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ABSTRACT
Stochastic gradient descent (SGD) is a premiumoptimizationmethod
for training neural networks, especially for learning objectively
defined labels such as image objects and events. When a neural
network is instead faced with subjectively defined labels—such
as human demonstrations or annotations—SGD may struggle to
explore the deceptive and noisy loss landscapes caused by the in-
herent bias and subjectivity of humans. While neural networks
are often trained via preference learning algorithms in an effort
to eliminate such data noise, the de facto training methods rely
on gradient descent. Motivated by the lack of empirical studies
on the impact of evolutionary search to the training of preference
learners, we introduce the RankNEAT algorithm which learns to
rank through neuroevolution of augmenting topologies. We test the
hypothesis that RankNEAT outperforms traditional gradient-based
preference learning within the affective computing domain, in par-
ticular predicting annotated player arousal from the game footage
of three dissimilar games. RankNEAT yields superior performances
compared to the gradient-based preference learner (RankNet) in
the majority of experiments since its architecture optimization ca-
pacity acts as an efficient feature selection mechanism, thereby,
eliminating overfitting. Results suggest that RankNEAT is a viable
and highly efficient evolutionary alternative to preference learning.

CCS CONCEPTS
• Computing methodologies→Neural networks; Genetic al-
gorithms; • Human-centered computing → Human computer
interaction (HCI); • Applied computing→ Computer games.

KEYWORDS
Preference learning, neuroevolution, NEAT, RankNet, vision trans-
formers, stochastic gradient descent, affect modeling, computer
games
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1 INTRODUCTION
Forms of gradient descent are the natural choice of optimization
method for training deep neural networks to predict objectively
defined labels in tasks such as image and speech recognition, fraud
detection, and event prediction. Over the last few years, we have
witnessed a rapidly growing interest in the use of neural networks
that are able to classify subjectively defined labels. This family of
learning-to-rank or preference learning algorithms [9] that train
neural networks—such as RankNet [2], DeepRank [29] and Lamb-
daMART [3]—yield good performance by relying primarily on gra-
dient descent methods. Subjectively defined labels, however, includ-
ing human demonstrations (e.g. creative tasks, navigation traces
and paths) or human annotations (e.g. of emotion or aesthetics)
yield highly complex, deceptive and noisy loss landscapes for a
neural network to learn. Assuming that the plasticity of neuroevo-
lutionary processes would be beneficial for such loss landscapes, in
this paper we test the hypothesis that evolutionary search would
be a better optimizer for neural network training in preference
learning (PL) tasks compared to stochastic gradient descent (SGD).

To test our hypothesis, this paper explores the efficacy of neu-
roevolutionary search in PL tasks by building on the efficient and
popular RankNet [2] architecture and enhancing its search capacity
through neuroevolution. In particular, we introduce a novel algo-
rithm named RankNEAT that relies on the Siamese neural network
architecture of RankNet and learns to rank via NeuroEvolution of
Augmenting Topologies (NEAT) [36]. Unlike traditional gradient-
based PL methods, RankNEAT resembles the process of plastic-
ity [7], which induces changes in both the coupling strength and
the spatial organization of synapses in biological neural networks.
RankNEAT learns to rank subjectively defined labels with high
degrees of accuracy through its ability to optimize the synaptic pa-
rameters such as the network’s weights and the edge architecture
simultaneously. We test RankNEAT (neuroevolution) and compare
it against the vanilla RankNet (stochastic gradient decent) in the
task of player affect modeling across three games, using the AGAIN
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[23] dataset of arousal-annotated gameplay videos. Player modeling
[46] is an important subfield in game research since it promotes the
development of reliable human computer interaction systems and
consequently improves the users’ experience. Our current approach
feeds images of gameplay to a pretrained vision transformer, while
the last fully-connected layer of the network is then trained to pre-
dict ordinal values of arousal, using RankNet or RankNEAT. Results
indicate that RankNEAT is superior to SGD (RankNet) in training
PL models of arousal in the majority of experiments performed.
Our key findings suggest that RankNEAT is a viable PL paradigm
which achieves comparable or significantly higher performances
to RankNet. In this first experiment, RankNEAT optimizes the edge
topology of the networks’ last layer, resembling an evolutionary
feature selection strategy that eliminates unnecessary features from
the observed input space. Additional studies should explore how
RankNEAT performs in other subjectively defined tasks and hyper-
parameter setups, such as increasing the topological complexity.

