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PREFACE

The purpose of this monograph is to give an axiomatic

foundation for the theory of probability. The author set himself

the task of putting in their natural place, among the general

notions of modern mathematics, the basic concepts of probability

theory—concepts which until recently were considered to be quite

peculiar.

This task would have been a rather hopeless one before the

introduction of Lebesgue's theories of measure and integration.

However, after Lebesgue's publication of his investigations, the

analogies between measure of a set and probability of an event,

and between integral of a function and mathematical expectation

of a random variable, became apparent. These analogies allowed

of further extensions; thus, for example, various properties of

independent random variables were seen to be in complete analogy

with the corresponding properties of orthogonal functions. But

if probability theory was to be based on the above analogies, it

still was necessary to make the theories of measure and integra-

tion independent of the geometric elements which were in the

foreground with Lebesgue. This has been done by Frechet.

While a conception of probability theory based on the above

general viewpoints has been current for some time among certain

mathematicians, there was lacking a complete exposition of the

whole system, free of extraneous complications. (Cf., however,

the book by Frechet, [2] in the bibliography.)

I wish to call attention to those points of the present exposition

which are outside the above-mentioned range of ideas familiar to

the specialist. They are the following: Probability distributions

in infinite-dimensional spaces (Chapter III, § 4) ; differentiation

and integration of mathematical expectations with respect to a

parameter (Chapter IV, § 5) ; and especially the theory of condi-

tional probabilities and conditional expectations (Chapter V).

It should be emphasized that these new problems arose, of neces-

sity, from some perfectly concrete physical problems. 1

1
Cf., e.g., the paper by M. Leontovich quoted in footnote 6 on p. 46; also the

joint paper by the author and M. Leontovich, Zur Statistik der kontinuier-
lichen Systeme und des zeitlichen Verlaufes der physikalischen Vorgdnge.
Phys. Jour, of the USSR, Vol. 3, 1933, pp. 35-63.
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The sixth chapter contains a survey, without proofs, of some

results of A. Khinchine and the author of the limitations on the

applicability of the ordinary and of the strong law of large num-
bers. The bibliography contains some recent works which should

be of interest from the point of view of the foundations of the

subject.

I wish to express my warm thanks to Mr. Khinchine, who
has read carefully the whole manuscript and proposed several

improvements.

Kljasma near Moscow, Easter 1933.

A. Kolmogorov
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Chapter I

ELEMENTARY THEORY OF PROBABILITY

We define as elementary theory of probability that part of

the theory in which we have to deal with probabilities of only a

finite number of events. The theorems which we derive here can

be applied also to the problems connected with an infinite number

of random events. However, when the latter are studied, essen-

tially new principles are used. Therefore the only axiom of the

mathematical theory of probability which deals particularly with

the case of an infinite number of random events is not introduced

until the beginning of Chapter II (Axiom VI).

The theory of probability, as a mathematical discipline, can

and should be developed from axioms in exactly the same way
as Geometry and Algebra. This means that after we have defined

the elements to be studied and their basic relations, and have

stated the axioms by which these relations are to be governed,

all further exposition must be based exclusively on these axioms,

independent of the usual concrete meaning of these elements and

their relations.

In accordance with the above, in § 1 the concept of a field of

probabilities is defined as a system of sets which satisfies certain

conditions. What the elements of this set represent is of no im-

portance in the purely mathematical development of the theory

of probability (cf. the introduction of basic geometric concepts

in the Foundations of Geometry by Hilbert, or the definitions of

groups, rings and fields in abstract algebra).

Every axiomatic (abstract) theory admits, as is well known,

of an unlimited number of concrete interpretations besides those

from which it was derived. Thus we find applications in fields of

science which have no relation to the concepts of random event

and of probability in the precise meaning of these words.

The postulational basis of the theory of probability can be

established by different methods in respect to the selection of

axioms as well as in the selection of basic concepts and relations.

However, if our aim is to achieve the utmost simplicity both in
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the system of axioms and in the further development of the

theory, then the postulational concepts of a random event and

its probability seem the most suitable. There are other postula-

tional systems of the theory of probability, particularly those in

which the concept of probability is not treated as one of the basic

concepts, but is itself expressed by means of other concepts. 1

However, in that case, the aim is different, namely, to tie up as

closely as possible the mathematical theory with the empirical

development of the theory of probability.

§ 1. Axioms 2

Let E be a collection of elements (t
rj, £, . .

.
, which we shall call

elementary events, and g a set of subsets of E; the elements of

the set g will be called random events.

I. 5 is a field
3 of sets.

II. g contains the set E.

III. To each set Ain% is assigned a non-negative real number
P(A). This number P(A) is called the probability of the event A.

IV. P(E) equals 1.

V. // A and B have no element in common, then

P(A + B)=P(A)+P(B)
A system of sets, $, together with a definite assignment of

numbers P(A), satisfying Axioms I-V, is called a field of prob-

ability.

Our system of Axioms I-V is consistent. This is proved by the

following example. Let E consist of the single element $ and let g
consist of E and the null set 0. P(E) is then set equal to 1 and

P(0) equals 0.

1 For example, R. von Mises[l]and [2] and S. Bernstein [1].
2 The reader who wishes from the outset to give a concrete meaning to the

following axioms, is referred to § 2.
3 Cf . Hausdorff, Mengenlehre, 1927, p. 78. A system of sets is called a field

if the sum, product, and difference of two sets of the system also belong to the
same system. Every non-empty field contains the null set 0. Using Hausdorff's

notation, we designate the product of A and B by AB; the sum by A + B in

the case where AB — 0; and in the general case by A + B; the difference of
A and B by A-B. The set E-A, which is the complement of A, will be denoted
by K. We shall assume that the reader is familiar with the fundamental rules
of operations of sets and their sums, products, and differences. All subsets
of g will be designated by Latin capitals.
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Our system of axioms is not, however, complete, for in various

problems in the theory of probability different fields of proba-

bility have to be examined.

The Construction of Fields of Probability. The simplest fields

of probability are constructed as follows. We take an arbitrary

finite set E = {|t , £2 , . . ., £*} and an arbitrary set {plt p2 , . . ., pk )
of non-negative numbers with the sum Pi + p 2 + • • • + Pk — 1.

g is taken as the set of all subsets in E, and we put

P{ft
i
,^,...,^} = ^ i

+ fc + -

v + ^.

In such cases, pu p 2 , . . .
, pk are called the probabilities of the

elementary events $ 1} £2 , . . . , $k or simply elementary probabili-

ties. In this way are derived all possible finite fields of probability

in which gf consists of the set of all subsets of E. (The field of

probability is called finite if the set E is finite.) For further

examples see Chap. II, § 3.

§ 2. The Relation to Experimental Data 4

We apply the theory of probability to the actual world of

experiments in the following manner:

1) There is assumed a complex of conditions, ©, which allows

of any number of repetitions.

2) We study a definite set of events which could take place as

a result of the establishment of the conditions S. In individual

cases where the conditions are realized, the events occur, gener-

ally, in different ways. Let E be the set of all possible variants

d, &, . . . of the outcome of the given events. Some of these vari-

ants might in general not occur. We include in set E all the vari-

ants which we regard a priori as possible.

3) If the variant of the events which has actually occurred

4 The reader who is interested in the purely mathematical development of
the theory only, need not read this section, since the work following it is based
only upon the axioms in § 1 and makes no use of the present discussion. Here
we limit ourselves to a simple explanation of how the axioms of the theory of
probability arose and disregard the deep philosophical dissertations on the
concept of probability in the experimental world. In establishing the premises
necessary for the applicability of the theory of probability to the world of
actual events, the author has used, in large measure, the work of R. v. Mises,
[1] pp. 21-27.
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upon realization of conditions 8 belongs to the set A (defined in

any way) , then we say that the event A has taken place.

Example : Let the complex 3 of conditions be the tossing of a

coin two times. The set of events mentioned in Paragraph ^con-

sists of the fact that at each toss either a head or tail may come up.

From this it follows that only four different variants (elementary

events) are possible, namely: HH, HT, TH, TT. If the "event A"
connotes the occurrence of a repetition, then it will consist of a

happening of either of the first or fourth of the four elementary

events. In this manner, every event may be regarded as a set of

elementary events.

4) Under certain conditions, which we shall not discuss here,

we may assume that to an event A which may or may not occur

under conditions 8, is assigned a real number P(A) which has

the following characteristics

:

(a) One can be practically certain that if the complex of con-

ditions 6 is repeated a large number of times, n, then if m be the

number of occurrences of event A, the ratio m/n will differ very

slightly from P (A )

.

(b) If P(A) is very small, one can be practically certain that

when conditions @ are realized only once, the event A would not

occur at all.

The Empirical Deduction of the Axioms. In general, one may
assume that the system g of the observed events A, B, C, ... to

which are assigned definite probabilities, form a field containing

as an element the set E (Axioms I, II, and the first part of

III, postulating the existence of probabilities). It is clear that

O^m/n^l so that the second part of Axiom III is quite natural.

For the event E, m is always equal to n, so that it is natural to

postulate ?(E) =1 (Axiom IV). If, finally, A and B are non-

intersecting (incompatible), then m — m 1 + m 2 where m, m lt m2

are respectively the number of experiments in which the events

A + B, A, and B occur. From this it follows that

m m 1 m2

n n n

It therefore seems appropriate to postulate that P(A + B) —
P(A) + P(J5) (Axiom V).
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Remark 1. If two separate statements are each practically

reliable, then we may say that simultaneously they are both reli-

able, although the degree of reliability is somewhat lowered in the

process. If, however, the number of such statements is very large,

then from the practical reliability of each, one cannot deduce any-

thing about the simultaneous correctness of all of them. Therefore

from the principle stated in (a) it does not follow that in a very

large number of series of n tests each, in each the ratio m/n will

differ only slightly from P(A).

Remark 2. To an impossible event (an empty set) corre-

sponds, in accordance with our axioms, the probability P(0) = 5
,

but the converse is not true: P(A) =0 does not imply the im-

possibility of A. When P(A) — 0, from principle (b) all we can

assert is that when the conditions © are realized but once, event

A is practically impossible. It does not at all assert, however, that

in a sufficiently long series of tests the event A will not occur. On
the other hand, one can deduce from the principle (a) merely that

when P(A) = and n is very large, the ratio m/n will be very

small (it might, for example, be equal to 1/n).

§ 3. Notes on Terminology

We have defined the objects of our future study, random
events, as sets. However, in the theory of probability many set-

theoretic concepts are designated by other terms. We shall give

here a brief list of such concepts.

Theory of Sets Random Events

1. A and B do not intersect, 1. Events A and B are in-

i.e., AB — 0. compatible.

2. AB. . .2V~ = 0. 2. Events A, B, ... ,2V are

incompatible.

3. AB . . . N = X. 3. Event X is defined as the

simultaneous occurrence of

events A, B, . . . ,N.

4. A 4- B + . . . + N = X. 4. Event X is defined as the

occurrence of at least one of

the events A,B,...,N.

8 Cf. §4, Formula (3).
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Theory of Sets

5. The complementary set

6. A = 0.

7. A = E.

8. The system 51 of the sets

A lt A 2 , . . . , A n forms a de-

composition of the set E if

A 1 + A 2 + . . . + A n = E.

(This assumes that the

sets At do not intersect,in

pairs.)

9. B is a subset of A : 2? tc A.

Random Events

5. The opposite event A
consisting of the non-occur-

ence of event A.

6. Event A is impossible.

7. Event A must occur.

8. Experiment % consists of

determining which of the

events Au A 2 , . . . , An occurs.

We therefore call A l9 A2, . . .

,

A n the possible results of ex-

periment 51.

9. From the occurrence of

event B follows the inevitable

occurrence of A.

§ 4. Immediate Corollaries of the Axioms ; Conditional

Probabilities ; Theorem of Bayes

From A + A = E and the Axioms IV and V it follows that

P(A) +P(A) =1 (1)

P(A) =1— P(A) . (2)

Since E = 0, then, in particular,

P(0)=0 . (3)

If A, B, . . . , N are incompatible, then from Axiom V follows

the formula (the Addition Theorem)

P(A +£+... +N)= P(A) + P(£) + ...+ P(N)

If P(A) >0, then the quotient

P(AB)

(4)

?a(B) =
P(A)

(5)

is defined to be the conditional probability of the event B under

the condition A.

From (5) it follows immediately that
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P(AB)=P(A)PA (B) . (6)

And by induction we obtain the general formula (the Multi-

plication Theorem)

P(A
1
A 2

...A n)
= P(A

l
)PAl (A 2

)PAlAAA 3
)...PAl A 2 ...A n - l

(A n ). (7)

The following theorems follow easily

:

P4(5)g0, (8)

PA(E) = 1, (9)

PAB + C)=?AB)+?AC). (10)

Comparing formulae (8)— (10) with axioms III—V, we find that

the system $ of sets together with the set function PA (B) (pro-

vided A is a fixed set), form a field of probability and therefore,

all the above general theorems concerning P(B) hold true for the

conditional probability PA(B) (provided the event A is fixed).

It is also easy to see that

P^(A)=1. (11)

From (6) and the analogous formula

P (AB)=P(B)PB (A)

we obtain the important formula

:

PB{A) =^m, (12)

which contains, in essence, the Theorem of Bayes.

The Theorem on Total Probability: Let A 1 + A 2 + . . . +
A n — E (this assumes that the events A lf A 2J . .

.
, A n are mutually

exclusive) and let X be arbitrary. Then

P(X) = PiAJ PAl (X) + P(A
2) PAt (X) + ... + P(A n) PAn (X).- (13)

Proof

:

X = AiX + A 2X + . . . + A„X;

using (4) we have

P(X)= P(A 1 X)+P(A 2 X) + ...+ P(A„X)

and according to (6) we have at the same time

P(A iX)=P(A i )PAt (X).

The Theorem of Bayes: Let A 1 + A 2 + . . . + A n = E and

X be arbitrary, then

p (A
,

PWP^X)
x( * PiAJP^W + P(A 2

)PA,(X) + + P(A n)PA „(X)'
(14 >

i = 1, 2, 3,... ., ».
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A lt A 2 , . . . , An are often called "hypotheses" and formula

(14) is considered as the probability P*(A
{ ) of the hypothesis

Ai after the occurrence of event X. [P(A*) then denotes the

a priori probability of A*.]

