
2PLSF: Two-Phase Locking with Starvation-Freedom
Pedro Ramalhete

Cisco Systems
pramalhe@gmail.com

Andreia Correia
University of Neuchâtel
andreia.veiga@unine.ch

Pascal Felber
University of Neuchâtel
pascal.felber@unine.ch

Abstract
Invented more than 40 years ago, the two-phase locking con-
currency control (2PL) is capable of providing opaque trans-
actions over multiple records. However, classic 2PL can suf-
fer from live-lock and its scalability is low when applied to
workloads with a high number of non-disjoint read accesses.

In this paper we propose a new 2PL algorithm (2PLSF)
which, by utilizing a novel reader-writer lock, provides
highly scalable transactions with starvation-freedom guar-
antees. Our 2PLSF concurrency control can be applied to
records, metadata and to indexing data structures used in
database management systems (DBMS). In our experiments
we show that 2PLSF is often superior to classical 2PL and
can surpass concurrency controls with optimistic reads, si-
multaneously providing high throughput and low latency
for disjoint and non-disjoint workloads.

CCS Concepts • Theory of computation�Concurrent
algorithms.

Keywords Concurrency control, transactions

1 Introduction
Invented back in 1976 in the context of database management
systems (DBMS), two-phase locking (2PL) was the first of
the general purpose concurrency controls to provide serial-
izable transactions [1, 10]. In 2PL, before accessing a record,
whether for reading or writing, the lock that protects it must
be acquired. At the end of the transaction the locks are re-
leased. The name two-phase comes from the two distinct
phases: lock acquisition is done during the first (expanding)
phase and on the second (shrinking) phase the locks are
released. To guarantee serializability, once the first lock is
released, no further locks can be acquired.
More specifically, 2PL ensures opacity [14], a condition

stronger than serializability. Opacity guarantees that no on-
going transaction can see modifications that have not yet
been committed. In practice this implies that all transac-
tions are serializable, for both committed as well as aborted
transactions. This behavior simplifies programming by en-
suring that application invariants hold during transaction
execution [23].

2PL implementations typically use a mutual exclusion lock
even for read accesses [29], the reason being that common

This is the author’s version of the work. It is posted here for your per-
sonal use. The definitive Version of Record was published in PPoPP ’23
http://dx.doi.org/10.1145/3572848.3577433,
2023.

reader-writer locks have poor scalability for short lived read-
lock acquisitions. This happens because of contention on
the variable that counts the number of active readers, hence-
forth named the read-indicator. A read-indicator [9, 17] is a
concurrent object that provides three functions: arrive(),
depart() and isEmpty(). While there exists in the literature
scalable reader-writer locks that address reader scalability
by splitting the read-indicator over multiple cache lines, so
as to reduce contention [2, 17], we know of no 2PL imple-
mentations that utilize these reader-writer locks.

As a result, existing 2PL implementations suffer from poor
scalability for read-mostly workloads when all or most trans-
actions read the same objects. This is particularly noticeable
when using 2PL as the concurrency control of tree-based in-
dexing data structures, where all threads must read the root
node of the tree to access their intended key. In other words,
all operations on the tree will need to obtain the read-lock
protecting the root node, causing a scalability bottleneck.
Hence the reason for DBMS preferring the usage of indexing
data structures whose concurrency control have optimistic
reads. Optimistic concurrency control techniques execute
read accesses without acquiring read-locks and instead use
sequence locks or similar versioning mechanisms to check if
the data was modified during the read access.

When it comes to the way conflicts are handled, there are
three main variants of 2PL, named no-wait, wait-or-die and
deadlock-detection [1, 28, 29]. The 2PL no-wait variant uses
a backoff strategy, aborting the transaction as a soon as a
lock conflict is detected. The 2PL wait-or-die variant imposes
an order on all transactions, typically with a timestamp of
when the transaction started and, when a lock conflict arises,
decides to wait for the lock or to abort, by comparing the
timestamp of the transaction with the timestamp of the lock
owner. The 2PL deadlock-detection variant keeps an internal
list of threads waiting on a lock and detects cycles (dead-
locks). A variant of wait-or-die exists named wound-wait in
which the transactions causing the conflict are aborted [4],
as opposed to wait-or-die where the transaction aborts it-
self. The wait-or-die and deadlock-detection approaches can
be implemented with live-lock freedom. To the best of our
knowledge, at the exception of PLOR [4] no other algorithm
based on these variants has been proposed with starvation-
freedom, a vital progress condition for guaranteeing the
timely execution of each transaction.
In this paper we propose 2PLSF, a two-phase locking

concurrency control with a conflict strategy similar to 2PL
wait-or-die however, 2PLSF is capable of providing scalable

http://dx.doi.org/10.1145/3572848.3577433

starvation-free transactions. Our goal is to show that 2PLSF
can provide scalability for DBMS, including indexing data
structures, and can therefore be simultaneously deployed in
these data structures and on the records of the database, thus
simplifying the implementation and maintenance of DBMS.
2PLSF achieves this via two distinctive characteristics.
The first characteristic is the usage of a highly scalable

reader-writer lock which splits the read-indicator over mul-
tiple cache lines, with one bit per thread per read-indicator,
aggregating into a single 64 bit-word the read-indicators
of 64 reader-writer locks (for one thread). This approach
reduces memory usage and allows read-lock releases to be
made with an atomic store-release, an operation with a lower
synchronization cost than a sequentially-consistent store or
an atomic decrement.
The second characteristic is the usage of a centralized

atomic counter to order the transactions only when conflicts
arise. Unlike 2PL wait-or-die which increments a central
clock for every transaction, the reader-writer locks in 2PLSF
increment the central clock at most one time per transac-
tion, i.e., the first time a conflict is detected, causing less
contention on the central clock variable, which results in
higher scalability. Moreover, our reader-writer lock allows
2PLSF to keep track of which thread/transaction caused the
conflict, implying that the aborted transaction needs only to
wait for the conflicting transaction, whilst in 2PL wait-or-die
the aborted transaction must wait for all transactions with a
lower timestamp, even if they are non-conflicting. This re-
sults in an efficient conflict resolution for 2PLSF, particularly
in workloads with pair-wise conflicts, where it is capable of
providing scalability.

Summarizing, the main contributions of this paper are:
• a new reader-writer lock which provides starvation-
freedom and due to its unique memory layout allows for
high scalability on read accesses;

• a novel two-phase locking algorithm (2PLSF) which, by
utilizing the aforementioned reader-writer lock, provides
starvation-free and opaque transactions that are guaran-
teed to restart at most 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 1 times;

• in 2PLSF only conflicting transactions are ordered and
each conflicting transaction needs to wait only for the
specific transaction(s) that caused the conflict.
The rest of the paper is organized as follows. We first

present our concurrency control 2PLSF in §2. We perform
an evaluation of 2PLSF in §3. We then discuss related work
in §4. Finally we conclude in §5.

2 Starvation-Free Two-Phase Locking
Concurrency controls like 2PL can manage accesses to data
at the individual read and write accesses. When deployed
in a software transactional memory (STM), these are imple-
mented as the read and write interposing functions, namely
stmRead() and stmWrite(), as shown in Algorithm 1.

