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Abstract 43 

 44 

Aims. Microbial samples are often serially diluted to estimate the number of microbes in a 45 

sample, whether as colony-forming units of bacteria or algae, plaque forming units of viruses, or 46 

cells under a microscope. There are at least three possible definitions for the limit of detection 47 

(LOD) for dilution series counts in microbiology. The statistical definition that we explore is that 48 

the LOD is the number of microbes in a sample that can be detected with high probability 49 

(commonly 0.95). 50 

Methods and Results. Our approach extends results from the field of chemistry using the 51 

negative binomial distribution that overcomes the simplistic assumption that counts are Poisson. 52 

The LOD is a function of statistical power (one minus the rate of false negatives), the amount of 53 

over-dispersion compared to Poisson counts, the lowest countable dilution, the volume plated, 54 

and the number of independent samples. We illustrate our methods using a data set from 55 

Pseuodomonas aeruginosa biofilms. 56 

Conclusions. The techniques presented here can be applied to determine the LOD for any 57 

counting process in any field of science whenever only zero counts are observed. 58 

Significance and Impact of Study. We define the LOD when counting microbes from dilution 59 

experiments. The practical and accessible calculation of the LOD will allow for a more confident 60 

accounting of how many microbes can be detected in a sample. 61 

 62 

Keywords: microbial counts; Poisson; overdispersion; negative binomial 63 

 64 

 65 

 66 
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1. Introduction 68 

  Microbiologists use the limit of detection (LOD) to describe the minimum number of 69 

microbes that can be detected by their analytical approach. Limits of detection have been widely 70 

discussed for decades, especially in the field of analytical chemistry. The theory of the LOD 71 

began to take shape in the 1920’s (see Fisher, Thornton, and Mackenzie 1922, for example), but 72 

not until the 1960’s did it begin to take precedence in research. LODs have been introduced into 73 

many different aspects of chemistry, including water analysis and spectrochemical analysis. In 74 

analytical chemistry, for example, one instrument may be able to detect a chemical concentration 75 

as small as one part per billion but another instrument may not be able to measure any 76 

concentrations less than one part per million. Although LODs have been used for many years in 77 

chemistry, a precise, broadly accepted definition of the LOD was not adopted until the mid-78 

1990s. Before that, Currie (1996) reported that a review of literature in the 1960’s demonstrated 79 

that LOD definitions spanned almost three orders of magnitude when used to measure the same 80 

quantity. 81 

A universal definition of the LOD for microbiological purposes has not yet been 82 

established (see e.g., Duarte et al. 2015, Evers et al. 2010). One popular operational definition in 83 

dilution series used by microbiologists is to define the LOD as 1 colony forming unit (CFU) for 84 

bacteria or algae, or 1 plaque forming unit (PFU) for viruses (e.g., see Evers et al. 2010, Magnani 85 

2021, Sutton 2011). We show that this definition may be too simplistic because it is not 86 

associated with any measure of statistical uncertainty (e.g., a confidence level). Many times, 87 

LOD refers to the suggested range to consider in a single plate when plate counting, though the 88 

range varies by plating method (e.g., 30 to 300 for some plating methods; ASTM International 89 

D5465, Ben-David and Davidson 2014, Magnani 2021, Sutton 2011). These ranges have been 90 
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established in part because lower counts can exhibit extra-Poisson variability (see, e.g., 91 

Jongenburger et al. 2010). Adding to potential confusion, the International Organization for 92 

Standardization (ISO) uses different terms to refer to the limit of detection for different types of 93 

microbiological methods. ISO uses ‘LOD’ to refer to qualitative methods (that assess 94 

presence/absence of microbes), and ‘LOQ’ (limit of quantification) to refer to quantitative 95 

microbiological methods (ISO 2016, p.5). In chemistry, however, LOQ is defined as a quantity 96 

that is greater than the LOD by a factor that is between five and ten (Thompson & Ellison 2013). 97 

