
14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

A dynamic and extensible web portal enabling the
deployment of scientific virtual computational

environments on hybrid e-infrastructures
Marica Antonacci

Istituto Nazionale di Fisica Nucleare
Via E. Orabona 4, 70125 Bari, Italy
Email: marica.antonacci@ba.infn.it

Daniele Spiga
Istituto Nazionale di Fisica Nucleare
Via A. Pascoli, 06123 Perugia, Italy

Email: daniele.spiga@pg.infn.it

Davide Salomoni
Istituto Nazionale di Fisica Nucleare

Viale Berti Pichat 6/2, 40127 Bologna, Italy
Email: davide.salomoni@cnaf.infn.it

Diego Ciangottini
Istituto Nazionale di Fisica Nucleare
Via A. Pascoli, 06123 Perugia, Italy

Vincenzo Ciaschini
Istituto Nazionale di Fisica Nucleare

Viale Berti Pichat 6/2, 40127 Bologna, Italy

Alessandro Costantini
Istituto Nazionale di Fisica Nucleare

Viale Berti Pichat 6/2, 40127 Bologna, Italy

Giacinto Donvito
Istituto Nazionale di Fisica Nucleare
Via E. Orabona 4, 70125 Bari, Italy

Doina Cristina Duma
Istituto Nazionale di Fisica Nucleare

Viale Berti Pichat 6/2, 40127 Bologna, Italy

Federica Fanzago
Istituto Nazionale di Fisica Nucleare
Via Marzolo 8, 35131 Padova, Italy

Emidio Giorgio
Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali del Sud
via S.Sofia 62, 95123 Catania, Italy

Alessandro Italiano
Istituto Nazionale di Fisica Nucleare
Via E. Orabona 4, 70125 Bari, Italy

Massimo Sgaravatto
Istituto Nazionale di Fisica Nucleare
Via Marzolo 8, 35131 Padova, Italy

Vincenzo Spinoso
Istituto Nazionale di Fisica Nucleare
Via E. Orabona 4, 70125 Bari, Italy

Stefano Stalio
Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali del Gran Sasso

Via G. Acitelli 22, 67100 Assergi L’Aquila, Italy

Mirco Tracolli
Istituto Nazionale di Fisica Nucleare
Via A. Pascoli, 06123 Perugia, Italy

Marco Verlato
Istituto Nazionale di Fisica Nucleare
Via Marzolo 8, 35131 Padova, Italy

Abstract—For the past ten years, INFN has been investing
heavily in developing solutions to enable transparent access to
a multi-site federated Cloud infrastructure. A main goal is to
provide a generic model to allow INFN users fair and simple ways
in accessing resources, regardless from the (richness of their)
experiment, the proximity to a powerful computing centre, the
capability to administer complex resources such as those offering
GPUs. The ultimate objective is to reduce the learning curve
required to deploy, manage and utilize computing services on a
federated cloud system. To this end, a dynamic and extensible web
portal has been put in production within the INFN Cloud project.
In this paper, a detailed overview of the architecture behind
the web portal will be provided. Moreover, the strategy adopted
for implementing a re-usable and highly customizable system
to describe and deploy any service on cloud will be described.
Finally, the foreseen evolution toward a multi-level dashboard
will be shown.

Keywords—scientific portal, service composition, automated
deployment

I. INTRODUCTION

The Italian National Institute for Nuclear Physics (INFN)
is a pioneer in the design and implementation of large-
scale computing infrastructures and applications. These were
originally developed primarily to meet the needs of the latest
generations of high energy physics (HEP) experiments, but are
now rapidly extending to other scientific communities. The
current INFN production infrastructure consists of 9 medium-
sized centers (Tier-2 in LHC Computing Grid parlance) and 1
large Tier-1 center at CNAF (Bologna). During the last decade,
INFN invested substantial effort in several R&D activities to
develop new systems and platforms for scientific computa-
tion, leading and participating to many national and interna-
tional projects. Among them, particularly significant ones are
INDIGO-DataCloud [1], EOSC-hub [2], XDC [4], DEEP [3],
and ESCAPE [5]. The INFN computing infrastructure also
provides ISO/IEC 27001, 27017 and 27018 certified sites, for
the secure processing of data and applications in the cloud



