
Preprocessing of Propagation Redundant Clauses*

Joseph E. Reeves � , Marijn J. H. Heule , and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{jereeves,mheule,randy.bryant}@cs.cmu.edu

Abstract. The propagation redundant (PR) proof system generalizes the resolu-
tion and resolution asymmetric tautology proof systems used by conflict-driven
clause learning (CDCL) solvers. PR allows short proofs of unsatisfiability for
some problems that are difficult for CDCL solvers. Previous attempts to auto-
mate PR clause learning used hand-crafted heuristics that work well on some
highly-structured problems. For example, the solver SADICAL incorporates PR
clause learning into the CDCL loop, but it cannot compete with modern CDCL
solvers due to its fragile heuristics. We present PRELEARN, a preprocessing tech-
nique that learns short PR clauses. Adding these clauses to a formula reduces the
search space that the solver must explore. By performing PR clause learning as
a preprocessing stage, PR clauses can be found efficiently without sacrificing
the robustness of modern CDCL solvers. On a large portion of SAT competi-
tion benchmarks we found that preprocessing with PRELEARN improves solver
performance. In addition, there were several satisfiable and unsatisfiable formu-
las that could only be solved after preprocessing with PRELEARN. PRELEARN

supports proof logging, giving a high level of confidence in the results.

1 Introduction

Conflict-driven clause learning (CDCL) [27] is the standard paradigm for solving the
satisfiability problem (SAT) in propositional logic. CDCL solvers learn clauses implied
through resolution inferences. Additionally, all competitive CDCL solvers use pre- and
in-processing techniques captured by the resolution asymmetric tautology (RAT) proof
system [21]. As examples, the well-studied pigeonhole and mutilated chessboard prob-
lems are challenging benchmarks with exponentially-sized resolution proofs [1, 12]. It
is possible to construct small hand-crafted proofs for the pigeonhole problem using
extended resolution (ER) [8], a proof system that allows the introduction of new vari-
ables [32]. ER can be expressed in RAT but has proved difficult to automate due to the
large search space. Even with modern inprocessing techniques, many CDCL solvers
struggle on these seemingly simple problems. The propagation redundant (PR) proof
system allows short proofs for these problems [14, 15], and unlike in ER, no new vari-
ables are required. This makes PR an attractive candidate for automation.

At a high level, CDCL solvers make decisions that typically yield an unsatisfiable
branch of a problem. The clause that prunes the unsatisfiable branch from the search
space is learned, and the solver continues by searching another branch. PR extends this

*The authors are supported by the NSF under grant CCF-2108521.

http://orcid.org/0000-0002-4585-0565
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0001-5024-6613

paradigm by allowing more aggressive pruning. In the PR proof system a branch can
be pruned as long as there exists another branch that is at least as satisfiable. As an ex-
ample, consider the mutilated chessboard. The mutilated chessboard problem involves
finding a covering of 2 × 1 dominos on an n × n chessboard with two opposite cor-
ners removed (see Section 5.4). Given two horizontally oriented dominoes covering a
2 × 2 square, two vertically oriented dominos could cover the same 2 × 2 square. For
any solution that uses the dominos in the horizontal orientation, replacing them with the
dominos in the vertical orientation would also be a solution. The second orientation is as
satisfiable as the first, and so the first can be pruned from the search space. Even though
the number of possible solutions may be reduced, the pruning is satisfiability preserv-
ing. This is a powerful form of reasoning that can efficiently remove many symmetries
from the mutilated chessboard, making the problem much easier to solve [15].

The satisfaction-driven clause learning (SDCL) solver SADICAL [16] incorporates
PR clause learning into the CDCL loop. SADICAL implements hand-crafted decision
heuristics that exploit the canonical structure of the pigeonhole and mutilated chess-
board problems to find short proofs. However, SADICAL’s performance deteriorates
under slight variations to the problems including different constraint encodings [7].
The heuristics were developed from a few well-understood problems and do not gener-
alize to other problem classes. Further, the heuristics for PR clause learning are likely
ill-suited for CDCL, making the solver less robust.

In this paper, we present PRELEARN, a preprocessing technique for learning PR
clauses. PRELEARN alternates between finding and learning PR clauses. We develop
multiple heuristics for finding PR clauses and multiple configurations for learning some
subset of the found PR clauses. As PR clauses are learned we use failed literal prob-
ing [11] to find unit clauses implied by the formula. The preprocessing is made efficient
by taking advantage of the inner/outer solver framework in SADICAL. The learned PR
clauses are added to the original formula, aggressively pruning the search space in an ef-
fort to guide CDCL solvers to short proofs. With this method PR clauses can be learned
without altering the complex heuristics that make CDCL solvers robust. PRELEARN
focuses on finding short PR clauses and failed literals to effectively reduce the search
space. This is done with general heuristics that work across a wide range of problems.

Most SAT solvers support logging proofs of unsatisfiability for independent check-
ing [17, 20, 33]. This has proved valuable for verifying solutions independent of a (po-
tentially buggy) solver. Modern SAT solvers log proofs in the DRAT proof system
(RAT [21] with deletions). DRAT captures all widely used pre- and in-processing tech-
niques including bounded variable elimination [10], bounded variable addition [26],
and extended learning [4,32]. DRAT can express the common symmetry-breaking tech-
niques, but it is complicated [13]. PR can compactly express some symmetry-breaking
techniques [14, 15], yielding short proofs that can be checked by the proof checker
DPR-TRIM [16]. PR gives a framework for strong symmetry-breaking inferences and
also maintains the highly desirable ability to independently verify proofs.

The contributions of this paper include: (1) giving a high-level algorithm for ex-
tracting PR clauses, (2) implementing several heuristics for finding and learning PR
clauses, (3) evaluating the effectiveness of different heuristic configurations, and (4)
assessing the impact of PRELEARN on solver performance. PRELEARN improves the

2

performance of the CDCL solver KISSAT on a quarter of the satisfiable and unsatisfiable
competition benchmarks we considered. The improvement is significant for a number
of instances that can only be solved by KISSAT after preprocessing. Most of them come
from hard combinatorial problems with small formulas. In addition, PRELEARN di-
rectly produces refutation proofs for the mutilated chessboard problem containing only
unit and binary PR clauses.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF). A CNF formula
ψ is a conjunction of clauses where each clause is a disjunction of literals. A literal l is
either a variable x (positive literal) or a negated variable x (negative literal). For a set
of literals L the formula ψ(L) is the clauses {C ∈ ψ | C ∩ L 6= ∅}.

An assignment is a mapping from variables to truth values 1 (true) and 0 (false).
An assignment is total if it assigns every variable to a value, and partial if it assigns a
subset of variables to values. The set of variables occurring in a formula, assignment,
or clause is given by var(ψ), var(α), or var(C). For a literal l, var(l) is a variable.