In our paper, we use the term “limit of detection” (LOD) to describe quantitative methods that 98 

count microbes as suggested by AOAC International (AOAC International 2006, Wehling et al 99 

2011) and is consistent with terminology used in other fields of science (e.g., Currie 1968, Currie 100 

1987, Currie 1996, Koenig 2021, Thompson & Ellison 2013). Because the LOD is an important 101 

characteristic of any microbiological method, an accepted LOD definition among 102 

microbiologists would facilitate consistent communication.  103 

While many publications describe the empirical estimation of the LOD in microbiology 104 

(e.g., Corry et al. 2007, Feldsine et al. 2002, Reiske 2019, Uhlig and Gowik 2018, Vencia et al. 105 

2014, Yáñez et al. 2005), the literature on the theoretical underpinnings of a microbiological 106 

LOD is limited. Standards setting organizations AOAC International and ISO give a probabilistic 107 

definition for the LOD for microbiological counts based on the Poisson distribution (AOAC 108 

International 2006, ISO 2016, Wehling et al 2011).  109 

The Poisson distribution has been used for determining the LOD for other counting 110 

processes, for example, when counting asbestos fibers (ASTM D6620, Koenig 111 

2021). Unfortunately, the use of the Poisson distribution for modeling microbiological counts 112 

may be overly optimistic when the counts exhibit extra-Poisson variability (Bliss & Fisher 1953, 113 
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Jarvis 2016). For the Poisson model, the microbes are assumed to be randomly distributed 114 

throughout the volume in the original beaker (see, e.g., Bliss and Fisher 1953, Jarvis 2016). This 115 

is the ideal case, although in reality, microbes may not always be distributed in this way. 116 

Sometimes there will be loose clusters of microbes that will develop in a dilution. When clusters 117 

are present, it is possible that a pipetted sample contains only a cluster or perhaps no clusters at 118 

all. The clumping causes the average count of microbes to vary from sample to sample. When 119 

there is clumping in the initial density, the extra-variability incurred from sample to sample is 120 

extra-Poisson variability. Another source of extra-Poisson variability could be differing pipette 121 

volumes (Chase and Hoel 1975). When the original sample is diluted and a volume is pipetted 122 

onto an agar plate at each dilution, we are assuming that all of the volumes taken are the same. 123 

Technology has evolved so that microbiologists can be accurate when pipetting, but, of course, 124 

there will always be some error. An important contribution of this work is to present a definition 125 

for the LOD that can account for this over-dispersion.  126 

Counting processes are a crucial quantitative step in microbiological methods because 127 

often the goal is to estimate the number of microbes suspended in a volume or attached to a 128 

surface. These counts can be generated by plating, filtering, cytometry or microscopy. In many 129 

scenarios there is a high number of microbes in the initial sample, so the initial microbial sample 130 

is diluted repeatedly until a small number of microbes is counted at some convenient dilution. 131 

This count is then scaled up to estimate the number of microbes in the original sample (e.g., see 132 

Equation 2 in Garre et al. 2019, or Equation (5) below). Challenges can arise if the dilution(s) 133 

that were counted yield only zero counts. Simple statistical approaches would estimate zero 134 

organisms in the original sample with no associated measure of uncertainty. The LOD in this 135 
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scenario estimates how many microbes there could be in the original sample so that all zeros are 136 

observed with small probability. 137 

The purpose of this paper is to review definitions of the LOD from chemistry and then 138 

suggest a definition for use in microbiology when counting microbes from dilution experiments. 139 

To overcome Poisson assumptions, we provide a definition of the LOD using the negative 140 

binomial distribution and show how to scale the LOD for dilution series. Previous work focuses 141 

on LOD for a single sample, where the LOD decreases as the volume plated increases. Here we 142 

show that the LOD also decreases as the number of replicate samples increases. The same LOD 143 

approach that we present may be applied whether the data are CFUs of bacteria or algae on agar 144 

plates from a viability assay; PFUs of viruses in host cells; or cells observed under a microscope. 145 