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

that involve sensitive data (e.g. medical type) [6]. Based on
all these activities, as well as on its 10-year experience gained
in developing and operating the Grid middleware for scientific
communities, at the beginning of 2020 INFN inaugurated
a production-level national heterogeneous federated Cloud
infrastructure through the ”INFN Cloud Project” [7]. INFN
Cloud provides:

• a multi-site federated Cloud infrastructure owned by
INFN, expandable to other Cloud infrastructures and
resources;

• a set of services that can be used through a portal, from
a terminal or with a set of APIs;

• a ”high-level” mechanism for adapting and evolving the
service portfolio, according to the needs and requests of
the users;

• a fully distributed intra-INFN organization for the sup-
port and management of both the infrastructure and its
services;

• a set of rules for regulating access and management to
INFN Cloud resources, incorporating INFN policies as
well as the more general national and international legal
stipulations.

The two main architectural pillars of INFN Cloud are: a
distributed resource orchestration framework and a consistent,
standards-based federated solution for identity access manage-
ment.

Based on community requirements, INFN Cloud developed
an extensible portfolio tailored to multi-disciplinary scientific
communities, spanning from traditional IaaS to more elaborate
PaaS and SaaS solutions. From a technical perspective, the
service portfolio is based on open-source modular software
and on de-jure or de facto standards, following the principle
of service composition. The main assumption is that there is
no one-size-fits-all solution, but rather workflows that allow
to create and deploy the best components integration given a
certain problem, using a composition of basic building blocks.
The foundation, in this respect, is to develop and provide the
proper tools needed to simplify and democratize access to
computing resources. This can be achieved on the one hand by
reducing the learning curve of the available functionalities, and
on the other lowering the adoption barriers that may arise due
to complex technicalities that typically represent a significant
obstacle, not only to access resources, but also to define
and deploy computing models. The ”high-level” mechanism
provided by INFN Cloud is designed with the goal to enable
users to create and provision infrastructure deployments, auto-
matically and in a reproducible way, on “any cloud provider”
with almost zero effort. The ”any cloud provider” part is
essential, since it allows the same services to be created and
used on multiple, federated Cloud infrastructures. The core
component of the INFN Cloud framework, offering users the
handles needed to build their required solutions, is the IN-
DIGO Platform-as-a-Service (PaaS) layer [8]. In fact, the PaaS
not only federates and orchestrates heterogeneous compute and
storage resources, but also provides the engine on top of which

a web portal enabling easy deployment of scientific virtual
computational environments has been developed.

The landscape of scientific gateways and Virtual Research
Environments (VREs) is rich with the diverse available frame-
works and services and each of them have their strengths and
peculiarities. For example, WS-PGRADE/gUSE (Web Ser-
vices Parallel Grid Runtime and Developer. Environment/Grid
User Support Environment) provides a workflow-oriented GUI
and APIs to create and execute workflows and manage data
on grid computing infrastructures [9]. Within the SCI-BUS
EU FP7 project [10], the platform was extended in order to
allow users to run workflows on cloud systems instead of or in
addition to grids through the CloudBroker Platform [11], avail-
able in hosted and licensed variants. The Platform is mainly
suitable for batch-oriented command line software, both serial
or parallel (via MPI or other tools). Another technology
relevant to Science Gateways is gCUBE, a software framework
designed to build e-Infrastructures supporting Virtual Research
Environments [12]. To this end, it offers a comprehensive set
of data management commodities on various types of data and
a rich array of ”mediators” to interface diverse Infrastructures.
Via these mediator services, the storage facilities, processing
facilities and data resources of the external infrastructures are
conceptually unified to become gCube resources. gCube is cur-
rently used to govern the infrastructure set up by the European
integrated project D4Science [13]. The portal of both WS-
PGRADE/gUSE and gCUBE/D4Science is based on Liferay
technology [14]. Liferay was designed in early 2000s and
became the most used framework to build Science Gateways
in the “Grid world”. It is a Java-based platform that leverages
advanced technologies of JSR 286 portlets [15] and OSGi [16].
New content can be added only in the form of portlets
[17] that require Java code development. The web portal we
present in this paper has been conceived as a lightweight,
highly configurable component that can be easily extended
for supporting diverse research domains, writing almost zero
code and re-using available building blocks. Therefore, we
have opted for modern Web development frameworks such
as Flask plus CSS and JavaScript libraries, as detailed in
the next sections. Unlike gCUBE/D4Science, the INDIGO
PaaS system has been designed as a solution for federating
different computing infrastructures (clouds, HPC, container
platforms) in a loosely coupled way: no middleware is installed
on the external infrastructures and the interactions with them
are managed via REST APIs (using standard libraries, such
as Apache jclouds [18], to interface different clouds). The
adoption of a standard language for describing the topology of
the virtual computing environments is another key difference
w.r.t. the mentioned frameworks: we provide a high-level
portable description of the applications (including nodes and
their relationships) and the automation of their deployment
following the Infrastructure as Code paradigm.