Algorithm 1 — STM functions

1 // total number of reader−writer locks
2 uint64_t NUM_RWL = 4 ∗ 1024 ∗ 1024ULL; // 4 million locks
3 // timestamp array with all entries initialized to NO_TIMESTAMP
4 atomic<uint64_t> announceTS[MAX_THR];
5 // default value in announceTS[]
6 uint64_t NO_TIMESTAMP = 0;
7 // central clock for conflicts
8 atomic<uint64_t> conflictClock = 1;
9 // unique thread id for a thread
10 thread_local uint16_t tl_tid;

11 T stmRead(T∗ addr) {
12 if (!tryOrWaitReadLock(addr2lockIdx(addr))) restartTxn();
13 readlockSet.log(addr); // save address to later unlock
14 return ∗addr; // read data
15 }

16 void stmWrite(T∗ addr, T newValue) {
17 if (!tryOrWaitWriteLock(addr2lockIdx(addr))) restartTxn();
18 writeSet.log(addr, ∗addr); // save address and original value
19 ∗addr = newValue; // write to data
20 }

21 void beginTxn() { // always inlined or preprocessor macro
22 setjmp();
23 readSet.reset();
24 writeSet.reset();
25 // will do nothing on the first attempt
26 while (announceTS[tl_otid] == tl_oTS) pause();
27 }

28 void commitTxn() {
29 writeSet.unlock();
30 readSet.unlock();
31 tl_myTS = NO_TIMESTAMP;
32 announceTS[tid].store(NO_TIMESTAMP);
33 }

34 void restartTxn() {
35 writeSet.rollbackModifications();
36 writeSet.unlock(); // calls writeUnlock() for every entry
37 readSet.unlock(); // calls readUnlock() for every entry
38 longjmp(); // continues at setjmp() in beginTxn()
39 }

40 // returns the index of the lock which protects a given address
41 uint32_t addr2lockIdx(void∗ addr) { // example of lock hashing
42 return (((uint64_t)(addr) >> 5) & (NUM_RWL−1));
43 }

Just like 2PL [1], a lock must be taken before doing a read
or write access. If the lock acquisition fails (in lines 12 or 17)
the transaction is restarted, which will revert any writes
done so far in the transaction and release the locks (line 34)
followed by jumping back to the beginning of the transaction
in beginTxn(). Our implementation uses a write-through
protocol (undo-log) nevertheless, awrite-back protocol (redo-
log) can also be used with either eager locking or deferred
locking [12].

2

Algorithm 2 — Reader-writer lock used by 2PLSF

44 atomic<uint16_t> wlocks[NUM_RWL]; // initialized to zero
45 // thread identifier of the thread causing conflict with this one
46 thread_local uint16_t tl_otid = NO_TID;
47 // timestamp/priority of the thread causing conflict (tl_otid)
48 thread_local uint64_t tl_oTS = NO_TIMESTAMP;
49 // timestamp/priotiy of the current thread's transaction
50 thread_local uint64_t tl_myTS = NO_TIMESTAMP;

51 bool tryOrWaitReadLock(uint32_t widx) {
52 riArrive(widx);
53 uint16_t wstate = wlocks[widx].load();
54 if (wstate == UNLOCKED || wstate == tl_tid) return true;
55 if (tl_myTS == NO_TIMESTAMP) {
56 tl_myTS = conflictClock.fetch_add(1);
57 announceTS[tl_tid].store(tl_myTS);
58 }
59 while (true) {
60 if (wlocks[widx].load() == UNLOCKED) return true;
61 tl_oTS = getTSOfWLock(widx);
62 if (tl_oTS < tl_myTS) {
63 // write−lock taken by other thread with lower timestamp
64 riDepart(widx);
65 return false;
66 }
67 pause(); // wait for now
68 }
69 }

70 void readUnlock(uint32_t widx) {
71 riDepart(widx);
72 }

73 void writeUnlock(uint32_t widx) {
74 wlocks[widx].store(UNLOCKED);
75 }

76 bool tryOrWaitWriteLock(uint32_t widx) {
77 uint16_t wstate = wlocks[widx].load();
78 if (wstate == UNLOCKED && wlocks[widx].cas(wstate,tl_tid)) {
79 if (ri.isEmpty(widx)) return true;
80 }
81 if (tl_myTS == NO_TIMESTAMP) {
82 tl_myTS = conflictClock.fetch_add(1);
83 announceTS[tl_tid].store(tl_myTS);
84 }
85 riArrive(widx); // writer arrives as a reader
86 while (true) {
87 wstate = wlocks[widx].load();
88 if (wstate == UNLOCKED) wlocks[widx].cas(wstate, tl_tid);
89 wstate = wlocks[widx].load();
90 if (wstate == tl_tid && ri.isEmpty(widx)) {
91 // ok to clear the read−indicator even if it was previously
92 // read−locked because the lock is now upgraded
93 riDepart(widx);
94 return true;
95 }
96 tl_oTS = getLowestTS(widx);
97 if (tl_oTS < tl_myTS) {
98 // write−/read−lock taken by thread with lower timestamp
99 riDepart(widx);
100 if (wlocks[widx].load() == tl_tid)
101 wlocks[widx].store(UNLOCKED);
102 return false;
103 }
104 pause(); // wait for now
105 }
106 }

2.1 Algorithm overview
Transactions in 2PLSF acquire a read-lock before read ac-
cesses and a write-lock before write accesses. The first time
a lock conflict occurs during a transaction, a timestamp is
taken from a global atomic clock named conflictClock
and this number is announced in an array with one entry
per thread, announceTS[tl_tid] (lines 57 and 83). When
a conflicting lock is found, the thread failing to acquire the
lock (the conflicted transaction) will read the thread-id (tid)
of the thread currently holding the lock and read the corre-
sponding entry in announceTS[tid] to determine the times-
tamp of the conflicting transaction. In case of conflict when
there are multiple threads holding a read-lock, the conflicted
transaction will scan the timestamps of the transactions hold-
ing the read-locks and wait for the the transaction with the
lowest of the timestamps (line 125). If the timestamp of the
transaction holding the lock is higher than the timestamp of
the transaction attempting to acquire the lock, then the con-
flicted transaction waits for the lock to be released, otherwise
the conflicted transaction will undo its modifications, release
all the locks and restart (line 34). The conflicted transaction

will not begin again until the transaction which caused the
conflict completes (line 26).
When the other transaction commits, it will clear its an-

nounced timestamp (in line 32) allowing waiting thread(s) to
start and re-attempt their transaction(s). This behavior is pos-
sible because each thread that attempts a read-lock will an-
nounce its arrival separately on the read-indicator, whilst the
majority of reader-writer locks use atomic counters [2, 17].
Our reader-writer lock uses this mechanism to identify
which thread has caused the conflict (lines 65 and 102) saving
this information in a thread-local variable (tl_otid) along
with the corresponding timestamp (tl_oTS).

Consider the difference from this behavior to 2PL no-wait
where each aborted transaction waits for a backoff period
and therefore is prone to live-lock issues, or the difference
from 2PL wait-or-die which must wait for all other threads
whose timestamp is lower, even if they are not in conflict.

2.2 Starvation-Freedom
In the context of STMs the property of starvation-freedom
is sometimes defined as: every aborted transaction that is
retried infinitely often eventually commits [3]. Our 2PLSF

3

algorithm provides a stronger guarantee, with a bound on
the number of times each transaction will be retried.

When a read-write conflict occurs, the thread detecting the
conflict will enter the slow-path in tryOrWaitReadLock()
and, if it is the first restart, will take a timestamp (line 56) to
determine its priority relative to the other transactions. It will
then wait (line 67) until the read-lock is successfully acquired
(line 60), or a transaction with a lower timestamp is currently
holding the write-lock (line 65) in which case it will restart its
transaction, reverting all modifications and releasing all locks
acquired so far and then wait for the conflicting transaction
to commit before restarting the transaction (line 26).
When a write-write or write-read conflict occurs, the

thread detecting the conflict will enter the slow-path in
tryOrWaitWriteLock() and, if it is the first restart, will
take a timestamp (line 82) to determine its priority relative
to the other transactions. It will then wait (line 104) until the
write-lock is successfully acquired (line 94), or a transaction
with a lower timestamp is currently holding the write-lock
or the read-lock (line 96) in which case it will restart its trans-
action, reverting all modifications and releasing the locks
acquired so far and then wait for the conflicting transaction
to commit before restarting the transaction (line 26).