In our examples we explicitly focus on the case of CFUs.  146 

2. Materials and Methods 147 

2.1 Limits of Detection in Chemistry 148 
  149 

In the 1960’s, Kaiser used a hypothesis test to compute a LOD in spectrochemical 150 

analysis (Kaiser 1965). Kaiser discussed examining the null hypothesis that the sample taken is a 151 

“blank” (i.e., contains no microbes) versus the alternative that it is not a blank. For multiple 152 

samples, the null hypothesis is that the mean of the samples is the same as the mean of the 153 

blanks. Kaiser advocated the testing rule that the null hypothesis is rejected if the sample is more 154 

than three standard errors away from the blank mean (Kaiser 1965). Put another way, Kaiser 155 

sought to control the false positive (Type I) error rate. Calculating the LOD in this way is similar 156 

to the ‘limit of quantification’ defined by ISO 16140-2 (p. 24). Initially, Kaiser ignored the false 157 

negative error (Type II error) (Currie 1987). Many individuals recognize Kaiser’s work in the 158 
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detection field as ground-breaking and many still utilize this concept for the LOD (Currie 1968, 159 

Thompson & Ellison 2013). 160 

In 1996, Currie published a definition of the LOD that was accepted as the standard by 161 

the International Union of Pure and Applied Chemistry (IUPAC) and ISO stemming from work 162 

in analytical and radiochemistry (Currie 1996). Currie’s (1996) definition of the LOD, or the 163 

minimum detectable value 𝐿𝐷, is the solution of Equation (1) for 𝐿𝐷, where the random variable 164 

L̂  is the estimator of the quantity of interest, L  is the true quantity of interest, CL  is the critical 165 

value, or “ the minimum significant estimated value of the quantity of interest”, and β is the 166 

probability of producing false negatives (i.e., indicating that quantity is not detectable when the 167 

level is really at L = LD):   168 

Pr[𝐿̂ ≤ 𝐿𝐶| 𝐿 = 𝐿𝐷] = 𝛽.  (1) 169 

The numerical value of CL  is established by expert opinion of the associated maximum Type II 170 

error rate. In chemistry, the conventional value for β = 0.05 (Currie 1996).  171 

2.2 The Need for Limits of Detection in Microbiology 172 
 173 

A common goal in microbiology is to estimate the density of microbes in a volume in a 174 

beaker. The microbes in the beaker may have been harvested from an environmental sample, or 175 

from a benchtop reactor. The microbes may have been in a planktonic state or homogenized from 176 

a mature biofilm. An aliquot (sub-volume) is taken from the beaker with a calibrated pipette 177 

(often orders of magnitude less than the volume in the original sample) and placed into sterile 178 

diluent because, generally, the initial density is too large to be counted (see, e.g., Maturin & 179 

Peeler 1998). From this diluted sample, a portion is taken again with a calibrated pipette and the 180 

number of viable microbes in this liquid sample is typically found by plate counting techniques. 181 

Plate counting can be done with the pour plate, the spread plate, and the drop plate methods. For 182 
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the calculations, the main difference among these three methods is the volume plated; the pour 183 

plate volume is approximately 1mL, the spread plate volume is typically 100µL or 1mL, and the 184 

drop plate volume is typically 10µL. When spread plating, the volume in the pipette is placed 185 

onto an agar plate, and spread evenly with a sterile spreader. When the plate is incubated, the 186 

viable microbes divide and form colonies that are non-overlapping and can be counted. The 187 

number of CFUs of microbes are then counted on the agar plate and then scaled up by the 188 

dilution factor to estimate the number of microbes in the original suspension.  189 