The remainder of this paper is structured as follows: Sec-
tion II will detail the architecture of the PaaS Orchestrator,
describing both the main high-level steps of a deployment
workflow, as well as the technical implementation. It will

2



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

also provide the PaaS Dashboard implementation details. In
section III, the strategy used to implement the INFN Cloud
services will be shown, including the related implementation
approach. Section IV will discuss the INFN Cloud service
catalogue and its main capabilities, while Section V will cover
a concrete example of a service portfolio developed within
INFN Cloud. Finally, Section VI will provide an overview of
the PaaS Dashboard evolution toward a multi-level approach.

II. INDIGO PAAS ARCHITECTURE

The main service of the INDIGO PaaS is the Orchestrator
[19]. It implements a workflow engine to orchestrate and
automate the complex chain of tasks and interactions needed
to perform the deployment of services across one of more
Cloud infrastructures. These range from the selection of the
best provider among a set of federated Clouds, to the complete
provisioning and configuration of the required cloud services
and resources. Technically, the PaaS layer consists of a set
of microservices that interact through lightweight mechanisms
based on REST APIs. Figure 1 sketches the main steps of a
deployment workflow:

1) a user requests the deployment of a certain service, spec-
ifying its requirements through the Dashboard; option-
ally, he/she can specify the timeout for the deployment
to complete;

2) the Dashboard submits the user request to the PaaS
Orchestrator through a REST API call;

3) the PaaS Orchestrator contacts a set of auxiliary services
to get information useful to schedule the deployment on
the best chosen provider. These services are:

• INDIGO-IAM [20], in charge of validating user
identity;

• the SLA Manager service, providing information
about the federated sites where the user is entitled
to create resources thanks to a valid Service Level
Agreement (SLA);

• the Configuration Management DB (CMDB), a dy-
namic information system that publishes informa-
tion about the federated providers and their services
(e.g. the endpoints of the compute and storage
services, the list of cloud images, flavors, etc.);

• the Monitoring service, that collects metrics and
monitoring data for each federated provider;

4) the PaaS Orchestrator contacts the Cloud Provider
Ranker (CPR) service, providing the information col-
lected above;

5) the CPR calculates the ranking for each site service
through a configurable algorithm and provides the
PaaS Orchestrator with a sorted list of candidate cloud
providers for the required deployment;

6) the PaaS Orchestrator schedules the deployment on the
first provider in the list;

7) the PaaS Orchestrator monitors the deployment until it
is successful, fails or until the timeout expires;

8) in case of failure or of an expired timeout, the PaaS Or-
chestrator schedules the deployment on the next provider

Fig. 1. The INDIGO PaaS high-level architecture.

in the list, if any. If the overall timeout expires, the PaaS
Orchestrator flags the deployment as failed and deletes
the allocated resources, if any.

The CPR is a standalone REST WEB Service which cal-
culates a rank for the cloud provider services depending on
the match with specific rules: its core component is a Rule
Engine based on the open-source Drools framework [21].
The current ranking algorithm considers the SLA targets (in
terms of amount of resources provided to the users) and the
monitoring metrics (e.g. health status, response times) as input
parameters. The computation of the score is performed through
the embedded Rule Engine and can be modified without re-
compiling the code by changing the Rules files used by the
CPR service. The selection of the provider to use is therefore
optimized through the ranking algorithm. Nevertheless, fail-
ures can happen during the deployment phase that could not
be detected in advance by the Monitoring system. In order to
handle these cases, the Orchestrator is able to automatically
reschedule the deployment to another site and the number of
retries is configurable and can be eventually specified by the
user.