This paper is novel in many ways. First, to the best of our knowl-
edge, this is the first time a NEAT-based preference learner is in-
troduced, combining a traditional learning-to-rank neural network
architecture with neuroevolution. Second, RankNEAT is tested
broadly across three dissimilar games from the same genre show-
casing the robustness of the method for affect modeling. Third, the
proposed approach is compared thoroughly against SGD (RankNet)
across different games and hyperparameters. Finally, RankNEAT
is combined with vision transformers (pretrained on ImageNet)
enabling us to offer general-purpose representations for solving
tasks with subjectively defined labels.

2 RELATEDWORK
This section surveys related work on the performance comparison
of evolutionary algorithms and gradient descent for training neural
networks (see Section 2.1) and on the intersection of evolutionary
search and affect modeling (see Section 2.2).

2.1 Evolution versus Backpropagation for
Neural Network Training

Although SGD is currently the most widely applied training al-
gorithm for neural networks, there has been a rapidly growing
interest in employing evolutionary algorithms for optimizing deep
learning models over the last years [34, 36, 47, 49]. Evolution and
gradient descent through backpropagation (BP) are, however, fun-
damentally different and thus their comparison is a challenging task
that numerous studies have tried to tackle. Indicatively, Mandis-
cher [18] pitted evolutionary strategies (ES) against BP for neural
network training on several benchmark problems, evaluating them
based on the computational effort required to reach a certain error
limit and their ability to converge. Results showed that while ES
were good for training neural networks with non-differentiable
activation functions, they still cannot compete with BP in large-
scale problems. Siddique et al. [35] proposed a genetic algorithm
(GA) capable of outperforming BP in function approximation in
terms of convergence. Sexton et al. [33] compared a GA and BP on
in-sample, interpolation, and extrapolation data in terms of root-
mean-square error, number of epochs, and execution time. Results
showed that GAs can be employed to strike a balance between

model over-parameterization and model robustness. Gupta et al.
[12] compared GAs and BP in terms of effectiveness, ease-of-use,
and efficiency for training neural networks, showing that the for-
mer can provide better results in a chaotic time series problem.
Gudise et al. [11] conducted a comparative study which demon-
strated that the weights of a feedforward neural network tend to
converge faster with the particle swarm optimization than with
BP when it comes to function approximation. Finally, Sexton et al.
[32] compared evolution and BP across ten real-world classification
problems, showing that BP reached a higher classification error on
average. Yannakakis et al. [42] employed supervised and genetic
approaches to study the emergence of cooperative behavior among
agents in a complex simulated environment and demonstrated that
a genetic approach based on rewarding and minimal communica-
tion resulted in more efficient computational models of multi-agent
spatial organization than supervised learning mechanisms. Zhang
et al. [48] conducted several MNIST-based experiments in order to
shed light on the relationship between the OpenAI ES and SGD
by measuring the correlation between the approximated gradients
computed by the algorithms and developing an SGD-based proxy
for ES. The results obtained by the ES proxy are identical with those
obtained by ES, and consequently, it holds that SGD with noise is
equivalent to ES. Morse & Stanley [25] compared an evolutionary
algorithm that evaluates individuals on a small number of train-
ing samples per generation and SGD on several benchmarks and
showed that the former could optimize large neural networks about
as fast and effectively as the latter.

In this work, we extend the literature by comparing neuroevo-
lution and SGD performance in preference learning problems for
the first time. In particular, we introduce a NEAT-based preference
learner capable of predicting player arousal from gameplay footage
and compare its performance with that obtained via SGD. Our re-
sults show that combining the topological and global optimization
properties of NEAT with the Siamese network architecture of the
traditional RankNet can result in robust learning-to-rank models
that outperform the BP models trained via SGD.

2.2 Modeling Affect via Evolutionary Search
Affective computing is the study of emotions, their manifestations
and expressions, and the ways to capture (model) them computa-
tionally [30]. While research at the intersection of affective com-
puting and evolutionary algorithms has been active over the last
decade, studies in the literature are still relatively sparse. For in-
stance, Martinez et al. [21] presented a genetic search-based feature
selectionmethod for improving the accuracy of the affective models,
comparing it against sequential forward feature selection and ran-
dom search in a game survey dataset. Tahir et al. [37] introduced
a binary chaotic genetic algorithm for feature selection, which
achieved scores two times higher than a baseline genetic algorithm
in identifying seven emotional states. Finally, Alvarez et al. [1]
employed artificial evolution to select speech feature subsets that
optimize the success rate of emotion recognition.