A transaction may restart due to a write-write, read-write
or write-read conflict, however the number of restarts is
bounded by 𝑁threads− 1. Once the timestamp is announced in
announceTS[tid] (line 57 or 83) it will not be cleared until
the transaction commits (line 32). All later conflicting trans-
actions will, by definition, have a higher timestamp, taken
from conflictClock. This means the current transaction
has to restart at most 𝑁threads − 1 times due to other transac-
tions before it commits because, after 𝑁threads − 1 attempts,
the transaction will become the in-flight transaction with the
lowest timestamp and therefore, in the event of a subsequent
lock conflict, it will wait for the current owner thread to
release the lock. Notice that the other thread will release the
lock either because it committed or because it detected a
conflict with a transaction with a lower timestamp.

2.3 Why starvation-free locks are not enough
Several mutual exclusion locks with starvation-free progress
exist in the literature [19, 21, 25] and reader-writer locks with
starvation-freedom. Although we know of no highly scalable
reader-writer lockwith starvation-free progress for both read
and writer lock acquisitions, even if such an algorithm were
to be used, it would not suffice to obtain a starvation-free
concurrency control.

To understand why, consider a scenario with two transac-
tions, with one of them accessing record𝐴 followed by record
𝐵, while the other transaction accesses record 𝐵 followed by
record𝐴. Assuming each record is protected by an individual
lock, if the lock of 𝐴 is acquired by the first transaction and
the lock of 𝐵 is acquired by the second transaction, then
both transactions are unable to access the opposite record,

creating a deadlock situation. This will occur even if each of
the locks provide starvation-free progress.
Notice that mutual exclusion lock algorithms with

starvation-freedom, do so through the lock() API however,
concurrency controls acquire locks using the trylock()API,
which by definition is not starvation-free, due to trylock()
implying no waiting. As such, our 2PLSF algorithm uses
a different API we named tryOrWaitLock(), which may
wait for a lock acquisition, or return true on successful lock
acquisition, or return false when the lock acquisition fails.

2.4 Reader-Writer Lock
Our reader-writer lock was designed with twomain premises
in mind: resolve conflicts only when they occur and lay out
the read-indicator to reduce false-sharing.
The first premise is that there should be no need to or-

der threads/transactions unless there is a conflict. When
deployed in the context of a concurrency control, the ma-
jority of lock acquisition attempts are expected to be suc-
cessful, i.e., no lock conflict occurs. As such, we optimize
our algorithm by having a short code path for the success-
ful acquisition, in tryOrWaitReadLock() lines 52–54 and
in tryOrWaitWriteLock() lines 76–79. It is only when this
fast-path fails to acquire the lock that it takes a timestamp
from the conflictCLock so as to establish a precise order of
execution for the threads/transactions (lines 56 and 82). This
behavior may seem to differ slightly from ordering every
transaction, which is what 2PL wait-or-die does, however,
by incrementing the conflictCLock only when needed, it
removes a significant bottleneck that prevents the scalability
of 2PL wait-or-die. We will show just how large these effects
can be in section 3.
The second premise is that by using a customized read-

indicator, 2PLSF is able to reduce the memory usage to
one bit per thread and per lock while preventing false shar-
ing in the read-indicator. Figure 1 shows the memory lay-
out of the scalable rw-locks used in our implementations.
Our reader-writer lock is laid out such that each thread

readIndicator
(1 bit per thread)

thread 1

...

4 million entries
thread 2

...

4 million entries
thread 3

...

4 million entries

wlock
(16 bits per thread) tid tid tid tid tid ...

array with 4 million entries

...announceTS
(64 bits per thread)

MAX_THR entries

Figure 1. Memory layout of the reader-writer locks used
in 2PLSF. wlock requires at most 16 bits to store a unique
thread identifier, thus supporting 216 threads. Blocks of the
same color represent the variables of one reader-writer lock.

has one bit reserved for the read-indicator for each lock.
4

Starvation-free locks typically use a atomic increment in-
struction (fetch_add()) to count waiting threads. In our
reader-writer lock the bits are consecutive for each thread,
implying that setting a read-indicator back to zero can be
made with a store(memory_order_release) instead of a
fetch_add(), which is a faster operation in most architec-
tures, including x86. In this design, the memory usage per
lock is one bit per number of threads plus the number of bits
required to store a thread id (16 bits in our implementation).
Moreover the usage of a separate bit in the read-indicator for
each thread is vital, so that conflicting threads can determine
which thread is currently holding the read-lock or waiting
for the write-lock. In our implementation we used 4 million
reader-writer locks (line 96) with each lock protecting 32
bytes of data (line 41), but other settings can be chosen.
In Algorithm 3 we show our read-indicator implementa-

tion and the auxiliary functions that find the lowest times-
tamp at each conflict.

2.5 RW-Lock TryOrWaitLock
When a conflict occurs in tryOrWaitReadLock() or
tryOrWaitWriteLock(), a unique timestamp is assigned to
this transaction if none has yet been assigned, i.e., if this is the
first time a lock conflict has been encountered in this trans-
action. The timestamp is then announced in a thread-specific
entry of an announcement array announceTS[tl_tid]
(line 57). The tryOrWaitReadLock() function then enters a
waiting loop from which it exits only if one of the following
conditions occurs:

• The transaction holding the write-lock has announced a
lower timestamp: restart the current transaction by return-
ing false (line 65).

• The transaction holding the write-lock has released it: this
transaction has now acquired the read-lock. Continue exe-
cuting the current transaction by returning true (line 60).

The tryOrWaitWriteLock() function enters a waiting loop
from which it exits only if one of the following conditions
occurs.

• The transaction holding the write-lock has announced a
lower timestamp: restart the current transaction by return-
ing false (line 102).

• The transaction in the read-indicator whose announced
timestamp is the lowest has a lower timestamp than the
current transaction: restart the current transaction by re-
turning false (line 102).

• The write-lock has been acquired with a CAS on wstate
(line 78 or 88) and the read-indicator is empty (line 79
or 90): return true to continue executing the current trans-
action (line 94).

When a thread calls tryOrWaitWriteLock() for a lock, if
there is another thread currently holding the write-lock or
multiple threads holding the read-lock, as long as they have

a timestamp higher than the thread’s timestamp, the calling
thread will wait until the lock is released.
One important detail is that when thread 𝑖 calls

tryOrWaitWriteLock() and there is another thread 𝑗 hold-
ing the write-lock with a higher timestamp, thread 𝑖 will
mark its read indicator for this lock (line 85). Arriving on
the read-indicator ensures that, even if the other thread 𝑗

(with a higher timestamp) does a successful CAS on wstate
(line 88), thread 𝑗 will not see an empty read-indicator af-
ter the CAS (line 90) and will restart when it sees a lower
timestamp (line 96). Thus, by having the writer mark the
read-indicator, we guarantee the number of writers that can
take the lock (with a higher timestamp) is bounded.

2.6 Correctness
Similarly to classic 2PL, in 2PLSF all data accesses are done
under the protection of a lock. In stmRead()we first acquire
the read-lock (line 12) and then read the data (line 14). In
stmWrite()we first acquire the write-lock (line 17) and then
write to the memory location (line 19). All locks are released
on restart (lines 36 and 37) or on commit of the transaction
(lines 29 and 30), thus guaranteeing opacity like classic 2PL.

All that remains is showing that the reader-writer lock
used by 2PLSF provides correct mutual exclusion. This can
be split into three mutual exclusion scenarios: write-write,
read-write and write-read. Write-write mutual exclusion
is guaranteed through the compare-and-swap instruction
which atomically changes wlocks[widx] from UNLOCKED
to the thread’s unique identifier, in line 78 or line 88, thus
ensuring that only one thread a time will have the write-lock.
Write-read mutual exclusion is provided by checking that
the read-indicator is empty after setting the writer’s state in
wlocks[widx], in lines 79 and 90. This means that a writer
will not have the lock when a reader is already in the read-
critical section. Read-write mutual exclusion is achieved by
checking the writer’s state after setting the read-indicator,
in lines 53 and 60. This implies that a reader will not have
the lock when a writer is already in the write-critical section.
This sketch of proof shows that our read-writer lock provides
correct mutual exclusion.