An assignment α satisfies a positive (negative) literal l if α maps var(l) to true (α
maps var(l) to false, respectively), and falsifies it if α maps var(l) to false (α maps
var(l) to true, respectively). We write a finite partial assignment as the set of literals it
satisfies. An assignment satisfies a clause if the clause contains a literal satisfied by the
assignment. An assignment satisfies a formula if every clause in the formula is satisfied
by the assignment. A formula is satisfiable if there exists a satisfying assignment, and
unsatisfiable otherwise. Two formula are logically equivalent if they share the same set
of satisfying assignments. Two formulas are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable.

If an assignment α satisfies a clause C we define C |α = >, otherwise C |α repre-
sents the clause C with the literals falsified by α removed. The empty clause is denoted
by ⊥. The formula ψ reduced by an assignment α is given by ψ |α = {C |α | C ∈
ψ and C |α 6= >}. Given an assignment α = l1 . . . ln, C = (l1 ∨ · · · ∨ ln) is the clause
that blocks α. The assignment blocked by a clause is the negation of the literals in the
clause. The literals touched by an assignment is defined by touchedα(C) = {l | l ∈
C and var(l) ∈ var(α)} for a clause. For a formula ψ, touchedα(ψ) is the union of
touched variables for each clause in ψ. A unit is a clause containing a single literal.
The unit clause rule takes the assignment α of all units in a formula ψ and generates
ψ |α. Iteratively applying the unit clause rule until fixpoint is referred to as unit propa-
gation. In cases where unit propagation yields⊥ we say it derived a conflict. A formula
ψ implies a formula ψ′, denoted ψ |= ψ′, if every assignment satisfying ψ satisfies ψ′.
By ψ `1 ψ′ we denote that for every clause C ∈ ψ′, applying unit propagation to the
assignment blocked by C in ψ derives a conflict. If unit propagation derives a conflict
on the formula ψ∪{{l}}, we say l is a failed literal and the unit l is logically implied by
the formula. Failed literal probing [11] is the process of successively assigning literals
to check if units are implied by the formula. In its simplest form, probing involves as-
signing a literal l and learning the unit l if unit propagation derives a conflict, otherwise
l is unassigned and the next literal is checked.

3

To evaluate the satisfiability of a formula, a CDCL solver [27] iteratively performs
the following operations: First, the solver performs unit propagation, then tests for a
conflict. Unit propagation is made efficient with two-literal watch pointers [28]. If there
is no conflict and all variables are assigned, the formula is satisfiable. Otherwise, the
solver chooses an unassigned variable through a variable decision heuristic [6, 25], as-
signs a truth value to it, and performs unit propagation. If, however, there is a conflict,
the solver performs conflict analysis potentially learning a short clause. In case this
clause is the empty clause, the formula is unsatisfiable.

3 The PR Proof System

A clauseC is redundant w.r.t. a formula ψ if ψ and ψ∪{C} are satisfiability equivalent.
The clause sequence ψ,C1, C2, . . . , Cn is a clausal proof of Cn if each clause Ci (1 ≤
i ≤ n) is redundant w.r.t. ψ ∪ {C1, C2, . . . , Ci−1}. The proof is a refutation of ψ if Cn
is ⊥. Clausal proof systems may also allow deletion. In a refutation proof clauses can
be deleted freely because the deletion cannot make a formula less satisfiable.

Clausal proof systems are distinguished by the kinds of redundant clauses they allow
to be added. The standard SAT solving paradigm CDCL learns clauses implied through
resolution. These clauses are logically implied by the formula, and fall under the reverse
unit propagation (RUP) proof system. The Resolution Asymmetric Tautology (RAT)
proof system generalizes RUP. All commonly used inprocessing techniques emit DRAT
proofs. The propagation redundant (PR) proof system generalizes RAT by allowing the
pruning of branches without loss of satisfaction.

Let C be a clause in the formula ψ and α the assignment blocked by C. Then C is
PR w.r.t. ψ if and only if there exists an assignment ω such that ψ |α `1 ψ |ω and ω
satisfies C. Intuitively, this allows inferences that block a partial assignment α as long
as another assignment ω is as satisfiable. This means every assignment containing α
that satisfies ψ can be transformed to an assignment containing ω that satisfies ψ.

Clausal proofs systems must be checkable in polynomial time to be useful in prac-
tice. RUP and RAT are efficiently checkable due to unit propagation. In general, deter-
mining if a clause is PR is an NP-complete problem [18]. However, a PR proof is check-
able in polynomial time if the witness assignments ω are included. A clausal proof with
witnesses will look like ψ, (C1, ω1), (C2, ω2), . . . , (Cn, ωn). The proof checker DPR-
TRIM can efficiently check PR proofs that include witnesses. Further, DPR-TRIM can
emit proofs in the LPR format. They can be validated by the formally-verified checker
CAKE-LPR [31], which was used to validate results in recent SAT competitions.

4 Pruning Predicates and SADICAL

Determining if a clause is PR is NP-complete and can naturally be formulated in SAT.
Given a clause C and formula ψ, a pruning predicate is a formula such that if it is
satisfiable, the clause C is redundant w.r.t. ψ. SADICAL uses two pruning predicates
to determine if a clause is PR: positive reduct and filtered positive reduct. If either
predicate is satisfiable, the satisfying assignment serves as the witness showing the
clause is PR.

4

Given a formula ψ and assignment α, the positive reduct is the formula G ∧ C
where C is the clause that blocks α and G = {touchedα(D) | D ∈ ψ and D |α = >}.
If the positive reduct is satisfiable, the clause C is PR w.r.t. ψ. The positive reduct is
satisfiable iff the clause blocked by α is a set-blocked clause [23].

Given a formulaψ and assignment α, the filtered positive reduct is the formulaG∧C
where C is the clause that blocks α and G = {touchedα(D) | D ∈ ψ and D |α 01

touchedα(D)}. If the filtered positive reduct is satisfiable, the clause C is PR w.r.t. ψ.
The filtered positive reduct is a subset of the positive reduct and is satisfiable iff the
clause blocked by α is a set-propagation redundant clause [14]. Example 1 shows a
formula for which the positive and filtered positive reducts are different, and only the
filtered positive reduct is satisfiable.

Example 1. Given the formula (x1 ∨ x2) ∧ (x1 ∨ x2), the positive reduct with α = x1
is (x1)∧ (x1), which is unsatisfiable. The clause (x1) can be filtered, giving the filtered
positive reduct (x1), which is satisfiable.