 The LOD issue arises if, after dilution, there are no CFU on the agar plate. This does not 190 

necessarily mean that the original suspension has zero microbes. It is possible that there are 191 

microbes in the suspension, but the original suspension has been diluted to the point where there 192 

are no microbes in the sample plated. For example, suppose it is known that there are 100 CFUs 193 

in a beaker of a 10 mL suspension. A sample of 1 mL taken from the original suspension is 194 

placed into a beaker containing 9 mL of sterile diluent. From this 10 mL, a 1 mL sample is 195 

spread onto an agar plate so that CFUs can be counted. Suppose that there are no CFUs on the 196 

agar plate. When the count of zero CFUs is scaled up, the estimated number of microbes in the 197 

original sample would be zero although there are 100 microbes in the original sample. In this 198 

example, the LOD is the number of microbes in the original sample that assures non-zero CFU 199 

on the agar plate with high probability (1 – β) or likewise assures zero CFU on the agar plate 200 

with low probability (β).  201 

Such a probabilistic definition for a LOD for microbiology should be more universally 202 

established to help explain these problematic counts of zero and to give microbiologists a method 203 

to compare their laboratories more precisely. Like Duarte et al. (2015) and Thompson & Ellison 204 

(2013), we do not advocate that counts less than the LOD be excluded or censored. Niemela 205 
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(1983) may have said it best: “it is foolish to disregard colony counts below [the LOD] if they 206 

happen to be the only ones available.”  Indeed, the practice of excluding data, in this case 207 

microbial counts, merely because the counts are below the LOD has led some to advocate that 208 

the LOD should not be used at all (Thompson & Ellison 2013). The LOD is a useful concept 209 

because it gives the microbiologist a measure of the minimum number of microbes in a sample 210 

that can be detected with high probability. Generally, a count of zero will occur in subsequent 211 

dilutions if a count of zero was found for the first dilution plated. Therefore, we will focus on 212 

counts only at the first dilution plated when determining a LOD. 213 

An approach to defining the LOD that focuses on controlling the probability of false 214 

positives (Type I errors) based on testing blanks (as proposed by Kaiser 1965) is not applicable 215 

to viability assays that count microbes. While some microbiological procedures would generate 216 

non-zero data from blanks (samples with no microbes), e.g., ATP or e-DNA assays, plate count 217 

assays would only generate zero CFU from blank samples (unless there was some 218 

contamination). Thus, a LOD based on Type I error control is not well defined and not an 219 

informative tool for microbiologists. Therefore, we use the LOD definition proposed by Currie 220 

(1996) that is nearly universal in chemistry that controls the probability of false negatives (Type 221 

II errors). 222 

 Our strategy is to adapt the Currie’s definition to microbiological plate count assays 223 

(AOAC 2006, ISO 2016). That definition (Equation (1)), when adapted to counting CFU, leads 224 

to Equation (2), where X is a random variable denoting the number of CFUs of microbes counted 225 

at the first plated dilution, L is the number of microbes in the original beaker, 𝛽 is the largest 226 

probability of incorrectly obtaining zero CFUs (specified by the microbiologist), and 𝐿original is 227 
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the LOD for the CFUs in the original sample of microbes, which is the minimum of all values of 228 

L that satisfy  229 

𝑃[𝑋 = 0|𝐿 = 𝐿original] ≤ 𝛽.  (2) 230 

Note that 𝐿original depends on 𝛽. For a probability of 𝛽 = 0.05, 𝐿original is the density of 231 

microbes in the original volume for which there is no more than a 5% chance of seeing zero CFU 232 

at the first plated dilution. This notation for the LOD utilizes a subscript to indicate the units. As 233 

we will see below, to calculate 𝐿original, first the LOD per plated volume, 𝐿plate, is calculated. 234 

2.3 Detection Limit Formulation 235 
 236 

LODs (𝐿original) can be found using Equation (2). Suppose X, the number of CFUs, is a 237 