2.7 Debuggability
On a practical note, 2PL algorithms have an important ad-
vantage over concurrency controls with optimistic accesses:
when using a debugger to inspect variables in a transaction,
for example in the case of a error introduced by the user in
the transactional code, for STMs with optimistic access any
variable previously read during the transaction may in the
meantime have been modified by another thread’s transac-
tion. 2PL and 2PLSF have no such limitation because they
acquire locks for every read and write access to the data,
thus providing a consistent view of all the variables read up
until the point in time where the transaction was stopped.
This means that it is significantly easier to utilize tools such

5

Algorithm 3 — Auxiliary functions and variables for the reader-writer locks
95 // 64bit words used per thread on the read−indicator
96 uint64_t NUM_RI_WRD = NUM_RWL ∗MAX_THR / 64;

97 // initialized to zero
98 atomic<uint64_t> readIndicators[NUM_RI_WRD][MAX_THR];

99 // sets the bit on the read−indicator for an rw−lock/tid
100 void riArrive(uint32_t widx) {
101 uint32_t ridx = widx2ridx(widx);
102 uint64_t ri = readIndicators[ridx].load();
103 readIndicators[ridx].store(ri | ribit(widx));
104 }

105 // clears the bit on the read−indicator for an rw−lock/tid
106 void riDepart(uint32_t widx) {
107 uint32_t ridx = widx2ridx(widx);
108 uint64_t ri = readIndicators[ridx].load();
109 readIndicators[ridx].store(ri & (~ribit(widx)));
110 }

111 // returns true if the read−indicator has no active readers
112 bool riIsEmpty(uint32_t widx) {
113 for (uint16_t itid = 0; itid < maxThreads; itid++) {
114 if (itid == tid) continue;
115 uint64_t offset = itid ∗ NUM_RI_WRD/MAX_THR;
116 uint64_t ri = readIndicators[offset + (widx / 64)].load();
117 if (ri & ribit(widx)) return false;
118 }
119 return true;
120 }

121 uint32_t widx2ridx(uint32_t widx) {
122 return tid ∗ NUM_RI_WRD / MAX_THR + (widx / 64);
123 }

124 // returns the lowest timestamp of any conflicting thread
125 uint64_t getLowestTS(uint32_t widx) {
126 uint64_t lowestTS = getTSOfWLock(widx);
127 for (uint16_t itid = 0; itid < maxThreads; itid++) {
128 if (itid == tid) continue;
129 uint64_t offset = itid∗NUM_RI_WRD/MAX_THR;
130 uint64_t ri = readIndicators[offset + (widx / 64)].load();
131 if ((ri & ribit(widx)) == 0) continue;
132 uint64_t oTS = announceTS[itid].load();
133 if (oTS < lowestTS) {
134 lowestTS = oTS;
135 tl_otid = itid;
136 }
137 }
138 return lowestTS;
139 }

140 // returns timestamp of thread holding the write−lock (if taken)
141 uint64_t getTSOfWLock(uint32_t widx) {
142 uint64_t lowestTS = NO_TIMESTAMP;
143 uint16_t wstate = wlocks[widx].load();
144 if (wstate != UNLOCKED && wstate != tid) {
145 uint16_t otid = wstate;
146 uint64_t oTS = announceTS[otid].load();
147 if (oTS < lowestTS) {
148 lowestTS = oTS;
149 tl_otid = otid;
150 }
151 }
152 return lowestTS;
153 }

154 uint64_t ribit(uint32_t widx) { return (1ULL << ((widx) % 64)); }

as gdb to debug issues in the user’s transaction code with
2PL and 2PLSF.

2.8 Irrevocability
Multi-writer concurrency controls are subject to conflict-
restarts, causing each transaction to possibly restart multiple
times, a term sometimes named speculative execution. To
address this issue, some concurrency controls provide irrevo-
cability, the property that the transaction will never restart
during its execution. By definition, multiple irrevocable read-
only transactions can be executed concurrently, however, a
single irrevocable write transaction can be executed at any
given time.

Welc et al. [27] have proposed a technique to provide irrev-
ocable transactions for concurrency controls with optimistic
reads (such as TL2 and LSA), by having a fallback to acquir-
ing read-locks during the load interposing of the irrevocable
transaction, this way bypassing the need to have a read-
set validation stage at commit time. However, similarly to
other 2PL based approaches with a read-writer lock, these
techniques scale poorly due to contention on the locks.

If we’re willing to sacrifice starvation-freedom, 2PLSF can
provide irrevocable read-only transactions. It suffices that
an irrevocable read-only transaction starts by announcing

its timestamp as being zero, thus ensuring the transaction
will never restart.

2PLSF can be further modified to provide irrevocable write
transactions by adding a zero mutex which, when acquired,
gives the transaction the right to chose a timestamp of zero.
This transaction will never restart and at the end of its execu-
tion it will release the zero mutex. This approach effectively
serializes all irrevocable write transactions as they will be
waiting to acquire the zero timestamp.

2.9 Memory Reclamation
When deploying a concurrency control and using the system
allocator, extra work must be done to dynamically allocate
and de-allocate objects. At commit time, concurrency con-
trols with optimistic accesses must use a safe memory recla-
mation scheme (SMR), passing each object in the de-allocated
list to the SMR. Due to its simplicity, the scheme of choice is
typically an epoch-based reclamation (EBR) [6, 12, 30].

For two-phase locking algorithms, such as 2PL and 2PLSF,
the objects in the de-allocation log can be immediately de-
allocated at commit time, without any need to utilize a mem-
ory reclamation scheme. This is safe to do because the read-
locks taken on every read access, guarantee that whatever
pointer was read to de-reference the object, this pointer has

6

not been modified by another transaction (as doing so would
require a write-lock on the pointer) therefore guaranteeing
the object is reachable.

The fact that 2PL foregoes the need to implement and exe-
cute a memory reclamation scheme, reduces the engineering
effort when choosing 2PLSF versus approaches with opti-
mistic reads. Moreover, the usage of a memory reclamation
scheme can introduce additional memory requirements to
store the lists of retired objects and it may cause a perfor-
mance impact on workloads where transactions execute a
large number of allocations and de-allocations. In essence,
no matter how efficient in space and time is the memory
reclamation scheme deployed, the fact that 2PL and 2PLSF
do not need a reclamation scheme is an important advantage
over optimistic concurrency controls.
A stronger property than safe memory reclamation is

privatization. Similarly to other 2PL algorithms [8], 2PLSF
provides implicit privatization [20] including implicit proxy
privatization [16]. This guarantee stems directly from the
pessimistic nature of the transactions and comes without
any additional performance cost [8].

3 Evaluation
We now present an evaluation of 2PLSF and compare it
with other state-of-the-art STM implementations when ap-
plied to transactional data structures, using synthetic bench-
marks.We executed thesemicrobenchmarks on a dual-socket
2.50 GHz Intel Xeon E5-2683 v4 with a total of 32 hyper-
threaded cores (64 HW threads). This machine was running
Ubuntu LTS 20.04 and using gcc 10.3.0 with the -O2 opti-
mization flag.

In the next sections we will study the throughput of differ-
ent transactional set data structures when deployed using an
assortment of STM implementations. On the leftmost plots,
the workload is made of 50% random insertions and 50% re-
movals. The central plots have 10% insertions, 10% removals
and 80% lookups. The rightmost plots execute lookups ex-
clusively. Each data point represents the mean over 5 runs
of 20 seconds.

