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Electron microscopy touches upon nearly every aspect of modern life, underpinning

materials development for quantum computing, energy, and medicine. We discuss the

open, highly-integrated, and data-driven microscopy architecture needed to realize

transformative discoveries in the coming decade.
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From its inception nearly a century ago, transmission electron microscopy (TEM) has

emerged as a cornerstone of characterization in materials science, chemistry, physics, and

medicine.1 TEM provides rich, directly-resolved information about the structure and dynam-

ics of phenomena spanning atoms to microns that are of great fundamental and practical

significance to society. It has played a key role in protein and drug discovery,2 redefined our

understanding of crystalline solids,3 and catalyzed the electronics revolution that gave rise

to today's massively interconnected world.4

In spite of these numerous successes, many grand materials challenges remain outside

of our present capabilities. Mastery of quantum phenomena, for example, requires insight

into subtle and dilute electronic perturbations that can only be probed through sensitive

multi-modal analyses closely linked to theory. Control of chemical reaction pathways in

catalysts depends on access to interchangeable, finely tuned environments and the cumu-

lative knowledge of a large library of prior experiments. True combinatorial engineering of

high-entropy alloys demands on-the-fly experimental decision-making based on automated

characterization. In these domains and more, a reimagined microscopy paradigm is needed

to unlock entirely new classes of materials and functionality.

As in many other areas of science,5 advances in TEM instrumentation now permit the

rapid generation of vast data sets across a range of modalities, in which important con-

nections might be more easily overlooked. Counterintuitively, microscopists focus on the

methods already familiar to them, rather than harnessing more suitable tools from the

full suite at their disposal. This situation is compounded by the growing complexity and

closed-source nature of modern microscopes, which limit our ability and motivation to fully

understand and customize their operation. Due to these barriers, the much-lauded promise

of artificial intelligence (AI) and machine-learning (ML) to revolutionize TEM experiment

design, execution, and analysis has not yet been realized. In contrast, other fields such as

X-ray crystallography that have adopted open, standardized methods and data exchanges

have witnessed enormous success.6 Automated X-ray experimentation is now routinely con-

ducted at scale, aided by easily accessible libraries of past work to plan and interpret future

studies. Additive manufacturing is another area in which shared repositories of blueprints

and techniques have empowered end users to conduct experimentation never imagined by

their original creators. In electron microscopy, the growth of single-particle cryo imaging

demonstrates the untapped potential of automated "big data" tools7 to transform our un-
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FIG. i. The electron microscopy framework for translating unknown structures or processes into

quantifiable, physically meaningful descriptors and model representations.

derstanding of metals, semiconductors, ceramics, and more.

Sweeping changes precipitated by recent technological innovations and the growth of

modern data science tools call for a reexamination of the electron microscopy framework,

shown in Figure i. This framework aims to discover knowledge about an unknown materials

structure or process, employing a priori assumptions and an array of microscopy tools to

probe different features of the unknown system. These features can then be distilled into

salient physical mechanisms and quantifiable metrics through the eyes of various scientific
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disciplines. While there are many ways to define this framework, we broadly divide it into

three overlapping categories: experirnent design, feature extraction, and knowledge

discovery. These generally applicable categories provide a basis to understand the present

state-of-the-art and its shortcomings, with a focus here on the application of data tech-

niques to the physical sciences. In particular, we argue that an open, highly-integrated, and

data-driven framework will transform characterization in the next-generation transmission

electron microscope, benefitting both the physical and biological sciences.

EXPERIMENT DESIGN

The first step in the analysis process involves the definition of unknowns and the selec-

tion of appropriate techniques to explore them, shown in the top of Figure i. This stage is

by its very nature based on preexisting knowledge of a system or process, derived through

prior work, intuition, and an understanding of the characterization tools available to the

researcher. In such an analysis, the investigator leverages the complementary strengths of

both parallel-beam and scanning TEM (STEM) imaging and spectroscopy, which have en-

abled study of the structure and local properties of materials at high-resolution. Recent

developments such as ultra-stable cryo stages,8 data-rich high-speed detectors,9 and atomic-

scale electron tomography' ° have provided a wealth of new imaging modalities waiting to be

exploited. For example, hybrid pixel detectors9 now offer suffi cient dynamic range and sensi-

tivity to record full diffraction patterns at each point on a sample, enabling ptychographic re-

construction and unprecedented spatial resolution at low voltages." An alternative detector

technology, back-thinned monolithic active pixel sensors that can count individual incident

electrons,' 2 has greatly improved electron energy loss spectroscopy (EELS) capabilities.' 3