Proof: From (12) we have

PWP^(X)
Px(Ai)

P(X)

To obtain the formula (14) it only remains to substitute for the

probability P(X) its value derived from (13) by applying the

theorem on total probability.

§ 5. Independence

The concept of mutual independence of two or more experi-

ments holds, in a certain sense, a central position in the theory of

probability. Indeed, as we have already seen, the theory of

probability can be regarded from the mathematical point of view

as a special application of the general theory of additive set func-

tions. One naturally asks, how did it happen that the theory of

probability developed into a large individual science possessing

its own methods?

In order to answer this question, we must point out the spe-

cialization undergone by general problems in the theory of addi-

tive set functions when they are proposed in the theory of

probability.

The fact that our additive set function P(A) is non-negative

and satisfies the condition P(E) = 1, does not in itself cause new
difficulties. Random variables (see Chap. Ill) from a mathe-

matical point of view represent merely functions measurable with

respect to P(A), while their mathematical expectations are

abstract Lebesgue integrals. (This analogy was explained fully

for the first time in the work of Frechet6
.) The mere introduction

of the above concepts, therefore, would not be sufficient to pro-

duce a basis for the development of a large new theory.

Historically, the independence of experiments and random

variables represents the very mathematical concept that has given

the theory of probability its peculiar stamp. The classical work

or LaPlace, Poisson, Tchebychev, Markov, Liapounov, Mises, and

•See Frechet [1] and [2].
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Bernstein is actually dedicated to the fundamental investigation

of series of independent random variables. Though the latest

dissertations (Markov, Bernstein and others) frequently fail to

assume complete independence, they nevertheless reveal the

necessity of introducing analogous, weaker, conditions, in order

to obtain sufficiently significant results (see in this chapter § 6,

Markov chains)

.

We thus see, in the concept of independence, at least the germ

of the peculiar type of problem in probability theory. In this

book, however, we shall not stress that fact, for here we are

interested mainly in the logical foundation for the specialized

investigations of the theory of probability.

In consequence, one of the most important problems in the

philosophy of the natural sciences is—in addition to the well-

known one regarding the essence of the concept of probability

itself—to make precise the premises which would make it possible

to regard any given real events as independent. This question,

however, is beyond the scope of this book.

Let us turn to the definition of independence. Given n experi-

ments 5l
(1)

, 5l
(2)

, . . . , 5lU) , that is, n decompositions

E = Af + A$ ] + h A 1

*} i=\,2,...,n

of the basic set E. It is then possible to assign r = r 1r2 . . . rn proba-

bilities (in the general case)

P^... qn = P(A (

q\

) A%;.. A {

q

n
J)^0

which are entirely arbitrary except for the single condition 7 that

2 Ah<?8 ...«» = 1 • (!)

Definition I. n experiments 3i
(1)

, 5l
(2)

, . . . , 3l
(n

> are called

mutually independent, if for any q l9 q2 , . . .
, qn the following

equation holds true

:

p(4>4? • • •O = p«>) p (4?) • • p(4:') • (2)

7 One may construct a field of probability with arbitrary probabilities sub-
ject only to the above-mentioned conditions, as follows: E is composed of r
elements £«, qt . . . qn . Let the corresponding elementary probabilities be
PqiQt...in> and finally let A

q

i] be the set of all £f/l9 , tm
.9m for which

<7t = q-
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Among the r equations in (2), there are only r-r 1-r 2
-

. . . -rn +
n - 1 independent equations8

.

Theorem I. If n experiments 9l
(1\ 5l

(2)
, . . . , 2i

(M
> are mutu-

ally independent, then any m of them (ra< n) , 9l
(t,)

, $(**\ .... 5(
( 'm)

>

are also independent9
.

In the case of independence we then have the equations

:

p«4« • • • 4iB>) = p(O p C^SW • • • p (41-*) (
g )

(all 4 must be different.)

Definition II. n events Au A 2 , . .
. , A n are mutually indepen-

dent, if the decompositions (trials)

E = A k + A k (k = l,2,...,n)

are independent.

In this case rx = r2 = . . . = rn = 2, r = 2n ; therefore, of the 2 W

equations in (2) only 2n -n-l are independent. The necessary

and sufficient conditions for the independence of the events A lt A 2 ,

. .
. , An are the following 2n - n - 1 equations10

:

P(A
{l
A i2 ...A im)

= P(A
il
)P(A i2)...P(A,im), (4)

m — 1, 2, . . ., n,

i^i
1
<i2 <--<im <n.

All of these equations are mutually independent.

In the case n = 2 we obtain from (4) only one condition (2 2 -2 -

8 Actually, in the case of independence, one may choose arbitrarily only
fi + r*2 + . . . + tn probabilities p

U) = P {A U)
) so as to comply with the n

conditions
7 "

<i

Therefore, in the general case, we have r-1 degrees of freedom, but in the
case of independence only ri + r2 + ... + rn -n.

9 To prove this it is sufficient to show that from the mutual independence
of n decompositions follows the mutual independence of the first n-1. Let us
assume that the equations (2) hold. Then

p(«. . . <-»,) =Jp(«• • • <)
Qn

9n Q.E.D.
10 See S. N. Bernstein [1] pp. 47-57. However, the reader can easily prove

this himself (using mathematical induction).
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1 = 1) for the independence of two events A x and A 2 :

?UiA 2 ) =P(A 1)P(A 2 ). (5)

The system of equations (2) reduces itself
}
in this case, to three

equations, besides (5) :

PiAiAz) = P(A 1)P(A 2 )

?{A XA 2 ) =P(A 1)P(A a )

?{A XA 2 ) =P(A 1)P(A2 ) ,

which obviously follow from (5).
11

It need hardly be remarked that from the independence of

the events A lt A 2 , . .
.

, A n in pairs, i.e. from the relations

P(A«A,) =P(A i)P(Ai )
«*>

it does not at all follow that when n>2 these events are inde-

pendent12
. (For that we need the existence of all equations (4).)

In introducing the concept of independence, no use was made
of conditional probability. Our aim has been to explain as clearly

as possible,in a purely mathematical manner, the meaning of this

concept. Its applications, however, generally depend upon the

properties of certain conditional probabilities.

If we assume that all probabilities P(A g
(t>) are positive, then

from the equations (3) it follows13 that

P«>
... 4;;«>MM = P(4?) . (6)

From the fact that formulas (6) hold, and from the Multiplica-

tion Theorem (Formula (7), §4), follow the formulas (2). We
obtain, therefore,

Theorem II: A necessary and sufficient condition for inde-

pendence of experiments 5l
(1)

, 5l
(2)

, . . . , 9l
(w) in the case of posi-

11 P{4iZj - P(A
X )
- P{A t

A
2) a* P{A X)

- P(A^9{A % ) = P(^){t - P(^ 2)}

»P(41)P(i"a) ,etc.
12 This can be shown by the following simple example (S. N. Bernstein)

:

Let set E be composed of four elements J1 , £2 , £3 , <£, ; the corresponding elemen-
tary probabilities pit p2 , p3 , p4 are each assumed to be XA and

A ={^,^} r JB-Wj.W. C'^ft.W,
It is easy to compute that

P(A) = P(B)=P(C) ="%,

P(AB)=P(BC) -P(AC) = % = (V2 )
2

,

P(A£C) =.14 * (V2 )

3
.

u To prove it, one must keep in mind the definition of conditional proba-
bility (Formula (5), § 4) and substitute for the probabilities of products the
products of probabilities according to formula (3).
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five probabilities P(A^ }

) is that the conditional probability of

the results A q
w of experiments 3t

(i'> under the hypothesis that

several other tests 2l
(il)

, 9l
(i,)

, ...,Wik) have hod definite results

A&\AM,A i**>,...,A {

£
) is equal to the absolute probability

On the basis of formulas (4) we can prove in an analogous

manner the following theorem

:

Theorem III. // all probabilities P(A k ) are positive, then a

necessary and sufficient condition for mutual independence of

the events A lt A 2i . . . , A n is the satisfaction of the equations

P,iA ...^(A) = PW (7)

for any pairwise different ilt i2 , . . . , ik , i-

In the case n — 2 the conditions (7) reduce to two equations:

PAl (A 2 ) = P(A
2) f

|

PAAA l ) = P(A
1). J

It is easy to see that the first equation in (8) alone is a necessary

and sufficient condition for the independence of A x and A 2 pro-

vided P(A 1 ) > 0.

§ 6. Conditional Probabilities as Random Variables,

Markov Chains

Let 51 be a decomposition of the fundamental set E :

E = A* + A 2 + . . . +A r ,

and x a real function of the elementary event £ T
which for every

set A q is equal to a corresponding constant aq . x is then called a

random variable, and the sum

E(x) -2aQP(A 5 )
Q

is called the mathematical expectation of the variable x. The

theory of random variables will be developed in Chaps. Ill and IV.

We shall not limit ourselves there merely to those random vari-

ables which can assume only a finite number of different values.

A random variable which for every set A q assumes the value

PA
qi
(B), we shall call the conditional probability of the event B

after the given experiment % and shall designate it by P^ (B) . Two
experiments 5l (1) and 3l (2) are independent if, and only if,
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Pm (A?) = P(Af) q=\,2,...,r2 .

Given any decompositions (experiments) 5l
(1)

, 5l
(2)

, . . . , 9l
(n)

, we

we shall represent by

2l
(1

>2l
(2)

. . . $ (»>

the decomposition of set E into the products

Experiments 3i
(1\ 2l

(2)
, . . . , % (n) are mutually independent when

and only when

pgB1, a,»...p. 1,(4») = P(4'),

k and q being arbitrary14
.

Definition: The sequence 3l
(1)

, $ (2)
, . . . , 5l

(n)
, . . . forms

a Markov chain if for arbitrary n and q

P«»>«<« ... w-«>W) = Pa(n-D(4n)).

Thus, Markov chains form a natural generalization of se-

quences of mutually independent experiments. If we set

pQm gn (m,n) = PA™ (A™) m<n ,

then the basic formula of the theory of Markov chains will assume

the form:

pQk qn (k> n) == *Zpqkqm (k, m) pgmqH (m, n)
y k<m<n. (1)

Qm

If we denote the matrix \\pqmgn (nt, n)\\ by p(m, ri), (1) can be

written as15
:

p(k,n) — p(k,m)p(m,n) k < m < n. (2)

14 The necessity of these conditions follows from Theorem II, § 5 ; that they
are also sufficient follows immediately from the Multiplication Theorem
(Formula (7) of §4).

16 For further development of the theory of Markov chains, see R. v. Mises
[1], § 16, and B. Hostinsky, Methodes generates du calcul des probabilites,
"Mem. Sci. Math." V. 52, Paris 1931.



Chapter II

INFINITE PROBABILITY FIELDS

§ 1. Axiom of Continuity

We denote by 2) Am , as is customary, the product of the sets
m

Am (whether finite or infinite in number) and their sum by <5Am .

m
Only in the case of disjoint sets Am is the form ^Am used instead

m
of <&Am . Consequently,

m

®Am = A1 + At + •;

ZAm = A
1 + A 2

+---,
m

^Am = A
1 A 2

"-.

In all future investigations, we shall assume that besides Axioms
I - V, still another holds true

:

VI. For a decreasing sequence of events

A
1 z)A 2

^-" 3^ n z>.-. (1)

of & for which

®A » = , (2)

the following equation holds:

lim P (4 n) = . w-*oo (3)

In the future we shall designate by probability field only a

field of probability as outlined in the first chapter, which also

satisfies Axiom VI. The fields of probability as defined in the first

chapter without Axiom VI might be called generalized fields of

probability.

If the system J of sets is finite, Axiom VI follows from Axioms

I - V. For actually, in that case there exist only a finite number
of different sets in the sequence (1). Let A k be the smallest

among them, then all sets A^ coincide with A k and we obtain then

14
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n

limP(^ B) = P(o) = 0.

All examples of finite fields of probability, in the first chapter,

satisfy, therefore, Axiom VI. The system of Axioms I - VI then

proves to be consistent and incomplete.

For infinite fields, on the other hand, the Axiom of Continuity,

VI, proved to be independent of Axioms I - V. Since the new axiom

is essential for infinite fields of probability only, it is almost im-

possible to elucidate its empirical meaning, as has been done, for

example, in the case of Axioms I - V in § 2 of the first chapter.

For, in describing any observable random process we can obtain

only finite fields of probability. Infinite fields of probability occur

only as idealized models of real random processes. We limit our-

selves, arbitrarily, to only those models which satisfy Axiom VI.

This limitation has been found expedient in researches of the

most diverse sort.

Generalized Addition Theorem : // A lt A,, . . . , A n , . . . and

A belong to ft, then from

A=Z An (4)

follows the equation

Proof: Let

Then, obviously ^(Rn ) = 0,
n

and, therefore, according to Axiom VI

lim P(Rn ) = fi-»oo • (6)

On the other hand, by the addition theorem

P(A) = P(A 1 ) + P(A 2 ) + . . . + P(A n ) + P(Rn ) . (7)

From (6) and (7) we immediately obtain (5).

We have shown, then, that the probability P(A) is a com-
pletely additive set function on $. Conversely, Axioms V and VI
hold true for every completely additive set function defined on

n

P{A)=2P(An). (5)
n
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any field g.* We can, therefore, define the concept of a field of

probability in the following way : Let E be an arbitrary set, % a

field of subsets of E, containing E, and ?(A) a non-negative com-

pletely additive set function defined on gf; the field 5 together

with the set function ?(A) forms a field of probability.

