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1 Context

This description of the ESPO-G6-R2 v1.0.0 bias adjustment method is adapted from the description of the ESPO-
R5 v1.0 method as both dataset were adjusted in the same way. The adjustment methods for ESPO-G6-E5L v1.0.0
and ESPO-G6-R2 v1.0.0 are the same.

The workflow for bias adjustment of ESPO-G6-R2 v1.0.0 was built with xscen. The bias adjustment procedure
uses algorithms provided by xclim to adjust simulation bias following a quantile mapping procedure. In particular,
the algorithm used is inspired by the ”Detrended Quantile Mapping” method described by [2]. The procedure is
univariate, bipartite, acts differently on the trends and the anomalies, and is applied iteratively on each day of the
year (grouping) as well as on each grid point.

2 Variables

Temperature and precipitation data from the simulations were first extracted over an area covering North America.
Adjustments were applied separately for each of the three (3) variables. Adjusting tasmax and tasmin independently
can lead to physical inconsistencies in the final data (i.e., cases with tasmin> tasmax; [4], [1]). To ensure a physically
consistent dataset (for this aspect at least), we computed the daily temperature range (or amplitude; dtr = tasmax

- tasmax) and adjusted this variable, in addition to the tasmax and pr variables. tasmin is reconstructed after
the bias adjustment and this is the variable we store.

While tasmax has no physical bounds in practice, this is not the case for pr and dtr where a lower bound,
at zero (0), exists. Because of this, the adjustment process explained below exists in two flavours: additive and
multiplicative. In the latter, it is mathematically impossible for adjusted data to descend below zero (0).

3 Regridding

All the extracted simulation data were interpolated onto the reference dataset, in this case RDRS v2.1. Because
RDRS is defined over the ocean, we create a mask to remove points that are of no interest to us. The first step to
create the mask is to remove all points that have a sea area fraction equal to 1. Then, we put back a buffer of one
grid cell along the coast. This is done with the function xscen.spatial.creep fill. 1

Because of the large difference in resolution between the simulations and the reference, the regridding is made
in cascades, passing through a 1°grid and a 0.5°grid before the final ∼ 10km resolution RDRS v2.1 grid. Each step
uses the bilinear method.

4 Bias adjustment

The bias adjustment acts independently on each day of the year as well as each grid point. To render the procedure
more robust, a window of 31 days around the current day of the year was included in the inputs of the calibration
(training step). For example, the adjustment for February 1 (day 32) was calibrated using data from January 15
to February 15, over the 30 years of the reference period; For leap years, this would mean that there are four (4)

1The mask is available internally at Ouranos in the reconstruction-extra catalogue with source=”RDRS” and variable=”mask”.
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times less data points for the 366th day of the year. To circumvent this issue, we converted all inputs to a ”noleap”
calendar by dropping data on the 29th of February, except for simulations using the ”360 day” calendar. In the
latter case, the simulations were untouched but the reference data was converted to that calendar by dropping extra
days taken at regular intervals.2

4.1 Detrending

For each day of the year and each grid points, we first computed the averages and ”anomalies” of the reference data
and the simulations over the 1989-2018 reference period. Depending on the variable, anomalies are either taken
additively or multiplicatively:

Yr =

{
Yr + Y ′

r tasmax

Yr · Y ′
r dtr, pr

(1)

and similarly for Xc, Xc and X ′
c.

Instead of a simple moving mean, Xs was detrended with a locally weighted regression (LOESS; [3]). We chose
this method for its slightly heavier weights given at the centre of the moving window, reducing the impacts of
abrupt interannual changes on the trend and anomalies. It also has a more robust handling of the extremities of
the timeseries. The LOESS window had a 30-year width and a tricube shape, the local regression was of degree
0 and only one iteration was performed. The detrending was applied on each day of the year but after averaging
over the 31-day window, it yielded the trend Xs and the residuals X ′

s. Here again, the process can be additive or
multiplicative.

4.2 Adjustment of the residuals

With FY ′
r
and FX′

c
the empirical cumulative distribution functions (CDF) of Y ′

r and X ′
c respectively, an adjustment

factor function was first computed:

A+(q) := F−1
Y ′
r
(q)− F−1

X′
c
(q) A×(q) :=

F−1
Y ′
r
(q)

F−1
X′

c
(q)

(2)

Where q is a quantile (in range [0, 1]), A+(q) is the additive function used with tasmax and A×(q) the multiplicative
one, used with pr and dtr. The CDFs were then estimated from the 30 31-day windows. In the implementation,
maps of A were saved to disk by sampling q with 50 values, going from 0.01 to 0.99 by steps of 0.02. The adjustment
was then as follows:

X ′
ba = X ′

s +A+

(
FX′

c
(X ′

s)
)

X ′
ba = X ′

s ·A×
(
FX′

c
(X ′

s)
)

(3)

Nearest neighbour interpolation was used to map FX′
c
(X ′

s) to the 50 values of q. Constant extrapolation was used
for values of X ′

s outside the range of X ′
c.

4.3 Adjustment of the trend

In the training step, a simple scaling or offset factor was computed from the averages:

C+ = Yr −Xc C× =
Yr

Xc

(4)

This factor was then applied to the trend in the adjustment step:

Xba = Xs + C+ Xba = Xs · C× (5)

4.4 Final scenario

Finally, the bias-adjusted timeseries for this day of the year, grid point, and variable was as follows:

Xba = Xba +X ′
ba (6)

2In a normal year, February 6th, April 20th, July 2nd, September 13th and November 25th are dropped. For a leap year, it is
January 31st, April 1st, June 1st, August 1st, September 31st and December 1st.
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5 Pre-processing of the precipitation

It should be noted that the multiplicative mode is prone to division by zero, especially with precipitation where
values of zero are quite common. This problem was avoided by modifying the inputs of the calibration step where
the zeros of precipitation were replaced by random values between zero (excluded) and 0.01 mm/d.

As observed by [5], when the model has a higher dry-day frequency than the reference, the calibration step of
the quantile mapping adjustment will incorrectly map all dry days to precipitation days, resulting in a wet bias.
The frequency adaptation method finds the fraction of ”extra” dry days:

∆Pdry =
FXc(D)− FYr (D)

FXc

(7)

Where D is the dry-day threshold, taken here to be 1 mm/d. This fraction of dry days was transformed into wet
days by injecting random values taken in the interval [D,F−1

Yr
(FXc

(D))].
Both pre-processing functions were applied only on the calibration step inputs (Yr and Xc) before the division

between average and anomalies. As such, only the adjustment factors were impacted while there were no explicitly
injected precipitation values in the final scenarios.

6 Pre- and post-processing of the daily temperature range

As dtr uses the multiplicative mode, like pr, divisions by 0 should also be avoided for this variable. Even though dtr

values close to 0K are rare, the dtr timeseries was modified for values under 0.0001 K with random values above 0 K.

As CMIP6 models have very large grid cells, regions that are considered land on the RDRS v2.1 grid might be
completely on an ocean grid cell in the model. In regions with ice, this can lead to issues with dtr being very small
over water and larger over ice. These variations do not play well with the quantile mapping which can lead to very
large dtr and be translated into non-physical tasmin. This problem has only been seen in Alaska and Greenland
for the model BCC-CSM2-MR and GFDL-ESM4. Instances of tasmin smaller than 100 K have been replaced by
NaNs.
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