SADICAL [16] uses satisfaction-driven clause learning (SDCL) that extends CDCL
by learning PR clauses [18] based on (filtered) positive reducts. SADICAL uses an in-
ner/outer solver framework. The outer solver attempts to solve the SAT problem with
SDCL. SDCL diverges from the basic CDCL loop when unit propagation after a deci-
sion does not derive a conflict. In this case a reduct is generated using the current as-
signment, and the inner solver attempts to solve the reduct using CDCL. If the reduct is
satisfiable, the PR clause blocking the current assignment is learned, and the SDCL loop
continues. The PR clause can be simplified by removing all non-decision variables from
the assignment. SADICAL emits PR proofs by logging the satisfying assignment of the
reduct as the witness, and these proofs are verified with DPR-TRIM. The key to SADI-
CAL finding good PR clauses leading to short proofs is the decision heuristic, because
variable selection builds the candidate PR clauses. Hand-crafted decision heuristics en-
able SADICAL to find short proofs on pigeonhole and mutilated chessboard problems.
However, these heuristics differ significantly from the score-based heuristics in most
CDCL solvers. Our experiences with SaCiDaL suggest that improving the heuristics
for SDCL reduces the performance of CDCL and the other way around. This may ex-
plain why SADICAL performs worse than standard CDCL solvers on the majority of
the SAT competition benchmarks. While SADICAL integrates finding PR clauses of
arbitrary size in the main search loop, our tool focuses on learning short PR clauses as
a preprocessing step. This allows us to develop good heuristics for PR learning without
compromising the main search loop.

5 Extracting PR Clauses

The goal of PRELEARN is to find useful PR clauses that improve the performance of
CDCL solvers on both satisfiable and unsatisfiable instances. Figure 1 shows how a
SAT problem is solved using PRELEARN. For some preset time limit, PR clauses are
found and then added to the original formula. Interleaved in this process is failed literal
probing to check if unit clauses can be learned. When the preprocessing stage ends,
the new formula that includes learned PR clauses is solved by a CDCL solver. If the

5

PRELEARN CDCL Proof CheckerCNF
PR Clauses

PR Proof
DRAT Proof

VerifiedSAT

Fig. 1. Solving a formula with PRELEARN and a CDCL solver.

formula is satisfiable, the solver will produce a satisfying assignment. If the formula is
unsatisfiable, a refutation proof of the original formula can be computed by combining
the satisfaction preserving proof from PRELEARN and the refutation proof emitted by
the CDCL solver. The complete proof can be verified with DPR-TRIM.

PRELEARN alternates between finding PR clauses and learning PR clauses. Candi-
date PR clauses are found by iterating over each variable in the formula, and for each
variable constructing clauses that include that variable. To determine if a clause is PR,
the positive reduct generated by that clause is solved. It can be costly to generate and
solve many positive reducts, so heuristics are used to find candidate clauses that are
more likely to be PR. It is possible to find multiple PR clauses that conflict with each
other. PR clauses are conflicting if adding one of the PR clauses to the formula makes
the other no longer PR. Learning PR clauses involves selecting PR clauses that are non-
conflicting. The selection may maximize the number of PR clauses learned or optimize
for some other metric. Adding PR clauses and units derived from probing may cause
new clauses to become PR, so the entire process is iterated multiple times.

5.1 Finding PR Clauses

PR clauses are found by constructing a set of candidate clauses and solving the positive
reduct generated by each clause. In SADICAL the candidates are the clauses blocking
the partial assignment of the solver after each decision in the SDCL loop that does
not derive a conflict. In effect, candidates are constructed using the solver’s variable
decision heuristic. We take a more general approach, constructing sets of candidates for
each variable based on unit propagation and the partial assignment’s neighbors.

For a variable x, neighbors(x) denotes the set of variables occurring in clauses
containing literal x or x, excluding variable x. For a partial assignment α, neighbors(α)
denotes

⋃
x∈var(α) neighbors(x) \ var(α). Candidate clauses for a literal l are generated

in the following way:

– Let α be the partial assignment found by unit propagation starting with the assign-
ment that makes l true.

– Generate the candidate PR clauses {(l ∨ y), (l ∨ y) | y ∈ neighbors(α)}.

Example 2 shows how candidate binary clauses are constructed using both polarities
of an initial variable x. In Example 3 the depth is expanded to reach more variables and
create larger sets of candidate clauses. The depth parameter is used in Section 5.4.

6

Example 2. Consider the following formula: (x1 ∨ x2)∧ (x1 ∨ x3)∧ (x1 ∨ x4 ∨ x5)∧
(x2 ∨ x6 ∨ x7) ∧ (x3 ∨ x7 ∨ x8) ∧ (x8 ∨ x9),
Case 1: We start with var(x1) = 1 and perform unit propagation resulting in α =
{x1x3}. Observe that neighbors(α) = {x2, x4, x5, x7, x8}. The generated candidate
clauses are (x1 ∨ x2), (x1 ∨ x2), (x1 ∨ x4), (x1 ∨ x4), . . . , (x1 ∨ x8), (x1 ∨ x8).
Case 2: We start with var(x1) = 0 and perform unit propagation resulting in α =
{x1x2}. Observe that neighbors(α) = {x3, x4, x5, x6, x7}. The generated candidate
clauses are (x1 ∨ x3), (x1 ∨ x3), (x1 ∨ x4), (x1 ∨ x4), . . . , (x1 ∨ x7), (x1 ∨ x7).

Example 3. Take the formula from Example 2 and assignment of var(x1) = 1 as in
case 1. The set of candidate clauses can be expanded by also considering the unas-
signed neighbors of the variables in neighbors(α). For example, neighbors(x8) =
{x3, x7, x9}, of which x9 is new and unassigned. This adds (x1 ∨ x9) and (x1 ∨ x9) to
the set of candidate clauses. This can be iterated by including neighbors of new unas-
signed variables from the prior step.

We consider both polarities when constructing candidates for a variable. After all
candidates for a variable are constructed, the positive reduct for each candidate is gen-
erated and solved in order. Note that propagated literals appearing in the partial assign-
ment do not appear in the PR clause. The satisfying assignment is stored as the witness
and the PR clause may be learned immediately depending on the learning configuration.

This process is naturally extended to ternary clauses. The binary candidates are gen-
erated, and for each candidate (x∨y), x and y are assigned to false in the first step. The
variables z ∈ neighbors(α) yield clauses (x∨y∨ z) and (x∨y∨ z). This approach can
generate many candidate ternary clauses depending on the connectivity of the formula
since each candidate binary clause is expanded. A filtering operation would be useful to
avoid the blow-up in number of candidates. There are likely diminishing returns when
searching for larger PR clauses because (1) there are more possible candidates, (2) the
positive reducts are likely larger, and (3) each clause blocks less of the search space.
We consider only unit and binary candidate clauses in our main evaluation.