A Covering Theorem : // A, A lt A 2 , . . . , An, . . . belong to g
and

Aa(BA n i (8)
n

then

Proof:

A = A <S(A H ) =AAt + A (A
2
- A

2
A

X ) + A (A 3
- A 3A 2

- A 3AJ + • •

,

n

?{A) = ?(AA
X ) + P{A(A 2

- A2 A,)} + ... ^ P(^) + P(^) + ••••

§ 2. Borel Fields of Probability

The field 5 is called a Borel field, if all countable sums2^»
of the sets A n from gf belong to g. Borel fields are also called com-

pletely additive systems of sets. From the formula

<SAn = A
1 + (A 2

- A
2
A

X ) + (A3
- A3A2

- AZA X) + • • (1)
n

we can deduce that a Borel field contains also all the sums <5 An
n

composed of a countable number of sets A» belonging to it. From
the formula

%An = E-(BAn (2)
n n

the same can be said for the product of sets.

A field of probability is a Borel field of probability if the

corresponding field % is a Borel field. Only in the case of Borel

fields of probability do we obtain full freedom of action, without

danger of the occurrence of events having no probability. We
shall now prove that we may limit ourselves to the investigation

of Borel fields of probability. This will follow from the so-called

extension theorem, to which we shall now turn.

Given a field of probability (5, P). As is known 1
, there exists

a smallest Borel field B^ containing 5- And we have the

* See, for example, O. Nikodym, Sur une generalisation des integrates de
M. J. Radon, Fund. Math. v. 15, 1930, p. 136.

1 Hausdorff, Mengenlehre, 1927, p. 85.
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Extension Theorem : It is always possible to extend a non-

negative completely additive set function P(A), defined in %,

to all sets of B% without losing either of its properties (non-

negativeness and complete additivity) and this can be done in

only one way.

The extended field B% forms with the extended set func-

tion P(A) a field of probability (B%, P). This field of probability

(B%, P) we shall call the Borel extension of the field ($, P).

The proof of this theorem, which belongs to the theory of

additive set functions and which sometimes appears in other

forms, can be given as follows:

Let A be any subset of E ; we shall denote by P* (A) the lower

limit of the sums

y:p(A n )

n

for all coverings

Acz(SA n
n

of the set A by a finite or countable number of sets A„ of $• It is

easy to prove that P*(A) is then an outer measure in the

Caratheodory sense2
. In accordance with the Covering Theorem

(51), P*(A) coincides with P(A) for all sets of 8f. It can be fur-

ther shown that all sets of $ are measurable in the Caratheodory

sense. Since all measurable sets form a Borel field, all sets of B%
are consequently measurable. The set function P*(A) is, there-

fore, completely additive on B%, and on B% we may set

P(A) = P*(A).

We have thus shown the existence of the extension. The unique-

ness of this extension follows immediately from the minimal

property of the field B%.

Remark: Even if the sets (events) A of 5 can be interpreted

as actual and (perhaps only approximately) observable events,

it does not, of course, follow from this that the sets of the extended

field B% reasonably admit of such an interpretation.

Thus there is the possibility that while a field of probability

(5, P) may be regarded as the image (idealized, however) of

2 Caratheodory, Vorlesungen iiber reelle Funktionen, pp. 237-258. (New-
York, Chelsea Publishing Company) .
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actual random events, the extended field of probability (B%, P)

will still remain merely a mathematical structure.

Thus sets of B% are generally merely ideal events to which
nothing corresponds in the outside world. However, if reasoning

which utilizes the probabilities of such ideal events leads us to a

determination of the probability of an actual event of g, then,

from an empirical point of view also, this determination will

automatically fail to be contradictory.

§ 3. Examples of Infinite Fields of Probability

I. In § 1 of the first chapter, we have constructed various

finite probability fields.

Let now E = {£x , £2 > • • •> ln» • •} be a countable set, and let 5
coincide with the aggregate of the subsets of E.

All possible probability fields with such an aggregate 5 are

obtained in the following manner:

We take a sequence of non-negative numbers p„, such that

Pi + Vi + . . . + Vn + • • • = 1

and for each set A put

P(A) - 2'fin,
n

where the summation 2' extends to all the indices n for which

$n belongs to A. These fields of probability are obviously Borel

fields.

II. In this example, we shall assume that E represents the

real number axis. At first, let g be formed of all possible finite

sums of half-open intervals [a; b) — {a£.tj<b} (taking into

consideration not only the proper intervals, with finite a and b,

but also the improper intervals [- <x>
; a), [a,- + oo) and [-o©j

4- oo
) ) . g is then a field. By means of the extension theorem, how-

ever, each field of probability on 5 can be extended to a similar

field on B%. The system of sets B% is, therefore, in our case

nothing but the system of all Borel point sets on a line. Let us

turn now to the following case.

III. Again suppose E to be the real number axis, while g is

composed of all Borel point sets of this line. In order to construct

a field of probability with the given field gf, it is sufficient to

define an arbitrary non-negative completely additive set-function
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P(A) on 3 which satisfies the condition P(E) = 1. As is well

known3
, such a function is uniquely determined by its values

P[-oo;x) =F(x) (1)

for the special intervals [-<*>; x) . The function F(x) is called the

distribution function of £. Further on (Chap. Ill, § 2) we shall

shown that F(x) is non-decreasing, continuous on the left, and

has the following limiting values

:

lim F(x) = i^-oc) = 6, lim F(x) = F(+ oo) = 1 . (2)
* — — oo a; -> -»- oo

Conversely, if a given function F(x) satisfies these conditions,

then it always determines a non-negative completely additive set-

function P(A) for which P(E) = l 4
.

IV. Let us now consider the basic set E as an n-dimensional

Euclidian space Rn
, i.e., the set of all ordered n-tuples £ = {xu x2 ,

. . . , xn j of real numbers. Let $ consist, in this case, of all Borel

point-sets 5 of the space Rn
. On the basis of reasoning analogous

to that used in Example II, we need not investigate narrower sys-

tems of sets, for example the systems of n-dimensional intervals.

The role of probability function P(A) will be played here,

as always, by any non-negative and completely additive set-

function defined on $ and satisfying the condition P(E) =1. Such

a set-function is determined uniquely if we assign its values

P{Laiai ...an) =F{alt a2 ,...,an) (3)

for the special sets Laia% „, an , where Laia,... an represents the

aggregate of all £ for which Xi<Oi (i = 1, 2, . . . , n).

For our function F (alf a2 ,
. .

. , an ) we may choose any function

which for each variable is non-decreasing and continuous on the

left, and which satisfies the following conditions

:

lim F(av a2> ...,«„) = F(av . . .,«i_i, —oo,ai+1 , ...,#„) =0,"—~
t = 4, 2i ....,»

f

lim F(av a2 ,.. .,an) =F(+oo, +00, ..., -foo) = 1.

Oi -> +00, Oj -> +00, ..., o» — -t-00

F(au a2 , . .
. , an ) is called the distribution function of the vari-

ables a?i, x 2 ,
. .

. , xn .

3 Cf ., for example, Lebesgue, Legons sur Vintegration, 1928, p. 152-156.
* See the previous note.
8 For a definition of Borel sets in Rn see Hausdorff, Mengenlehre, 1927,

pp. 177-181.
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The investigation of fields of probability of the above type

is sufficient for all classical problems in the theory of probability6
.

In particular, a probability function in Rn can be defined thus:

We take any non-negative point function f(xu x2 , . . . , xn )

defined in Rn
, such that

+00 +00 +90

j j ...j f(xlt x2 , . . .,xn)dx1
dx2 . . . dxn =\

—00 —00

and set

P
(
A ) = //••• ff(xi> x2> •• .,xn)dx1

dx2 ... dxn . (5)
A

f(xu x2 , . . . , xn ) is, in this case, the probability density at the

point (xu x 2 , . . . , xn ) (cf. Chap. Ill, § 2).

Another type of probability function in Rn is obtained in the

following manner: Let {£.} be a sequence of points of Rn
, and

let {pi} be a sequence of non-negative real numbers, such that

£pi = 1 ; we then set, as we did in Example I,

P(A) =Z'Vi,

where the summation 2' extends over all indices i for which £

belongs to A. The two types of probability functions in Rn men-

tioned here do not exhaust all possibilities, but are usually con-

sidered sufficient for applications of the theory of probability.

Nevertheless, we can imagine problems of interest for applica-

tions outside of this classical region in which elementary events

are defined by means of an infinite number of coordinates. The

corresponding fields of probability we shall study more closely

after introducing several concepts needed for this purpose. (Cf.

Chap. Ill, §3).

6
Cf., for example, R. v. Mises [1], pp. 13-19. Here the existence of proba-

bilities for "all practically possible" sets of an n-dimensional space is

required.



Chapter III

RANDOM VARIABLES

§ 1. Probability Functions

Given a mapping of the set E into a set E' consisting of any-

type of elements, i.e., a single-valued function u(£) defined on E,

whose values belong to E'. To each subset A' of E' we shall put

into correspondence, as its pre-image in E, the set u-x (A') of all

elements of E which map onto elements of A'. Let % (u) be the

system of all subsets A' of E', whose pre-images belong to the

field g. % (u) will then also be a field. If 5 happens to be a Borel

field, the same will be true of 5 (m)
- We now set

poo(A') = P K 1 ^')}. (1)

Since this set-function P (m)
, defined on 5 (M\ satisfies with respect

to the field 5 (m) all of our Axioms I - VI, it represents a proba-

bility function on % (u)
. Before turning to the proof of all the facts

just stated, we shall formulate the following definition.

Definition. Given a single-valued function u(£) of a random

event £. The function P (M>(A'), defined by (1), is then called the

probability function of u.

Remark 1 : In studying fields of probability (5, P) , we call the

function P(A) simply the probability function, but P^(A') is

called the probability function of u. In the case u($) = £, P (m) (A')

coincides with P(A).

Remark 2: The event vrx (A') consists of the fact that u(£)

belongs to A'. Therefore, P (m) (A') is the probability of u(£) c A'.

We still have to prove the above-mentioned properties of % (u)

and P (M
>. They follow, however, from a single fact, namely:

Lemma. The sum, product, and difference of any pre-image

sets w-1 (A') are the pre-images of the corresponding sums, prod-

ucts, and differences of the original sets A'.

The proof of this lemma is left for the reader.

21
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Let A' and B' be two sets of $ (M>. Their pre-images A and B
belong then to J. Since % is a field, the sets AB, A + B, and A - B
also belong to g ; but these sets are the pre-images of the sets A'B\
A' + B\ and A' -B', which thus belong to ^u\ This proves that

5 (u) is a field. In the same manner it can be shown that if g is a

Borel field, so is % (u\

Furthermore, it is clear that

PM(E') = P^- 1 ^)} = P(#) = 1.

That PU) is always non-negative, is self-evident. It remains only

to be shown, therefore, that P (m) is completely additive (cf. the

end of § 1, Chap. II).

Let us assume that the sets A'n , and therefore their pre-images

u-1 (A\)
}
a,Ye disjoint. It follows that

n n n

n n

which proves the complete additivity of Pu) .

In conclusion let us also note the following. Let ux (g) be a

function mapping E on E', and u2 (t) be another function, map-

ping £" on E". The product function u2uA£) maps E on E" . We
shall now study the probability functions P(Ml) (A') and P (uHA")
for the functions ur U) and u(() = UzUiU). It is easy to show

that these two probability functions are connected by the follow-

ing relation:

?^(A,f)^?^){u^(Aff

)}. (2)

§ 2. Definition of Random Variables and of

Distribution Functions

Definition. A real single-valued function *(£), defined on the

basic set E, is called a random variable if for each choice of a real

number a the set {x < a} of all | for which the inequality x < a

holds true, belongs to the system of sets $•

This function x(£) maps the basic set E into the set R1 of all

real numbers. This function determines, as in § 1, a field % (x) of

subsets of the set R1
. We may formulate our definition of random

variable in this manner : A real function x (£) is a random variable

if and only if gU) contains every interval of the form (-ooj a) .
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Since g (*> is a field, then along with the intervals (-oo,« a) it

contains all possible finite sums of half-open intervals [a,- b). If

our field of probability is a Borel field, then $ and 5U) are Borel

fields ; therefore, in this case % (x) contains all Borel sets of R1
,

The probability function of a random variable we shall denote

in the future by P<*> (A') . It is defined for all sets of the field ft<*>.

In particular, for the most important case, the Borel field of

probability, P (x) is defined for all Borel sets of R1
.

Definition. The function

F<*Ha) =P<*> (-*>', a) =p {x<a},

where - oo and 4- oo are allowable values of a, is called the distri-

bution function of the random variable x.

From the definition it follows at once that

FW(-oo) =0, FW(+ oo) = 1 . (1)

The probability of the realization of both inequalities a^x<b,
is obviously given by the formula

?{x c [a; b)} = F&{b) - F&(a) (2)

From this, we have, for a < b,

FW(a)§FW(5)

which means that F (x) (a) is a non-decreasing function. Now let

fli < a2 < . . . < an < . . . < b ; then

^{xa[an ;b)} =
n

Therefore, in accordance with the continuity axiom,

FV(b)-F(*)(an) = P{xcz[an> b)}

approaches zero as«-> + oo. From this it is clear that F (x) (a) is

continuous on the left.

In an analogous way we can prove the formulae:

lim FW (a) = FW (.- oo ) = 0, a -+ - oo , (3)

lim FW (a) = F« ( + oo ) = 1, a- + oo- (4)

If the field of probability (5, P) is a Borel field, the values of

the probability function P<*>(A) for all Borel sets A of i^1 are

uniquely determined by knowledge of the distribution function
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F(x) (a) (cf. § 3, III in Chap. II). Since our main interest lies in

these values of P (x) (A), the distribution function plays a most

significant role in all our future work.

If the distribution function F (x) (a) is differentiate, then we
call its derivative with respect to a,

the probability density of x at the point a.

a

If also F (x) (a) = j f
ix) (a) da for each a, then we may ex-

— oo

press the probability function ? (x) (A) for each Borel set A in

terms of f
(x) (a) in the following manner:

Pto(A)=ff(*){a)da. (5)

A

In this case we call the distribution of x continuous. And in the

general case, we write, analogously

PW(A)-= fdFW\a). (6)

A

All the concepts just introduced are capable of generalization

for conditional probabilities. The set function

9%\A) = ?B (xc:A)

is the conditional probability function of x under hypothesis B.

The non-decreasing function

Ff(a) = PB(x<a)

is the corresponding distribution function, and, finally (in the

case where F^(a) is differentiate

)

*?(*) = j;*VM

is the conditional probability density of x at the point a under

hypothesis B.