3.1 Different RW-Locks
We start with an incremental comparison of different 2PL
algorithms and locks.
The data points labeled 2PL-RW in Figure 2 represent a

2PL algorithm where each reader-writer lock is implemented
with a single 64-bit word, with 8 bits reserved for the identi-
fier of the thread holding the write-lock and the remaining
56 bits the read-indicator, with one bit reserved per thread
holding the read-lock. This implementation supports at most
56 concurrent (reader) threads. Having each thread assigned
a specific bit in the lock’s variable allows for a quick identi-
fication of whether or not the current thread already holds

the read-lock, which enables efficient detection of read-after-
read scenarios during a transaction. Because of this, having
multiple threads read the root pointer of a binary search tree
implies contention on the reader-writer lock that protects
it, due to the high number of fetch_add() instructions ex-
ecuted in the same variable of the lock. This is noticeable
in Figure 2 where 2PL-RW (the dark blue line with inverted
triangles) is never capable of scaling, even on read-only work-
loads (rightmost plot). The idea of deploying reader-writer
locks in a two-phased locking concurrency control is not
new and has been explored previously by Dice et al. [8] in
the TLRW concurrency control however, as noticeable in
Figure 2 and as will be shown later in this section, unless a
scalable reader-writer lock is used, 2PL will scale poorly.

0

5

10

15

 16 32 48 64
Number of threads

Relaxed AVL tree with 10
6
 keys

i=50% r=50% l=0%

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

i=10% r=10% l=80%
2525

 16 32 48 64

i=0% r=0% l=100%
5050

2PLSF

2PL-RW-Dist

2PL-RW

Figure 2. RAVL tree with three different 2PL algorithms.

If an implementation uses instead a reader-writer lock
where each thread’s read-indicator is on a separate cache
line, then it is able to achieve high scalability for read-mostly
workloads (light blue line with up triangles, shown as 2PL-
RW-Dist in Figure 2). The idea of using separate cache lines
for the read-indicators is not new and has been explored
previously by Dice et al. [2]. To the best of our knowledge,
our approach is the first to combine multiple read-indicators
per thread, so as to reduce false sharing without increasing
the memory footprint.

Our 2PLSF concurrency control described in Algorithm 1
uses the same read-indicator layout as 2PL-RW-Dist, how-
ever, it does so in a way as to guarantee starvation-freedom
and efficient conflict detection. Similarly to most other con-
currency controls, 2PL-RW-Dist uses a backoff strategy to
solve conflicts, a strategy referred in the literature as 2PL
No-Wait [28, 29], while our 2PLSF does no backoff. As can be
observed in Figure 2, on read-mostly workloads (rightmost
plot) the 2PLSF approach has no advantage over 2PL-RW-
Dist, however, on write-intensive workloads (leftmost plot)
2PLSF is significantly faster at solving conflicts, giving it an
advantage of more than 2x over 2PL-RW-Dist. We observed
this advantage in all the workloads we executed during our
studies and therefore, for the remaining of this paper we
will no longer show the results for the 2PL-RW-Dist nor
2PL-RW implementations, although source code for these
can be obtained at the github repository of this paper at

7

http://github.com/pramalhe/2PLSF or through the zenodo
link https://zenodo.org/record/7358723#.Y7LQthXMJ4E.

3.2 Set Data Structures
We compared our 2PLSF implementation with the following
STMs:
• TL2: the original TL2 implementation [7] with pessimistic
writes based on two-phase locking and optimistic read
accesses (write transactions require a read-set validation
at commit time);

• TinySTM: an STM implementing the LSA concurrency
control [11, 12], also with pessimistic writes, read-set vali-
dation and optimistic read accesses;

• TLRW-Z: the implementation by Zardoshti et al. [30] of
the TLRW STM by Dice et al. [8], which itself is a variation
of two-phase locking (no-wait) with reader-writer locks;

• OREC-Z: the Orec STM implementation by Zardoshti et
al. [30];

• OFWF: the OneFile STM by Ramalhete et al. [22] which
provides wait-free transactions where write transactions
are serialized and do not need a read-set validation, while
read accesses are done optimistically.

Although not all papers claim to do so, to the best of our
knowledge all these STMs provide opaque [14] transactions.
We also compared with Orec-eager and the results were

similar to Orec-lazy, therefore we chose to show the later
only. We compared against the TL2 implementation provided
by Zardoshti et al. which, despite being more stable than
the original TL2 implementation, was slower, therefore we
chose to display results for the fastest of the two.

Not all STMs are shown in all plots, as some implementa-
tions were unstable to the point of preventing the collection
of enough data for a comparison. Our 2PLSF implementation
has been put through a varied set of stress tests, never having
detected any loss of invariant nor memory leak.

0

0.1

0.2

0.3

 16 32 48 64
Number of threads

LinkedList with 10
3
 keys

i=50% r=50% l=0%

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

i=10% r=10% l=80%
0.70.7

 16 32 48 64

i=0% r=0% l=100%
1515

TL2
TinySTM
TLRW-Z

OREC-Z
OFWF
2PLSF

Figure 3. Linked list set with 103 keys.

Figure 3 shows the throughput for a transactionally an-
notated linked list set under the different STMs. In write-
intensive workloads (leftmost plot) 2PLSF is usually the win-
ner however, on other workloads it is surpassed by OneFile
and TinySTM as these two STMs have optimistic loads.
The cost of incrementing a global clock on every write

transaction is the main reason behind the lack of scalability

of TL2 and TinySTM in the hash set shown in Figure 4. In
those concurrency controls, read-only transactions do not
increment the global clock and therefore, read-only work-
loads can scale effortlessly. When the write transaction is
longer, like the case of inserting/removing a node in a skip
list (Figure 5) or a zip tree (Figure 6), the increment of the
global clock is no longer a bottleneck, because the abso-
lute number of transactions is low enough that executing
one fetch-and-add on the global clock per transaction does
not create significant contention. In 2PLSF, only conflicting
transactions need to increment a global clock, giving 2PLSF
high scalability even in short disjoint write transactions, like
write intensive workloads of the hash set or the relaxed AVL
tree (Figure 7).

0

20

40

60

 16 32 48 64
Number of threads

HashSet (fixed size) with 10
4
 keys

i=50% r=50% l=0%

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

i=10% r=10% l=80%

100100

 16 32 48 64

i=0% r=0% l=100%

500500
TL2

TinySTM
TLRW-Z
OREC-Z

OFWF
2PLSF

Figure 4. Hash set with 104 keys.

0

1

2

3

4

 16 32 48 64
Number of threads

SkipList with 10
6
 keys

i=50% r=50% l=0%

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

i=10% r=10% l=80%
1515

 16 32 48 64

i=0% r=0% l=100%
3030

TL2
TinySTM
TLRW-Z

OREC-Z
OFWF
2PLSF

Figure 5. Skip list with 106 keys.

0

5

10

 16 32 48 64
Number of threads

ZipTree with 10
6
 keys

i=50% r=50% l=0%

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

i=10% r=10% l=80%
2020

 16 32 48 64

i=0% r=0% l=100%
4040

TL2
TinySTM

TLRW-Z
OREC-Z

OFWF
2PLSF

Figure 6. Zip tree with 106 keys.

Figures 5 and 6 show a skiplist and ziptree with 106
keys. For both data structures TinySTM and 2PLSF provide
the highest throughput in write intensive workloads, with

8

http://github.com/pramalhe/2PLSF
https://zenodo.org/record/7358723#.Y7LQthXMJ4E

TinySTM having a clear advantage on the read-mostly work-
loads due to its optimistic read accesses.

Figure 7 shows another transactional data structure, the re-
laxed AVL tree [15], a data structure specifically designed for
disjoint access. This balanced tree provides absolute higher
throughput than the other trees. On thewrite-intensivework-
load 2PLSF is the stabler of the STMs as it is capable of
quickly ordering transactions under conflict. For the other
two plots (center and rightmost) the advantage of the op-
timistic accesses of TinySTM once again comes into play,
surpassing 2PLSF.

0

5

10

15

 16 32 48 64
Number of threads

Relaxed AVL tree with 10
6
 keys

i=50% r=50% l=0%

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

i=10% r=10% l=80%
2525

 16 32 48 64

i=0% r=0% l=100%
6060

TL2
TinySTM

TLRW-Z
OREC-Z

OFWF
2PLSF

Figure 7. RAVL tree with 106 keys.