The federated access to the distributed resources relies on
a federated Authentication and Authorization Infrastructure
(AAI) and on the ability of each service in the whole stack,
from the dashboard to the PaaS and IaaS levels, to manage the
OAuth [8] tokens issued by the trusted Identity Provider(s).
The PaaS Orchestrator mainly relies on INDIGO-IAM, an
Identity and Access Management service first developed in
the context of the INDIGO-Datacloud project, and currently
maintained and developed by INFN. INDIGO-IAM provides
a flexible authentication support (SAML, X.509, OpenID
Connect, username/password, etc.), account linking, registra-
tion service, group membership management, enforcement of
AUP acceptance, easy integration with client applications and
services via standard OAuth/OpenID Connect mechanisms.

3



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

Finally, the PaaS Orchestrator supports a variety of inter-
faces in order to cope with distinct needs and requirements. In
details, it provides a REST interface, a command-line interface
and a graphical user interface (GUI).

A. PaaS REST interface and CLI

The PaaS Orchestrator lingua franca is TOSCA (Topology
and Orchestration Specification for Cloud Applications) [22].
TOSCA is an OASIS standard language to describe cloud
based applications, their components, relationships, depen-
dencies and the processes that manage them. Any service
or application to be deployed is therefore described through
a TOSCA template. The Orchestrator provides REST APIs
for instance to create a deployment starting from a TOSCA
template, to get the list of active deployments, or to delete
a deployment. A command-line tool is also available, called
orchent [23], written in Go programming language [24]. It
implements a set of commands that match the actions that can
be performed using the PaaS Orchestrator REST APIs. The
most relevant orchent commands are:

• depcreate: create a new deployment;
• depls: list active deployments;
• depshow: show details of a given deployment;
• deplog: show the contextualization log of a deployment;
• depupdate: update a running deployment;
• depdel: delete a deployment.

B. PaaS Dashboard

Handling TOSCA templates is not a simple task; many
technical details should be hidden to the end user, also
because typically a researcher is not necessarily interested
in learning about them. Similarly, many users might not like
using command line interfaces, finding them more difficult to
manage than a graphical user interface (GUI). To this end,
the PaaS Orchestrator has been equipped with a Dashboard, a
user-friendly graphical web portal that allows users to:

1) select the service to deploy from a catalogue of pre-
defined templates;

2) configure and customize the deployment through a sim-
ple form;

3) monitor and manage the deployments through dedicated
menus and views;

4) get notified as soon as a deployment is complete.
The portal empowers end users with a twofold role: to

provide a single point of access to the PaaS components, and
to offer a catalogue of deployable assets that cover a wide
range of service categories.

C. PaaS Dashboard implementation

The PaaS Dashboard is a Python application, developed
using open-source tools, such as the Flask web microframe-
work [25] and Bootstrap [26] to create responsive front-
end web pages. The state of the application is saved into a
relational database, managed through the well known SQL
Python toolkit SQLAlchemy [27]. Moreover, some popular,

well-maintained Flask extensions have been used for integrat-
ing with external services. The most important one is Flask-
Dance [28], a library built on top of OAuthLib, that greatly
facilitates the integration of OAuth in the Flask application.
We have used Flask-Dance to enable the authentication and
authorization of the users through INDIGO-IAM.

The Dashboard is also integrated with the open-source
HashiCorp Vault [29] software, to centrally manage secrets
such as user ssh keys, public Cloud service credentials (e.g.
AWS credentials), disk encryption keys and deployment se-
crets. This is in general sensitive data (e.g. passwords) needed
to configure the deployed services. We have configured Vault
to enable the jwt login via INDIGO-IAM. Proper policies have
then been set, to grant read and/or write permissions to specific
paths, depending on the users token claims. In this way, the
secrets that refer to a given user are completely isolated from
the other users. The interactions with Vault are mediated by
the Dashboard, providing simple configuration forms to define
the secrets; the Dashboard then takes care of managing them,
using the Vault HTTP APIs.