Ideally, we should construct candidate clauses that are likely PR to reduce the num-
ber of failed reducts generated. Note, the (filtered) positive reduct can only be satisfiable
if given the partial assignment there exists a reduced, satisfied clause. By focusing on
neighbors, we guarantee that such a clause exists. The reduced heuristic in SADICAL
finds variables in all reduced but unsatisfied clauses. The idea behind this heuristic is
to direct the assignment towards conditional autarkies that imply a satisfiable positive
reduct [18]. The neighbors approach generalizes this to variables in all reduced clauses
whether or not they are unsatisfied. A comparison can be found in our repository.

5.2 Learning PR Clauses

Given multiple clauses that are PR w.r.t. the same formula, it is possible that some of
the clauses conflict with each other and cannot be learned simultaneously. Example 4
shows how learning one PR clause may invalidate the witness of another PR clause. It
may be that a different witness exists, but finding it requires regenerating the positive
reduct to include the learned PR clause and solving it. The simplest way to avoid con-
flicting PR clause is to learn PR clauses as they are found. When a reduct is satisfiable,

7

the PR clauses is added to the formula and logged with its witness in the proof. Then
subsequent reducts will be generated from the formula including all added PR clauses.
Therefore, a satisfiable reduct ensures a PR clause can be learned.

Alternatively, clauses can be found in batches, then a subset of nonconflicting clauses
can be learned. The set of conflicts between PR clauses can be computed in polynomial
time. For each pair of PR clauses C andD, if the assignment that generated the pruning
predicate for D touches C and C is not satisfied by the witness of D, then C con-
flicts with D. In some cases reordering the two PR clauses may avoid a conflict. In
Example 4 learning the second clause would not affect the validity of the first clauses’
witness. Once the conflicts are known, clauses can be learned based on some heuristic
ordering. Batch learning configurations are discussed more in the following section.

Example 4. Assume the following clause witness pairs are valid in a formula ψ: {(x1∨
x2 ∨ x3), x1x2x3}, and {(x1 ∨ x2 ∨ x4), x1x2x4}. The first clause conflicts with the
second. If the first clause is added to ψ, the clause (x1 ∨ x2) would be in the positive
reduct for the second clause, but it is not satisfied by the witness of the second clause.

5.3 Additional Configurations

The sections above describe the PRELEARN configuration used in the main evaluation,
i.e., finding candidate PR clauses with the neighbors heuristic and learning clauses in-
stantly as the positive reducts are solved. In this section we present several additional
configurations. The time-constrained reader may skip ahead to Section 5.4 for the pre-
sentation of our main results.

In batch learning a set of PR clauses are found in batches then learned. Learning as
many nonconflicting clauses as possible coincides with the maximum independent set
problem. This problem is NP-Hard. We approximate the solution by adding the clause
causing the fewest conflicts with unblocked clauses. When a clause is added, the clauses
it blocks are removed from the batch and conflict counts are recalculated Alternatively,
clauses can be added in a random order. Random ordering requires less computation at
the cost of potentially fewer learned PR clauses.

The neighbors heuristic for constructing candidate clauses can be modified to in-
clude a depth parameter. neighbors(i) indicates the number of iterations expanding the
variables. For example, neighbors(2) expands on the variables in neighbors(1), seen in
Example 3. We also implement the reduced heuristic, shown in Example 5. Detailed
evaluations and comparisons can be found in our repository. In general, we found that
the additional configurations did not improve on our main configuration. More work
needs to be done to determine when and how to apply these additional configurations.

Example 5. Given the set of clauses (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x5), and
initial assignment α = x1, only the second clause is reduced and not satisfied, giving
reduced(α) = {x3, x4} and candidate clauses (x1∨x3), (x1∨x4), (x1∨x3), (x1∨x4).

5.4 Implementation

PRELEARN was implemented using the inner/outer-solver framework in SADICAL.
The inner solver acts the same as in SADICAL, solving pruning predicates using CDCL.

8

The outer solver is not used for SDCL, but the SDCL data-structures are used to find
and learn PR clauses. The outer solver is initialized with the original formula and main-
tains the list of variables, clauses, and watch pointers. By default, the outer solver has
no variables assigned other than learned units. When finding candidates, the variables
in the partial clause are assigned in the outer solver. Unit propagation makes it possible
to find all reduced clauses in the formula with a single pass. This is necessary for con-
structing the positive reduct. After a candidate clause has been assigned and the positive
reduct solved, the variables are unassigned. This returns the outer solver to the top-level
before examining the next candidate. When a PR clause is learned, it is added to the
formula along with its watch pointers. Additionally, failed literals are found if assign-
ing a variable at the top-level causes a conflict through unit propagation. The negation
of a failed literal is a unit that can be added to the formula.

In a single iteration each variable in the formula is processed in a breadth-first search
(BFS) starting from the first variable in the numbering. When a variable is encountered
it is first checked whether either assignment of the variable is a failed literal or a unit PR
clause. If not, binary candidates are generated based on the selected heuristic and PR
clauses are learned based on the learning configuration. Variables are added to the fron-
tier of the BFS as they are encountered during candidate clause generation, but they are
not repeated. Optionally, after all variables have been encountered the BFS restarts, now
constructing ternary candidates. The repetition continues to the desired clause length.
Then another iteration begins again with binary clauses. Running PRELEARN multi-
ple times is important because adding PR clauses in one iteration may allow additional
clauses to be added in the next.

6 Mutilated Chessboard

The mutilated chessboard is an n × n grid of alternating black and white squares with
two opposite corners removed. The problem is whether or not the the board can be cov-
ered with 2× 1 dominoes. This can be encoded in CNF by using variables to represent

Fig. 2. Occurrences of two horizontal dominoes may be replaced by two vertical dominos in a
solution. Similarly, occurrences of a horizontal domino atop two vertical dominos can be replaced
by shifting the horizontal domino down.

9

0 50 100 150 200 250 300 350 400 450 500
0

1,000

2,000

3,000

4,000

CPU time

le
ar

ne
d

cl
au

se
s

Units and Binary PR Clauses Learned per Execution for N = 20

units
binary PR
execution
conflict found

Fig. 3. Unit and binary PR clauses learned each execution (red-dotted line) until a contradiction
was found. Markers on binary PR lines represent an iteration within an execution.

domino placements on the board. At-most-one constraints (using the pairwise encod-
ings) say only one domino can cover each square, and at-least-one constraints (using a
disjunction) say some domino must cover each square.

