature [57], no implementation with hazard pointers
or other lock-free memory reclamation schemes has ever
been shown. For fair comparison with the STMs, all these
hand-made data structures have integrated lock-free memory
reclamation, with SimQueue and Turn queue having wait-
free memory reclamation. We chose the fastest memory
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Figure 2: SPS integer microbenchmark for multiple STMs.
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Figure 3: SPS object microbenchmark for multiple STMs.
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Figure 4: Linked list- and array-based queues.

reclamation for each data structure, using Hazard Point-
ers [36] for the queues, and Hazard Eras [41] for all other
data structures.

We start our evaluation with the SPS benchmark [11],
[58]–[60] which consists of an array of 64bit integers with
1,000 entries, where random swaps of integer values are
executed. On Fig. 2 we plot the number of swaps per second
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as a function of how many swaps are done per transaction.



As the number of threads and the transaction size increases,
there will be more conflicts between transactions. This
benchmark simulates a workload with no memory allocation
being done during its execution. When the transaction size is
small, the workload is mostly disjoint although as the trans-
action size increases, the probability of having conflicting
transactions increases. ESTM and TinySTM perform well
when contention is very low, i.e., a single threaded execution
or a few swaps per transaction. However, for large transac-
tions, as contention increases, their performance drops while
our OneFile performs well, particularly OneFile wait-free
because it aggregates multiple operations, thus reducing the
average number of writes (DCAS) per transaction.

We also include a variant of the SPS microbenchmark
which allocates memory. Every entry in the array points to a
small object containing two TMType<int64_t>. A swap
of two entries in this array allocates a new object, installs the
new pointer, and de-allocates the previous object. Results are
shown in Fig. 3. The OneFile algorithms perform well when
memory allocation is involved. In contrast, performance
of both TinySTM and ESTM reduces, making OneFile
favorable even when contention is lower than the SPS
microbenchmark without allocations.

In Fig. 4 we depict results for the queue data structure:
linked-list based (left side) and array-based (right hand side).
We executed 108 pairs of enqueues and dequeues for each
data point. OneFile performs better than both ESTM and
TinySTM for the linked list based, but slower than ad-hoc
algorithms. Still, OneFile allows for linearizable traversals
of the queue, is significantly simpler to design, maintain,
customize, and use, making it a reasonable choice in many
practical cases.

The following plots compare different set data structures,
with the update ratio being shown at the top of each
graph. An update operation is composed of two consecutive
transactions, a removal followed by an insertion, whereas
a read operation is composed of two consecutive read-only
transactions, each executes a search for an existing random
key.

Fig. 5 shows linked list sets under six different update
ratio workloads. In the 100% update workload (top left-
most plot), the OneFile beat the other STMs and the Harris
lock-free implementations for the 2 threads and 4 threads
scenarios. As the number of threads increases, the Harris
lists are capable of doing more concurrent insertion and
removal operations, allowing them to scale, giving them
advantage over all the others. As the ratio of read-only
operations increases, the advantage of OneFile extends up
to a larger number of threads. Due to not having a read-
set, the OneFile STMs excel in the read-mostly workloads
where they can match or surpass the hand-made lock-free
linked lists [54].

With a tree with 104 keys (Fig. 6), OneFile has several
scenarios where it surpasses the lock-free tree [56], namely

with low thread count or in over-subscription.
Fig. 7 shows six different percentiles of the latency dis-

tribution, when running on a high-core count CPU, namely,
a dual-socket 2.10 GHz Intel Xeon E5-2683 (“Broadwell”)
with a total of 32 hyper-threaded cores (64 HW threads). The
plots are in log-log scale, with the vertical axis representing
the time in microseconds it takes to complete a transaction.
In this microbenchmark there is an array of 64 counters
where each transaction increments all of the counters, al-
ternating between incrementing the counters starting from
left to right, and on the next transaction incrementing right
to left. This workload implies a strong serialization of
the transactions and causes most STMs to have starvation
effects. For example, on the 90% percentile plot, for 2
threads, with the wait-free OneFile 90% of the transactions
take 9 microseconds or less to complete, while with ESTM
take 243 microseconds or less to complete, and with Tiny
STM take 848 microseconds or less to complete. The wait-
free OneFile STM has a significant advantage at the tail of
the distribution, having at least 100× lower (better) latency
from the 99.9% percentile onwards, as soon two or more
threads attempts to execute update transactions, reaching a
peak improvement of 1,000× over ESTM and 10,000× over
TinySTM. These results highlight the importance of wait-
freedom for tail latency, a relevant characteristic for network
operating systems and other soft real-time applications.