III. SERVICES AND HIGH LEVEL APPLICATIONS
INTEGRATION STRATEGY

As introduced in Section II-B, one of the main INFN Cloud
objectives is to simplify the learning curve needed to build
and manage services and applications, as well as to access
computing resources. To this extent, the adopted strategy is
based on the Infrastructure as Code paradigm [30], driven by
a templating engine used to specify high-level requirements.
This allows users to describe “What” is needed, instead
of “How” it should be implemented. Through the templating
strategy, a declarative approach can be adopted. From a tech-
nical perspective, the system follows a cloud-native approach
both for infrastructure services (i.e. virtual clusters or any
interface for data access and processing) and applications.
Everything is thus containerized using Docker [32], which rep-
resents the main mechanism to manage user-tailored runtime
environments. Thanks to the declarative approach, extending
and composing services becomes much easier; moreover, the
process for adapting and evolving the service portfolio in
order to address new user requests is much more efficient and
maintainable, thanks to code re-usability and sharing.

A. Technical pillars

The deployment of services and applications, software con-
figurations and package installation, including dependencies
and user runtime environments, is managed via a combination
of three main pillars:

• TOSCA, used to model the topology of the whole appli-
cation stack;

• Ansible [31], used to manage the automated configuration
of the virtual environments taking care of installing and
configuring the needed middleware (e.g. the container
management software);

• Docker [32], used to encapsulate the high-level applica-
tion software and runtime;

4



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

These technologies have been chosen and exploited as
follows, in order to achieve a high-level of automation, re-
usability and easy customization. As mentioned, each service,
from the simplest to the more complex one, is described
through a TOSCA template that models the topology of the
service at different layers: at the infrastructure level, the
template specifies the compute and storage resources needed to
run the service; on top of that, specific middleware components
are installed and configured to execute the service (middle-
ware/application levels). To implement this service integration
strategy, we exploit two key features of the TOSCA language:
re-usability and extensibility. In fact, TOSCA provides a type
system to describe possible building blocks useful to construct
a topology template. These TOSCA types are reusable TOSCA
entities that can be further customized, implementing new
derived TOSCA types. Moreover, in the TOSCA specification,
each node can define interfaces and artifacts for realising
its deployment and/or managing its lifecycle: they can be
installation scripts or binaries, implementing the application
functionality. In the custom types we have been developing,
artifacts are mainly in the form of Ansible playbooks, that
basically are built around re-usable roles uploaded and shared
via Ansible Galaxy [33]. Finally, the Ansible recipes are used
to install, configure and manage dockerized applications in
different environments, from a standalone docker engine (e.g.
using docker compose) to complex orchestration clusters, as
described in the next subsection.

B. Enhance the service automation

As introduced above, a key objective is to implement a
high level of automation. This is a common motif of the
INFN Cloud project that propagates up to the upper layer,
i.e. where end user applications are eventually managed. In
order to enhance the automation and self-healing of the de-
ployed services, INFN Cloud has been integrating Kubernetes
(k8s) [35] as container orchestrator, also building on the
experience gained with the DODAS project [34]. Nowadays,
k8s is a de facto standard, widely adopted also in many
scientific domains. A few key characteristics of interest in this
context are:

• failure recovering: only healthy resources receive traffic.
Those that fail health checks for too long will be restarted
(nodes and containers);

• automatic scaling, based on resource requests. This is
extensible to support a scaling logic based on custom
metrics;

• declarative model: the user declares the desired state of
an application in a YAML manifest. k8s then does what
is needed to maintain that required state;

• comprehensive API set, that for instance allow a CI/CD
system to communicate with k8s via REST APIs and CLI.
For example, one can automatically deploy new releases
defining the proper rollout/rollback strategies.

