
SMART360: Simulating Motion prediction and Adaptive
bitRate sTrategies for 360° video streaming

Quentin Guimard
quentin.guimard@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia-Antipolis, France

Lucile Sassatelli
Université Côte d’Azur, CNRS, I3S

Institut Universitaire de France
Sophia-Antipolis, France

ABSTRACT
Adaptive bitrate (ABR) algorithms are used in streaming media to ad-
just video or audio quality based on the viewer’s network conditions
to provide a smooth playback experience. With the rise of virtual
reality (VR) headsets, 360° video streaming is growing rapidly and
requires efficient ABR strategies to also adapt the video quality to
the user’s head position. However, research in this field is often diffi-
cult to compare due to a lack of reproducible simulations. To address
this problem, we provide SMART360, a 360° streaming simulation
environment to compare motion prediction and adaptive bitrates
strategies. We provide sample inputs and baseline algorithms along
with the simulator, as well as examples of results and visualizations
that can be obtained with SMART360. The code and data are made
publicly available.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Computing
methodologies→ Simulation environments; • Human-centered
computing→Virtual reality; • Networks→ Network simulations.
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1 INTRODUCTION
Adaptive bitrate (ABR) algorithms are used in streaming media to
adjust the quality of a video or audio stream in real time based on
the viewer’s network conditions. The goal of ABR streaming is to
provide a smooth playback experience by adapting the bitrate of the
stream to match the viewer’s available bandwidth.

With the recent rise in popularity and increasing affordability
of virtual reality (VR) headsets, 360° video streaming is growing
rapidly, but requires even higher bitrates, which makes the use of
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efficient streaming algorithms even more critical. ABR algorithms
for 360° video streaming can even go one step further than regular
ABR algorithms, as the video quality can be dynamically adapted to
send higher quality content inside the user’s viewport. This involves
predicting the head and gaze movements of the user several sec-
onds in advance to build a buffer that can be resilient to bandwidth
variations.

Adaptive streaming of 360° videos has been the subject of many
research works in the past few years [2, 7, 8]. While these works
present new approaches and methods to improve the quality of
experience (QoE) or bandwidth usage of adaptive streaming systems,
it is often difficult to compare them fairly, as the code for simulating
them is not always provided.

We present SMART360, a 360° streaming simulation environ-
ment that can be used to compare head motion prediction and ABR
algorithms. Our contributions are the following:

• we provide a new simulator1, equipped with large datasets
and baseline algorithms that builds upon the existing solu-
tions, with explanations about the code structure and logic;
• we also make the preprocessing pipeline available2 for trans-

parency and to give the ability to easily create new input
configurations for the simulator;
• we explain in detail how SMART360 can be used by re-

searchers to implement and compare existing and new motion
prediction and adaptive bitrate strategies and show exam-
ples of metrics and visualizations that can readily be used to
evaluate their algorithms.

2 RELATED WORK
As a result of the lack of reproducible simulations for most of the
360° adaptive streaming research, several tools have been made
available in recent years in an effort to improve reproducibility in
this field.

Ribezzo et al. [9] released TAPAS-360° 3, an open-source emula-
tor that enables designing and experimenting omnidirectional video
streaming algorithms. Unfortunately, TAPAS-360° does not support
tile-based streaming, but works with a set of pre-defined "views".
This makes it impossible to use with tile-based bitrate adaptation
algorithms, which are the most common type of bitrate adaptation
algorithms for 360° video streaming.

Spiteri [12] released Sabre3604, a simulation testbed for 360°
videos as an extension of Sabre5 [13], an open-source simulation

1https://gitlab.com/SMART360/SMART360-simulator
2https://gitlab.com/SMART360/SMART360-preprocessing
3https://github.com/c3lab/tapas360
4https://github.com/UMass-LIDS/sabre360
5https://github.com/UMass-LIDS/sabre
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environment for ABR algorithms. While Sabre360 can be used to
compare adaptive bitrate algorithms, it has some drawbacks: (i) it
does not implement stalls, but plays "blank tiles" instead, (ii) it is
built around a "view" system that only supports one kind of tiling
layout (4x4 tiles), and (iii) the ABR optimization for quality alloca-
tion is done between each tile download, and makes an individual
request for each tile of each segment, which is not realistic.

Jiang et al. [6] provide code for simulating 360° bitrate adaptation
and motion prediction along with Plato6, but the lack of documenta-
tion and obscure file structure makes it difficult to use, precluding
other researchers from using it and test new algorithms.