When it comes to games, the domain we study in this paper,
player modeling [46] refers to the study of models that accurately
predict how a player behaves and feels while playing a game. Affect
models based on gameplay can provide valuable insights into how
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Figure 1: The three games used in this study. From left to
right: Endless, Pirates!, Run’N’Gun.

players interact with games. As input of such models, most studies
apply domain knowledge by manually authoring high-level hand-
crafted gameplay features. For instance, Frommel et al. [8] employed
the input parameters on a graphics tablet and in-game performance
to detect the players’ current emotional state. Similarly Melhart et
al. [24] showed that hand crafting features that describe the player’s
input, the artificial agents’ actions, and the gameplay context on a
high level can yield general models of player arousal.

Although domain knowledge may lead to remarkable results,
hand-crafted features do not necessarily reduce the data needs of
the algorithms but do introduce a critical data preprocessing step.
Automated feature extraction, on the other hand, may address such
issues. Literature in this vein is fairly sparse. Ng et al. [28] used
a deep Convolutional Neural Network (CNN) pretrained on the
generic ImageNet dataset to perform emotion recognition on small
datasets. Makantasis et al. [16] employed three CNN architectures
to predict player arousal from gameplay footage, showcasing that a
mapping between gameplay video streams and the player’s arousal
exists. The same authors also introduced a methodology for pre-
dicting arousal from audiovisual features and demonstrated that
fusing high-level pixel and audio representations can yield highly
accurate models of affect [17]. Finally, the study of Martinez et al.
[20] seems to be the first to introduce a deep PL methodology for
predicting emotional states from physiological signals. In partic-
ular, they showed that using auto-encoders and CNNs to find a
mapping from raw signals to learnable features can outperform
ad-hoc feature extraction and selection.

In contrast to all aforementioned studies, in this work we employ
a pretrained Vision Transformer to extract high-level representa-
tions from gameplay footage and fine-tune our RankNEATmodel to
construct player arousal models for three platformer games.We also
compare the behavior of evolutionary PL against gradient-based
PL. Results verify that RankNEAT outperforms RankNet in most
experiments performed due to the global optimization capabilities
of the former. At the same time, its architecture search capacity
corresponds to an effective mechanism of feature elimination.

3 CASE STUDY: PREDICTING PLAYER
AFFECT

The neuroevolutionary learn-to-rank methodology proposed in
this paper is tested on a challenging dataset of three games which
includes many players’ gameplay and emotion annotations. The
games are created for the purposes of general affect modeling and
are part of the AGAIN dataset [23]. In this paper we focus on the
three games of the platformer genre featured in AGAIN as they

Figure 2: Arousal annotation of a player’s gameplay footage
using the time-continuous unbounded RankTrace protocol.

offer sufficiently diverse gameplay properties without needing ex-
cessive computation for experimental validation. The three games
are shown in Fig. 1 and include Endless, an infinite runner where
players must avoid obstacles while automatically moving ever right-
ward, Pirates!, a jumping platformer similar to Super Mario Bros
(Nintendo, 1985), and Run’N’Gun, a more complex game which
requires players to move while aiming and shooting at enemies.
All games have arcade-style controls of varying complexity (with
Run’N’Gun being the most complex), assign a score to the player
for in-game actions, and finish after two minutes for the purposes
of data collection.

The AGAIN dataset was collected throughMechanical Turk, with
players first playing and then annotating each game. Annotation
was done using a stimulated recall protocol, showing the player’s
own gameplay as a recorded video and requiring them to provide
moment-to-moment annotation of arousal using the RankTrace an-
notation tool [15]. Figure 2 shows the arousal annotation trace: the
player can keep increasing or decreasing their arousal annotation
(unbounded) and can view their entire annotation so far.

The arousal annotations are preprocessed before being used for
modelling tasks. First, the trace is normalized to [0, 1] with min-
max normalization. Due to the reaction time between a stimulus
and a player’s emotional response, we processed the data into
time windows of 3 seconds. In particular, we calculate the mean
arousal value of 3-second time window which we then use as the
subjectively defined label for training (see Section 4.2). Gameplay
videos are captured at 24Hz, resulting in 72 frames per 3-second
window. Each gameplay frame is rescaled to a 224 by 224 pixel RGB
image, and the 72 frames of the 3-second window are processed
iteratively through a Vision Transformer (see Section 4.1).