However, to harness these developments to solve evolving materials challenges, experi-

mentation must become far more data-driven, integrated, and automated, as noted in recent

agency reports.14 The current experiment design process is heavily biased toward techniques

and features already familiar to the human operator. Microscopists are prone to rote analy-

ses based on their prior experience; while this allows them to rapidly triage complex, novel

scenarios, it can also blind them to more optimal approaches that may be outside their

expertise. To adequately bound the parameters of an experiment (represented by the grid

at the top of Figure i), we must carefully consider the full array of tools at our disposal.
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Here, simulations and data science can help intelligently plan experiments by quantifying

the strengths and weaknesses of each technique before the first sample is measured. Newly

developed high-throughput graphics processing unit (GPU)-accelerated simulations' 5 can

estimate detection limits of various imaging methods (e.g. high-angle annular dark field,

annular bright field, etc.) and their ability to detect low-contrast single-atom defects of

the kind found in diamond qubit materials, for instance.16 The speed, cost, and efficacy

of these methods may then be compared against spectroscopic approaches such as EELS,

considering the effect of beam parameters, sample characteristics, and ionization edges of

interest. Performing a quick simulation before labor-intensive experimentation can yield

both tremendous cost and time savings.

The overarching goal of successful experiment design is to build a pipeline to translate

microscope- and experiment-specific data (starting from raw data streams from detectors and

cameras) into materials-specific descriptors and functionalities. As the number of imaging

and sample parameters grows, it becomes increasingly difficult for a human operator alone

to select the best combination of techniques. AI and ML methods, which can efficiently

evaluate behaviors overhigher-dimensional parameter spaces, are well suited to this kind of

predictive costing analysis.' 7 Prior to undertaking an experiment, ML could be used to mine

open databases of past work, harvesting appropriate imaging techniques and experimental

parameters from related systems. These parameters could then be compared to the specifics

of the system under study, validated against simulations, and presented to the user in real-

time to estimate what descriptors could be confidently measured. At present, no widely

used database of prior work exists and such a highly-integrated level of planning is simply

not possible, leading to failure-prone or information-poor experimentation. The proposed

approach leverages the strength of AI to very quickly operate with large volumes of data,

augmenting the intrinsic depth and domain expertise of the human operator. Ongoing active

research in human-computer interaction will continue to define best practices in this area.

Beneficially, this approach will unlock the full range of analytical modes available on modern

instrumentation for many more users of all experience levels.
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FEATURE EXTRACTION

After the experimental parameter space has been defined and techniques have been se-

lected to probe those parameters, we consider the process of feature extraction, shown in

the middle of Figure i. Each technique provides a window into one or more features of

the sample, convoluted with artifacts introduced during the recording process. For exam-

ple, atomic-scale STEM imaging and spectroscopy create a two-dimensional proj ection of a

three-dimensional crystal structure, but beam broadening and channeling can degrade re-

sulting data fidelity, thereby complicating inverse structure determination. In addition, the

beam itself may change (damage) the sample, or the instrument alignment may drift, effec-

tively introducing noise that obscures the original object. For this reason, a combination

of several complementary analysis is usually required to arrive at more unique solutions by

probing different characteristics of the underlying sample.

Unfortunately, data collection is presently highly disconnected and prescriptive. We

choose imaging modes and detectors based on the features we expect to find and then

acquire data in a linear and serial fashion, overlooking higher dimensional or low contrast

correlations by neglecting to use all available data streams. We contrast this with the

emerging data-rich 4D-STEM technique,18 in which entire diffraction patterns are collected

across the 2D space of a sample and then post-processed to generate particular contrast

modes and signals. In effect, nearly all the transmitted beams from a sample are recorded,

which can be used to reconstruct multiple signals on-the-fly or after the fact. This capability

improves our ability to detect features that may be weakly represented in any one isolated

data set. Access to complete data streams is essential, especially during initial acquisition

when the experimental parameters can still be adjusted.

Feature extraction is also increasingly constrained bythe manual nature oftraditional ex-

perimentation. To their credit, vendors have improved automation of microscope alignment,

now offering software that can optimize the instrument faster and more accurately th an most

human operators. However, flexible and truly automated data collection integrating a full

suite of modalities is far from being realized. At present, most investigations of unknown

samples are similar: we manually scan many regions, searching for predetermined features

of interest or deviations from known structures. One can envision batch experimentation,

where the stage movement, alignment, focusing, and image capture allow for the rapid sur-
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veying of a sample overnight. Key regions could then be highlighted without human bias

using a ML network trained on the sum of prior knowledge and presented to the operator

in the morning for further examination. This kind of pipeline has been established to a

degree in semiconductor failure analysis and single-particle imaging, where repeated sample

configurations lend themselves well to automation. However, to extend this approach to

other domains, such as metallurgy and catalysis, we must have direct access to open, low-

level microscope controls (e.g. at a minimum stage position, tilt, and defocus) and analysis

routines to define flexible characterization workflows. In turn, this ability will help enrich

the efficiency and quality of the entire characterization process.