Finally, Chopra, Chakraborty, et al. [1] provide the code for
PARIMA7, which allows to test and compare their model to some
baselines with QoE metrics, but it is not a streaming simulation since
it does not consider network aspects.

Our simulator takes a lot of inspiration from Sabre360, which
we consider to be the closest solution to the problem we want to
solve. Our work aims at rectifying any shortcomings the existing
solutions may have for comparing motion prediction and adaptive
bitrate strategies in the context of 360° streaming.

3 DATA PREPROCESSING
The objective of SMART360 is to provide a simulation environment
that enables the comparison of ABR and viewport prediction algo-
rithms when streaming 360° videos with network constraints. In
this section, we describe the necessary inputs the simulator needs
to perform this task, as well as the preprocessing pipeline the data
undergoes before being used by the simulator.

3.1 Simulator inputs
All the input data for the SMART360 simulator is provided in the
config/ directory of the simulator repository. The input data uses
the same JSON format as Sabre360 [12]. The data provided in
the SMART360-simulator/config/ directory is split in two
types: real and synthetic data. The real data is extracted from multi-
ple public datasets and is described in the following subsections. The
synthetic data contains simple cases of network traces with constant
bandwidth and manifests describing uniformly-sized 360° videos.
The user head motion traces found in the synthetic directory are
copied from real data.

3.1.1 Network traces. The network traces describe the available
bandwidth and the latency over time in different situations. They
allow for realistic simulations where the bandwidth is highly variable.
The network traces provided in the real input data are the same as the
ones used in Sabre360, and come from the 4G/LTE dataset published
by van der Hooft et al. [14]. They are made of 40 traces of bandwidth
measurements along several routes in the city of Ghent, Belgium.

For the comparisons between ABR algorithms to be relevant, we
need to be in a situation where the algorithm has to adapt to the
network constraints. On the one hand, if the bandwidth is very high
relative to the video bitrate, there is no need for ABR streaming,
as we can just download everything in the highest quality without
any rebuffering (stall) event. On the other hand, if the bandwidth is

6https://github.com/federerjiang/Plato
7https://github.com/sarthak-chakraborty/PARIMA

very low relative to the video bitrate, ABR streaming is not so useful
either, as we can only download everything in the lowest quality.
To make for a relevant comparison between ABR algorithms, we
provide a Jupyter notebook to scale the network traces relatively to
the video bitrates, as illustrated in Fig. 1. This notebook is available
in the SMART360-simulator/notebooks/ directory.

raw network traces

scaled network traces

network_traces_scaling.ipynb

video bitrates

Figure 1: Network trace scaling principle.

3.1.2 User head motion traces. The user head motion traces
describe the behavior of people watching 360° videos. They contain
the coordinates of the head orientation over time. This allows calcu-
lating which tiles are visible to the user at any given time during the
video. We provide 3518 head motion traces from users watching 94
different videos, extracted from three of the datasets used by Romero
et al. [11] in their framework to evaluate head motion prediction
methods in 360° videos8. The traces have a 5 Hz sampling rate
and use a 3D Cartesian coordinate system, where the orientation of
the head is represented as a point on the unit sphere. We provide
a Python script, available in the SMART360-preprocessing/
root directory to convert the traces from their original CSV format
to a JSON format similar to the one used in Sabre360.

3.1.3 Video manifests. The video manifests describe the video
files to be streamed over the Internet. In the case of 360° tiled videos,
the manifests describe the tiling layout and the different quality levels
of encoding. The SMART360 simulator uses the video manifest to
get the size of each downloaded tile. We provide simplified JSON
video manifests for the 94 videos mentioned in Sec. 3.1.2 in the same
format as the one used in Sabre360. We detail the preprocessing
steps to obtain the video manifests from MP4 video files in the next
subsection.

3.2 Preprocessing pipeline
The preprocessing pipeline is based on TOUCAN-preprocessing9, a
Java command line application to convert a regular 360° videos into
DASH-SRD described videos, using FFmpeg and MP4Box, released
by Dambra et al. [3]. We have made some changes to simplify the
original pipeline, update the encoding parameters, and adapt the
input and output formats to our problem. The preprocessing pipeline
is described in Fig. 2 and detailed in the following subsections.

3.2.1 Video tiling and re-encoding. First, the MP4 videos are
split into tiles using the FFmpeg crop filter. Since cropping the
videos requires re-encoding them, we choose to re-encode the video

8https://gitlab.com/miguelfromeror/head-motion-prediction
9https://github.com/UCA4SVR/TOUCAN-preprocessing
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equirectangular projection

video tiles encoded in

multiple quality levels


Q1 Q2 Qn

...