3.3 Map Data Structures
In the following microbenchmark, instead of using set im-
plementations we use key/value map implementation where
the value is a pointer to a record containing 100 bytes of
user-generated data. We randomly chose to either insert a
key/value mapping (𝑖 = 1%), remove a key/value mapping
(𝑟 = 1%) or execute an update on a record by doing a random
key lookup and modify the contents of the record (𝑢 = 98%).
This workload consists solely of write transactions but be-
cause the number of insertions and removals of nodes in
the data structure are small, the operations are more dis-
joint than on the corresponding set microbenchmark with
𝑖 = 50%, 𝑟 = 50%. The results can be observed in Figure 8.
If we compare the three plots in Figure 8 with the leftmost

0

5

10

15

20

 16 32 48 64
Number of threads

Record updates on maps with 10
5
 keys (i=1% r=1% l=0% u=98%)

SkipList

O
p
e
ra

ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

ZipTree

2020

 16 32 48 64

Relaxed AVL

3030
TL2

TinySTM
TLRW-Z OREC-Z

OFWF
2PLSF

Figure 8. Three maps with 105 keys.

plots of Figures 5, 6 and 7, we observe that for the high up-
date workload 2PLSF has a significant advantage over the
others. The reason is mostly related to TinySTM and TL2
always incrementing a global clock in write transactions,

which means that the scalability for a high-update workload
reaches a plateau imposed by the number of increments that
the CPU can execute on an atomic variable (the global clock)
per second. Because of this factor, in the three plots of Fig-
ure 8 the throughput of those STMs never goes above 15
million transactions per second.
2PLSF is not encumbered by this effect because it has

no global clock. It does increment a shared atomic variable
to decide the order of the transactions however, it does so
only in the event of a conflict. In Figures 5, 6 and 7 the write-
intensive workloads are not disjoint enough to allow a higher
scalability, particularly on the skip list where the throughput
stays below 4 million transactions per second, but on the
more disjoint workloads (like Figure 8) the advantage of
2PLSF becomes significant. The increment of a global clock
for conflicts may seem a minor detail however, assigning
a unique number to each transaction implies an increment
on a centralized atomic variable which can be a significant
scalability bottleneck, even more so if it were to do that
for read-only transactions like it is done in 2PL wait-or-die.
One of TL2 and TinySTM’s main strengths is the capability
of executing read-only transactions without incrementing
the global clock. 2PLSF goes beyond this by incrementing it
solely for write-transactions with conflicts.

3.4 Tail Latency
The data structures shown in the previous section are im-
portant as they are representative of the indexing used in
databases however, concurrency controls are used in many
other scenarios and some of these are particularly prone to
conflicts. In the following synthetic benchmark we allocate
an array of counters where threads execute pair-wise con-
flicting transactions. The first two threads will increment the
first 20 counters, with the first thread starting from index 0 of
the array until index 19, while the second thread starts from
index 19 to 0. As illustrated in Figure 9, the next two threads
will write into the next 20 counters, with the third thread
starting from index 20 until 39, while the fourth thread starts
from 39 to 20, and so on. This workload is particularly prone
to conflicts, however, it should theoretically allow for scala-
bility as one thread of each pair should be able to commit its
transaction.

0 1 18 19 20 21 38 39 40 41 58 59… …Array of
counters …

thread 1 thread 3thread 2 thread 5thread 4 thread 6

Figure 9. Principle of the latency benchmark.

We executed this benchmark for 20 seconds, collecting
the duration of each transaction so as to compute different
percentiles of the latency distribution. In Figure 10 we show
the throughput for this workload (leftmost plot, higher is
better) and we show the percentile latency P90 (center plot,
lower is better) and P99 (rightmost plot, lower is better).

9

 0

 2

 4

 6

 8

 10

 12

 14

 8 16 24 32
Number of threads

Throughput and latency percentiles for pair-wise conflicts

Throughput (×1000 txn/s)

0
10
20
30
40
50
60
70
80

 8 16 24 32

P90 (milliseconds)

0
10
20
30
40
50
60
70
80

 8 16 24 32

 P99 (milliseconds)

TL2
TinySTM
OREC-Z

OFWF
2PLSF

Figure 10. Throughput (left) and Latency (center and right).

As we can see from the figure, 2PLSF and TL2 are able to
scale in this scenario (leftmost plot) with 2PLSF maintaining
a strong cutoff on latency, with the P99 being 2.4 milliseconds
and the maximum latency (slowest transaction taking) 4.4
milliseconds. On the other hand, TL2 is also capable of scaling
for this workload, but its P99 reaches 50 milliseconds with
the lengthiest transaction taking 5.6 seconds to complete. For
TinySTM the P99 is 5 seconds and therefore not visible in
the latency plots, with its lengthiest transaction taking 16.8
seconds to complete. Even for OneFile, which guarantees
wait-free progress, the P99 grows almost linearly with the
number of threads, with its lengthiest transaction taking 92
milliseconds to complete, an order of magnitude worse than
2PLSF. OneFile aggregates all in-flight transactions into a
single execution, causing latency to grow proportionally to
the number of competing threads. This benchmark indicates
a clear advantage for 2PLSF in workloads with pair-wise
conflicts.

3.5 YCSB in DBx1000
We have integrated our 2PLSF concurrency control into the
DBx1000 benchmark [28] in order to evaluate it with other
concurrency controls commonly used in DBMS. In this par-
ticular implementation of YCSB, the index is not protected
by the transaction, being a purely sequential hashmap data
structure. This is possible because this benchmark executes
only record updates, inserting all records initially in the ta-
ble during a prefilling phase, never removing nor inserting
records during the measurement phase. This means that
transactions in this benchmark do not need to be opaque
and in fact, recent work has shown that the highest scalable
concurrency control for this benchmark is TicToc [29], a
concurrency control which is serializable but not opaque.
We’ve executed the YCSB [5] benchmarks as described

by Yu et al. [29] and show the results in Figure 11. We have
disabled the abort buffer (which places conflicting transac-
tions in a temporary buffer to try them at a later time) and
the restart backoff, as those would be incompatible with the
2PLSF algorithm.
From left to right, the plots show workloads with high,

medium and low contention. In the high contention work-
load, 2PLSF is able to match and even surpass TicToc initially

0

0.5

1

 16 32 48 64
Number of threads

YCSB with 10
7
 keys

High 50%w 50%r

T
ra

n
s
a
c
ti
o
n
s
 (

×
1
0

6
/s

)

 16 32 48 64

Medium 10%w 90%r
33

 16 32 48 64

Low 0%w 100%r
2020

TICTOC
NO_WAIT

DL_DETECT
WAIT_DIE

2PLSF

Figure 11. Three different workloads of YCSB with 107 keys.

but loses scalability at 16 threads and beyond. We believe
this happens because TicToc allows for more interleaving
executions to commit and therefore, transactions have less
conflicts, thus showing the performance advantage of serial-
izability over opacity in high contention scenarios. Due to
the reduced number of conflicts on the medium contention
workload, 2PLSF is capable of providing throughput simi-
lar to TicToc up to 32 threads, being better than the other
2PL based algorithms for higher thread counts. On the low
contention workload, 2PLSF provides high scalability on all
thread counts, with a slight advantage over TicToc, which
after profiling can be explained by the cost performing the
copy of the data. Optimistic concurrency controls like TicToc
must copy the 100 byte-sized tuple to a temporary memory
location and then post-validate the timestamp on the lock
protecting the tuple, while 2PL based algorithms can directly
read from the tuple without performing the extra step of
copying it. The performance advantage of TicToc in conflict-
ing workloads comes with a price: Transactions in TicToc
are serializable, being validated at commit time and there-
fore, if we apply TicToc to a transactional data structure, the
invariants of the data structure may no longer hold, resulting
in incorrect behavior, such as crashes or infinite loops [23].