B. Evaluation of NVM techniques

For fairness and practicality reasons, we did not evaluate
PTMs that require specialized hardware [10], nor did we
consider PTMs that do not provide durable linearizable
transactions [61], [62]. Comparisons were made with PMDK
(libpmemobj++), RomulusLog and RomulusLR, described
in §II. NVM was emulated by allocating a file in the
/dev/shm directory that is mounted on DRAM.

We executed the persistent variant of the SPS [11],
[58]–[60] benchmark mentioned previously. This benchmark
allows us to understand the performance profile of the PTMs
under different transaction sizes. Each swap exchanges the
values of two randomly selected entries of an array of one
million 64-bit integers, hence modifying two memory words
in PM. As shown in Fig. 8, the lock-free OneFile-PTM
surpasses the other PTMs for large transactions with over-
subscription.

We implemented three persistent sets using the above
PTMs, namely, a singly linked list set, a red-black tree set,
and a hash set, shown in Fig. 9, 10 and 11 respectively.

The throughput of the OneFile PTMs is penalized due to
the load interposition. On a singly linked list data structure,
most of the time is spent traversing the list, imposing a
call to the load() interposed method for every traversed
node. On RomulusLog and PMDK this is implemented as
a regular load, while on RomulusLR it contains a check
for which memory region to traverse and adjust the regular
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Figure 8: Persistent SPS integer microbenchmark.

0

0.2

0.4

0.6

 4  16  32  48  64

Number of threads

Persistent linked list sets with 10
3
 keys

100%

O
p

e
ra

ti
o

n
s
 (

×
1

0
6
/s

)

 4  16  32  48  64

50%
11

 4  16  32  48  64

10%
33

0

1

2

3

4

 4  16  32  48  64

1%

O
p

e
ra

ti
o

n
s
 (

×
1

0
6
/s

)

 4  16  32  48  64

0.1%
88

 4  16  32  48  64

0%
6060

Figure 9: Persistent linked list-based sets with 103 keys.

load accordingly, both approaches being extremely fast. For
the OneFile PTMs the load interposition is significantly
more complex, requiring two acquire-loads and possibly a
lookup on the write-set, affecting the overall throughput.
Despite this disadvantage, OneFile is capable of beating
RomulusLog and RomulusLR for the majority of the runs
in the 1% and 0.1% workloads, due to the non-blocking
progress. The OneFile PTMs overtake PMDK on nearly all
workloads.

On update transactions, due to the overhead on redo-log
techniques added by the lookup in the log, traversing less
nodes implies a smaller overhead. On a balanced tree filled
sequentially with one million keys, seen in Fig. 10, the
number of traversed nodes is ∼20, with the OneFile PTMs
having high enough throughput to overtake PMDK in all
scenarios. The OneFile PTMs match and slightly exceed

0

0.1

0.2

0.3

 4  16  32  48  64

Number of threads

Persistent red-black tree sets with 10
6
 keys

100%

O
p

e
ra

ti
o

n
s
 (

×
1

0
6
/s

)

 4  16  32  48  64

50%

 4  16  32  48  64

10%
1.41.4

0

5

10

 4  16  32  48  64

1%

O
p

e
ra

ti
o

n
s
 (

×
1

0
6
/s

)

 4  16  32  48  64

0.1%
2525

 4  16  32  48  64

0%
3838

Figure 10: Persistent red-black tree sets with 106 keys.
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Figure 11: Persistent hash table sets with 103 keys.
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Figure 12: Persistent queues (left) and impact of failures (right).

the Romulus variants for the 0% update workload, and
surpass Romulus in over-subscription for the 0.1% workload.
This happens because in the Romulus variants, in over-
subscription, a thread holding the lock may be preempted,
blocking progress for all other threads, which does not
happen in OneFile due to the lock-free progress.

On the hash set shown in Fig. 11, the number of traversed
nodes is rarely above 2, bringing OneFile even closer to
the Romulus implementations and again surpassing PMDK



by an order of magnitude in most scenarios. For an update
ratio of 100% the OneFile-PTM performs 30% less than
RomulusLog but on the other hand, provides lock-free
progress.

On the left plot of Fig. 12 we show multiple persistent
queues, all singly-linked list based. At the exception of the
FHMP queue, which is the hand-made lock-free designed
by Friedman, Herlihy, Marathe and Petrank [63], all other
queues are sequential implementations wrapped in a PTM.
The original design for the FHMP queue uses the system
allocator which means that it is blocking for allocation,
has no embedded memory reclamation (nodes are never
deleted and the memory will eventually fill up), and the
allocator does not work on NVM. Up until now, no NVM
allocator has been presented with lock-free progress, and
neither has a lock-free memory reclamation scheme. Seen as
FHMP does not allocate in persistent memory, all pwb and
pfence associated with memory allocation/de-allocation
are omitted during its execution. If an NVM allocator and
reclamation scheme is added to FHMP, its performance
will decrease. The queues made with the OneFile PTMs
have a performance close to the hand made lock-free queue
FHMP and surpass it in single thread workloads, while
providing failure-resilience memory allocation/de-allocation
and reclamation.