MPEG-DASH SRD tracks

split in segments


FFmpeg filters
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generate_json_video_manifests.py

{...}
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{...}
video manifests in JSON format ready for simulations

Figure 2: SMART360 video preprocessing pipeline.

tiles in different quality levels while tiling them. The tiling layouts
and quality levels are configurable settings that can be specified in
an XML file for each video.

The videos are re-encoded with libx265, using the HEVC com-
pression standard. Different quality levels are achieved using dif-
ferent constant rate factors (CRFs). CRF is a method of video com-
pression that is designed to maintain a constant level of perceived
quality, as opposed to constant bitrate (CBR) encoding, but similar
to using a constant quantization parameter (CQP). Unlike CQP, CRF
adjusts the QP to compress different frames by varying amounts
by taking motion into account. For high-motion frames, the QP is
increased to compress the frame more, and for low-motion frames,
the QP is lowered to reduce compression. This leads to a varying
bitrate allocation over time, resulting in a more efficient use of the
available bandwidth. While constant bitrate and constrained CRF
may be better suited for streaming to avoid bitrate variations, CRF is
better suited than CQP (the most popular encoding mode to compare
adaptive bitrate strategies in 360° videos [15]), as it results in a
more constant bitrate [10]. CRF was chosen as the best compromise
between bitrate stability (better than CQP), efficiency (not wasting
bits like constant bitrate), and encoding time (not needing multiple
passes like constrained CRF).

3.2.2 DASH packaging. Once the videos are cropped into the
desired tiling layouts and encoded in the appropriate quality levels,
we use the MP4Box multimedia packager to obtain a DASH-SRD
compliant video split in segments. The segment duration is also
a configurable parameter that can be specified in the same XML
file as mentioned in Sec. 3.2.1. The output files generated by this
preprocessing step are MP4 tracks and an XML manifest for each
video, which correspond to the files that can be streamed over the
Internet.

3.2.3 JSON file generation. Finally, we provide a Python script,
available in the SMART360-preprocessing/ root directory to
build the JSON manifests that can be used by the simulator. This
script simply reads the files that were previously generated and keeps
only the information that is relevant for the simulations to put them
in the JSON video manifests described in 3.1.3.

4 SIMULATOR ARCHITECTURE
The SMART360 simulator architecture is based on the architecture
of the Sabre360 simulator, with substantial differences. The changes
mainly aim at rectifying the shortcomings formulated in Sec. 2,
namely: (i) introducing actual stall events that pause the video play-
back instead of playing blank tiles, (ii) re-thinking the coordinate
system and modifying the headset model to support any rectangular
tiling layout, and (iii) re-designing the simulator and ABR logic,
enabling the planning of quality allocation for multiple tiles and
segments in advance.

4.1 File and object structure
We present a simplified class diagram in Fig. 3, where we choose
to only keep the relevant attributes and methods of the SMART360
simulator. The classes are separated in multiple files located at
SMART360-simulator/simulator/. The classes highlighted
in red in the diagram, BandwidthEstimator, TiledABR, and Viewport-
Predictor are classes that can be easily extended to implement new
algorithms. We detail the file structure and classes of the simulator
in the following subsections.

4.1.1 Session. The session.py file contains the Session and
SessionInfo classes. The Session class is the main class that contains
all the objects necessary to the simulation. The Session::run method
is the entry point of the simulator and is described in Algo. 1. The
SessionInfo class is mainly used to access information and objects
like the buffer, log file, or viewport predictor from other objects.

4.1.2 Buffer. The buffer.py file contains the TiledBuffer class.
This class contains the buffer in the form of a two-dimensional
NumPy array of size B ×T , where B is the buffer size (in number of
segments) and T is the number of tiles in the video. This class also
provides methods to update the buffer.

4.1.3 Headset. The headset.py file contains the Headset-
Model and HeadsetConfig classes. These classes contain information
about the headset configuration (tile layout, FoV size) and provide
methods to calculate which tiles are visible, given the user’s head
coordinates. Unlike most existing tools, the tile calculation con-
siders the distortion produced by the equirectangular projection.
The headset configuration is loaded from JSON file located in the
SMART360-simulator/config/ directory.

4.1.4 User. The user.py file contains the UserModel class.
This class handles the user head motion trace and is used to get head
motion coordinates updates.