When aligning arousal time windows and gameplay frames’ time
windows, we apply 1 second lag (shifting the annotations 1 sec-
ond back compared to the video data) to simulate delays in the
annotation process [19, 24]. After processing the data into 3-second
windows and data cleanup (e.g. videos with missing frames due to
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Figure 3: Illustration of the preference learning architec-
ture (top image) and training methods (bottom image) used.
ImageNet ViT (see Section 4.1) is not trainable; only the
preference learner is trained. Gameplay footage feeds the
Siamese PL architecture and the binary cross-entropy is cal-
culated on the difference between the network’s output and
respective preference (annotated) label 𝑦𝑖 𝑗 (see Section 4.2).
The training parameters of the preference learner are opti-
mized either: (a) via RankNEAT (Section 4.2) where the bi-
nary cross-entropy becomes the fitness, or (b) via RankNet
[2] where the binary cross-entropy serves traditionally as
the loss function.

errors during video recording), the dataset across all three games
consists of 262 gameplay videos corresponding to 111 different play-
ers. In particular, 103 gameplay videos remain for Endless (4, 120
time windows), 92 videos for Pirates! (3, 680 time windows), and 67
videos for Run’N’Gun (2, 680 time windows). Each video within the
same game corresponds to a different player, which is important
for cross-validation purposes (see Section 5).

4 METHODOLOGY
This section describes the main components of the algorithms ex-
amined in this paper including the Vision Transformers [6] used to
extract high-level features from the video data and the two training
methods used for our preference learning task: SGD and neuroevo-
lution. An overview of our approach is presented in Fig. 3.

4.1 Vision Transformer
A Transformer is an architecture that utilizes an attention mecha-
nism to discover dependencies between input and output. Although
Transformers still employ an encoder and decoder, they eschew
recurrence and thus require less training time while achieving bet-
ter results than other sequence transduction models. The Vision
Transformer (ViT) is a Transformer-based architecture for image
classification tasks, using a single image as input and mapping it to
a high-level vector representation, which, in turn, is fed to a multi-
linear perceptron responsible for conducting the classification task.

In this study, we use a ViT pre-trained on ImageNet 1K [5] as
a backbone model to retrieve high-level vector representations of
gameplay frame sequences. Since each time window consists of
72 frames, we replicated the weights of the first layer of ViT 72
times to account for input mismatch. Through this process, the
72 × 224 × 224 × 3 tensor of pixel values bound between [0, 1] is
transformed into a vector of 768 real values that represent higher
representations of the gameplay video segment (see Fig. 3).

4.2 Preference Learner
Preference learning involves learning to distinguish data points in
an ordinal manner [9], and thus can be applied to any supervised
problem as long as the labels represent ordinal relationships. Since
emotions are ordinal by nature [40, 41], in this study we develop a
preference learner based on the RankNet architecture [2] to predict
players’ arousal using ViT representations of gameplay footage.
Our arousal models are trained on pairs of gameplay windows.

Specifically, we formulate the arousal prediction task as a PL
problem in the following way. Let us denote as X the space of
ViT representations of gameplay footage windows and the data
corresponding to the 𝑘-th gameplay video as D𝑘 = {(𝑥𝑖 , 𝜆𝑖 )}𝑁𝑖=1,
where 𝑥𝑖 ∈ X, and 𝜆𝑖 ∈ [0, 1] stands for the arousal annotation of
the gameplay’s 𝑖-th window. To employ a PL model, we transform
D𝑘 to D̃𝑘 = {(𝑥𝑖 , 𝑥 𝑗 , 𝑦𝑖 𝑗 )}𝑁𝑖,𝑗=1, where 𝑦𝑖 𝑗 equals 1 if 𝜆𝑖 − 𝜆 𝑗 > 𝑃𝑡

and 0 if 𝜆 𝑗 − 𝜆𝑖 > 𝑃𝑡 . It should be noted that when |𝜆𝑖 − 𝜆 𝑗 | < 𝑃𝑡

the pair (𝑥𝑖 , 𝑥 𝑗 ) is not included in the dataset D̃𝑘 . The preference
threshold 𝑃𝑡 controls whether or not the difference between the
labels qualifies as a preference, while parameter 𝑘 emphasizes the
fact that pairs are produced with datapoints belonging to the same
gameplay footage. Finally, the above data transformation procedure
results in a perfectly balanced binary classification dataset.