C. From HELM to TOSCA

From a technical point of view, the k8s based service
deployment extends the templating and encapsulation logic
explained above. On the one hand, this shows the power and
flexibility of the originally developed model; on the other, it
keeps the declarative approach valid, given the adoption of
Helm Charts [36] to define, install, and upgrade k8s applica-
tions. Concretely, we can distinguish two main cases: a plain
k8s cluster deployment, and the deployment of an application
on top of a k8s cluster. The creation of a plain k8s cluster
happens through a configurable Ansible role that takes care of
all the needed steps: from the cluster initialization through the
“kubeadm” tool, to the deployment of a set of utility services,
such as the ingress service based on NGINX, the automatic
certificate manager ”Cert-Manager”, the k8s dashboard, and
the metric server. Other optional services can also be activated,
based on the actual use case requirement: for instance, it is
possible to leverage a shared filesystem, choosing one of the
following solutions: Longhorn (the default), NFS and Cephfs
via ROOK operator. Also, an integrated monitoring system
based on Prometheus [38] and Grafana [39] is provided out
of the box [37]. Regarding the deployment of applications
on top of a k8s cluster, the presented model adopts the
Helm templating technology. This is a key aspect, enabling
an efficient and portable way to deploy applications via a
common language: in fact, the same Helm chart can be used
to deploy the application on top of the k8s cluster deployed
via TOSCA, as well as on top of any pre-existing k8s cluster
hosted on any other cloud provider (private or public). The
applications are structured in such a way that, through the
very same base template structure, different flavors of the
same cluster can be deployed. For instance, one can activate
a certain type of shared filesystem to be used, by putting a
flag at the Helm configuration level (in the so called “Helm
values”). In addition, multiple applications can be combined
as needed using the Helm dependency system, where a child
application will wait for the parent to be completely deployed,
before starting its own installation [37]. The Helm charts
integration in the TOSCA template has been possible thanks to
the usage of Ansible roles, which take care of compiling Helm
values only when the cluster has been automatically created,
and thus all the parametrized information are known. All the
produced charts are documented following the current Helm
best practices, promoting contributions from anyone interested
to fix or add features to the existing charts. Moreover, it
allows automatic linting and testing for any external proposed
change [40], [41].

IV. SERVICE CATALOGUE

The catalogue available through the PaaS Dashboard (Fig-
ure 2) is a graphical representation of the TOSCA templates
repository that we have been developing by extending the
INDIGO-DC custom types [42]. Each card in the catalogue
is associated to one or more templates that have been im-
plemented using a ”lego-like” approach, building on top
of reusable components and exploiting the TOSCA service

5



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

Fig. 2. Service Catalogue

composition pattern. The Dashboard is configured to load
the templates from a local folder and is able to dynamically
create an HTML form starting from the inputs section of each
TOSCA template. An example is shown in Figure 3: when a
user selects the ”Virtual machine” service from the catalogue,
the inputs defined in the corresponding TOSCA template
(Figure 4 are automatically interpreted by the Dashboard
that creates the web form. Once the user has filled in the
input values and submitted the form, the Dashboard sends the
template and the input values to the PaaS Orchestrator, calling
its REST API. When a user logs in to the Dashboard, the main
page will show a customized view of the available services
depending on the specific INDIGO-IAM group membership
of the user. This allows to simply define customized views
(per-user, or per-group) of the Service Catalogue.

For each deployment, the Dashboard allows also to set
some advanced configuration options, as shown in Figure 5.
In particular, it is possible to bypass the automatic scheduling
implemented by the PaaS Orchestrator: in this case, a user
can select a specific provider to send the deployment request
to. Under the hood, the drop-down menu for selecting a
provider is automatically created by the Dashboard, interacting
with the SLA Manager Service to get the list of sites where
the user owns some resource quota. Before submitting the
request to the PaaS Orchestrator, the Dashboard completes the
TOSCA template including the proper SLA placement policy
(Figure 6).

V. A PRODUCTION-READY EXAMPLE: THE INFN CLOUD
SERVICE PORTFOLIO

At the time of writing, there are several categories of
services available: 1) general purpose services, 2) experiment
specific services, and 3) k8s-based services.