§ 3. Multi-dimensional Distribution Functions

Let now n random variables xlt x 2 , . . . , xn be given. The point

x = (xu x2 , . . . , Xn) of the 7i-dimensional space Rn is a function

of the elementary event £. Therefore, according to the general

rules in §1, we have a field «j(*i; *.••.*> consisting of
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subsets of space Rn and a probability function pfe»» *»•••»•*> (4')

defined on gf'. This probability function is called the n-dimensional

probability function of the random va t iables x lt x2 , . . . , xn .

As follows directly from the definition of a random variable,

the field g' contains, for each choice of i and at (i = 1, 2, . . . , n)f
the set of all points in Rn for which x{ < a{ . Therefore g' also con-

tains the intersection of the above sets, i.e. the set Lai0t _ aH

of all points of R n for which all the inequalities x { < at hold

(i = l,2,...,n)\

If we now denote as the n-dimensional half-open interval

[tti, a2 ,
. .

.
, an ', Oi, b 2 ,

. .
. , on ) ;

the set of all points in Rn
, for which ai^^ i <b i , then we see at

once that each such interval belongs to the field gf' since

[av at , ...,an ;
bv b

2 , . . ., bn)

== ^b\ bt .. . bn *^o,\ b t . . . bn ^b\ a t bi ... bn * * ^bx b% ... bn-i dn '

The Borel extension of the system of all n-dimensional half-

open intervals consists of all Borel sets in Rn
. From this it follows

that in the case of a Borel field of probability

'

7
the field 5 contains

all the Borel sets in the space Rn
.

THEOREM : In the case of a Borel field of probability each Borel

function x = f(x lt x2 , . . . , xn ) of a finite number of random vari-

ables xu x 2 , . . . , xn is also a random variable.

All we need to prove this is to point out that the set of all

points (x lt x 2 , . . . , xn ) in Rn for which x = f(xu %2, . . . , xn ) <a,

is a Borel set. In particular, all finite sums and products of random

variables are also random variables.

Definition : The function

is called the w-dimensional distribution function of the random

variables xlf x2f . . . , xn .

As in the one-dimensional case, we prove that the n-dimensional

distribution function F(Xl '
x Xn) (au a2f . . . , an ) is non-decreas-

ing and continuous on the left in each variable. In analogy to

equations (3) and (4) in § 2, we here have

1 The af may also assume the infinite values ± <*>
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limF(«lf a2 , . . ., an) = F(av . . ., «,_ lf -oo, ai+1 , . . ., an) = 0, (7)

limyfo, a,, . . ., an) = F(+<x>, +<x>, . . ., +oo) = 1. (8)
O, — + 00, at — +oo. . .., aM -> +oo

The distribution function F<x* x* • *•») gives directly the values

of P(Xl
'
*2 Xh) only for the special sets L

fli a, . . . a„ . If our field, how-

ever, is a Borel field, then2 ?<*"* >*») is uniquely determined for

all Borel sets in Rn by knowledge of the distribution function

If there exists the derivative

we call this derivative the n-dimensional probability density of

the random variables xu x2 , . . . , xn at the point au a2r . . , a„. If

also for every point (a11 a2 , . . . , an)

p(xux*. ...,*„> (a
x
a2

. . . an) =| f
...jf{alt a2 an)da,da2 . . . dan ,

—OO —oo — oo

then the distribution of x lf x2 , . . . , se» is called continuous. For

every Borel set Ac #M
, we have the equality

pfeu.... ..,«.) (4) -=yj. . .jf(av a%t . . ., flji^rffl, . • • <**„. (9)

4

In closing this section we shall make one more remark about

the relationships between the various probability functions and

distribution functions.

Given the substitution

s
/i. 2, .... n\

and let ^denote the transformation

*i = xik (k = 1,2, ...,n)

of space i?w into itself. It is then obvious that

pfrv*^. ••-,*»,)
(4) = p(*i, *.,..., «w{r-i^)}. (10)

Now let x' = Pk(x) be the "projection" of the space Rn on the

space Rk (k<n), so that the point (x lf x 2 ,
. .

.
, xn ) is mappedonto

the point (xu x2t . . . , ^ fc ) . Then, as a result of Formula (2) in § 1,

Cf . § 3, IV in the Second Chapter.
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p<*.,*a ,...,**>(,4) = pttk.*.....-^^-!^)}. (ii)

For the corresponding distribution functions, we obtain from

(10) and (11) the equations

:

/#*.•*«.• —"Ufo, aia ,
. . ., ain)

= F<*»**< ••->^(a
1
,a

2 an) , (12)

pin,**. ...,**) (alf a2t . ..,ak) = Fx» •«••••*«> (a
x , ...,aft

,+oo,...,+oo).(13)

§ 4. Probabilities in Infinite-dimensional Spaces

In § 3 of the second chapter we have seen how to construct

various fields of probability common in the theory of probability.

We can imagine, however, interesting problems in which the

elementary events are defined by means of an infinite number

of coordinates. Let us take a set M of indices /* (indexing set) of

arbitrary cardinality m . The totality of all systems

of real numbers xM , where /x runs through the entire set M, we
shall call the space RM (in order to define an element £ in space

RM , we must put each element /x in set M in correspondence with

a real number % or, equivalently, assign a real single-valued

function x^ of the element /*, defined on M) 3
. If the set M consists

of the first n natural numbers 1, 2, . . . , n, then RM is the ordinary

7i-dimensional space Rn
. If we choose for the set M all real num-

bers R1
, then the corresponding space RM = RR1 will consist of

all real functions

((/*) = x
tt

of the real variable /*.

We now take the set RM (with an arbitrary set M) as the

basic set E. Let I = {x^} be an element in E; we shall denote by

ft* a... >»:(£) ^ne Point {x
/tl
,x

iH9
..-. t xfh)' of the n-dimensional

space Rn
. A subset A of E we shall call a cylinder set if it can

be represented in the form

where A' is a subset of #w
. The class of all cylinder sets coincides,

therefore, with the class of all sets which can be defined by rela-

tions of the form

3
Cf. Hausdorff, Mengenlehre, 1927, p. 23.
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/(**.**.- ••»**,)=-<) . (1)

In order to determine an arbitrary cylinder set PMl^ . . . ^ (A ') by

such a relation, we need only take as / a function which equals

on A', but outside of A' equals unity.

A cylinder set is a Borel cylinder set if the corresponding set

A f
is a Borel set. All Borel cylinder sets of the space RM form a

field, which we shall henceforth denote by gM4 .

The Borel extension of the field %M we shall denote, as always,

by B%M . Sets in B%M we shall call Borel sets of the space RM .

Later on we shall give a method of constructing and operating

with probability functions on %M , and consequently, by means of

the Extension Theorem, on B%M also. We obtain in this manner
fields of probability sufficient for all purposes in the case that the

set M is denumerable. We can therefore handle all questions

touching upon a denumerable sequence of random variables. But

if M is not denumerable, many simple and interesting subsets of

RM remain outside of B%M . For example, the set of all elements £

for which *M remains smaller than a fixed constant for all

indices /*, does not belong to the system B%M if the set M is

non-denumerable.

It is therefore desirable to try whenever possible to put each

problem in such a form that the space of all elementary events £

has only a denumerable set of coordinates.

Let a probability function P(A) be defined on %M . We may
then regard every coordinate %M of the elementary event £

as a random variable. In consequence, every finite group

(
x
rii>

x
m»> - • •* xfJ °f these coordinates has an ^-dimensional

probability function P^....^^) and a corresponding distribu-

4 From the above it follows that Borel cylinder sets are Borel sets definable

by relations of type ( 1 ) . Now let A and B be two Borel cylinder sets defined

by the relations

/(*/*i. *t* t *#«J = 0» Sfai. *l XU) = •

Then we can define the sets A + B, AB, and A-B respectively by the relations

f-g = 0,

f* + g
2 = 0,

where a> (x) = for x 4= and w (0) = 1 If / and g are Borel functions, so

also are f-g, f + g
2 and f + <o{g) ; therefore, A + B, AB and A-B are Borel

cylinder sets. Thus we have shown that the system of sets $ 3f
is a field.
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tion function ^^...^(fli, a2 , . . . , aw ). It is obvious that for

every Borel cylinder set

the following equation holds:

p^ = pw,...,.w,

where A' is a Borel set of /?". In this manner, the probability

function P is uniquely determined on the field %M of all cylinder sets

by means of the values of all finite probability functions P^^ . . . ^
for all Borel sets of the corresponding spaces Rn

. However, for

Borel sets, the values of the probability functions P^,...^ are

uniquely determined by means of the corresponding distribution

functions. We have thus proved the following theorem

:

T.he set of all finite-dimensional distribution functions

F/hih— i
1* uniquely determines the probability function P(A) for

all sets in $M . If P(A) is defined on %M , then (according to the

extension theorem) it is uniquely determined on B%M by the

values of the distribution functionsF^^...^ .

We may now ask the following. Under what conditions does a

system of distribution functions F^^,,.^ given a priori define

a field of probability on %M (and, consequently, on B%M ) ?

We must first note that every distribution function F^/h.../**

must satisfy the conditions given in § 3, III of the second chap-

ter; indeed this is contained in the very concept of distribution

function. Besides, as a result of formulas (13) and (14) in §2,

we have also the following relations

:

F
fHifHt ... Hn {a

il , ait , . . ., ain)
= F

/<l/<2 ... /tttK, a
2 , . . ., an) ,

(2)

*V*...**(«i. a2 > -> ak) =^W,...^K, «
2 . ...,**,+<»,..., +oo),(3)

where k < n and [/ / "' n
) is an arbitrary permutation.

\*1> *2» • • •» W
These necessary conditions prove also to be sufficient, as will

appear from the following theorem.

Fundamental Theorem: Every system of distribution func-

tions F
fllHM ...pH , satisfying the conditions (2) and (3), defines a

probability function P(A) on %M , which satisfies Axioms I - VI.

This probability function P(A) can be extended (by the exten-

sion theorem) to B%M also.
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Proof. Given the distribution functions ^ 1/u t ... / .B , satisfying

the general conditions of Chap. II, § 3, III and also conditions (2)

and (3). Every distribution function &&&... p. defines uniquely

a corresponding probability function P^^,...^ for all Borel sets

of Rn (cf. § 3). We shall deal in the future only with Borel sets

of Rn and with Borel cylinder sets in E.

For every cylinder set

we set

PW = P*,*,...,^V). (4)

Since the same cylinder set A can be denned by various sets A',

we must first show that formula (4) yields always the same

value for P(A).

Let (x^, x^ ..., XpJ be a finite system of random variables

Xp. Proceeding from the probability function P^^,...^ of these

random variables, we can, in accordance with the rules in § 3,

define the probability function P^^...^ of each subsystem

(xHi , xH , .

.

., x
/H ) . From equations (2) and (3) it follows that

this probability function defined according to § 3 is the same as

the function P^^
2

. . .

Hlt
given a priori. We shall now suppose that

the cylinder set A is defined by means of

A=p;l„
it

...Hy)
and simultaneously by means of

where all random variables xM and * belong to the system

(
x

/*i > xht > • • • » *«J » which is obviously not an essential restriction.

The conditions

and
(V , V , ...,*« )cA"

are equivalent. Therefore

P
^\H%

• • • Hk (
A ') = P^« • • n* {(^ » */4, •

* '

'

>
XHk)

c ^'}

= P^,...^{(*>V X' ' • " **J c Al = %^'^JA^ >

which proves our statement concerning the uniqueness of the

definition of P(A).
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Let us now prove that the field of probability (JP, P) satisfies

all the Axioms I - VI. Axiom I requires merely that gM be a field.

This fact has already been proven above. Moreover, for an arbi-

trary /x :

P(E) = P
fl
(R*) = i,

which proves that Axioms II and IV apply in this case. Finally,

from the definition of P(A) it follows at once that P(A) is non-

negative (Axiom III).

It is only slightly more complicated to prove that Axiom V
is also satisfied. In order to do so, we investigate two cylinder sets

and B -«iV-*.<*>.
We shall assume that all variables xh . and xN belong to one inclu-

sive finite system (x^, x^, . . ., x„n) . If the sets A and B do not

intersect, the relations
[*/%'*/%' -'" x

/Hk)
(=:A

are incompatible. Therefore

?{A + B) = P**.;.*^, x
Hi , . . .,

*„.J
c: A'

or (VS'-'SJ^J
= P^,

fi2 . • • ftn
{ (^i1

» ^i, » * ' * ' **fe)
C ^ }

+ P^^...^{(^. , *„v • • ., *„,J
c B'} = P(^) + P(B)

,

which concludes our proof.

Only Axiom VI remains. Let

A
1
=> A 2 3 ••• id i4w z> •••

be a decreasing sequence of cylinder sets satisfying the condition

lim P(An ) =L>0. •

We shall prove that the product of all sets An is not empty. We
may assume, without essentially restricting the problem, that in

the definition of the first n cylinder sets A k , only the first n co-

ordinates Xpk in the sequence
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occur, i.e.

^ = ^,. ..,.»(£»)•

For brevity we set

^, t ...Mn(B) = Pn (B);

then, obviously

Pn (Bn ) =?(An ) ^L>0.

In each set Bn it is possible to find a closed bounded set Un such

that

P»(Bn -Un)^-^.

From this inequality we have for the set

the inequality

Let, morever,

" r
1*1 ft • • • f*H

V "

P(An -Vn)^J-. (5)

wn = vxv2 . . . vn .

From (5) it follows that

P(A n-Wn ) g € .

Since Wn cVn c:A n , it follows that

P(Wn)^P(A n)-e^L-8.

If e is sufficiently small, P(Wn ) > and Wn is not empty. We
shall now choose in each set Wn a point £

U) with the coordinates

a» Every point ^ M+^), p = 0, 1, 2, . . . , belongs to the set Vn ;

therefore

(*r
p)

. *;r
p) *<n

.
+») = ^....,.(f<»^») c t/„

.