As mentioned above, we adopt the RankNet model [2] for ad-
dressing the aforementioned PL problem. RankNet employs a neural
network that receives as input pairs (𝑥𝑖 , 𝑥 𝑗 ) and their respective
labels 𝑦𝑖 𝑗 and outputs 𝑧𝑖 𝑗 = 𝑓 (𝑥𝑖 ) − 𝑓 (𝑥 𝑗 ), where 𝑓 is a scalar func-
tion computed by the neural network. RankNet training aims to
estimate the parameters of the neural network that minimize the
binary cross-entropy loss of 𝜎 (𝑧𝑖 𝑗 ) with respect to 𝑦𝑖 𝑗 , where 𝜎 (·)
is the sigmoid logistic function. In our experiments, we consider lin-
ear functions 𝑓 , that is neural networks with no hidden layers, and
we estimate the parameters of 𝑓 using two fundamentally different
optimization methods: SGD with backpropagation—as traditionally
employed in RankNet training—and neuroevolution, as described
below through RankNEAT.

RankNEAT. NeuroEvolution of Augmenting Topologies is an es-
tablished algorithm [36] which goes beyond earlier approaches to
neuroevolution which represented only the weights of the network
as a vector in the genotype. While the typical NEAT algorithm
starts from a minimal network (with only input and output nodes)
and expands it with new nodes and edges, in this paper we use a
simplified version of NEAT which does not add new nodes and thus
does not expand the size of the network. It should be noted, how-
ever, that other features of NEAT which are crucial to its success,
such as speciation and custom operators for adding and removing
edges are maintained. In RankNEAT we use NEAT to train our
RankNet model by optimizing the parameters of the linear function
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𝑓 (·) via weight mutations, crossover, adding or removing edges.
Hence, its behavior resembles a feature elimination mechanism
which is essentially the same as setting the weight parameters of
the deleted edges to zero.

We use the standard implementation of NEAT-Python [22] for
running evolution. The initial population consists of 𝑝 fully con-
nected RankNet networks with random weights, which are eval-
uated and then split into species based on their topological simi-
larities. The fitness of each individual is calculated by processing
all pairs in the training set through the ViT and RankNet. Each
pair consists of two frame sequences (𝑥𝑖 , 𝑥 𝑗 ) and one ground truth
preference (𝑦𝑖 𝑗 ); each network is processed through the ViT and
RankNet to derive 𝑓 (𝑥𝑖 ) and 𝑓 (𝑥 𝑗 ) and finally to calculate the neg-
ative binary cross-entropy of the produced 𝜎 (𝑧𝑖 𝑗 ). The mean of
all cross-entropy scores for each pairing forms the fitness of the
network and informs the selection of parents to mate and mutate.

5 RESULTS
This paper aims to leverage neuroevolution for preference learning,
assuming that its global optimization strategy may prove beneficial
compared to gradient descent. Thus, the performance metric in
our experiments is the accuracy in predicting the ranking between
unseen pairs of gameplay footage windows. Specifically, we use a
ten-fold cross-validation strategy for splitting the data into training
and test sets. We ensure that data in the test set belongs to players
that are absent from the training set. Therefore, we follow a leave-𝑋 -
participants outmethod for cross-validation, where𝑋 is set between
6 and 11 participants depending on the game and fold. To address
the randomness of weight initialization, genetic operators, and SGD,
results are averaged across 5 independent runs [13] throughout the
paper (including the 95% confidence interval between these 5 runs).

Due to the many hyperparameters of RankNet and RankNEAT,
we perform a sensitivity analysis in Section 5.1 and report the main
findings. Using the best parameters, Section 5.2 compares the perfor-
mance of RankNet and RankNEAT for the three games, attempting
to provide a fair ground of comparison in terms of computational
effort. Throughout the experiments, we perform three tests per
game by varying the preference threshold (𝑃𝑡 ) between 0.15, 0.25
and 0.50. Higher threshold values can be more dependable in terms
of the accuracy of the ranking but lead to significantly smaller
datasets for training and testing.

5.1 Parameter Tuning
Several training hyperparameters control the behavior of both
NEAT and SGD as optimizers. Parameter setting is often achieved
through empirical trial-and-error processes. In terms of RankNet,
we tune the batch size since the benefits of the adjustment of this
parameter is two-fold. On the one end, the batch size is inversely
proportional to the number of updates per epoch, affecting the
speed of the training process. On the other end, the ratio of learn-
ing rate to batch size is a key element influencing the SGD dynamics
[14]. When it comes to RankNEAT, there is no single correct choice
of parameters for all problems due to interdependencies between
hyperparameters such as population size and crossover [4]. Al-
though the compatibility threshold (𝑐𝑡 = 3), elitism per species
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Figure 4: Impact of the population and batch size to the per-
formance of the two algorithms.