Poisson random variable with rate parameter Ʌ. Occasionally, X can exhibit extra Poisson 238 

variability (Bliss and Fisher,1953; Jarvis 2016). To model this over-dispersion, we let Ʌ be a 239 

random variable. Suppose that Ʌ is distributed as a gamma random variable with parameters µ 240 

and coefficient of variation (𝐶𝑉). The 𝐶𝑉 is the standard deviation of Ʌ (σ) divided by the mean 241 

of Ʌ (µ): 𝐶𝑉 =
𝜎

𝜇
. To write the probability density function of Ʌ in shape-scale form, let 𝑑 =242 

1

𝐶𝑉2. Using the parameters d (shape) and 𝜏 =
𝜇

𝑑
 (scale; Bain and Engelhardt 1987), the probability 243 

density function of Ʌ is 244 

𝑓Λ(λ) =
λ𝑑−1𝑒−𝜆/𝜏

Γ(𝑑)𝜏𝑑
    245 

for 𝜆 > 0, 𝑑, 𝜏 > 0. The conditional distribution of X given Ʌ follows a Poisson distribution with 246 

probability mass function 247 

𝑓𝑋|Λ( x | λ) =
𝑒−𝜆𝜆𝑥

𝑥!
    248 
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for 𝑥 = 0, 1, 2, … The random variable X can then be shown to be from a negative binomial 249 

distribution with mean 𝜇 = 𝑑𝜏 and variance 𝑑𝜏 + 𝑑𝜏2 = 𝜇 +
𝜇2

𝑑
 (McCullagh and Nelder 1989):   250 

𝑓𝑋(𝑥) = ∫ 𝑓𝑋|Λ(𝑥|𝜆)𝑓Λ(𝜆)𝑑𝜆
∞

0
    251 

=
Γ(𝑥+𝑑)

Γ(𝑑)𝑥!
(

𝜏

𝜏+1
)

𝑥

(
1

𝜏+1
)

𝑑

  . (3) 252 

The term 
𝜇2

𝑑
  is the extra Poisson variability. Reparameterizing the function in Equation (3) using 253 

the shape and scale parameterization 𝑑 (shape) and 𝜇 = 𝑑𝜏 (scale), the distribution of X is 254 

𝑓𝑋(𝑥) =
Γ(𝑥+𝑑)

Γ(𝑑)𝑥!
(

𝜇

𝜇+𝑑
)

𝑥

(
𝑑

𝜇+𝑑
)

𝑑

   (4) 255 

where 𝑑 =
1

𝐶𝑉2.  256 

Let  257 

𝐿plate = 𝑘 × 𝐿original        258 

take the place of 𝜇 in (4). The quantity 𝐿plate is the LOD for CFU in the volume plated, u. The 259 

factor k is the dilution factor, k ≤ 1, to find 𝐿original, the LOD for CFU in the original volume V,  260 

 𝑘 =
𝑢

𝑉×10𝑓,       (5) 261 

where f  specifies the first (lowest) 10-fold dilution that was plated (f  is one of 0,1,2, …). If 262 

multiple plates are used at dilution f (as is commonly the case), then u is the total volume plated 263 

across all plates at dilution f, and X is the total number of CFUs counted in all plates at dilution f. 264 

Then, following equation (2), 𝐿plate is the smallest value satisfying the following equations: 265 

𝑃[𝑋 = 0] =  [
𝑑

 𝐿plate+𝑑
]

𝑑

≤ 𝛽 (6) 266 

⇒
𝑑

 𝐿plate+𝑑
≤ √𝛽𝑑

  267 
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⇒  𝐿plate = 𝑘 × 𝐿original ≥ (
𝑑

√𝛽
𝑑 ) − 𝑑 (7) 268 

where 𝑑 =
1

𝐶𝑉2. 269 

If Ʌ does not vary (i.e., if there is no over-dispersion), then 0CV , lim
𝑑→∞

𝜇2

𝑑
= 0 and X is 270 

a Poisson random variable with mean 𝐿plate. Thus, the LOD in the Poisson case is derived from 271 