The general purpose services allow the automatic deploy-
ment of:

• Virtual Machine with or without external block storage,
eventually equipped with docker engine and docker-
compose, on top of which dockerized services can be
automatically started;

• data analytics and visualization environments based on
Elasticsearch [43] and Kibana [44];

• file sync & share solution based on OwnCloud [45] with
1) replicated backend storage on the S3-compliant Ob-
ject Storage provided by the INFN Cloud infrastructure;
2) automatic configuration for enabling INDIGO IAM
OpenID Connect authentication; 3) pre-installed and con-
figured backup cron jobs for safely storing configuration
and data on the Object Storage for future restore in case of
disaster; 4) integrated application and backup monitoring
based on Nagios [46];

• web-based multi-user interactive development environ-
ment for notebooks, code and data built on JupyterLab
[47] and enahnced with 1) persistent storage areas for
storing results and notebooks for future re-use; 2) a moni-
toring system based on Prometheus [38] and Grafana [39]
for collecting relevant metrics;

Moreover, the INFN Cloud Service Portfolio already con-
tains several examples of experiment-specific services. The
more advanced ones are developed for the CYGNO [48]
experiment, studying Dark Matter and Neutrinos, and for
ML INFN [49], a INFN-funded project aiming at lowering
the potential barriers for accessing specialized hardware for
the exploitation of Machine Learning techniques. Finally, as

Fig. 3. Service Configuration form

6



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

anticipated above, INFN Cloud has developed a set of services
built on top of k8s. A few examples in this category include:
HTCondor on-demand clusters; Spark clusters, integrated with
Jupyter; a centrally managed multi-user JupyterHub offered as
a service.

VI. MOVING TOWARDS A MULTI-LEVEL DASHBOARD

In order to further enhance the flexibility to deploy and
integrate applications, as well as to reduce the operational costs
for users to deploy and maintain the services, we are moving
a step forward by developing the support for a multi-level
dashboard. The latter should be seen as a nested dashboard
with respect to the one shown in Figure 2.

The idea behind the multi-level dashboard is to extend
the concept of service composition to the very last layer of
the infrastructure stack. The main objectives of a multi-level
dashboard are to allow to manage (i.e. upgrade) and compose
services with no need to re-define and re-instantiate the
underlying virtual hardware and middleware when they can be
provided by some other well-established methods, and to share
resources on an existing cluster across different applications
at different points in time. In addition, this should permit a
faster turnaround in the integration and development of new

Fig. 4. TOSCA inputs for configuring a virtual host in cloud. These fields
are automatically rendered in the HTML form shown in Figure 3

Fig. 5. Advanced configuration options

Fig. 6. Example of SLA placement policy

Fig. 7. Kubeapps custom dashboard

services. From another perspective, we expect this approach
to be key to implement a model where system administration
responsibilities can be delegated to a sub-group of computing
expert users, to whom access to the main dashboard is granted.
The main dashboard would then be used by these users to
deploy the actual base services, while researchers and data
analysts would be provided with the inner dashboard, that

7



14th International Workshop on Science Gateways (IWSG 2022), 15-17 June 2022

Fig. 8. Kubeapp service configuration example

does not require system admin responsibility at all. Access
to the inner dashboard can then be limited in scope, i.e.
granting access only to a specific service, application or set of
applications/services. In particular, the inner dashboard will
not provide any system admin capabilities, but only allows
to manage applications. Early prototypes of this multi-level
dashboard are already available, based on the adoption of the
Kubeapps [50] technology. Adopting Helm as a standard for
our application packaging allowed us to leverage Kubeapps to
instantiate such a inner web UI, as shown in Figure 7. In this
framework, users can log in as usual via OIDC authentication,
and compile Helm values via simple forms, before deploying
the application with a simple click; see Figure 8. As a side
note, thanks to the modular approach described above, any
Helm-based service can be deployed, reusing the very same
YAML files both via the main dashboard (through a dedicated
TOSCA template) and directly within the inner dashboard (the
one using Kubeapps).

VII. CONCLUSIONS AND FUTURE WORK

The paper describes an open-source scientific gateway
built on top of the INDIGO PaaS orchestration system. This
gateway allows users to easily access federated distributed
compute and storage resources, on top of which both simple
and complex scientific virtual computational environments can
be automatically deployed and configured. Besides describing
the portal and the PaaS orchestration framework, an efficient
and sustainable strategy for developing integrated high-level
services is also described. A production-ready implementation
of the gateway is shown in the context of the INFN Cloud
project. It supports a dynamic and extensible portfolio of ser-
vices including both general purpose services and applications
tailored to specific scientific experiments and collaborations.
Our vision on how to simplify access and management of
federated cloud resources and services is detailed. Moving
forward, we can optionally identify two classes of users: those
who are responsible for deploying the services and who take
care of their operations and maintenance (expert users); and
those who access the services that have been deployed by
someone else. Technically, this distinction is reflected in the