(𝑒𝑝𝑠 = 2), and mutation rates (0, 0.5 for nodes and edges, respec-
tively) were tuned according to some preliminary experiments, the
population size 𝑝 was adjusted based on amore systematic approach
since it influences both the training time and the robustness of the
learner [31]. This section details our experiments on the three game
test-beds for determining the optimal population size 𝑝 and batch
number 𝑏𝑛 . It should be noted that other hyperparameters such as
the learning rate for SGD, the compatibility coefficients and the
survival threshold for NEAT were kept at their default values from
their respective libraries. For space considerations we only present
results with 𝑃𝑡 = 0.25 in this section as experiments with the other
two threshold values did not reveal any substantial differences for
tuning the selected hyperparameters of RankNet and RankNEAT.

Figure 4 shows the progress of RankNet (SGD) and RankNEAT
(neuroevolution) over 10 epochs and 10 generations, respectively.
It should be noted that generations include more evaluations (de-
pending on the population size 𝑝) than SGD epochs and thus the
results between RankNet and RankNEAT are not comparable here.
Evidence across all three games shows that large 𝑏𝑛 values lead to
a quick increase in accuracy for RankNet but subsequent epochs
see a drop as the process overfits to the training set. Evidently, with
small 𝑏𝑛 values testing accuracy increases more slowly but has
the potential to reach higher values. Based on this finding, we will
use 𝑏𝑛 = 10 as the best parameter in experiments of Section 5.2.
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Figure 5: Accuracy (and 95% confidence intervals) over evaluations for the RankNEAT and RankNet models. The black dotted
line shows the (random) baseline accuracy of 50%.

Evolution on the other hand understandably benefits from larger
populations: for instance with 𝑝 = 1000we see a quick optimization
at the first generation but relatively small improvements after that.
Since with 𝑝 = 100 the test accuracy reaches similar values as with
𝑝 = 1000 within a few generations, we choose 𝑝 = 100 in the exper-
iments reported in the remainder of this paper for its significantly
lower computational cost. We should note that optimization for
𝑝 = 10 is slow but does not seem to converge within 10 generations,
and it is possible that with more generations it could reach the
performance of larger populations; however, we could not test this
assumption in this paper.

5.2 RankNEAT versus RankNet
This section compares the best RankNEAT and RankNet models
according to the hyperparameters investigated in Section 5.1. Fol-
lowing earlier comparative studies [18] we treat each training epoch
and each individuals’ fitness evaluation as having the same com-
putational overheads and thus report test accuracy over iterations

(with each generation of RankNEAT having 𝑝 iterations, and each
epoch in RankNet counting as 1 iteration). As in Section 5.1, we
measure test accuracy based on a 10-fold leave-𝑋 -participants-out
cross-validation, repeated and averaged from 5 independent runs.
Based on Section 5.1, all RankNet experiments are performed with
𝑏𝑛 = 10 (10 random pairs are sampled from the training set per
epoch to calculate the gradient) and all RankNEAT experiments are
performed with 𝑝 = 100 (100 individuals in the population).

Figure 5 shows the progress over many iterations for the differ-
ent datasets produced from different games and different preference
thresholds (𝑃𝑡 ). Even though we chose 𝑏𝑛 = 10 because it did not
overfit during the short training runs of Section 5.1, it is evident that
as training progresses RankNet still is prone to overfitting. In all
cases, test accuracy for RankNet drops after the first 100 iterations,
often significantly (e.g. in Fig. 5a). On the other hand, evolution
starts performing poorly but steadily increases at later generations.
While evolution assesses its individuals in terms of accuracy in the
training set and consistently improves there, it is evident that the
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Table 1: Best accuracies (%) achieved by eachmodel (RankNEAT vs RankNet) for the Endless, Pirates!, andRun’N’Gun test-beds,
across three preference threshold values, 𝑃𝑡 . Values are averaged across 5 independent runs. The average test accuracy of the
best run (of 5) is also included within square brackets.