Probing the temporal evolution of materials requires additional considerations, such as

the need to precisely correlate observations with experimental parameters that may them-

selves be difficult to accurately measure. Understanding many important phenomena, in-

cluding electrochemical cycling of batteries and the nature of low-temperature electronic

phase transitions, requires a high degree of control over multiple experimental sub-systems.

At present, instruments explore a limited in-situ parameter space and there is little inter-

operability between platforms supplied by different vendors. In-situ experiments can be

roughly divided into two main groups: those where an experiment is built into a special

holder19 (e.g. liquid/gas stage, biasing/heating stage, mechanical strain stage, etc.) and

those where the microscope itself is directly modified to create a desired environment (e.g.

gas, irradiation, deposition, etc.) using a differential pumping mechanism2° or other means.

The microscope pole piece gap is a limiting factor that determines the kind of experiments

that can be performed in the materials science toolbox.21 A wide variety of holders and

experiment types exist that all require different sample configurations, so tightly integrated,

cross-correlative work is challenging and more hardware co-development is needed. Beyond

holders, the gains made in detectors have allowed for in-situ data to be accessed and in-

tegrated in a more efficient fashion, even at speeds as high as 4,00o frames per second." 3

Much can be learned from the astronomy community22 as we continue to advance this aspect

of microscopy hardware.

As a promising alternative, a modular system in which in-situ capabilities are built into

the objective lens pole piece could be built to accommodate interchangeable "lab-in-the-

gap" modules.23 Similar concepts have been successfully developed in the past, but only for

a limited range of options (e.g. environmental cell experiments24 or magnetic imaging using a
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low magnetic field pole piece25). The advantage of this approach is that the whole pole piece

gap can be utilized, allowing for more complex in-situ capabilities, but also requiring more

intricate engineering for the necessary gas, liquid, electrical, and other connections. Such an

instrument would permit high-throughput TEM for a variety of experiments, for example

in the area of catalysis.26 One could consider a microscope fitted with several pole piece

modules in a carousel (analogous to an optical microscope with several objective lenses) or

a cartridge system, which would enable several experiments to be queued up ahead of time.

Just as important, an open library of prior experiments and conditions should be developed

alongside hardware to guide the planning and execution of in-situ experiments, analogous

to biological protein and emerging materials science data banks.27 Once such a framework is

broadly established, AI could optimize experimental conditions and acquisition parameters

on-the-fly. With standardization of methods and analysis, multiple laboratories around the

world could contribute to ambitious "crowdsourced" experimentation to more quickly and

effectively tackle problems, such as combinatorial materials screening. These developments

would help realize unprecedented experiments to target a wide range of impactful questions,

inrinrlinff•

i. What are the far-from-equilibrium states and rate parameters of materials during fast

and non-repeatable phase transformations?

2. What is the nature of the soft-hard (liquid-solid) interfaces present in chemical and

biological reactions?

3. What are the chemical states and bonding structure of materials during reactions,

especially considering complex reaction dynamics and radiation chemistry?

4. How can we reliably characterize beam-sensitive materials?

5. What behavior do light atoms, vacancies, and point defects exhibit in extreme, reactive

environments where they are hard to visualize?

KNOWLEDGE DISCOVERY

Throughout the characterization process our goal is to identify statistically significant

features in large, noisy, and potentially incomplete data streams, aiming to build libraries
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FIG. 2. (a) Effective maximum microscope data production rates by year, showing the rapid

increase associated with better detector technologies. Estimates are constrained by the overhead

associated with processing and transfer of data. (b) Present and emerging microscopy analysis

workflows harnessing new methods of data collection and interpretation.

of possible structures and spectra to aid in knowledge discovery.28 All domains of electron

microscopy are producing ever expanding amounts of data spanning a range of formats that

must be appropriately distilled through the interpretive frameworks shown in the bottom

half of Figure 1. While, in principle, more data is a positive development, our ability

to process and extract meaning from ballooning data sets has not kept pace. As shown

in Figure 2.(a), epochs in data production have been punctuated by advances in detector

technology. Following the initial development of the microscope, data volumes remained

relatively flat until the advent of digital imaging (because of rate limiting time and cost of

film processing), after which they experienced rapid growth during the transition from slow

scintillators to fast direct detector technologies. Computing power improved at a similar rate

and data production is now several orders of magnitude higher than it was a few decades ago.