Since the sets Un are bounded we may (by the diagonal method)

choose from the sequence {£
(n)

} a subsequence

for which the corresponding coordinates *2? tend for any A: to

a definite limit xk . Let, finally, | be a point in set £7 with the

coordinates

X
t*k
= xk >

x,* = 0, /* + /**• £ = 1,2,3,...
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As the limit of the sequence (x^, 4Wl)
, • . • , #i

Wi)
), i = 1, 2, 3, . . . , the

point (x lt x2 , . . . , £fc) belongs to the set Uk . Therefore, £ belongs to

for any k and therefore to the product

k *

§ 5. Equivalent Random Variables ; Various Kinds of Convergence

Starting with this paragraph, we deal exclusively with Borel

fields of probability. As we have already explained in § 2 of the

second chapter, this does not constitute any essential restriction

on our investigations.

Two random variables x and y are called equivalent, if the

probability of the relation x ^=-y is equal to zero. It is obvious that

two equivalent random variables have the same probability func-

tion:

pu)(A) = ?(y)(A).

Therefore, the distribution functions F^ and F-W are also

identical. In many problems in the theory of probability we may
substitute for any random variable any equivalent variable.

Now let

X\, X%, . . . , Xn , ... \L)

be a sequence of random variables. Let us study the set A of all

elementary events £ for which the sequence (1) converges. If we
denote by A (

™J
the sets of £ for which all the following inequalities

hold

K+*-*»| <^ k = \,2, ...,p

then we obtain at once

A = $<§3Mj; . (2)
m n p

According to § 3, the set A^ always belongs to the field gf. The
relation (2) shows that A, too, belongs to 5- We may, therefore,

speak of the probability of convergence of a sequence of random
variables, for it always has a perfectly definite meaning.

Now let the probability P(A) of the convergence set A be

equal to unity. We may then state that the sequence (1) con-

verges with the probability one to a random variable x, where
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the random variable x is uniquely denned except for equivalence.

To determine such a random variable we set

lim xn n oo

on A, and x — outside of A. We have to show that x is a random
variable, in other words, that the set A (a) of the elements £ for

which x < a, belongs to 5- But

A(a) = A<S<£>{xn+p <a}

in case a ^ 0,and

A (a) = ,4©${*n+p <tf} + ^"

n p

in the opposite case, from which our statement follows at once.

If the probability of convergence of the sequence (1) to x

equals one, then we say that the sequence (1) converges almost

surely to x. However, for the theory of probability, another con-

ception of convergence is possibly more important.

Definition. The sequence xu x2 , . . . , xn, . .
'.'. of random vari-

ables converges in probability (converge en probability) to the

random variable x, if for any £ > 0, the probability

tends toward zero as n — oo 5
.

I. If the sequence (1) converges in probability to x and also

to x', then x and x' are equivalent. In fact

since the last probabilities are as small as we please for a suffici-

ently large n it follows that

p |i*-*'i>y=°

and we obtain at once that

P{x± X'}^]?P{\x- X'\>l
t}
= 0.

m

II. // the sequence (1) almost surely converges to x, then it

5 This concept is due to Bernoulli ; its completely general treatment was
introduced by E. E. Slutsky (see [1]).



§ 5. Equivalent Random Variables; Various Kinds of Convergence 35

also converges to x in probability. Let A be the convergence set

of the sequence (1) ; then

1 = P(A)^limP{\xn+p -x\<e,p = 0,i,2,...}^limP{\xn -x\<e},

from which the convergence in probability follows.

III. For the convergence in probability of the sequence (1)

the following condition is both necessary and sufficient: For any

£ > there exists an n such that, for every p > 0, the following

inequality holds:

P {|*n+p-*n|>£}<£ .

Let Fx (a), Fs (a), . . . , Fn (a), . . . , F(a) be the distribution

functions of the random variables x lt %2, ...,£«,...-, x. If the

sequence xn converges in probability to x, the distribution func-

tion F(a) is uniquely determined by knowledge of the functions

Fn (a). We have, in fact,

THEOREM : // the sequence xlt x 2 , . . . , xn, . . . converges in

probability to x, the corresponding sequence of distribution func-

tions Fn (a) converges at each point of continuity of F(a) to the

distribution function F(a) of x.

That F(a) is really determined by the Fn (a) follows from the

fact that F (a) , being a monotone function, continuous on the left,

is uniquely determined by its values at the points of continuity6
. To

prove the theorem we assume that F is continuous at the point

a. Let a' < a ; then in case x < a', xn ==^a it is necessary that

\
xn -x \

> a - a'. Therefore
lim

P

(x < a, xn^ a) = ,

F(a')= P{x<a')^P{xn<a) + P(x<a\xn^a)=Fn (a) + P{x<a',xn ^a),

F (a') ^ lim infFn (a) + lim P (x< a, xn^ a)

,

F(a')^\immiFn (a). (3)

In an analogous manner, we can prove that from a" > a there

follows the relation

F(a") ^limsupFc (a). (4)

8 In fact, it has at most only a countable set of discontinuities (see Lebesgue,
Legons sur Vintegration, 1928, p. 50. Therefore, the points of continuity are
everywhere dense, and the value of the function F(a) at a point of discon-
tinuity is determined as the limit of its values at the points of continuity
on its left.
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Since F(a') and F(a") converge to F(a) for a' —* a and a" — a,

it follows from (3) and (4) that

limFB (a) = F(a),

which proves our theorem.



Chapter IV

MATHEMATICAL EXPECTATIONS 1

§ 1. Abstract Lebesgue Integrals

Let # be a random variable and A a set of gf. Let us form, for a

positive A, the sum

k= +00

S;. ^^H?{kk^f< {k+i)X t (cA}. (1)
* = -00

If this series converges absolutely for every A, then as A — 0, S k

tends toward a definite limit, which is by definition the integral

I-
xP(dE) . (2)

A

In this abstract form the concept of an integral was introduced

by Frechet2
; it is indispensable for the theory of probability.

(The reader will see in the following paragraphs that the usual

definition for the conditional mathematical expectation of the

variable x under hypothesis A coincides with the definition of

the integral (2) except for a constant factor.)

We shall give here a brief survey of the most important

properties of the integrals of form (2) . The reader will find their

proofs in every textbook on real variables, although the proofs

are usually carried out only in the case where P(A) is the Lebesgue

measure of sets in R n
. The extension of these proofs to the general

case does not entail any new mathematical problem ; for the most

part they remain word for word the same.

I. If a random variable x is integrable on A, then it is in-

tegrate on each subset A' of A belonging to g.

II. If x is integrable on A and A is decomposed into no

1 As was stated in § 5 of the third chapter, we are considering in this, as well
as in the following chapters, Borel fields of probability only.

2 Frechet, Sur Vintegrale oVune functionnelle etendue a un ensemble
abstrait, Bull. Soc. Math. France v. 43, 1915, p. 248.

37
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more than a countable number of non-intersecting sets An of gf,

then r _

,

JxPXdE)=£jxP(dE).
A n An

III. If x is integrable
r |

a;
|

is also integrable, and in that case

\jxP(dE)\^j\x\P{dE),
A A

IV. If in each event |, the inequalities ^ y s^ x hold, then

along with x, y is also integrable3
, and in that case

JyP(dE) ^fxP{dE)
A A

V. If m ^ as g M where m and M are two constants, then

m P (A) ^jx P (dE) ^ M P {A) .

VI. If £ and y are integrable, and K and L are two real con-

stants, then Kx + Ly is also integrable, and in this case

j(Kx + Ly) P(dE) = KJxP{dE) + LJyP(dE) .

VII. If the series

]?j\xn \P(dE)

n A

converges, then the series

Jmmi Xfi X
n

converges at each point of set A with the exception of a certain

set B for which P(B) — 0. If we set x = everywhere except on

A - B
t
then

jxP{dE)=^jxn P(dE).

n A

VIII. If x and y are equivalent (P{* 4= y) ~ 0)» then ^or

every set A of 5

jxP(dE)=jyP(dE). (3)

3
It is assumed that y is a random variable, i.e., in the terminology of the

general theory of integration, measurable with respect to % .
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IX. If (3) holds for every set A of gf, then x and y are

equivalent.

From the foregoing definition of an integral we also obtain

the following property, which is not found in the usual Lebesgue

theory.

X. Let Pi (A) and P2 (A) be two probability functions denned

on the same field %, P (A ) = Px (A ) + P2 (A \ and let x be integrable

on A relative to P 1 (A) and P2 (A) . Then

jxP(dE) =^jxPx (dE) +jxP2 {dE).AAA
XL Every bounded random variable is integrable.

§ 2. Absolute and Conditional Mathematical Expectations

Let a; be a random variable. The integral

E(x) = JxP(dE)
E

is called in the theory of probability the mathematical expectation

of the variable x. From the properties III, IV, V, VI, VII, VIII,

XI, it follows that

I. |.E(*)|£E(|*|);

II. E(y) g E(x) if ^ y ^ x everywhere;

III. inf (x) ^ E(x) ^ sup (x) ;

IV. E(Kx + Ly) = KE(x) 4- LE(y)
;

V. E (2 xn) = 2 E (*n) »
if the series 2 E

( I *»l ) converges

;

\ n I n n

VI. If x and y are equivalent then

E(z) =E(2/).

VII. Every bounded random variable has a mathematical

expectation.

From the definition of the integral, we have

k= +oo
E(x) == lim^£raP{&m:^ # < (jfe.-f 1) w}

&= — OO

= lim^rm{F((^+ l)m) - F(£m)} .



40 IV. Mathematical Expectations

The second line is nothing more than the usual definition of the

Stieltjes integral

+«>

jadFW(a) = E(*). (1)

—00

Formula (1) may therefore serve as a definition of the mathe-

matical expectation E(x).

Now let u be a function of the elementary event £, and a; be a

random variable defined as a single-valued function x — x(u)

of u. Then

P{km^x< (k + 1) m} = PW{kfn^ x(u) < (k + \)m},

where P (m) (A) is the probability function of u. It then follows

from the definition of the integral that

E £(u)

and, therefore,

E(x) =Jx{u)PM(dE(«)) (2)

where E (u) denotes the set of all possible values of u.

In particular, when u itself is a random variable we have

+00

E(x) =jx P {dE) =jx(u) P^idR1
) =jx(a) dFW(a) . (3)

E R l -00

When x(u) is continuous, the last integral in (3) is the ordinary

Stieltjes integral. We must note, however, that the integral

jx(a)dF^{a)

can exist even when the mathematical expectation E(x) does not.

For the existence of E(x), it is necessary and sufficient that the

integral

f\x(a)\dF(
u){a)

—00

be finite4
.

If u is a point (ulf u2 , . . . , un ) of the space R^then as a result

of (2):

4
Cf. V. Glivenko, Sur les valeurs probables de fonctions, Rend. Accad.

Lincei v. 8, 1928, pp. 480-483.
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E{x) = ft. . . fx(ult u2 ,..., un)
P<«i.«*. -. «> («*#»)

.

(4)

We have already seen that the conditional probability PB (A)

possesses all the properties of a probability function. The corres-

ponding integral

Eb(x) = jx?B (dE) (5)

E

we call the conditional mathematical expectation of the random

variable x with respect to the event B. Since

pB (
B) = 0, JxPB (dE) =0

we obtain from (5) the equation

EB (x) =fxPB (dE) =jxPB (dE) + jxPB (dE) =JxPB (dE)

E B B B

We recall that in case AaB,

P (A\ - P{AB) P{A ">

we thus obtain

B

From (6) and the equality

(B) P(B)

^B(x) =~
]
jxP(dE), (6)

B

jxP(dE) = P(B)EB {x). (7)

A +B

we obtain at last

JxP(dE) = JxP(dE) +jxP{dE)

P(A)EA (*) + P{B)EB (x)E^W-—p-; 1 -—
(8)

and, in particular, we have the formula

EW = P(A)EA {*) + P(A)Ei(x). (9)
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§ 3. The Tchebycheff Inequality

Let f(x) be a non-negative function of a real argument x,

which for x ^ a never becomes smaller than b > 0. Then for any-

random variable x

p[*^)s», (i)

provided the mathematical expectation E {/(*)} exists. For,

E{f(x)}=jf(x) P(dE) ^jf(x)P(dE) ^bP(x^a)
,

from which (1) follows at once.

For example, for every positive c ,

P(x^a)^ E-^. (2)

Now let f(x) be non-negative, even, and, for positive x, non-

decreasing. Then for every random variable x and for any choice

of the constant a > the following inequality holds

P(|*| fea)3S Iipp. (3).

In particular,

P(|* - E(*)| ^ a) £ E/{VfW>
• (4)

1

f(a)

Especially important is the case f(x) = x2
. We then obtain from

(3) and (4)

P(\x\&*)^^p. (5)

P(|,-EW|^.)^ife^.^, (6)

where
oHx) = E{x-E(x)}*

is called the variance of the variable x. It is easy to calculate that

o*(x) = E(x*)-{E(x)y.

If f(x) is bounded:

\f(x) \^K,

then a lower bound for P(\x\ ^ a) can be found. For
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E (/(*)) ==//(*) P{dE) =jf(x) P(dE) + //(*) P(dE)

^ f{a)P(\x\ < a) + KP()x\ > a) £ /(«) + KP(|*| > a)

and therefore

P(l^l^a)^
E{/(^- /(^

. (7)

If instead of f(x) the random variable x itself is bounded,

1*1 ^M ,

then /(#) g f(M), and instead of (7), we have the formula

P(|*|a«U
E(/y (a)

. (8)

In the case /(#) = a;
2

, we have from (8)

§ 4. Some Criteria for Convergence

Let

Xi, %2y • • • y Xni • • • \ * /

be a sequence of random variables and f(x) be a non-negative,

even, and for positive x a monotonically increasing function5
.

Then the following theorems are true

:

I. In order that the sequence ( 1 ) converge in probability the

following condition is sufficient : For each e > there exists an n

such that for every p > 0, the following inequality holds

:

E {f(xn+p - *„)} < e . (2)

II. In order that the sequence (1) converge in probability to

the random variable x, the following condition is sufficient

:

HmE{/(*n -%)} = 0. (3)
n-* +oo

III. If f(x) is bounded and continuous and /(0) =0, then

conditions I and II are also necessary.