𝑃[𝑋 = 0] = lim
𝑑→∞

(
𝑑

 𝐿plate + 𝑑
)

𝑑

= lim
𝑑→∞

(1 +
 𝐿plate

𝑑
)

−𝑑

= 𝑒− 𝐿plate 272 

which shows that 273 

  𝐿plate  = 𝑘 × 𝐿original ≥  − ln(𝛽). (8) 274 

The equations above are used to calculate the LOD when there is only a single replicate 275 

beaker/sample. To consider the LOD for a microbiological method that includes n independent 276 

beakers/samples, each subjected to a dilution series (in many cases, n = 3), then equation (6) is 277 

replaced by  278 

𝑃[𝑋 = 0 in all 𝑛 replicate beakers] =  [
𝑑

 𝐿plate + 𝑑
]

𝑛𝑑

≤ 𝛽 279 

where 𝑑 =
1

𝐶𝑉2. Equation (7) for finding the LOD when CFU counts follow a negative binomial 280 

distribution, when the coefficient of variation is non-zero (e.g., there is over-dispersion) is then 281 

replaced with  282 

 𝐿plate = 𝑘 × 𝐿original ≥ (
𝑑

√𝛽
𝑛𝑑 ) − 𝑑 (9) 283 

and equation (8) for finding the LOD when CFU counts follow a Poisson distribution is replaced 284 

with 285 

  𝐿plate  = 𝑘 × 𝐿original ≥  −
ln(𝛽)

𝑛
. (10) 286 
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2.4 Estimating the Coefficient of Variation 287 
 288 

When modelling extra-Poisson variability of CFUs using the negative binomial model as 289 

we do, it is necessary to estimate the 𝐶𝑉 for the particular microbiological system. The 290 

experimentalist may have to perform several experiments to collect CFU data to estimate the 𝐶𝑉. 291 

We propose an approach for estimating the 𝐶𝑉. Given J experiments with the same experimental 292 

settings and the same number of samples n in each experiment, the Poisson rate is estimated by 293 

𝜆̂𝑗 for each experiment by an arithmetic mean of the n counts if the same dilution was used for all 294 

samples, or otherwise by the weighted average described by Hamilton & Parker (2010). The 295 

mean and standard deviation of these rates are then estimated by 𝜇̂ =
∑ 𝜆̂𝑗

𝐽
𝑗=1

𝐽
⁄  and  𝜎̂ =296 

√∑
(𝜆̂𝑗 − 𝜇̂)

2

𝐽 − 1
⁄𝐽

𝑗=1 , respectively, and can be used to estimate CV with  𝐶𝑉̂ = 𝜎̂/𝜇̂. An 297 

expansion of this approach for a more accurate 𝐶𝑉 estimate, when J is large, is to use a 298 

bootstrapping procedure to find the mean and standard deviation of the sampling distribution of 299 

Λ (Efron and Tibshirani 1993).  300 

We demonstrate the approach to estimate the coefficient of variation, 𝐶𝑉,  using data 301 

from one of the labs in a study of Pseudomonas aeruginosa biofilms described in Goeres et al. 302 

(2019). In this study, there were six treatments (high and low levels of bleach, phenol, quat-303 

alcohol) and two sets of untreated controls, each with three replicate samples (n=3), two plates 304 

per sample (100µL per plate, u = 200µL), in each of three experiments (J=3). Each biofilm 305 

sample was put into a V=40mL original volume into which biofilm bacteria were harvested and 306 

homogenized. Plate counts were summed to give a total CFU count per treatment, sample, 307 

experiment combination and then scaled by dividing using 𝑘 =
0.2

40×10𝑓
 (Equation (5)). We 308 
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estimated the 𝐶𝑉 for each treatment and then estimated the LOD for experiments when there are 309 

n=1 and n=3 samples using 𝑑̂ =
1

𝐶𝑉̂2
 as in Equations (7) and (9). 310 

 311 

3. Results 312 

3.1 Calculating the LOD 313 
 314 

 LODs per plated volume (𝐿plate) were computed for varying values of the 𝐶𝑉 and Type II 315 