4.1.5 Network. The network.py file contains the Network-
Model class. This class handles the network trace and provides meth-
ods to download groups of tiles in compliance with the bandwidth
and latency information present in the network trace.
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Figure 3: UML class diagram of the SMART360 simulator. All
aggregation relationships are one-to-one.

4.1.6 Bitrate adaptation. The br_adaptation.py file con-
tains the TiledABR abstract class and its subclasses. This class is
responsible for deciding which tiles of which segments will be down-
loaded in which quality, and in which order. We provide three simple
ABR strategies with no buffer replacements. TrivialABR tries to
download all tiles in the lowest quality and fills the buffer as quickly
as possible. MaxStallABR is provided for experimental purposes to
calculate the maximum possible stall ratio for a user, in the case
where we only download tiles once they are missing in the viewport
and causing a stall event. We also provide BaselineABR, a simple
ABR strategy with some rate-based and buffer-based elements.

4.1.7 Viewport prediction. The vp_prediction.py file con-
tains the ViewportPredictor abstract class and its subclasses. This
class is used to make predictions about user head movements and
the resulting viewports. These predictions can in turn be used by the
ABR algorithms. We provide two baseline viewport predictors as
well as an implementation of a deep learning predictor. NoPredictor
gives equal probabilities for all tiles. StaticPredictor assumes the
user will not move and gives higher probabilities to tiles that were
inside the viewport. DVMSPredictor uses the DVMS deep learning
model from Guimard et al. [4] to make predictions.

4.1.8 Bandwidth estimation. The bw_estimation.py file
contains the BandwidthEstimator abstract class and its EWMA sub-
class. This class can be used to make estimates of the future band-
width and latency of the network, useful for ABR planning. The
EWMA subclass makes latency and bandwidth estimates following
an exponentially weighted moving average model, as done in the
dash.js reference player10, but in a simplified manner.

4.1.9 Logging. The _logging.py file contains the LogFile
class. This class provides methods to add simulation information
and measurements to a list of records, that is then written to a JSON
log file at the end of the simulation. New methods can easily be
implemented to include more information and measurements.

4.1.10 Log parsing. The parse_session_logs.py file, lo-
cated in the log_parsing/ directory, consists of a post-processing
pipeline that reads the JSON log file and builds data frames stored
in Feather files. This file format produces very lightweight files that
are quick to read and write compared to the raw log files.

4.1.11 Notebooks. There are two notebooks in the notebooks/
directory. The network_traces_scaling.ipynb notebook
is described in Sec. 3.1.1, and the output_metrics.ipynb
notebook gives examples of possible visualizations of the SMART360
output metrics, as shown in Sec. 5.3.

4.2 Simulator logic
In this section, we describe the algorithmic flow of the SMART360
simulator. As mentioned in Sec. 4.1.1, the Session::run method is the
entry point to the simulator. We describe the logic behind this method
in Algo. 1. For the sake of readability, the algorithms described in
Algo. 1 and Algo. 2 are simplified versions of the methods, where
only the most relevant steps are shown.

The three ABR functions that appear on lines 3 and 9 of Algo. 1,
and line 11 of Algo. 2 refer to the three methods of the TiledABR ab-
stract class that have to be implemented by subclasses, as explained
in Sec. 5.1. These functions return download schedules, noted skd.
A download schedule is an ordered list of elements that each contain
s, the segment number, t , the tile number, and q, the quality level. In
the case of startup and stall (lines 3 of Algo. 1 and line 11 of Algo.
2), the full schedule must be downloaded before the video playback
can be resumed. In the case of the regular ABR decision function
(line 9 of Algo. 1), elements are downloaded in the same order as
given by the schedule during ∆DL seconds.

On line 5 of Algo. 1 and lines 13 and 17 of Algo. 2, "download"
implies using the NetworkModel with the appropriate latency and
bandwidth, as well as putting the downloaded tiles in the buffer.