IV. If f(x) is continuous, /(0) = 0,and the totality of all

xu x2 , . . . , xm . . . , x is bounded,then conditions I and II are also

necessary.

5 Therefore f(x) > if x =f= 0.
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From II and IV, we obtain in particular

V. In order that sequence (1) converge in probability to x,

it is sufficient that

limE(a;n -a;) 2 = . (4)

If also the totality of all xlt x2 ,
. .

.
, xn , . .

. , x is bounded, then the

condition is also necessary.

For proofs of I - IV see Slutsky [1] and Frechet [1]. How-
ever, these theorems follow almost immediately from formulas

(3) and (8) of the preceding section.

§ 5. Differentiation and Integration of Mathematical Expectations

with Respect to a Parameter

Let us put each elementary event $ into correspondence with a

definite real function x(t) of a real variable t. We say that x(t)

is a random function if for every fixed t, the variable x(t) is a

random variable. The question now arises, under what conditions

can the mathematical expectation sign be interchanged with the

integration and differentiation signs. The two following theorems,

though they do not exhaust the problem, can nevertheless give a

satisfactory answer to this question in many simple cases.

Theorem I: // the mathematical expectation E[x(t)~\ is finite

for any t, and x(t) is always differ-entiable for any t, while the

derivative x' (t) of x(t) with respect to t is always less in abso-

lute value than some constant M, then

^E(x(t)) = E(x'(t)).

Theorem II: // x(t) always remains less, in absolute value,

than some constant K and is integrable in the Riemann sense, then

b r b

JE(x(t))dt= E jx(t)dt

a la

provided E[x(t)] is integrable in the Riemann sense.

Proof of Theorem I. Let us first note that x' (t) as the limit of

the random variables
x(t + h)-x(t) 1 1

h
n-\, -,...,-, ...

is also a random variable. Since x' (t) is bounded, the mathe-
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matical expectation E[x'(t)] exists (Property VII of mathe-

matical expectation, in § 2) . Let us choose a fixed t and denote

by A the event
xjt + h) - xjt)

h
x'(t) > £

The probability P (A) tends to zero as h — for every e > 0. Since

x{t + h) - %{t)
M, x(t)\^M

holds everywhere, and moreover in the case A

\ xjt + h)- xjt)

then
h

-At)

Ex(t + h)^- Ex(t) _ Ex
,

{t)
xit + h) - xit)

-x\t)

P(A)E
2

xit + h) -xit)
x'it) P{A)EJ

h

xit + h) - xit)
x\t)

^ 2M?iA) + a .

We may choose the e > arbitrarily, and P(A) is arbitrarily

small for any sufficiently small h. Therefore

dt
Exit) = lim

. Exit + h) -Exit)
Exit),

h+

which was to be proved.

Proof of Theorem II. Let

k= n

sn = {]?x(t + kh), ^-~r-
b

Since Sn converges to J —
J
x(t) dt, we can choose for any

a

e > an N such that from n^N there follows the inequality

P(^) = P{|S, -/|>£}< £ .

If we set
k=n

S: = l^Exit+kh) = EiSn),

k=\

then

|S*-E(/)| = |E(SW -/)|^E|SW -/|

P(^) EA \Sn - J\ + 9(A) Ei|Sn - J\ { ^ 2KP{A) + e ^ (2K + l)e .
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Therefore, S* converges to E(J) , from which results the equation

b

Ex(t)dt = limS*n = E(/)./'

Theorem II can easily be generalized for double and triple

and higher order multiple integrals. We shall give an application

of this theorem to one example in geometric probability. Let G be a

measurable region of the plane whose shape depends on chance

;

in other words, let us assign to every elementary event £ of a field

of probability a definite measurable plane region G. We shall

denote by / the area of the region G, and by ?(x, y) the prob-

ability that the point (x, y) belongs to the region G. Then

E{J)=jj?{x,y)dxdy.

To prove this it is sufficient to note that

/ =s fif(x,y)dxdy l

P(x;y) = Ef(x,y),

where f(x,y) is the characteristic function of the region G
(fix, y) — 1 on G and f(x, y) = outside of G) 6

.

A-

6
Cf. A. Kolmogorov and M. Leontovich, Zur Berechnung der mittleren

Brownschen Fldche, Physik. Zeitschr. d. Sovietunion, v. 4, 1933.



Chapter V

CONDITIONAL PROBABILITIES AND
MATHEMATICAL EXPECTATIONS

§ 1. Conditional Probabilities

In § 6, Chapter I, we denned the conditional probability, P^ (B)

,

of the event B with respect to trial %. It was there assumed that %
allows of only a finite number of different possible results. We
can, however, define P% (B) also for the case of an % with an infinite

set of possible results, i.e. the case in which the set E is partitioned

into an infinite number of non-intersecting subsets. In particular,

we obtain such a partitioning if we consider an arbitrary function

u of £ and define as elements of the partition 9l„ the sets u = con-

stant. The conditional probability P%U
{B) we also denote by PU (B).

Any partitioning 51 of the set E can be denned as the partitioning

5iM which is "induced" by a function u of £, if one assigns to every $,

as u(£), that set of the partitioning 51 of E which contains |.

Two functions u and u' of £ determine the same partitioning

5lM = 9lM'Of the set E if and only if there exists a one-to-one cor-

respondence u' = f(u) between their domains $U) and 5 (M,) such

that v! (£) is identical with fu(£) . The reader can easily show that

the random variables PM (Z?) and PM*(B), defined below, are in this

case the same. They are thus determined, in fact, by the partition

9L = ^itself,

To define PU (B) we may use the following equation:

P{u C a}(B) = E{ucA} Pu (B). (1)

It is easy to prove that if the set E (u) of all possible values of u is

finite, equation (1) holds true for any choice of A (when PU (B)

is defined as in § 6, Chap. I) . In the general case (in which PU (B)

is not yet defined) we shall prove that there always exists one

and only one random variable PU (B) (except for the matter of

equivalence) which is defined as a function of u and which satis-

fies equation (1) for every choice of A from 5 (m) sucn that

47
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PM(A) > 0. The function PU (B) of u thus determined to within

equivalence, we call the conditional probability of B with respect

to u (or, for a given u) . The value of PM (Z?) when u = awe shall

designate by Pu (a; B).

The proof of the existence and uniqueness of PU (B). If we
multiply (1) by P{ucA} = P<«>(A), we obtain, on the left,

P{uczA}PucA {B) = P(B{ucA}) = P\Bu-HAj)

and, on the right,

P{ucA}E{ucA} Pu (B) = JPU (B) P(dE) =JPU (B) P<*>(rf£(«))
;

{ucA} A

leading to the formula

P(B«- 1M))=/Pu (B)PW(i£W). (2)

A

and conversely (1) follows from (2). In the case P (uHA) = 0,

in which case (1) is meaningless, equation (2) becomes trivially

true. Condition (2) is thus equivalent to (1). In accordance with

Property IX of the integral (§ 1, Chap. IV) the random variable

x is uniquely defined (except for equivalence) by means of the

values of the integral

fxPd(E)
A

for all sets of g. Since PU (B) is a random variable determined

on the probability field (8f<*>, P(M>),it follows that formula (2)

uniquely determines this variable PU (B) except for equivalence.

We must still prove the existence of PM (J5). We shall apply

here the following theorem of Nikodym 1
:

Let 5 be a Borel field, P(A) a non-negative completely additive

set function defined on 5 (in the terminology of the probability

theory, a random variable on (5, P)), and let Q(A) be another

completely additive set function defined on J$f> such that from

Q(A)4=0 follows the inequality P(A) > 0. Then there exists a

function /(£) (in the terminology of the theory of probability,

a random variable) which is measurable with respect to %, and

which satisfies, for each set A of 5, the equation

1 0. Nikodym, Sur une generalisation des integrates de M. J. Ra don, Fund.
Math. v. 15, 1930 p. 168 (Theorem III).
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0(A) = //(f) P(dE).
A

In order to apply this theorem to our case, we need to prove

1° that

Q(A) = P(Bu-HA))

is a completely additive function on Jp>, 2°, that from Q(A) +0
follows the inequality P (M>(A) > 0.

Firstly, 2° follows from

^ P{B u-HA)) ^ P(u-HA)) = P<mHA) .

For the proof of 1° we set

A = Z A n-

then
u- l (A)=%u-HAn)

n

and B«->(^)=2B«- l (4).
n

Since P is completely additive, it follows that

P{BurKA$=2P{Bu-HAj)
%

n

which was to be proved.

From the equation (1) follows an important formula (if we
set A = #<«>) :

P(B) = E(PU (B)). (3)

Now we shall prove the following two fundamental properties

of conditional probability.

Theorem I. It is almost sure that

0^Pu (B) gl. (4)

Theorem II. // B is decomposed into at most a countable

number of sets Bn :

B = ZBt'n 9

n

then the following equality holds almost surely:
,

P«(£)=ZP»(£»)- (5)
n

These two properties of PU (B) correspond to the two char-

acteristic properties of the probability function P(B) : that

g P(B) ^ 1 always, and that P(B) is completely additive. These
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allow us to carry over many other basic properties of the absolute

probability P(B) to the conditional probability PU (B). However,

we must not forget that PU (B) is,for a fixed set B, a random vari-

able determined uniquely only to within equivalence.

Proof of Theorem I. If we assume—contrary to the assertion

to be proved—that on a set M sa E (M
> with P (M

> (M) > 0, the in-

equality PU (B) g 1 +e, e> 0, holds true, then according to for-

mula (1)

P{uc:M}{B) = E{ucM} Pu (B) ^ i + e,

which is obviously impossible. In the same way we prove that

almost surely PU (B) ^ 0.

Proof of Theorem II. From the convergence of the series

ZE\Pu (Bn)\ =2E(Pu (fifl )) =2P(£n) = P(B)
n n n

it follows from Property V of mathematical expectation (Chap.

IV, § 2) that the series
2P.(BJ
n

almost surely converges. Since the series

ZE{uoA}\Pu(Bn)\=Z E{u<:A}(Pu(Bn)) =£ P{UC A}(Bn) = P{u C A}(B)
n n n

converges for every choice of the set A such that P (u>*(A) > 0,

then from Property V of mathematical expectation just referred

to it follows that for each A of the above kind we have the relation

E
{uc^}(|;P„(£n)) =|E(,ei)(W) = P{uc a}(B) = E{ucA} (Pu(Bn))

f

and from this, equation (5) immediately follows.

To close this section we shall point out two particular cases.

If, first, u(i) = c (a constant), then PC (A) = P(A) almost

surely. If, however, we set u(i) = £, then we obtain at once

that P$\A) is almost surely equal to one on A and is almost surely

equal to zero on A. P${A) is thus revealed to be the characteristic

function of set A.

§ 2. Explanation of a Borel Paradox

Let us choose for our basic set E the set of all points on a

spherical surface. Our 5 wil1 be the aggregate of all Borel sets

of the spherical surface. And finally, our P(A) is to be propor-

tional to the measure of set A. Let us now choose two diametrically
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opposite points for our poles, so that each meridian circle will be

uniquely defined by the longitude v, ^ ip < n . Since y> varies

from only to^r,— in other words, we are considering complete

meridian circles (and not merely semicircles) — the latitude

must vary from —n to -\-n (and not from — - to + ^ ) . Borel set

the following problem: Required to determine "the conditional

probability distribution" of latitude
t

— 7i<0<+tz, for a

given longitude^.

It is easy to calculate that
e%

P y>{0x =g < G2}
= if\cosG\ d0 .

The probability distribution of for a given V is not uniform.

If we assume that the conditional probability distribution of

"with the hypothesis that $ lies on the given meridian circle"

must be uniform, then we have arrived at a contradiction.

This shows that the concept of a conditional probability with

regard to an isolated given hypothesis whose probability equals

is inadmissible. For we can obtain a probability distribution

for on the meridian circle only if we regard this circle as an

element of the decomposition of the entire spherical surface into

meridian circles with the given poles.

§ 3. Conditional Probabilities with Respect to a Random Variable

If a? is a random variable and PX (B) as a function of x is

measurable in the Borel sense, then PX (B) can be defined in an

elementary way. For we can rewrite formula (2) in § 1, to look

as follows

:

P(£) PJ»(ii) =/P,(B) Pl*)(dE) . (1)

A

In this case we obtain from (1) at once that
a

P{B)Ff(a)=JPu(a;BydFW(a) . (2)

— oo

In accordance with a theorem of Lebesgue2
it follows from (2)

that

P^BJ-PWllmgg+j^gg ^o (3)

which is always true except for a set H of points a for which

P<*> (H) = .

2 Lebesgue, I. c, 1928, pp. 301-302.



52 V. Conditional Probabilities and Mathematical Expectations

Px (a; B) was defined in § 1 except on a set G, which is

such that P (*> (G) = 0. If we now regard formula (3) as the defi-

nition of Px (a; B) (setting Px (a; B) = when the limit in the

right hand side of (3) fails to exist), then this new variable

satisfies all requirements of § 1.

If, besides, the probability densities f
(x) (a) and fg> (a) exist

and if f
(xHa) > 0, then formula (3) becomes

PI(a;S,= P(S
)

;|W.
(4)

Moreover, from formula (3) it follows that the existence of a

limit in (3) and of a probability density f
(x) (a) results in the

existence of /</> (a). In that case

P(B) 12(a) &#*(*). (5)

If P(B) > 0, then from (4) we have

In case f
(x) (a) = 0, then according to (5) /<*> (a) — and there-

fore (6) also holds. If, besides, the distribution of x is continuous,

we have
+ oo +oo

P(B) = E(P,(B)) =j'Px (a;B)dFW(a) =j?x (a;B)fW(a)da. (7)
— oo —oo

From (6) and (7) we obtain

/?(«>= +yd-*)™
(8)

fPx (a;B)f*{a)da
—oo

This equation gives us the so-called Bayes* Theorem for continu-

ous distributions. The assumptions under which this theorem is

proved are these: PX {B) is measurable in the Borel sense and at

the point a is defined by formula (3) , the distribution of x is con-

tinuous, and at the point a there exists a probability density

f (*Ha).