Figure 11 also shows the three variants of two-phase lock-
ing which are part of the DBx1000 benchmark suite, namely
no-wait, wait-or-die and deadlock-detection, all implemented
with pthread_mutex_t as the underlying lock.

4 Related Work
Starvation-free STMs have been shown before in the litera-
ture [3, 13, 24, 26].

KSFTM [3] is one example of a starvation-free concurrency
control. Unfortunately this implementation is object-based
which makes a comparison difficult. Moreover this imple-
mentation takes a global lock to execute mutative transac-
tions and this lock is implemented with a std::mutexwhich
is neither scalable nor starvation-free.
TM2C [13] is another example. When using the FairCM

contention manager, TM2C provides starvation-freedom by
assigning a priority to each transaction which does not
change during its lifespan. The priorities define a total order
on the set of concurrent transactions

10

A detailed study on multiple contention managers, some
of which are starvation-free, was shown by Spear et al. [24].
PLOR [4] is a recently presented starvation-free concur-

rency control. All transactions in PLOR must take a unique
timestamp which, as we have shown, is a significant perfor-
mance bottleneck. Moreover, in PLOR the read-lock acquisi-
tion creates a list of readers based on arrival time, thus implic-
itly serializing readers contenting on the same lock, which
will hamper scalability for workloads with non-disjoint reads.
Such an effect is not observable on workloads like YCSB
because PLOR uses MassTree [18] as the indexing data struc-
ture (which itself uses an optimistic concurrency control
for reads), but it will certainly become observable if PLOR
is applied to a tree data structure, like the ones shown in
Figures 5,6,7,8.

4.1 2PL Wait-Or-Die
The main idea of 2PLSF is to order the transaction as soon
as a lock conflict arises and use this order to resolve the
conflict. This is reminiscent of the classical 2PL Wait-Or-Die
strategy first described by Bernstein et al. [1] however, it
differs from it on one vital aspect. The Wait-Or-Die strategy
imposes that transactions have a unique sequence number
(the transaction’s priority [1]) to order all the transactions,
while in 2PLSF we use a unique sequence number to order
only the conflicting transactions. This may seem a minor
detail however, as we have seen in section 3, assigning a
unique number to each transaction implies an increment
on a centralized atomic variable which can be a significant
scalability bottleneck, even more so if we were to do that for
read-only transactions like it is done in Wait-Or-Die.

4.2 2PL No-Wait
In the No-Wait variant of 2PL, when a conflict occurs, the
transaction aborts and will restart after a backoff period of
time. This backoff period may be a fixed interval, or it may
be derived from an heuristic, like an exponential backoff
formula. Given that each transaction may be retried with-
out any guarantee of success, the No-Wait algorithm is not
starvation-free, and in fact, it’s not even live-lock free, as
two threads may repeatedly acquire locks in opposite order,
preventing each other from committing.

5 Discussion
For read-mostly workloads, it is unlikely that pessimistic
concurrency controls like 2PL/2PLSF will ever be able to
beat concurrency control algorithms with optimistic read
accesses, like TL2 or LSA. The lower synchronization cost
of ordering load instructions (STMs with optimistic reads),
relative to the synchronization cost of store-load ordering
(pessimistic STMs), is likely to remain true on modern CPUs
for the foreseeable future, implying that the advantage of the
optimistic approach will continue to hold for read-dominated

workloads. However, it is hard to imagine an algorithm that
simultaneously provides optimistic reads and starvation-
freedom, or even live-lock freedom, without at least a pes-
simistic fallback mechanism. Providing starvation-freedom
is vital to guarantee low tail latency of each individual trans-
action under a multitude of workloads.
With 2PLSF we have shown that when using efficient

reader-writer locks, pessimistic concurrency controls can
provide high read throughput, lagging not far behind the
state of the art in optimistic concurrency controls, while
maintaining starvation-freedom. Unlike TL2 and LSA which
require a global clock to be incremented on every write
transaction, write transactions in 2PLSF increment a global
clock solely when conflicts arise, allowing disjoint write
transactions to scale unimpeded.
Today, the majority of DBMS utilize 2PL to manage con-

current access to the database’s records, however we know
of no commercial DBMS which uses 2PL for its indexing data
structures. This separation of concurrency controls means
that operations on the indexing data structure are not part
of the transaction. The rational for this design decision is
clear, as adding the indexing data structure to the transaction
with any of the current 2PL approaches would significantly
hamper scalability, which in turn has created the myth that
2PL by itself has poor scalability.
Thanks to its novel algorithm and reader-writer lock,

2PLSF is scalable enough that even the indexing data struc-
ture can be made part of the transaction without sacrificing
scalability nor consistency. Moreover, its efficient conflict
resolution and starvation-freedom progress, imply its trans-
actions will have reduced tail latency in a multitude of work-
loads, making this an ideal concurrency control for database
implementers.

Acknowledgments
This work is supported in part by the Swiss National Science
Foundation (SNSF) under project number 200021-178822/1.

References
[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987.

Concurrency Control and Recovery in Database Systems. Addison-
Wesley. http://research.microsoft.com/en-us/people/philbe/ccontrol.
aspx

[2] Irina Calciu, David Dice, Yossi Lev, Victor Luchangco, Virendra J.
Marathe, and Nir Shavit. 2013. NUMA-aware reader-writer locks.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, Shenzhen, China, February 23-27, 2013, Alex
Nicolau, Xiaowei Shen, Saman P. Amarasinghe, and Richard W. Vuduc
(Eds.). ACM, 157–166. https://doi.org/10.1145/2442516.2442532

[3] Ved Prakash Chaudhary, Chirag Juyal, Sandeep S. Kulkarni, Sweta
Kumari, and Sathya Peri. 2019. Achieving Starvation-Freedom in
Multi-version Transactional Memory Systems. In Networked Systems -
7th International Conference, NETYS 2019, Marrakech, Morocco, June
19-21, 2019, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 11704), Mohamed Faouzi Atig and Alexander A. Schwarzmann
(Eds.). Springer, 291–310. https://doi.org/10.1007/978-3-030-31277-

11

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://doi.org/10.1145/2442516.2442532
https://doi.org/10.1007/978-3-030-31277-0_20

0_20
[4] Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C. Arpaci-

Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2022. Plor: General
Transactions with Predictable, Low Tail Latency. In SIGMOD ’22: In-
ternational Conference on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 19–33. https://doi.org/10.1145/3514221.3517879

[5] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010, Joseph M.
Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum (Eds.). ACM,
143–154. https://doi.org/10.1145/1807128.1807152

[6] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. 2010. NOrec:
streamlining STM by abolishing ownership records. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2010, Bangalore, India, January 9-14,
2010, R. Govindarajan, David A. Padua, and Mary W. Hall (Eds.). ACM,
67–78. https://doi.org/10.1145/1693453.1693464

[7] David Dice, Ori Shalev, and Nir Shavit. 2006. Transactional Locking
II. In Distributed Computing, 20th International Symposium, DISC 2006,
Stockholm, Sweden, September 18-20, 2006, Proceedings (Lecture Notes
in Computer Science, Vol. 4167), Shlomi Dolev (Ed.). Springer, 194–208.
https://doi.org/10.1007/11864219_14

[8] David Dice and Nir Shavit. 2010. TLRW: return of the read-write lock.
In SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, Thira, Santorini, Greece, June
13-15, 2010, Friedhelm Meyer auf der Heide and Cynthia A. Phillips
(Eds.). ACM, 284–293. https://doi.org/10.1145/1810479.1810531

[9] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. 2007. SNZI:
scalable NonZero indicators. In Proceedings of the Twenty-Sixth Annual
ACM Symposium on Principles of Distributed Computing, PODC 2007,
Portland, Oregon, USA, August 12-15, 2007, Indranil Gupta and Roger
Wattenhofer (Eds.). ACM, 13–22. https://doi.org/10.1145/1281100.
1281106