In Algo. 2, we give some detail behind the logic of one the most
complex methods of the simulator, Session::play_and_download.
This method enables the simulation of video playback and tile down-
load at the same time, while also making sure that the NetworkModel
and the UserModel stay synchronized. This method brings two im-
provements over Sabre360:

• the ABR algorithm has to plan and make individual requests
for downloading groups of tiles every ∆DL seconds, which is

10https://github.com/Dash-Industry-Forum/dash.js
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Algorithm 1 Simplified run method

1: l ← video length
2: p ← 0 ▷ video play head
3: skdstar tup ← ABR_STARTUP ▷ startup schedule
4: for all s, t,q in skdstar tup do
5: download tile t from segment s in quality q
6: end for
7: while p < l do
8: bwest ← network bandwidth estimation
9: skd ← ABR_DECIDE(bwest , ∆DL) ▷ download schedule

10: PLAY_AND_DOWNLOAD(skd, ∆DL) ▷ see Algo. 2
11: end while

more realistic than the very frequent ABR optimizations and
requests in Sabre360;
• stall events can happen and stall periods can be measured,

which we also consider more realistic than the video not
pausing and showing blank tiles in Sabre360. We have chosen
for stall events to happen in SMART360 only if a tile that
should be visible to the user is not present in the buffer. This
means that the video does not stop if tiles are missing from
the buffer but are not in the user’s field of view.

Algorithm 2 Simplified play_and_download method

1: procedure PLAY_AND_DOWNLOAD(skd, ∆DL)
2: ∆lef t ← ∆DL
3: while ∆lef t > 0 do
4: τcoord ← time until next user coord. update
5: τseдment ← time until next video segment
6: τ ← min(∆lef t , τcoord , τseдment )

7: Tbuf ← set of tiles in buffer for current segment
8: Tvisible ← set of visible tiles calculated from coord.
9: Tmissinд ← Tvisible − Tbuf ∩ Tvisible

10: if Tmissinд , ∅ then ▷ stall event
11: skdstall ← ABR_STALL(Tmissinд) ▷ stall schedule
12: for all s, t,q in skdstar tup do
13: download tile t from segment s in quality q
14: end for
15: end if
16: if |skd | > 0 then
17: download (s, t,q) schedule elements for τ seconds
18: remove downloaded elements from skd
19: end if
20: p ← p + τ
21: end while
22: end procedure

5 USING SMART360 TO COMPARE MOTION
PREDICTORS AND ADAPTIVE BITRATE
ALGORITHMS

In this section, we explain how researchers can use the SMART360
simulation environment to implement new ABR strategies and mo-
tion prediction algorithms for 360° video streaming and compare
them.

5.1 Implementing an ABR strategy within
SMART360

To implement a new ABR strategy, one only needs to create a new
subclass of TiledABR (see Sec. 4.1.6) that implements three methods.
Each one of these methods returns a download schedule containing
elements composed of s, the segment number, t , the tile number, and
q, the quality level. In addition to the method parameters, the ABR
class can access other information such as the buffer content, the
video manifest, or a viewport predictor.

• startup_dl_schedule() is called at the beginning of the simu-
lation. It must return a schedule of what to download before
the video playback starts;
• decide_dl_schedule(bwest , ∆DL) is the main ABR decision

method. It is called every ∆DL seconds and must return a
schedule of what to download in the next ∆DL seconds, given
the estimated bandwidth;
• stall_dl_schedule(Tmissinд) is called whenever a stall event

happens. When the video playback is paused during this event,
the list of missing tiles in the user’s field of view is passed as
a parameter and the method must return a schedule of what
to download. The video playback can only resume if all the
missing tiles and everything in the stall schedule has been
downloaded.

5.2 Implementing a motion predictor within
SMART360

SMART360 also allows the implementation of head motion predic-
tion algorithms, in the form of a viewport predictor that can in turn
be used by the ABR algorithm. To implement a new motion predic-
tor, one only needs to create a new subclass of ViewportPredictor
(see Sec. 4.1.7) that can implement two methods:

• predict_tiles(s) has to be implemented by the subclass. The
parameter s corresponds to the segment number for which
we want to make predictions. This method returns a list of
length T , where each element corresponds to the score given
to each tile. A higher score means a higher probability of
being present in the user’s viewport during segment s;
• update_coord(coord) can be implemented, but is not manda-

tory. This method allows updating the motion predictor with
new head coordinates that can be used to make predictions.

As of right now, the only information that can be used for predic-
tions is the past head coordinates of the user. However, SMART360
could easily be extended to include video information such as
saliency maps for head motion prediction.

5.3 SMART360 output metrics
SMART360 brings many QoE-related metrics and visualizations,
as well as some network-related metrics. The logs that we provide
already enable numerous types of insightful visualizations, as shown
in Fig. 4, and can easily be extended to include more information
and measurements. In this section, we show examples of figures
that can be produced with SMART360 to compare ABR and head
motion prediction algorithms. The figures presented in this section
are extracted from the output_metrics.ipynb notebook, and



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Quentin Guimard and Lucile Sassatelli

NoPred. StaticPred.
0

0.5

1

1.5

2

2.5

ViewportPredictor

vi
si

bl
e

qu
al

ity

0 10 20 30
1

2

3

4

video time (s)
vi

si
bl

e
qu

al
ity

0 10 20 30
·104

0

2

4

6

8

·104

video time (s)

su
m

of
st

al
ls

(s
)

−8 −6 −4 −2 0
1

1.5

2

2.5

3

download offset (s)

do
w

nl
oa

de
d

qu
al

ity

NoPred. StaticPred.