In addition, the advantage of lock-free PTMs over hand-
made lock-free data structures is relevant when having
operations over multiple instances. Consider two instances
of a lock-free queue designed for NVM, q1 and q2. If the
user wants to dequeue an item x from q1 and place it in
q2, with lock-free progress and in an atomic way, there is
no easy way to do it. If a failure occurs after the dequeue
of item x from q1 and before the enqueue of x on q2,
upon restart, the contents of q1 and q2 will be recovered
to consistent state, with neither of the queues having the
item x. In this case, the item x will be effectively lost.
With OneFile-PTM the user can create a transaction that
encompasses the dequeue from q1 and the enqueue in q2,
thus preventing the loss of the item in the event of a failure.
Moreover, as memory allocation and reclamation are part
of the transaction, in the event of a failure there will be
no memory leakage or allocator metadata corruption when
removing the node in q1 and creating a new node in q2.

Based on this scenario, we implemented a test where
multiple processes execute a transaction which modifies two
shared queues, while one of these processes is randomly
killed. The test consists of executing N processes each with
a single thread. Its thread continually executes a transaction
that takes an item out of a queue and places the item in
another queue. There are two queues in persistent memory,
shared among the N processes. Enqueuing allocates one
node of the queue while dequeueing de-allocates another
node, per transaction. This test executes during 100 seconds,
with N being 2, 4, 8, 16 or 32 processes and the number of

transactions per second are shown on the right-side plot of
Fig. 12 as no kill. We then repeated the same test, but with a
script that randomly kills one of the N processes, every 100
milliseconds and immediately re-spawns a similar process,
also shown on the right plot of Fig. 12. This means there
are 1,000 failures for the duration of the test.

From these results we can conclude the following: due to
the null-recovery property, OneFile provides fast recovery
time, with no measurable performance impact for the tested
scenario of 1,000 failures during 100 seconds; we never
observed memory leaks nor allocator metadata corruption
and no breakage of application invariants either; and the lack
of performance difference with and without processes being
killed shows that OneFile is resilient to failures, allowing
the non-failed processes to continue executing normally.

To help understand the factors that impact the perfor-
mance of the different PTMs in §V, we summarize in the
following table the number of pwb, pfence and synchro-
nization primitives on update transactions, as a function of
the number of modified words Nw in a transaction.

pwb pfence CAS or DCAS
PMDK 2.25 Nw 2 + 2 Nw 1

RomulusLog 3 + 2 Nw 4 or less 1
OF (Lock-Free) 1 + 1.25 Nw 0 2 + Nw

OF (Wait-Free) 2 + 1.25 Nw 0 3 + Nw

VI. CONCLUSION

STMs have a bad reputation for mishandling large trans-
actions and high contention, and deservingly so. The wait-
free OneFile is immune to starvation and has predictable
latency, regardless of contention or transaction size.

Transactions in OneFile-PTM require two persistence
fences, are durable linearizable, and have bounded wait-
free progress including memory allocation, de-allocation and
reclamation. The novel technique for memory reclamation
in OneFile-PTM uses an optimistic approach that allows to
safely access memory locations with no need to announce
its access to concurrent threads. Furthermore, a transaction
with a de-allocation and allocation of an object of the same
size can re-use the same memory block, which reduces
the number of pwbs and improves cache locality. This
immediate re-usage of blocks is not possible on previously
known lock-free memory reclamation schemes.

So far in the current literature, a single lock-free data
structure has been shown for NVM, a lock-free queue [63].
We provide a generic approach with integrated memory
reclamation. With OneFile-PTM we have implemented for
NVM, a wait-free queue, a wait-free linked list set, a wait-
free resizable hash map, and a wait-free balanced tree. And
other containers can be implemented.

The initial intent of Herlihy and Moss’s paper [4] was to
propose Transactional Memory as a simple way of producing
lock-free data structures. It took more than 25 years but
finally, an efficient and easy to use lock-free STM is now



available for users to develop their own lock-free and wait-
free data structures. Furthermore, OneFile-PTM goes above
this goal by giving end users the ability to design their own
failure-resilient wait-free data structures for NVM, enabling
them to create reliable applications with fast wait-free ACID
transactions with serializable isolation.
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