𝑃𝑡 = 0.5 𝑃𝑡 = 0.25 𝑃𝑡 = 0.15
RankNEAT RankNet RankNEAT RankNet RankNEAT RankNet

Endless 76.2 ±1.5 [77.3] 76.9 ±1.6 [77.9] 70.6 ±1.6 [71.7] 71.5 ±1.6 [72.1] 68.1 ±1.3 [69.2] 68.5 ±1.3 [69.1]
Pirates! 67.8 ±1.9 [69.6] 65.8 ±2.2 [66.9] 65.2 ±1.8 [66.5] 62.6 ±1.6 [63.5] 63.6 ±1.9 [64.7] 61.3 ±1.4 [62.1]
Run’N’Gun 73.6 ±2.5 [76.3] 73.7 ±3.0 [74.8] 70.6 ±2.3 [72.3] 70.2 ±2.3 [71.4] 68.4 ±1.9 [69.5] 67.8 ±2.0 [69.1]

models are also able to perform well (despite some fluctuations be-
tween generations) in the test set. At the same computational effort
(1, 500 iterations), RankNEAT yields between 1% and 5% higher test
accuracies from RankNet, on average, across the 9 experiments per-
formed (with RankNEAT significantly outperforming RankNet in 5
of our 9 tests). Admittedly, in some of the experiments this is due to
a noticeable drop in accuracy at later epochs for RankNet; in prac-
tice an early stopping criterion for RankNet would likely prevent
this. Taking the best models discovered, on average, within these
1, 500 iterations as a whole, we derive the results of Table 1. Here,
we see that the results are comparable in several cases, although
for the Pirates! game RankNEAT consistently performs better. It is
worth noting that all models regardless of method underperform
in Pirates! We hypothesize that RankNEAT may be able to perform
better in more challenging problems. It is also worth noting that
when we compare the best run of each algorithm, RankNEAT yields
higher accuracies than RankNet in 7 out of 9 experiments.

Apart from the fact that RankNEAT performs global optimization,
we expect that the custom operators that add or delete edges are
especially powerful for this problem. As noted in Section 4.2, our
version of RankNEAT does not allow for larger topologies to emerge
but both speciation and topology changes in the edges are expected
to have an impact. We expect that deleting an edge can act as a
feature elimination mechanism and remove features that do not
play a role in predicting arousal. Indeed, we observe that the best
models of Table 1 for RankNEAT have between 5% and 6% fewer
edges than the fully connected SGD network (RankNet with 768
edges). Due to the stochastic nature of the edge removal operator,
this “feature selection” requires several generations to be impactful,
but may largely be responsible for the good performance of the
models.

We observe that models tend to be more accurate at higher
preference thresholds. This is not surprising, and matches past
findings [16], as ambiguous rankings are more aggressively cleaned.
It is worth noting, however, that this comes at the cost of volume and
generality of the dataset: indicatively, the datapoints at 𝑃𝑡 = 0.50
are only 28% of the datapoints at 𝑃𝑡 = 0.15 across all games.

5.3 Qualitative findings
Results presented in the previous section show that player arousal
can be modeled based on general-purpose representations such
as video frames and, consequently, pixels. Drawing inspiration
from the study of Makantasis et al. [16], we constructed the class
activation maps (CAM) in order gain insights on which regions
of the frames contributed the most to the final result. Our Eigen-
CAM implementation relies heavily on the PyTorch library for
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Figure 6: Eigen-CAMs for indicative frames of each game:
saturated areas show pixels that are important predictors of
arousal.

CAM methods [10]. It should be noted that Eigen-CAM visualizes
the principal components of the learned features, and thus it does
not rely on the backpropagation of gradients or any other class
relevance score [26]. We use RankNEAT, as it achieves the highest
accuracies overall, to construct the visualization of Fig. 6. In these
activation maps, warmer colors correspond to higher predictors of
arousal value for a specific player in the test set. From the samples
of Fig. 6, we observe that important predictors of arousal across
games are regions containing information about the player, such as
the avatar’s position, life, game time, and score. Furthermore, the
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regions that contain information about the enemies’ avatars are
also very important for the model. In two out of three games, the
model manages to mask out some of the redundant information
in the environment, such as empty space in Endless or the sky
background in Run’N’Gun. For Pirates!, however, such patterns
are less clear, and the model precludes the powerups from high
importance regions. This may explain the relatively low accuracy
value achieved on this game.