In recent SAT competitions, no proof-generating SAT solver could deal with in-
stances larger than N = 18. In ongoing work, we found refutation proofs that contain
only units and binary PR clauses for some boards of size N ≤ 30. PRELEARN can be
modified to automatically find proofs of this type. Running iterations of PRELEARN un-
til saturation, meaning no new binary PR clauses or units can be found, yields some set
of units and binary PR clauses. Removing the binary PR clauses from the formula and
rerunning PRELEARN will yield additional units and a new set of binary PR clauses.
Repeating the process of removing binary PR clauses and keeping units will eventually
derive the empty clause for this problem. Figure 3 gives detailed values for N = 20.
Within each execution (red dotted lines) there are at most 10 iterations (red tick mark-
ers), and each iteration learns some set of binary PR clauses (red). Some executions
saturate binary PR clauses before the tenth iteration and exit early. At the end of each
execution the binary PR clauses are deleted, but the units (blue) are kept for the follow-
ing execution. A complete DPR proof (PR with deletion) can be constructed by adding
deletion information for the binary PR clauses removed between each execution when
concatenating the PRELEARN proofs. The approach works for mutilated chess because
in each execution there are many binary PR clauses that can be learned and will lead
to units, but they are mutually exclusive and cannot be learned simultaneously. Further,
adding units allows new binary PR clauses to be learned in following executions.

Table 1 shows the statistics for PRELEARN. Achieving these results required some
modifications to the configuration of PRELEARN. First, notice in Figure 2 the PR
clauses that can be learned involve blocking one domino orientation that can be re-
placed by a symmetric orientation. To optimize for these types of PR clauses, we only

10

Table 1. Statistics running multiple executions of PRELEARN on the mutilated chessboard prob-
lem with the configurations described below. Total units includes failed literals and learned PR
units. The average units and average binary PR clauses learned during each execution (Exe.) are
shown as well.

N Time (s) # Exe. Avg. (s) Total Units Total Bin. Avg. Units Avg. Bin.

8 0.14 1 0.14 30 164 30.00 164.00
12 4.94 1 4.94 103 1,045 103.00 1,045.00
16 62.47 2 31.23 195 3,988 97.50 1,994.00
20 513.12 6 85.52 339 1,4470 56.50 2,411.67
24 4,941.38 26 190.05 512 64,038 19.69 2,463.00

constructed candidates where the first literal was negative. The neighbors heuristic had
to be increased to a depth of 6, meaning more candidates were generated for each vari-
able. Intuitively, the proof is constructed by adding binary PR clauses in order to find
negative units (dominos that cannot be placed) around the borders of the board. Follow-
ing iterations build more units inwards, until a point is reached where units cover almost
the entire board. This forces an impossible domino placement leading to a contradic-
tion. Complete proofs using only units and binary PR clauses were found for boards
up to size N = 24 within 5,000 seconds. We verified all proofs using DPR-TRIM. The
mutilated chessboard has a high degree of symmetry and structure, making it suitable
for this approach. For most problems it is not expected that multiple executions while
keeping learned units will find new PR clauses.

Experiments were done with several configurations (see Section 5.3) to find the best
results. We found that increasing the depth of neighbors was necessary for larger boards
including N = 24. Increasing the depth allows more binary PR clauses to be found, at
the cost of generating more reducts. This is necessary to find units. The reduced heuris-
tic (a subset of neighbors) did not yield complete proofs. We also tried incrementing
the depth after each execution starting with 1 and reseting at 9. In this approach, the
execution times for depth greater than 6 were larger but did not yield more unit clauses
on average. We attempted batch learning on every 500 found clauses using either ran-
dom or the sorted heuristic. In each batch many of the 500 PR clauses blocked each
other because many conflicting PR clauses can be found on a small set of variables in
mutilated chess. The PR clauses that were blocked would be found again in follow-
ing iterations, leading to more reducts generated and solved. This caused much longer
execution times. Adding PR clauses instantly is a good configuration for reducing exe-
cution time when there are many conflicting clauses. However, for some less symmetric
problems it may be worth the tradeoff to learn the clauses in batches, because learning
a few bad PR clauses may disrupt the subsequent iterations.

7 SAT Competition Benchmarks

We evaluated PRELEARN on previous SAT competition formulas. Formulas from the
’13, ’15, ’16, ’19, ’20, and ’21 SAT competitions’ main tracks were grouped by size.
0-10k contains the 323 formulas with less than 10,000 clauses and 10k-50k contains

11

Table 2. Fraction of benchmarks where PR clauses were learned, average runtime of PRELEARN,
generated positive reducts and satisfiable positive reducts (PR clauses learned), and number of
failed literals found.

Set Benches Avg. (s) Generated Reducts Sat. Reducts % Sat. Failed Lits

0-10k 221/323 22.36 104,850,011 548,417 0.52% 3,416
10k-50k 237/348 71.08 163,014,068 789,281 0.48% 6,290

the 348 formulas with between 10,000 and 50,000 clauses. In general, short PR proofs
have been found for hard combinatorial problems typically having few clauses (0-10k).
These include the pigeonhole and mutilated chessboard problems, some of which ap-
pear in 0-10k benchmarks. The PR clauses that can be derived for these formulas are
intuitive and almost always beneficial to solvers. Less is known about the impact of PR
clauses on larger formulas, motivating our separation of test sets by size. The repository
containing the preprocessing tool, experiment configurations, and experiment data can
be found at https://github.com/jreeves3/PReLearn.

We ran our experiments on StarExec [30]. The specs for the compute nodes can be
found online.1 The compute nodes that ran our experiments were Intel Xeon E5 cores
with 2.4 GHz, and all experiments ran with 64 GB of memory and a 5,000 second
timeout. We run PRELEARN for 50 iterations over 100 seconds, exiting early if no new
PR clauses were found in an iteration.

PRELEARN was executed as a stand-alone program, producing a derivation proof
and a modified CNF. For experiments, the CDCL solver KISSAT [5] was called once on
the original formula and once on the modified CNF. KISSAT was selected because of
its high-rankings in previous SAT competitions, but we expect the results to generalize
to other CDCL SAT solvers.

Derivation proofs from PRELEARN were verified in all solved instances using the
independent proof checker DPR-TRIM using a forward check. This can be extended to
complete proofs in the following way. In the unsatisfiable case the proof for the learned
PR clauses is concatenated to the proof traced by KISSAT, and the complete proof is
verified against the original formula. In the satisfiable case the partial proof for the
learned PR clauses is verified using a forward check in DPR-TRIM, and the satisfying
assignment found by KISSAT is verified by the StarExec post-processing tool. Due to
resource limitations, we verified a subset of complete proofs in DPR-TRIM. This is
more costly because it involves running KISSAT with proof logging, then running DPR-
TRIM on the complete proof.

Table 2 shows the cumulative statistics for running PRELEARN on the benchmark
sets. Note the number of satisfiable reducts is the number of learned PR clauses, because
PR clauses are learned immediately after the reduct is solved. These include both unit
and binary PR clauses. A very small percentage of generated reducts is satisfiable, and
subsequently learned. This is less important for small formulas when reducts can be
computed quickly and there are fewer candidates to consider. However, for the 10k-50k
formulas the average runtime more than triples but the number of generated reducts

1https://starexec.org/starexec/public/about.jsp

12

https://github.com/jreeves3/PReLearn
https://starexec.org/starexec/public/about.jsp

Table 3. Number of total solved instances and exclusive solved instances running KISSAT with
and without PRELEARN. Number of improved instances running KISSAT with PRELEARN.
PRELEARN execution times were included in total execution times.