[10] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger.
1976. The Notions of Consistency and Predicate Locks in a Database
System. Commun. ACM 19, 11 (1976), 624–633. https://doi.org/10.
1145/360363.360369

[11] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. 2010.
Time-Based Software Transactional Memory. IEEE Trans. Parallel
Distributed Syst. 21, 12 (2010), 1793–1807. https://doi.org/10.1109/
TPDS.2010.49

[12] Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic
performance tuning of word-based software transactional memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2008, Salt Lake City, UT, USA,
February 20-23, 2008, Siddhartha Chatterjee and Michael L. Scott (Eds.).
ACM, 237–246. https://doi.org/10.1145/1345206.1345241

[13] Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. 2012.
TM2C: a software transactional memory for many-cores. In European
Conference on Computer Systems, Proceedings of the Seventh EuroSys
Conference 2012, EuroSys ’12, Bern, Switzerland, April 10-13, 2012, Pascal
Felber, Frank Bellosa, and Herbert Bos (Eds.). ACM, 351–364. https:
//doi.org/10.1145/2168836.2168872

[14] Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of
transactional memory. In Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPOPP 2008,
Salt Lake City, UT, USA, February 20-23, 2008, Siddhartha Chatterjee
and Michael L. Scott (Eds.). ACM, 175–184. https://doi.org/10.1145/
1345206.1345233

[15] Kim S. Larsen. 1994. AVL Trees with Relaxed Balance. In Proceedings of
the 8th International Symposium on Parallel Processing, Cancún, Mexico,
April 1994, Howard Jay Siegel (Ed.). IEEE Computer Society, 888–893.

https://doi.org/10.1109/IPPS.1994.288201
[16] Yossi Lev, Victor Luchangco, Virendra Marathe, Mark Moir, Dan Nuss-

baum, and Marek Olszewski. 2009. Anatomy of a scalable software
transactional memory. In Proc. 4th ACM SIGPLAN Workshop on Trans-
actional Computing.

[17] Yossi Lev, Victor Luchangco, and Marek Olszewski. 2009. Scalable
reader-writer locks. In SPAA 2009: Proceedings of the 21st Annual ACM
Symposium on Parallelism in Algorithms and Architectures, Calgary,
Alberta, Canada, August 11-13, 2009, Friedhelm Meyer auf der Heide
and Michael A. Bender (Eds.). ACM, 101–110. https://doi.org/10.1145/
1583991.1584020

[18] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
craftiness for fast multicore key-value storage. In European Conference
on Computer Systems, Proceedings of the Seventh EuroSys Conference
2012, EuroSys ’12, Bern, Switzerland, April 10-13, 2012, Pascal Felber,
Frank Bellosa, and Herbert Bos (Eds.). ACM, 183–196. https://doi.org/
10.1145/2168836.2168855

[19] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors. ACM
Trans. Comput. Syst. 9, 1 (1991), 21–65. https://doi.org/10.1145/103727.
103729

[20] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-
Tabatabai, Richard L. Hudson, Bratin Saha, and Adam Welc. 2008.
Single global lock semantics in a weakly atomic STM. ACM SIGPLAN
Notices 43, 5 (2008), 15–26. https://doi.org/10.1145/1402227.1402235

[21] Jonathan M. Nash. 1999. A scalable and starvation-free concurrent
locking mechanism. Concurr. Pract. Exp. 11, 13 (1999), 823–833.

[22] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen.
2019. OneFile: A Wait-Free Persistent Transactional Memory. In 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019. IEEE, 151–163.
https://doi.org/10.1109/DSN.2019.00028

[23] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios
Chatzopoulos, Aleksandar Dragojevic, Dushyanth Narayanan, and
Miguel Castro. 2019. Fast General Distributed Transactions with Opac-
ity. In Proceedings of the 2019 International Conference on Manage-
ment of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 433–448.
https://doi.org/10.1145/3299869.3300069

[24] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, andMichael L.
Scott. 2009. A comprehensive strategy for contention management
in software transactional memory. In Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2009, Raleigh, NC, USA, February 14-18, 2009, Daniel A. Reed and
Vivek Sarkar (Eds.). ACM, 141–150. https://doi.org/10.1145/1504176.
1504199

[25] S. Swaminathan, J. Stultz, J. F. Vogel, and Paul E. McKenney. 2002.
Fairlocks A High Performance Fair Locking Scheme. In International
Conference on Parallel and Distributed Computing Systems, PDCS 2002,
November 4-6, 2002, Cambridge, USA, Selim G. Akl and Teofilo F. Gon-
zalez (Eds.). IASTED/ACTA Press, 241–246.

[26] M. M. Waliullah and Per Stenström. 2009. Schemes for avoiding star-
vation in transactional memory systems. Concurr. Comput. Pract. Exp.
21, 7 (2009), 859–873. https://doi.org/10.1002/cpe.1363

[27] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. 2008. Irrev-
ocable transactions and their applications. In SPAA 2008: Proceed-
ings of the 20th Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, Munich, Germany, June 14-16, 2008, Fried-
helm Meyer auf der Heide and Nir Shavit (Eds.). ACM, 285–296.
https://doi.org/10.1145/1378533.1378584

[28] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores. Proc. VLDB Endow.

12

https://doi.org/10.1007/978-3-030-31277-0_20
https://doi.org/10.1145/3514221.3517879
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1693453.1693464
https://doi.org/10.1007/11864219_14
https://doi.org/10.1145/1810479.1810531
https://doi.org/10.1145/1281100.1281106
https://doi.org/10.1145/1281100.1281106
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/360363.360369
https://doi.org/10.1109/TPDS.2010.49
https://doi.org/10.1109/TPDS.2010.49
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/2168836.2168872
https://doi.org/10.1145/2168836.2168872
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1109/IPPS.1994.288201
https://doi.org/10.1145/1583991.1584020
https://doi.org/10.1145/1583991.1584020
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/1402227.1402235
https://doi.org/10.1109/DSN.2019.00028
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/1504176.1504199
https://doi.org/10.1145/1504176.1504199
https://doi.org/10.1002/cpe.1363
https://doi.org/10.1145/1378533.1378584

8, 3 (2014), 209–220. https://doi.org/10.14778/2735508.2735511
[29] Xiangyao Yu, Andrew Pavlo, Daniel Sánchez, and Srinivas Devadas.

2016. TicToc: Time Traveling Optimistic Concurrency Control. In
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, Fatma Özcan, Georgia Koutrika, and SamMadden (Eds.). ACM,

1629–1642. https://doi.org/10.1145/2882903.2882935
[30] Pantea Zardoshti, Tingzhe Zhou, Yujie Liu, and Michael F. Spear. 2019.

Optimizing Persistent Memory Transactions. In 28th International
Conference on Parallel Architectures and Compilation Techniques, PACT
2019, Seattle, WA, USA, September 23-26, 2019. IEEE, 219–231. https:
//doi.org/10.1109/PACT.2019.00025

13

https://doi.org/10.14778/2735508.2735511
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.1109/PACT.2019.00025
https://doi.org/10.1109/PACT.2019.00025

	Abstract
	1 Introduction
	2 Starvation-Free Two-Phase Locking
	2.1 Algorithm overview
	2.2 Starvation-Freedom
	2.3 Why starvation-free locks are not enough
	2.4 Reader-Writer Lock
	2.5 RW-Lock TryOrWaitLock
	2.6 Correctness
	2.7 Debuggability
	2.8 Irrevocability
	2.9 Memory Reclamation

	3 Evaluation
	3.1 Different RW-Locks
	3.2 Set Data Structures
	3.3 Map Data Structures
	3.4 Tail Latency
	3.5 YCSB in DBx1000

	4 Related Work
	4.1 2PL Wait-Or-Die
	4.2 2PL No-Wait

	5 Discussion
	Acknowledgments
	References