Technological upgrades are becoming more frequent and disruptive, motivating an urgent

need for new analysis methods.

As already mentioned, growing data volumes are well suited to interpretation by AI

and ML methods trained on established physical models. When grounded in physically

meaningful frameworks, these approaches can apply constraints to the classification of mul-

tidimensional features, using domain knowledge from materials science, chemistry, physics,
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and biology. Recently introduced deep learning methods have demonstrated extreme effi-

ciency in such feature finding problems.28 However, a basic problem is that data are typically

encoded in limited proprietary formats and there is no good way to assess the amount of

useful information obtained in an experiment. We currently lack metrics for data quality

and guidelines to determine whether present measurements are even comparable to past

work, leading to the manual analysis workflow shown in Figure 2.(b). While this workflow

has yielded important scientific discoveries, it is limited in its scalability and its ability to

efficiently incorporate a wide variety of multidimensional data streams. At the heart of this

issue is poor cross-platform support and dialogue between the different microscope, cam-

era, holder and other hardware vendors in terms of signal channels, naming conventions,

file formats, and metadata. The absence of interoperability severely hampers experiment

repeatability, portability, and user training. Without a common language for experimen-

tal electron microscopy, we cannot properly curate data acquisition and analysis processes

in order to ensure scientific integrity of our experiments. This situation also makes it ex-

tremely difficultto integrate electron microscopy data with othertechniques (e.g. scattering,

mechanicaltesting, transport, etc.) that wouldhelp ML algorithms arrive at more unique so-

lutions for a structure or process. We emphasize that data science can only augment human

intuition and domain expertise, but not replace it. Rather, we must strive to achieve synergy

between conventional and data-driven methods, seeking to harness the unique strengths of

each analysis approach for the problem at hand.

While the challenges for data interpretation are great, there has been some progress.' 7

New software toolsets29 allow researchers to store and share their analysis workflows in var-

ious forms. Following trends in the data science community, Jupyter notebooks and their

Google Collab implementations have become more widespread and mainstream, enabling the

dissemination of ML code and trained neural networks.2839 Still, more development of open-

source platforms using the FAIR— Findable-Accessible-Interoperable-Reusable—principles31

is needed to standardize best practices, as well as streamline the training of early-career

researchers. A repository for data of all formats would also help address the crisis of ex-

perimental reproducibility by unlocking a whole class of meta-analyses, which are almost

nonexistent in microscopy, but routine in fields such as astronomy, high-energy physics,

scattering, thermodynamics, genomics, and medicine. The communityhas also recognized

the need for greater convergence of microscopists, data scientists, and manufacturers to im-
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plement the proposed architecture. We believe the time is right for new national initiatives

to catalyze adoption of a common experimental language, establish standards and shared

methodologies, and provide the infrastructure for data-driven partnerships between hard-

ware and software developers. Inspiration can be drawn from light and neutron sources,

which showcase the power of highly integrated, interoperable, and open experimentation.

The benefits to microscopy and the broader scientific community will be enormous.

LOOKING TO THE FUTURE

Today's microscopes are capable of producing so much data that it can no longer be

effectively analyzed by human intuition and experience alone. Next-generation microscopy

will require entirely new ways ofthinking about experiment design, execution, analysis, and

sharing. Data science tools must become more tightly integrated into the operation of the

instrument, helping to distill vast multidimensional data sets into meaningful descriptors

linked to underlying physical models. An open platform for data collection and analysis

will intelligently highlight latent features and help extract deep insight from complex, mul-

tifaceted observations. Importantly, this platform must continue to evolve to meet domain

needs and keep pace with instrumentation developments.

Truly adaptive microscopy, where data dynamically inform the next steps of an exper-

iment on-the-fly has not yet been realized. In such a microscope, for example, tracking a

reaction in a liquid cell would be done by comparing multiple, automatically selected signals

quantitatively interpreted through fast simulations based on theory models. A ML network

would control the stage and imaging parameters to best highlight features of interest, pro-

viding guidance at each stage of the experiment. Data capture, storage, and distribution

would all be routed through an open framework accessible to the broad community. Data

and metadata could then be compared in real-time to large databases of similar experiments

to predict possible next steps, augmenting human intuition and experience. This stage in

the analysis process would then iteratively inform experiment design to build avirtuous aug-

mented workflow, as shown in Figure 2.(b). The outcome of such an experiment would be

richly quantifiable, repeatable, and meaningful at a level far beyond our present capabilities.

Bold national initiatives and visionary leadership are strongly needed to realize this future.

Collectively, these efforts will enable the groundbreaking discoveries required to solve the
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pressing global challenges of the next decade.
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