§ 4. Conditional Mathematical Expectations

Let u be an arbitrary function of £, and y a, random variable.

The random variable Em (t/), representable as a function of u and

satisfying, for any set A of $ (M
> with P(M

> (A) > 0, the condition
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E{u*A}(y) = E{uc ^} Ett (y) f
(1)

is called (if it exists) the conditional mathematical expectation of

the variable y for known value of u.

If we multiply (1) by P {u) {A), we obtain

jy?(dE)=JEu (y)PM(dEW). (2)

{ucA} A

Conversely from (2) follows formula (1). In case P (M) (A) — 0,

in which case (1) is meaningless, (2) becomes trivial. In the

same manner as in the case of conditional probability (§1) we
can prove that E„(y) is determined uniquely—except for equiva-

lence—by (2).

The value of Eu (y) for w = awe shall denote by Eu (a; y) . Let

us also note that Eu (y), as well as Pu (y), depends only upon the

partition 9lM and may be designated by E
9ltt (y)

.

The existence of E(y) is implied in the definition of Eu (y) (if

we set A = #<»>, then E{ucA} (y) = E(y)).

We shall now prove that the existence of E (y) is also sufficient

for the existence of Eu (y) . For this we only need to prove that by

the theorem of Nikodym (§1), the set function

Q(A)=fyP(dE)
{ucA}

is completely additive on 5 (m) and absolutely continuous with

respect to P (m) (A). The first property is proved verbatim as in

the case of conditional probability (§1). The second property

—

absolute continuity—is contained in the fact that from Q(A)^0
the inequality P U) (A) >0 must follow. If we assume that

P (M>(A) = P {udA} = 0,it is clear that

Q(A)=fyP(dE) =
f

{ucA}

and our second requirement is thus fulfilled.

If in equation (1) we set A — E (u\ we obtain the formula

E(y) = E EU (V) • (3)

We can show further that almost surely

Eu (ay + bz) = aEu (y) + bEu (z) , (4)

where a and b are two arbitrary constants. (The proof is left to

the reader.)
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If u and v are two functions of the elementary event £, then

the couple (u, v) can always be regarded as a function of g. The

following important equation then holds

:

Eu E{UtV) (y) = Eu (y). (5)

For,Eu(y) is denned by the relation

E{M c^}(y) = E{ttd}EM (y) ,

Therefore we must show that EME (M ,V) (y) satisfies the equation

E{«cA}(y) = E{Mc ^}
EM E (tt>r) (y) . (6)

From the definition of E (u>v) (y) it follows that

E{„cA}(y) = E{Mc ^}
E (M>t;) (y)

.

(7)

From the definition of EME (MjV) (y) it follows, moreover, that

E{u*a} E(W)t,) (y) - E{MC ^ }
Em E(M>r) (y) . (8)

Equation (6) results from equations (7) and (8) and thus proves

our statement.

If we set y — P U (B) equal to one on B and to zero outside of B,

then Eu (y) = Pu {B),

E{UtU) (y) = P(UtV) (B).

In this case,from formula (5) we obtain the formula

EM P(M,„)(B)
=-P u (B) . (9)

The conditional mathematical expectation Eu (y) may also be

defined directly by means of the corresponding conditional prob-

abilities. To do this we consider the following sums

:

Sx{u)
=~y

i
°kXPu{kX^y< (k + \)X} = TRk . (10)

If E(y) exists, the series (10) almost certainly* converges. For

we have from formula (3), of § 1

,

E\Rk \
= \kk\P{kl&y<(k + i)X},

and the convergence of the series

^ZMP{U^y<(k + i)X}=^E\Rk
\

We use almost certainly interchangeably with almost surely.
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is the necessary condition for the existence of E(y) (see Chap. IV,

§ 1). From this convergence it follows that the series (10) con-

verges almost certainly (see Chap. IV, §2, V). We can further

show, exactly as in the theory of the Lebesgue integral, that from

the convergence of (10) for some A, its convergence for every A

follows, and that in the case where series (10) converges, Sx M
tends to a definite limit as A — 3

. We can then define

Eu (y) =limS;». (U)

To prove that the conditional expectation Eu (v) defined by rela-

tion (11) satisfies the requirements set forth above, we need only

convince ourselves that EM (y), as determined by (11), satisfies

equation (1). We prove this fact thus:

E{ueA}Eu(y) = hmE{Mc ^}
S;.(w)

= lim 2 kX p{u<=A}{k* ^y<(k+l)X}= E{ucA} (y) .

'/. -> k — — oo

The interchange of the mathematical expectation sign with the

limit sign is admissible in this computation, since Sx (u) con-

verges uniformly to EM (y) as A — (a simple result of Property V
of mathematical expectation in §2). The interchange of the

mathematical expectation sign and the summation sign is also

admissible since the series

=

^{u,A}{\kX\ ?u [kl ^y < (k + 1) A]}
k= — oo

=ZW ?{u C A}[kl ^y<(k + \)X\

converges (an immediate result of Property V of mathematical

expectation)

.

Instead of (11) we may write

E.(y)=/y P. (<*£). (12)

E

We must not forget here, however, that (12) is not an integral

3 In this case we consider only a countable sequence of values of A; then
all probabilities Pu {kl<Zy < (k + i)X\ are almost certainly defined for all

these values of A.
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in the sense of § 1, Chap. IV, so that (12) is only a symbolic

expression.

If x is a random variable then we call the function of x and a

Ff(a) = Ps (y<a)

the conditional distribution function of y for known x.

Fx
{y) (a) is almost certainly defined for every a. If a < b then

almost certainly

Ff(a)^Ff(b).

From (11) and (10) it follows4 that almost certainly

Ex (y) = lim
k=%

£kX[Ff{{k + \)l) - Ff(kl)] . (13)
;. -+ o k = - oo

This fact can be expressed symbolically by the formula

+ 00

Ex (y) = fadFf(a) (14)

— oo

By means of the new definition of mathematical expectation [(10)

and (11)] it is easy to prove that, for a real function of u,

E«[/My]=/(«)EM (y) . (15)

Cf. footnote 3.
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INDEPENDENCE; THE LAW OF LARGE NUMBERS

§ 1. Independence

Definition 1 : Two functions, u and v of |, are mutually inde-

pendent if for any two sets, A of $ (w)
, and B of % (v)

, the follow-

ing equation holds:

P(ucA,vczB) = P{uczA)P{vc:B) = PW(A) P«(B) . (1)

If the sets E (u) and E {v) consist of only a finite number of elements,

£(«) = % + u
2 + • • • + un ,

#*> = »! +.

w, + • • • + vm ,

then our definition of independence of u and v is identical with

the definition of independence of the partitions

k

E =^{v = vk}
k

as in § 5, Chap. I.

For the independence of u and v, the following condition is

necessary and sufficient. For any choice of set A in $ (w) the

following equation holds almost certainly:

Pv (uczA) = P{uczA) t (2)

In the case P(v>(£) = 0,both equations (1) and (2) are satisfied,

and therefore we need only prove their equivalence in the case

P (v) (B) > 0. In this case (1) is equivalent to the relation

P{vc b}(uczA) = P{uc:A) (3)

and therefore to the relation

E{vcB} Pv {uciA) = P(«c2) . (4)

On the other hand, it is obvious that equation (4) follows from

57
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(2). Conversely since Pv (uczA) is uniquely determined by (4)

to within probability zero, then equation (2) follows from (4)

almost certainly.

Definition 2 : Let M be a set of functions u^ (I) of t These

functions are called mutually independent in their totality if the

following condition is satisfied. Let W and M" be two non-

intersecting subsets of M, and let A' (or A") be a set from g
defined by a relation among u from M' (or M") ; then we have

P(A'A") = P(A')P\A").

The aggregate of alP«
/t
of W (or of M") can be regarded as

coordinates of some function v! (or u"). Definition 2 requires

only the independence of u' and u" in the sense of Definition 1 for

each choice of non-intersecting sets W and M"

.

If ult Mz, . . . , wn are mutually independent, then in all cases

P{u
l
aA

l , u2 cA 2 , ..., un czA n} (K)
= P(«! c 4J P(«t c^ 2).,P(mbc^

provided the sets A A: belong to the corresponding %
{Uk) (proved

by induction). This equation is not in general, however, at all

sufficient for the mutual independence of ult u2 , . . . , un .

Equation (5) is easily generalized for the case of a countably

infinite product.

From the mutual independence of u^ in each finite group

(
w
mi»

u
/*,> •-> u

t*k)
ft does n°t necessarily follow that all u

fl
are

mutually independent.

Finally, it is easy to note that the mutual independence of the

functions u^ is in reality a property of the corresponding parti-

tions ty
Ufl . Further, if u^ are single-valued functions of the cor-

responding u
fi

, then from the mutual independence of u^ follows

that of u'.

§ 2. Independent Random Variables

If xu x 2 , . . . , xn are mutually independent random variables

then from equation (2) of the foregoing paragraph follows, in

particular, the formula

F^ * *»> (av a2 , . . .
, an) = F<**> (a

x ) F™ (a2)

.

. . F^) (an)
. ( 1

)

// in this case the field g
(x» **••> **) consists only of Borel sets of
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the space Rn
, then condition (1) is also sufficient for the mutual

independence of the variables x lf x 2 ,
. .

.
, xn .

Proof. Let %' = (x^, x
it ,

. .. . , x
ik)

and x"= (xh , xh , . . ., xjm ) be

two non-intersecting subsystems of the variables xlt x 2 , . . . , x„.

We must show, on the basis of formula ( 1 ) , that for every two

Borel sets A' and A" of Rk (or Rm ) the following equation holds

:

P (*' G A', x" c A") = P (*' c A') P (*" c .4") . (2)

This follows at once from (1) for the sets of the form

A' = {x
(l
< alf xit < a2 , . . ., xik < ak} ,

A"= K < blt xh <b2 , . . . , Af;m < bm} .

It can be shown that this property of the sets A' and A" is pre-

served under formation of sums and differences, from which

equation (2) follows for all Borel sets.

Now let x — {x^} be an arbitrary (in general infinite) aggre-

gate of random variables. // the field $ (;r) coincides with the field

B$M (M is the set of all n) , the aggregate of equations

JVi,,..../*(*i»*i. .-•»««) =F/Al
{a

1
)F

fli
(a

2
)...F^n (an) (3)

is necessary and sufficient for the mutual independence of the

variables xu .

The necessity of this condition follows at once from formula

( 1 ) . We shall now prove that it is also sufficient. Let M' and M"
be two non-intersecting subsets of the set M of all indices ^ and

let A' (or A") be a set of B%M defined by a relation among the 'x^

with indices /x from M' (or M") . We must show that we then have

P(A'A") = P(^ ,)P(^,/

) - (4)

If A' and A" are cylinder sets then we are dealing with rela-

tions among a finite set of variables *u , equation (4) represents

in that case a simple consequence of previous results (Formula

(2)). And since relation (4) holds for sums and differences of

sets A' (or A") also, we have proved (4) for all sets of B%M

as well.

Now for every n of a set M let there be given a priori a distri-

bution function F^ (a) ; in that case we can construct a field of

probability such that certain random variables x^ in that field

(p assuming all values in M) will be mutually independent, where

XpWill have for its distribution function the F^ (a) given a priori.



60 VI. Independence; The Law of Large Numbers

In order to show this it is enough to take RM for the basic set E
and B%M for the field g, and to define the distribution functions

F/hp*.../** ( see Chap. Ill, § 4) by equation (3).

Let us also note that from the mutual independence of each

finite group of variables x^ (equation (3)) there follows, as we
have seen above, the mutual independence of all x^ on B%M . In

more inclusive fields of probability this property may be lost.

To conclude this section, we shall give a few more criteria for

the independence of two random variables.

If two random variables x and y are mutually independent

and if E(x) and E(y) are finite then almost certainly

E,(y) = E(y)

(5)
Ey

(x) = E(x).

These formulas represent an immediate consequence of the

second definition of conditional mathematical expectation (For-

mulas (10) and (11) of Chap. V, § 4). Therefore, in the case of

independence both

E[y-E,(y)J» and 2 = E[*-E,(*)]»
1

o2 (y)
S

o 2
(#)

are equal to zero (provided v2 (x) > and v2
(y) > 0). The num-

ber f
2
is called the correlation ratio of y with respect to x, and g

2

the same for x with respect to y (Pearson)

.

From (5) it further follows that

E(xy) = E(x) E(y) . (6)

To prove this we apply Formula (15) of § 4, Chap. V:

E(xy) = EEx {xy) = E[xEx (y)] = E[xE(y)] = E(y) E(x) .

Therefore, in the case of independence

r = E(*,y)-E(x)E(y)
o (x) a (y)

is also equal to zero; r, as is well known, is the correlation co-

efficient of x and y.

If two random variables x and y satisfy equation (6), then

they are called uncorrected. For the sum

S — x* + x 2 + . . . -f xn
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where the xlf x2 , . . . , xn are uncorrelated in pairs, we can easily

compute that

o2
(s) = o2 (*,) + o*(x2 ) + • • • + o2 (*») . (?)

In particular, equation (7) holds for the independent variables x k .

§ 3. The Law of Large Numbers

Random variables s of a sequence

§lj &2, • • • , On , . . .

are called stable, if there exists a numerical sequence

(Zi, ct2 , . .
. , ctn > . • •

such that for any positive e

P{\sn -dn\^e}

converges to zero as n —* oo . If all E(sn ) exist and if we may set

dn = E(s„),

then the stability is normal.

If all sn are uniformly bounded, then from

P{\sn -dn \^e}-+0 » + +oo (1)

we obtain the relation

|E(s„) - dn \

-> «->+oo

and therefore

P{|sn -E(sri)|^ £}->0. «->+oo (2)

The stability of a bounded stable sequence is thus necessarily

normal.

Let
E(sn ~E(sn ))^ = aHsn ) = ^.

According to the TchebychefF inequality,

P{|sn -E(S„)|^ £}^^.
Therefore, the Markov Condition

<4->0 n^+oo (3)

is sufficient for normal stability.
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If sn -E(sn ) are uniformly bounded:

\sn -E(sn) \^M,

then from the inequality (9) in § 3, Chap. IV,

P{| s„-E(Sn)|^}fe^-\

Therefore, in this case the Markov condition (3) is also necessary

for the stability of the sn .