approach taken with the design of our multi-level dashboard,
which is currently in the prototype stage. A further and final
consideration is that we observe a constant increase in the
number of users that are adopting the INFN Cloud modular
solutions. This means that providing service templates that are
frequently updated and include security patches is of crucial
importance. To this end, we are implementing an automatic
testing system based on Jenkins that will allow to replace the
current semi-manual template testing with pre-defined, fully
automated job pipelines. These pipelines perform automatic
checks for each of the services available in the catalogue,
including scans related to security vulnerabilities. A comment
is in order. Due to the large adoption of Machine Learning
techniques (ML), one could think about the implementation
of such procedures in our context. This would have a twofold
advantage: on one hand, the adoption of ML algorithms could
offer further benefits in testing identified patterns on the new
templates to help predict and avoid future failures; on the other
hand, due to the increasing number of users, it would help
to address future issues in terms of the maintenance burden.
We expect that this will further enhance the overall usability,
sustainability and scalability of the approach adopted by INFN
Cloud.

REFERENCES

[1] INDIGO-DataCloud Project. URL https://www.indigo- datacloud.eu/
[2] EOSC-hub Project. URL https://www.eosc-hub.eu
[3] DEEP Hybrid DataCloud Project. URL https://deep-hybrid-datacloud.eu
[4] eXtreme-DataCloud (XDC) Project. URL http://www.extreme-

datacloud.eu
[5] ESCAPE Project. URL https://projectescape.eu
[6] A. Chierici, B. Martelli et al; SGSI project at CNAF. EPJ Web of Confer-

ences 214, 08017 (2019) https://doi.org/10.1051/epjconf/201921408017
[7] INFN Cloud - Cloud resources for research. URL

https://www.cloud.infn.it/
[8] Salomoni, D., Campos, I., Gaido, L. et al. INDIGO-DataCloud: a Plat-

form to Facilitate Seamless Access to E-Infrastructures. J Grid Computing
16, 381–408 (2018). https://doi.org/10.1007/s10723-018-9453-3

[9] Kacsuk, P., Farkas, Z., Kozlovszky, M. et al. WS-PGRADE/gUSE
Generic DCI Gateway Framework for a Large Variety of
User Communities. J Grid Computing 10, 601–630 (2012).
https://doi.org/10.1007/s10723-012-9240-5

[10] The sci-bus project: http://www.sci-bus.eu/
[11] CloudBroker Platform: http://cloudbroker.com/platform/
[12] Massimiliano Assante, Leonardo Candela, Donatella Castelli, Roberto

Cirillo, Gianpaolo Coro, Luca Frosini, Lucio Lelii, Francesco Man-
giacrapa, Valentina Marioli, Pasquale Pagano, Giancarlo Panichi,
Costantino Perciante, Fabio Sinibaldi, The gCube system: Delivering
Virtual Research Environments as-a-Service, Future Generation Com-
puter Systems, Volume 95, 2019, Pages 445-453, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2018.10.035

[13] D4Science Infrastructure: https://www.d4science.org/
[14] Liferay: Digital Experience Software Tailored to Your Needs.

https://www.liferay.com/
[15] JSR 286: Portlet Specification 2.0. https://jcp.org/en/jsr/detail?id=286
[16] OSGi, The Dynamic Module System for Java.

https://www.osgi.org/resources/what-is-osgi/
[17] Writing Your First Liferay Application. https://help.liferay.com/hc/en-

us/articles/360018176951-Writing-Your-First-Liferay-Application
[18] Apache jclouds: https://jclouds.apache.org/
[19] INDIGO-DataCloud PaaS Orchestrator. Documentation:

https://indigo-dc.gitbook.io/indigo-paas-orchestrator/. Github:
https://github.com/indigo-dc/orchestrator

[20] Andrea Ceccanti, Enrico Vianello, & Marco Caberletti. (2018, May
18). INDIGO Identity and Access Management (IAM) (Version v1.4.0).
Zenodo. http://doi.org/10.5281/zenodo.1874791

8