0.05

0.1

0.15

0.2

0.25

ViewportPredictor

hi
tr

at
e

Figure 4: Some examples of visualizations from SMART360 simulation output metrics. From left to right: (a) average visible quality,
(b) average visible quality against video timestamp, (c) sum of all user stalls against video timestamp, (d) average downloaded quality
against download offset, (e) bandwidth efficiency. Colors have the same meaning across all subfigures.

new visualizations can readily be generated from the same data
frames without needing to extend the logs.
• Fig. 4a compares the average visible quality when using two
different viewport predictors over one video for all users who have
watched this video. In this example, there are five quality levels rang-
ing from 1 to 5, and more details about the simulation settings can
be found in the notebook. Here, we can see that the StaticPredictor
gives higher average visible quality than NoPredictor.
• Fig. 4b compares the average visible quality when using two
different viewport predictors against the video timestamp for all
users who have watched this video. The quality levels and simulation
settings are the same as in Fig. 4a. Here, we can see with more de-
tail when, in the video, StaticPredictor gives higher average visible
quality than NoPredictor.
• Fig. 4c compares the sum of stall periods when using two differ-
ent viewport predictors against the video timestamp for all users
who have watched this video. The simulation settings are the same
as in Fig. 4a. Here, we can see with precision exactly when, in the
video, the stalls are happening, and that StaticPredictor gives fewer
stall periods than NoPredictor.
• Fig. 4d compares the average quality of downloaded tiles that end
up in the user’s viewport when using two different viewport predic-
tors against the "download offset" for all users who have watched
this video. The download offset is inversely proportional to the buffer
level: a download offset of -6 means that the tile was downloaded
6 seconds before it was played. The quality levels and simulation
settings are the same as in Fig. 4a. Here, we can understand better
how the ABR strategy works and how the prediction impacts its
behavior regarding the buffer level, and that StaticPredictor gives
higher average visible quality than NoPredictor, regardless of the
buffer level.
• Fig. 4e compares the distribution of the "hit rate" when using two
different viewport predictors over one video for all users who have
watched this video. The hit rate is calculated by dividing the number
of bits that appeared in the user’s viewport by the total number of
bits that were downloaded, it can be seen as a form of bandwidth
efficiency. The simulation settings are the same as in Fig. 4a. Here,
we can see that StaticPredictor is more efficient than NoPredictor
and wastes less bandwidth.

The notebook also includes metrics on the spatial and temporal
quality variance of 360° videos, as well fairness metrics based on
the QoE fairness index described by Hoßfeld et al. [5].

6 DISCUSSION
We believe that SMART360 successfully addresses the shortcomings
of the existing solutions to realistically simulate 360° streaming
systems and efficiently compare ABR and head motion prediction
algorithms. With SMART360, we yearn to encourage reproducible
research by providing transparent code that can be adapted and
improved.

Possible improvements include but are not limited to: considering
the percentage of each tile actually in the viewport for more accurate
measurements of the visible quality, instead of counting them as
inside the viewport regardless of the proportion of the tile actually in
the viewport; giving the ability to the viewport predictor to use more
information than the past head coordinates, such as video saliency
maps; using multiple threads and communication between threads
when events occur during the simulation instead of the monolithic
structure of the Session::play_and_download method.

7 CONCLUSION
In this article, we have presented SMART360, a new simulation
environment for 360° video streaming that allows comparing differ-
ent motion prediction and adaptive bitrate strategies with numerous
metrics and graphical visualizations.

SMART360 overcomes the drawbacks of the few existing alterna-
tive tools by providing highly-configurable code, with many inputs
and settings, as well as offering a realistic streaming behavior, with
stall events and ABR planning.

We have described the inputs and outputs of the simulator, as
well as its internal structure. We have explained how new motion
predictors and adaptive bitrate algorithms can be implemented inside
the simulation environment to be evaluated and compared.

We believe that SMART360 can improve the reproducibility of
research regarding 360° video motion prediction and adaptive stream-
ing algorithms, and make future comparisons of new strategies easier
for researchers.
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