If

_ xx + x2 H j- xn
Sn ~

n

and the variables xn are uncorrelated in pairs, we have

<* = i*{<y
2
(xi) + *2

(*2) + ••• + **(*»)}•

Therefore, in this case, the following condition is sufficient for

the normal stability of the arithmetical means sn:

°l = o*
(Xl) + tf (x2) + • •

. + a* (*J = (»*) (4)

(Theorem of Tchebycheff) . In particular, condition (4) is ful-

filled if all variables x„ are uniformly bounded.

This theorem can be generalized for the case of weakly cor-

related variables xn . If we assume that the coefficient of correla-

tion rmn
a of xm and x„ satisfies the inequality

rmn ^c(\n-m\)
and that

c. = 2>(*).
jfc =

then a sufficient condition for normal stability of the arithmetic

means s is
2

C„oi-o(HP). (5)

In the case of independent summands xn we can state a neces-

sary and sufficient condition for the stability of the arithmetic

means sn . For every xn there exists a constant mn (the median of

xn ) which satisfies the following conditions:

P(*n<**n) ^i>

1
It is obvious that rmn = 1 always.

2
Cf. A. Khintchine, Swr Za loi forkdes grandes nombres. C. R. de l'acad.

sci. Paris v. 186, 1928, p. 285.
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We set

Xnl; = %k if
I

^fc-m fc
|
^ n,

Xnk ~~ otherwise,

c* _ Xn + *„* + ••• +*„
«

j relations

k=n

ZP{|**-
*=1

m
k\

k=n

I = n

2 p (*•» + **)
-*

=i
+ oo (6)

oM^)=J>2
(*n*) = <>(*

2
)

(7)

are necessary and sufficient for the stability of variables sn
3

.

We may here assume the constants dn to be equal to the E(s„*)

so that in the case where

E(s*) -E(sn)-»0 w->+cx)

(and only in this case) the stability is normal.

A further generalization of Tchebycheff's theorem is obtained

if we assume that the sn depend in some way upon the results of

any n trials,

«i, %, • • • , %n .

so that after each definite outcome of all these n trials sn assumes

a definite value. The general idea of all these theorems known as

the law of large numbers, consists in the fact that if the depend-

ence of variables sn upon each separate trial %k (k = 1, 2, . .
. , n)

is very small for a large n, then the variables sn are stable. If we
regard

$ik = E[EH
1 a t ...9u(Sn) — E«,9l«...«*-i(Sn)]

2

as a reasonable measure of the dependence of variables sn upon

the trial Efc, then the above-mentioned general idea of the law of

large numbers can be made concrete by the following considera-

tions4
.

*n* = E«, «, . . . 21* (
sn) ~ E^ 9t 2 . . . 2U- _ i

(s«) •

3
Cf. A. KoLMOGOROy . tlber die Summen durch den Zufall bestimmter

unabhangiger Grossen, Math. Ann. v. 99, 1928, pp. 309-319 (corrections and
notes to this study, v. 102, 1929 pp. 484-488, Theorem VIII and a supplement
on p. 318).

4
Cf. A. KolmogoroY- Sur la loi des grandes nombres. Rend. Accad. Lincei

v. 9, 1929 pp. 470-474.
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Then
sn — E(s„) = zx + z2 + • • • 4- zn ,

E{znk) = EE
3ll 9(8 ... 9lifc

(sn)
— EE?il9Il ...9iJt _ 1

(sn) = E(sn )
- E(sn) = 0.

aM^ t) = E(4,) = ^..

We can easily compute also that the random variables znk (k —
1, 2, . . . , n) are uncorrelated. For let i < k ; then 5

E^
x 9l8 . . . 2U_ i {

zni znk) = *n» E^i, $(, ....«*_ i (
2nit)

= ^nttE^M. ...3lt_ x
(s„) — E9tl 9it ...8ifc _ 1

(sw)] =

and therefore

E(zni znk ) = 0.

We thus have

2 (SH) = 0*(Zni ) + 0*(Zn2) + • • • + O^n) = ft, + # 2 + • • • + fin -

Therefore, the condition

is sufficient for the normal stability of the variables sn .

§ 4. Notes on the Concept of Mathematical Expectation

We have denned the mathematical expectation of a random
variable x as

E{x) = fx?{dE) =jadF&{a) ,

E —<x>

where the integral on the right is understood as

+ oo C

E (x) = fa dF& {a) = lim fa dF& (a).
b ""* ~ °°

( 1

)

-oo 6
'

The idea suggests itself to consider the expression

E*(x) = lim
f
a dF& {a) b -* +<x> (2)

-b

Application of Formula (15) in §4, Chap. V.
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as a generalized mathematical expectation. We lose in this case,

of course, several simple properties of mathematical expectation.

For example, in this case the formula

E(s + y) = E(x) + E(y)

is not always true. In this form the generalization is hardly

admissible. We may add however that, with some restrictive

supplementary conditions, definition (2) becomes entirely natural

and useful.

We can discuss the problem as follows. Let

X\
t
X21 • • • j Xn , • • •

be a sequence of mutually independent variables, having the same

distribution function F (x^(a) =F(Xn)(a), (n = 1, 2, . . . ) as x.

Let further

*1 + *2 H 1" *n

We now ask whether there exists a constant E* (x) such that

for every e >

limP(|sn -E*(*)| ><0=O, w^+cx). (3)

The answer is : // such a constant E* (x) exists, it is expressed by

Formula (2) . The necessary and sufficient condition that Formula

(3) hold consists in the existence of limit (2) and the relation

P(|*| >n)-o(±). (4)

To prove this we apply the theorem that condition (4) is

necessary and sufficient for the stability of the arithmetic means

s„, where, in the case of stability, we may set6

+ n

dn =jadF(x
)(a) .

— n

If there exists a mathematical expectation in the former sense

(Formula (1)), then condition (4) is always fulfilled 7
. Since in

this case £(x) = E*(x), the condition (3) actually does define a

generalization of the concept of mathematical expectation. For

the generalized mathematical expectation, Properties I - VII

8 Cf . A. Kolmogorov , Bemerkungen zu meiner Arbeit, "Uber die Summen
zufdlliger Grossen" Math. Ann. v. 102, 1929, pp. 484-488, Theorem XII.

7
Ibid, Theorem XIII.
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(Chap. IV, §2) still hold; in general, however, the existence of

E*| x
|

does not follow from the existence of E*(#).

To prove that the new concept of mathematical expectation

is really more general than the previous one, it is sufficient to

give the following example. Set the probability density f
(x) (a)

equal to
Q

f{X){a) =
(|«| + 2)«ln(|ii| + 2)

'

where the constant C is determined by
+00

ff&{a)da = i .

It is easy to compute that in this case condition (4) is fulfilled.

Formula (2) gives the value

E*(x) = 0,

but the integral

+00 +00

j\a\dFW(a)=f\a\fW(a)da
—00 —00

diverges.

§ 5. Strong Law of Large Numbers; Convergence of Series

The random variables ,9,, of the sequence

Sit *>2> • • • i Snt • • •

are strongly stable if there exists a sequence of numbers

0^1 >
C^2> • • • > ("nt ' • •

such that the random variables

Sn ~ Q/fi

almost certainly tend to zero as n -> +00 . From strong stability

follows, obviously, ordinary stability. If we can choose

dn = E(s„)
,

then the strong stability is normal.

In the Tchebycheff case,

c — *» + *2 J b Xn
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where the variables xn are mutually independent. A sufficient8

condition for the normal strong stability of the arithmetic means

sn is the convergence of the series

2*P (i)

n=l

This condition is the best in the sense that for any series of con-

stants bn such that ^

n=l

we can build a series of mutually independent random variables

xn such that

and the corresponding arithmetic means sn will not be strongly

stable.

If all xn have the same distribution function F (jr
> (a) , then the

existence of the mathematical expectation

E(x)=jadFW(a)
— oo

is necessary and sufficient for the strong stability of sn ; the sta-

bility in this case is always normal9
.

Again, let

*£l> X>2) • • • ) X nt . . .

be mutually independent random variables. Then the probability

of convergence of the series

fin (2)
n=l

is equal either to one or to zero. In particular, this probability

equals one when both series

jjEfoJ and JSy-fo)
n=l n=l

converge. Let us further assume

yn = xn in case [xn \^l,

yn = in case
|
xn \

> 1.

8
Cf. A. Kolmogorov/ Sur la loi forte des grandes nombres, C. R. Acad. Sci.

Paris v. 191, 1930, pp. 910-911.
9 The proof of this statement has not yet been published.
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Then in order that series ( 1 ) converge with the probability one,

it is necessary and sufficient10 that the following series converge

simultaneously

:

CO CO CO

Z p(W>1}. Z E (%.) and 2>2
(y„) -

n=l n=l n=l

10
Cf. A. Khintchine and A. Kolmogorov, On the Convergence of Series,

Rec. Math. Soc. Moscow, v. 32, 1925, p. 668-677.



Appendix

ZERO-OR-ONE LAW IN THE THEORY
OF PROBABILITY

We have noticed several cases in which certain limiting

probabilities are necessarily equal to zero or one. For example,

the probability of convergence of a series of independent random
variables may assume only these two values 1

. We shall prove now
a general theorem including many such cases.

Theorem : Let xu xz , . .
.

, x n , . . . be any random variables and

let f(Xi, x 2 , . . . , x n , . . .) be a Baire function 2 of the variables

x Xt x 2 , . . . , x„, . . . such that the conditional probability

P*.*.....*{/(*) = 0}

of the relation

f{x1
,x2> ...,xn ,...) =0

remains, when the first n variables xlf x2 , . .
.

, x„ are known, equal

to the absolute probability

P{/(*)=0} (1)

for every n. Under these conditions the probability (1) equals

zero or one.

In particular, the assumptions of this theorem are fulfilled if

the variables xn are mutually independent and if the value of the

function f(x) remains unchanged when only a finite number of

variables are changed.

Proof of the Theorem : Let us denote by A the event

f(x) =0.

We shall also investigate the field St of all events which can be

defined through some relations among a finite number of vari-

1 Cf . Chap. VI, § 5. The same thing is true of the probability
PK-rf„-*o}

in the strong law of large numbers ; at least, when the variables xn are mutu-
ally independent.

2 A Baire function is one which can be obtained by successive passages to

the limit, of sequences of functions, starting with polynomials.

69
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ables xn . If event B belongs to ®, then,according to the conditions

of the theorem,

PM (A) = P(A). (2)

In the case P(A) = our theorem is already true. Let now
P(A) > 0. Then from (2) follows the formula

Pa(B) = P' {

££I
B) = P(B), (3)

and therefore P(B) and PA (B) are two completely additive set

functions, coinciding on ® ; therefore they must remain equal to

each other on every set of the Borel extension B® of the field St

Therefore, in particular,

P(A) = PA (A\=i,

which proves our theorem.

Several other cases in which we can state that certain prob-

abilities can assume only the values one and zero, were discovered

by P. Levy. See P. Lriw, Sur un theoreme de M. Khintchine, Bull,

des Sci. Math. v. 55, 1931, pp. 145-160, Theorem II.
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". . . Khintchine chooses with care, from among many results, only those which by their

content and method of treatment contribute most to the uniformity of the . . . theory. Of the
other fine points of the exposition a few . . •. are his diligence in pointing out interrelationships . . .

his giving short sketches of proofs beforehand . . . and making simplifications in such a way that
the idea of the proof comes out as clearly as possible. The monograph is, for these reasons,
unusually attractive and inspiring."

—

Acta Szeged.

THE THEORY OF MATRICES By C. C. MacDuffee
Second edition. 116 pages 6x9 inches, published originally at $5.20. $2.75

This important work presents a clear and comprehensive picture of present day matrix
theory. The author covers the entire field of matrix theory, correlating and integrating the
enormous mass of results that have been obtained in the subject. A wealth of new material is

incorporated in the text and the relationship of the various topics to the field as a whole is

carefully delineated.
"No mathematical library can afford to be without this book."—Bulletin of the American Mathematical Society.

ERGODENTHEORIE By E. Hopf
1937, 89 pages, 5 l/2 x 8*4 inches. $2.75

"Measure-theoretic viewpoints are preferred over topological ones throughout because, as
the author says, ergodic theory is statistics and statistics is measure theory.

". . . chapter on statistics of mappings and fluxes . . . interesting examples worked out . . .

'individual' ergodic theory, the basis of which is Birkhoff's theorem . . . applications to the Law
of Large Numbers, Wiener's theorem on the spectrum of 'random functions'. . . investigations of
the author on geodetic flow . .

."

—

Bela v. Sz. Nagy, Acta Szeged.

VORLESUNGEN t)BER REELLE FUNKTIONEN By C. Caratheodory

2nd., latest complete, edn., 728 pp., 5% x 8V2, originally published at $11.60. $6.95

DETERMINANTENTHEORIE
EINSCHLIESSLICH DER FREDHOLMSCHEN DETERMINANTEN

By G. Kowaletvski

Third edition, 1942, 328 pages, 5 l/2 x 8, originally published at $6.00. $4.25
From the reviews of earlier editions:

"a classic in its field . . . excellent treatise . . . remarkably elegant and lucid. . . . The choice
of subjects . . . has been guided by a true sense of values, not by a mere love of formal develop-
ments . . . expository powers ... of the first order."—Bulletin of the American Mathematical Society.

GRUNDLAGEN DER ANALYSIS By E. Landau
1930, 159 pages, 5% x 8, originally published at $4.00. $2.75

"Certainly no clearer treatment of the foundations of the number system can be offered. . . .

Never before has this subject been treated with such explicitness. One can only be thankful to the
author for this fundamental piece of exposition which is alive with his vitality and genius."—J. F. Ritt, American Mathematical Monthly.

The student who wishes to learn mathematical German will find this book ideally suited to

his needs. Less than fifty German words will enable him to read the entire book with only an
occasional glance at the vocabulary!*

* A complete German-English vocabulary has been added.
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