0-10k SAT 0-10k UNSAT 10k-50k SAT 10k-50k UNSAT

Total w/ PRELEARN 84 149 143 89
Total w/o PRELEARN 80 141 143 91

Exclusively w/ PRELEARN 4 10 4 1
Exclusively w/o PRELEARN 0 2 4 3

Improved w/ PRELEARN 20 44 25 13

less than doubles. PR clauses are found in about two thirds of the formulas, showing
our approach generalizes beyond the canonical problems for which we knew PR clauses
existed. Expanding the exploration and increasing the time limit did not help to find PR
clauses in the remaining one third.

Table 3 gives a high-level picture of PRELEARN’s impact on KISSAT. PRELEARN
significantly improves performance on 0-10k SAT and UNSAT benchmarks. These
contain the hard combinatorial problems including pigeonhole that PRELEARN was
expected to perform well on. There were 4 additional SAT formulas solved with PRE-
LEARN that KISSAT alone could not solve. This shows that PRELEARN impacts not
only hard unsatisfiable problems but satifsiable problems as well. On the other hand,
the addition of PR clauses makes some problems more difficult. This is clear with the
10k-50k results, where 5 benchmarks are solved exclusively with PRELEARN and 7 are
solved exclusively without. Additionally, PRELEARN improved KISSAT’s performance
on 102 of 671 or approx. 15% of benchmarks. This is a large portion of benchmarks,
both SAT and UNSAT, for which PRELEARN is helpful.

Figure 4 gives a more detailed picture on the impact of PRELEARN per benchmark.
In the scatter plot the left-hand end of each line indicates the KISSAT execution time,
while the length of the line indicates the PRELEARN execution time, and so the right-
hand end gives the total time for PRELEARN plus KISSAT. Lines that cross the diagonal
indicate that the preprocessing improved KISSAT’s performance but ran for longer than
the improvement. PRELEARN improved performance for points above the diagonal.
Points on the dotted-lines (timeout) are solved by one configuration and not the other.

The top plot gives the results for the 0-10k formulas, with many points on the top
timeout line as expected. These are the hard combinatorial problems that can only be
solved with PRELEARN. In general, the unsatisfiable formulas benefit more than the
satisfiable formulas. PR clauses can reduce the number of solutions in a formula and
this may explain the negative impact on many satisfiable formulas. However, there are
still some satisfiable formulas that are only solved with PRELEARN.

In the bottom plot, formulas that take a long time to solve (above the diagonal in the
upper right-hand corner) are helped more by PRELEARN. In the bottom half of the plot,
many lines cross the diagonal meaning the addition of PR clauses provided a negligible
benefit. For this set there are more satisfiable formulas for which PRELEARN is helpful.

13

100 101 102 103
100

101

102

103

With PRELEARN

W
ith

ou
tP

R
E

L
E

A
R

N

SAT
UNSAT

100 101 102 103
100

101

102

103

With PRELEARN

W
ith

ou
tP

R
E

L
E

A
R

N

SAT
UNSAT

Fig. 4. Execution times w/ and w/o PRELEARN on 0-10k (top) and 10k-50k (bottom) bench-
marks. The left-hand point of each segment shows the time for the SAT solver alone; the right-
hand point indicates the combined time for preprocessing and solving.

14

Table 4. Some formulas solved by KISSAT exclusively with PRELEARN (top) and some formulas
solved exclusively without PRELEARN (bottom). (*) solved without KISSAT. Clauses include PR
clauses and failed literals learned.

Set Value With Without Clauses Formula Year

0-10k UNSAT 1.26 – 2,033 ph12* 2013
0-10k UNSAT 35.69 – 20,179 Pb-chnl15-16 c18* 2019
0-10k UNSAT 105.01 – 46,759 Pb-chnl20-21 c18 2019
0-10k UNSAT 59.99 – 1,633 randomG-Mix-n17-d05 2021
0-10k UNSAT 61.08 – 1,472 randomG-n17-d05 2021
0-10k UNSAT 407.51 – 1,640 randomG-n18-d05 2021
0-10k UNSAT 584.95 – 1,706 randomG-Mix-n18-d05 2021
0-10k SAT 1,082.62 – 9,650 fsf-300-354-2-2-3-2.23.opt 2013
0-10k SAT 1,250.82 – 10,058 fsf-300-354-2-2-3-2.46.opt 2013
10k-50k SAT 1,076.34 – 804 sp5-26-19-bin-stri-flat-noid 2021
10k-50k SAT 608.48 – 901 sp5-26-19-una-nons-tree-noid 2021
10k-50k SAT – 22.99 254 Ptn-7824-b13 2016
10k-50k SAT – 549.27 133 Ptn-7824-b09 2016
10k-50k SAT – 1,246.42 39 Ptn-7824-b02 2016
10k-50k SAT – 1,290.49 121 Ptn-7824-b08 2016
10k-50k UNSAT – 3,650.21 31,860 rphp4 110 shuffled 2016
10k-50k UNSAT – 4,273.88 31,531 rphp4 115 shuffled 2016

The results in Figure 4 are encouraging, with many formulas significantly benefit-
ting from PRELEARN. PRELEARN improves the performance on both SAT and UN-
SAT formulas of varying size and difficulty. In addition, lines that cross the diagonal
imply that improving the runtime efficiency of PRELEARN alone would produce more
improved instances. For future work, it would be beneficial to classify formulas before
running PRELEARN. There may exist general properties of a formula that signal when
PRELEARN will be useful and when PRELEARN will be harmful to a CDCL solver.
For instance, a formula’s community structure [2] may help focus the search to parts of
the formula where PR clauses are beneficial.

7.1 Benchmark Families

In this section we analyze benchmark families that PRELEARN had the greatest positive
(negative) effect on, found in Table 4. Studying the formulas PRELEARN works well
on may reveal better heuristics for finding good PR clauses.

It has been shown that PR works well for hard combinatorial problems based on
perfect matchings [14,15]. The perfect matching benchmarks (randomG) [7] are a gen-
eralization of the pigeonhole (php) and mutilated chessboard problems with varying
at-most-one encodings and edge densities. The binary PR clauses can be intuitively
understood as blocking two edges from the perfect matching if there exists two other
edges that match the same nodes. These benchmarks are relatively small but extremely
hard for CDCL solvers. Symmetry-breaking with PR clauses greatly reduces the search
space and leads KISSAT to a short proof of unsatisfiability. PRELEARN also benefits

15

other hard combinatorial problems that use pseudo-Boolean constraints. The pseudo-
Boolean (Pb-chnl) [24] benchmarks are based on at-most-one constraints (using the
pairwise encoding) and at-least-one constraints. These formulas have a similar graph-
ical structure to the perfect matching benchmarks. Binary PR clauses block two edges
when another set of edges exists that are incident to the same nodes.