6 DISCUSSION
This work investigated the potential of neuroevolution for han-
dling PL tasks when labels are defined in a subjective and ill-posed
manner. We aimed to assess the power of NEAT as a preference
learner by comparing the accuracy of NEAT and backpropagation in
arousal prediction from general-purpose representations (gameplay
videos) across three platformer games. To the best of our knowl-
edge, this is the first time a NEAT algorithm has been used in a PL
task. In particular, we studied the case of player affect modeling due
to the fact that capturing the emotional manifestation of players
is of great import for the domain of digital games [45][44]. The
experiments indicate that RankNEAT can outperform RankNet by
avoiding overfitting. There is evidence that RankNEAT’s opera-
tors for deleting or adding edges is beneficial as a form of feature
selection.

It should be noted that there is no straightforward way to com-
pare evolution and SGD methods fairly. While past approaches
have used CPU time [18, 42, 43], we instead matched epochs and
individual evaluations as approximations of effort. That said, SGD
selects a subset of the training data (in experiments in Section
5.2, this was 𝑏𝑛 = 10) to derive a gradient while evolution evalu-
ates cross-entropy in all pairings of the training set. Because we
could multi-thread the evaluation of individuals in each generation,
RankNEAT was between 57% and 72% faster in CPU times than
RankNet per run, for the 1, 500 iterations of Section 5.2 (tested on
a CPU-only Intel Xeon, 132GB RAM). We could explore different
ways of comparing the two methods in future work, as well as
perform a more thorough tuning process for the other hyperpa-
rameters. In particular, parameters such as the survival threshold,
elitism, and minimum species size can affect the crossover stage,
increasing the diversity of the population. Thus, properly tuning
these parameters may lead to better exploration of the search space.

Another worthwhile discussion is our choice of applying a more
restrained version of NEAT for our experiment. The power of NEAT
is arguably the fact that its operators can increase the network size
with new nodes and more edges between these new nodes. While
our version uses speciation as well as other operators of NEAT, spe-
ciation is more meaningful when networks differ in size. The initial
population is fully connected while evolved individuals may have
fewer edges (i.e. simpler topologies) but never more edges. Prelimi-
nary experiments with operators that could add nodes, however,
led to an evolutionary process that quickly overfits to the training
set while performing poorly on the test set. More experiments are
necessary to investigate how this behavior can be countered, e.g.
with different fitness evaluation schemes which assess a smaller
subset of the training data similar to SGD’s batch number. We
will also consider and test alternative neuroevolutionary search

methods such as covariance matrix adaptation evolution strategy,
Differential Evolution, and their respective variants [27, 39] against
the introduced algorithm in this paper. When it comes to RankNet
there are a plethora of hyperparameters that might influence the
performance of a model (e.g. network size, regularization) that need
to be examined in a follow up study. The initial study presented
here, however, contains a fair amount of hyperparameter tuning
experiments for both algorithms as described in our results.

In terms of future research, there are several directions that
we can follow to extend the goal of this work. An obvious next
step on the scalability of this approach is testing the efficiency of
RankNEAT to predict affect for the remaining six games of the
AGAIN dataset, which includes racing games and shooter games
[24]. A more important next step is testing whether the mapping
between pixels and arousal found via neuroevolution can be general-
purpose, for instance being able to predict arousal rankings in
unseen games of the same genre. Earlier work [24] has shown that
gameplay metrics (provided they are well-designed) can be robust
predictors of arousal even in unseen games of the same genre.
Establishing similar predictors through gameplay footage alone is
arguably fundamental for general affect modelling [38]. Although
this initial study used computer games as its test-bed domain, the
proposed method is general and thus applicable to any affective
computing and preference learning task; it remains to be found to
which degree results hold for other tasks, datasets and domains of
preference learning.

7 CONCLUSIONS
This paper introduced RankNEAT, an algorithm that transfers the
benefits of the NEAT algorithm to learning-to-rank tasks in chal-
lenging domains with subjectively defined and biased labels such
as affective computing. By leveraging pretrained computer vision
models, we were able to evolve accurate models of arousal (with
a test accuracy as high as 77% on average) using only gameplay
footage. Comparing the performance of neuroevolution against
stochastic gradient descent, which is the standard optimization
method for PL, we observe that neuroevolution can overcome is-
sues of overfitting. While SGD sometimes can find robust models
early on, overfitting leads to a drop in accuracy that is difficult to
control for. In contrast, RankNEAT continues to produce ever-more
accurate models, and in some cases results had not converged at
our ad-hoc cutoff point. Additional experiments, in more games
and with more extensive exploration of hyperparameters (such as
evolving larger topologies) are necessary to assess the true poten-
tial of this approach for player modeling, affective computing, and
any machine learning domain that involves human demonstration
and annotation.
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