For the other two benchmark families that benefited from PRELEARN, the intuition
behind PR learning is less clear. The fixed-shape random formulas (fsf) [29] are pa-
rameterized non-clausal random formulas built from hyper-clauses. The SAT encoding
makes use of the Plaisted-Greenbaum transformation, introducing circuit-like structure
to the problem. The superpermutation problem (sp) [22] asks whether a sequence of
digits 1–n of length l can contain every permutation of [1, n] as a subsequence, and the
optimization variant asks for the smallest such l given n. The sequence of l digits is en-
coded directly and passed through a multi-layered circuit that checks for the existence
of each individual permutation. Digits use the binary (bin) or unary (una) encoding, are
strict stri if clauses constrain digit bits to valid encodings and nonstrict nons otherwise,
and flat if the circuit is a large AND or tree for prefix recognizing nested circuits. The
formulas given ask to find a prefix of a superpermutation for n = 5 or length 26 with 19
permutations. The check for 19 permutations was encoded as cardinality constraints in
a pseudo-Boolean instance, then converted back to SAT. Each individual permutation
is checked by duplicating circuits at each possible starting position of the permutation
in l. PR clauses may be pruning certain starting positions for some permutations or
affecting the pseudo-Boolean constraints. This cannot be determined without a deeper
knowledge of the benchmark generator.

The relativized pigeonhole problem (rphp) [3] involves placing k pigeons in k −
1 holes with n nesting places. This problem has polynomial hardness for resolution,
unlike the exponential hardness of the classical pigeonhole problem. The symmetry-
breaking preprocessor BREAKID [9] generates symmetry-breaking formulas for rphp
that are easy for a CDCL solver. PRELEARN can learn many PR clauses but the formula
does not become easier. Note PRELEARN can solve the php with n = 12 in a second.

One problem is clause and variable permuting (a.k.a. shuffling). The mutilated
chessboard problem can still be solved by PRELEARN after permuting variables and
clauses. The pigeonhole problem can be solved after permuting clauses but not after
permuting variable names. In PRELEARN, PR candidates are sorted by variable name
independent of clause ordering, but when the variable names change the order of learned
clauses changes. In the mutilated chessboard problem there is local structure, so simi-
lar PR clauses are learned under variable renaming. In the pigeonhole problem there is
global structure, so a variable renaming can significantly change the binary PR clauses
learned and cause earlier saturation with far fewer units.

Another problem is that the addition of PR clauses can change the existing structure
of a formula and negatively affect CDCL heuristics. The Pythagorean Triples Problem
(Ptn) [19] asks whether monochromatic solutions of the equation a2 + b2 = c2 can be
avoided. The formulas encode numbers {1, . . . , 7824}, for which a valid 2-coloring is
possible. In the namings, the N in bN denotes the number of backbone literals added
to the formula. A backbone literal is a literal assigned true in every solution. Adding
more than 20 backbone literals makes the problem easy. For each formula KISSAT can

16

find a satisfying assignment, but timeouts with the addition of PR clauses. For one
instance, adding only 39 PR clauses will lead to a timeout. In some hard SAT and
UNSAT problems solvers require some amount of luck and adding a few clauses or
shuffling a formula can cause a CDCL solver’s performance to sharply decrease. The
Pythagorean Triples problem was originally solved with a local search solver, and local
search still performs well after adding PR clauses.

In a straight-forward way, one can avoid the negative effects of adding harmful PR
clauses by running two solvers in parallel: one with PRELEARN and one without. This
fits with the portfolio approach for solving SAT problems.

8 Conclusion and Future Work

In this paper we presented PRELEARN, a tool built from the SADICAL framework
that learns PR clauses in a preprocessing stage. We developed several heuristics for
finding PR clauses and multiple configurations for clause learning. In the evaluation we
found that PRELEARN improves the performance of the CDCL solver KISSAT on many
benchmarks from past SAT competitions.

For future work, quantifying the usefulness of each PR clause in relation to guid-
ing the CDCL solver may lead to better learning heuristics. This is a difficult task that
likely requires problem specific information. Separately, failed clause caching can im-
prove performance by remembering and avoiding candidate clauses that fail with unsat-
isfiable reducts in multiple iterations. This would be most beneficial for problems like
the mutilated chessboard that have many conflicting PR clauses. Lastly, incorporating
PRELEARN during in-processing may allow for more PR clauses to be learned. This
could be implemented with the inner/outer solver framework but would require a sig-
nificantly narrowed search. CDCL learns many clauses during execution and it would
be infeasible to examine binary PR clauses across the entire formula.

Acknowledgements We thank the community at StarExec for providing computational
resources.

17

References

1. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theo-
retical Computer Science 310(1), 513–525 (2004)

2. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J., Simon, L.: Community structure in in-
dustrial SAT instances. Journal of Artificial Intelligence Research (JAR) 66, 443–472 (2019)

3. Atserias, A., Lauria, M., Nordström, J.: Narrow proofs may be maximally long. ACM Trans-
actions on Computational Logic 17(3) (2016)

4. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause
learning SAT solvers. In: AAAI Conference on Artificial Intelligence. pp. 15–20. AAAI
Press (2010)

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT competition 2020 (2020), unpublished

6. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Theory and Appli-
cations of Satisfiability Testing (SAT). LNCS, vol. 9340, pp. 405–422 (2015)

7. Codel, C.R., Reeves, J.E., Heule, M.J.H., Bryant, R.E.: Bipartite perfect matching bench-
marks. In: Pragmatics of SAT (2021)

8. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28–32 (1976)

9. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry break-
ing for SAT. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 9710,
pp. 104–122. Springer (2016)

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 3569, pp. 61–75.
Springer (2005)

11. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms. Ph.D. thesis,
USA (1995)

12. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308
(1985)

13. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Expressing symmetry breaking in DRAT proofs.
In: Conference on Automated Deduction (CADE). LNCS, vol. 9195, pp. 591–606. Springer
(2015)

14. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: Conference on
Automated Deduction (CADE). LNCS, vol. 10395, pp. 130–147. Springer (2017)

15. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In: NASA For-
mal Methods. LNCS, vol. 11460, pp. 204–210 (2019)

16. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven clause
learning. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 11427, pp. 41–58. Springer (2019)

17. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension free proof systems. In: Journal of Au-
tomated Reasoning. vol. 64, pp. 533–544 (2020)

18. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In: Haifa Veri-
fication Conference (HVC). LNCS, vol. 10629, pp. 179–194 (2017)

19. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean
triples problem via cube-and-conquer. In: Theory and Applications of Satisfiability Testing
(SAT). LNCS, vol. 9710, pp. 228–245. Springer (2016)

20. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal
Methods in Computer-Aided Design (FMCAD). pp. 181–188 (2013)

21. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: International Joint Conference
on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370. Springer (2012)

18

22. Johnston, N.: Non-uniqueness of minimal superpermutations. Discrete Mathematics
313(14), 1553–1557 (2013)

23. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: International Joint
Conference on Automated Reasoning (IJCAR). LNCS, vol. 9706, pp. 45–61 (2016)

24. Lecoutre, C., Roussel, O.: XCSP3 competition 2018 proceedings. pp. 40–41 (2018)
25. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for

SAT solvers. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 9710,
pp. 123–140 (2016)

26. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Haifa
Verification Conference (HVC). LNCS, vol. 7857, pp. 102–117 (2013)

27. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference. p.
530–535. ACM (2001)

29. Navarro, J.A., Voronkov, A.: Generation of hard non-clausal random satisfiability problems.
In: AAAI Conference on Artificial Intelligence. pp. 436–442. The MIT Press (2005)

30. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure for logic
solving. In: International Joint Conference on Automated Reasoning (IJCAR). LNCS,
vol. 8562, pp. 367–373. Springer (2014)

31. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake lpr: Verified propagation redundancy check-
ing in CakeML. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Part II. LNCS, vol. 12652, pp. 223–241 (2021)

32. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–483.
Springer (1983)

33. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In: Theory and Applications of Satisfiability Testing (SAT). LNCS,
vol. 8561, pp. 422–429 (2014)

19

A Additional Configurations

Table 5. Number of benchmarks where PR clauses were learned, average runtime of PRELEARN,
generated positive reducts and solved reducts, number of failed literals found, and total number
of PR clauses (unit, binary, or ternary) found on the 0-10k formulas for each configuration. Con-
figurations run for 100 or (*) 500 seconds. 323 formulas total (top). 10k-50k 348 formulas total
(bottom).

Config. Bench Avg. (s) Generated Red. Solved Red. Failed Lits PR Clauses

0-10k
inst-reduced-b 207 15.48 65,356,152 314,056 2,462 31,4056
inst-reduced-ter-b 213 64.08 433,723,302 541,150 2,023 541,150
inst-neighbors(1)-b 221 22.36 104,850,011 548,417 3,416 548,417
rand-neighbors(1)-p 221 20.27 90,816,726 519,514 2,061 494,647
sort-neighbors(1)-p 221 18.42 73,953,349 629,412 2,776 611,411
inst-neighbors(1)-p 221 18.08 67,232,188 659,720 2,845 659,720
inst-neighbors(1)-p* 221 34.73 88,853,680 847,071 3,197 847,071
inst-neighbors(4)-p 217 47.54 407,899,345 366,982 2,799 366,982
inst-neighbors(4)-p* 221 153.21 125,0826,691 511,531 3,580 511,531

10k-50k
inst-reduced-b 240 59.9 105,886,666 710,993 11,939 710,993
inst-reduced-ter-b 243 96.65 315,454,569 756,729 11,406 756,729
inst-neighbors(1)-b 237 71.08 163,014,068 789,281 6,290 789,281
rand-neighbors(1)-p 240 64.66 133,622,697 731,766 8,721 706,021
sort-neighbors(1)-p 240 63.6 123,508,679 1,080,110 8,893 1,056,112
inst-neighbors(1)-p 242 63.23 119,637,859 950,338 9,292 950,336
inst-neighbors(1)-p* 247 188.52 253,495,888 1,765,086 14,051 1,765,086
inst-neighbors(4)-p 202 78.21 210,218,248 649,343 1,878 649,343
inst-neighbors(4)-p* 220 346.44 841,737,739 1,211,844 5,459 1,211,844

For the evaluation we use the following naming conventions to describe PRELEARN
configurations. inst / rand / sort for the three learning configurations with inst adding
PR clauses instantly as they are found, and rand / sort adding clauses in batches of
size 50. reduced / neighbors(i) for finding candidate clauses. All configurations use
failed literal probing and learn unit and binary PR clauses, with the addition of -ter
if ternary PR clauses are learned. And -b (both) if the first variable in a PR clause is
assigned both true or false, or -p (positive branching) if the first variable in a PR clause
is only assigned true when finding candidates (see Section 5.4). All configurations use
the positive reduct. We did not see improvements when using the filtered positive reduct
so excluded the option from the results.

Table ?? shows the statistics for various configurations. Note PR clauses includes
units and binary PR clauses, plus ternary PR clauses for -ter. The difference in PR
clauses learned between the reduced and neighbors(i) heuristics show how restricting
the search space can cause many PR clauses to be missed. Also, adding more time (500)

20

Table 6. Number of solved instances. Configurations run for 100 or (*) 500 seconds.

Config. 0-10k SAT 0-10k UNSAT 10k-50k SAT 10k-50k UNSAT

KISSAT 80 141 143 91
inst-reduced-b 82 147 143 86
inst-reduced-ter-b 83 149 143 87
inst-neighbors(1)-b 84 149 143 89
rand-neighbors(1)-p 82 143 141 88
sort-neighbors(1)-p 83 147 136 86
inst-neighbors(1)-p 80 147 141 87
inst-neighbors(1)-p* 80 147 142 87
inst-neighbors(4)-p 83 148 142 88
inst-neighbors(4)-p* 79 148 141 89

seconds will increase the number of PR clauses for the neighbors heuristic because it
finds more candidates. In the second half of the table almost all values are larger. The
additional PR clauses per benchmark do not correlate with an overall improved solver
performance. Notably the cost per reduct generated is larger because the entire formula
is looped through for each reduct. Additionally, the reduced heuristic would require
looping over the entire formula to find reduced clauses. In our experiments this was
not a bottleneck, but larger formulas may require additional data structures to make the
computation feasible.

In Table ?? many of the configurations improve KISSAT’s performance on the 0-10k
formulas. The inst-neighbors(1)-b configuration solves a total of 12 more formulas than
KISSAT alone for these formulas. PRELEARN is less helpful on the 10k-50k formulas,
with only one configuration solving more SAT formulas and all configurations solving
at least 2 less UNSAT formulas. There is a tradeoff between time spent searching for
and learning PR clauses and the effect on solving. In many of the configurations with
500 seconds, the additional PR clauses did not benefit KISSAT. Likewise, the ternary
clauses improved the inst-reduced configuration but did not beat the inst-neighbors(1)
configuration that only learns binary PR clauses.

With the mutilated chess problem increasing the depth of neighbors was necessary
to find new binary PR clauses, and positive branching made the process more efficient.
For other problems different configuration setting were more beneficial. A key focus
moving forward is to maximize exploration in an attempt to find more candidates while
minimizing the number of unsatisfiable reducts generated. This may require problem
specific or dynamic configuration control.

21

	Preprocessing of Propagation Redundant Clauses