error rate (𝛽) using equations (7) and (8), see Table 1. To find the LOD, one must choose the 316 

desired probability of detection (1 − 𝛽 = power), the 𝐶𝑉 for the microbes being analyzed, and 317 

the dilution factor k. For example, suppose that one would like to have a probability of 𝛽 = 0.10 318 

of seeing no CFUs when there really are microbes present, and u=100µL is plated at the 0th 319 

dilution (f=0) from an original sample with volume V=10mL. Suppose that, when running the 320 

experiment, the 𝐶𝑉 = 0.2. For 𝐶𝑉 = 0.2 and 𝛽 = 0.10, the LOD in the 100uL plated volume is 321 

𝐿plate = 2.41195 (Table 1). To calculate 𝐿original, the LOD in the original volume, the dilution 322 

factor to use in equation (7) is 𝑘 =
0.1

10 ×100 = 0.01. Dividing 𝐿plate = 2.41195 by k=0.01 shows 323 

that 𝐿original = 241 CFUs is the LOD in the original volume. That is, for this experiment, there 324 

must be at least 241 microbes in the initial sample to have a 90% chance of seeing microbes at 325 

the 0th dilution. 326 

 327 



Table 1. Values of LOD for CFUs per volume plated, 𝐿plate  = 𝑘 × 𝐿original, for several combinations of the coefficient of variation 328 

(CV) for the Poisson rate parameter Ʌ ( CV = (SD of Ʌ)/(mean of Ʌ)), and the probability of a false negative 𝛽 (0.05 up to 0.65) (see 329 

Equations (5), (7) and (8)) with n=1 sample per experiment. 330 

 331 

β 

𝑪𝑽 𝒅 =
𝟏

𝑪𝑽𝟐
 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.367879 0.4 0.45 0.5 0.55 0.6 0.65 

2.0 0.25 40,000 2,500 494 156 64 31 16.41 13.40 9.52 5.85 3.75 2.48 1.68 1.15 

1.5 0.44 376 79 31 16.17 9.61 6.23 4.27 3.77 3.05 2.24 1.67 1.26 0.96 0.73 

1.0 1 19.00 9.00 5.67 4.00 3.00 2.33 1.86 1.72 1.50 1.22 1.00 0.82 0.67 0.54 

0.9 1.23 12.74 6.74 4.51 3.31 2.56 2.04 1.65 1.54 1.36 1.12 0.93 0.77 0.63 0.52 

0.8 1.56 9.07 5.26 3.70 2.81 2.23 1.81 1.50 1.40 1.25 1.04 0.87 0.73 0.60 0.50 

0.5 4 4.46 3.11 2.43 1.98 1.66 1.40 1.20 1.14 1.03 0.88 0.76 0.64 0.54 0.45 

0.2 25 3.18 2.41 1.97 1.66 1.43 1.23 1.07 1.02 0.93 0.81 0.70 0.61 0.52 0.43 

0.1 100 3.04 2.33 1.92 1.62 1.40 1.21 1.06 1.01 0.92 0.80 0.70 0.60 0.51 0.43 

0.0 Poisson 3.00 2.30 1.90 1.61 1.39 1.20 1.05 1.00 0.92 0.80 0.69 0.60 0.51 0.43 

332 
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One popular operational definition used by microbiologists is to define the LOD in the 333 

volume plated as  𝐿plate = 1 CFU (see Evers et al 2010, Magnani 2021, Sutton 2011) which, as 334 

pointed out above, is different than the recommended ranges for determining the number of 335 

colonies to count on a plate (e.g., 30-300; Ben-David and Davidson 2014). Under the Poisson 336 

model, this corresponds to 𝛽 = 0.37 (Table 1). This is a high error rate for observing zero CFU 337 

when there really are microbes in the sample compared to 𝛽 = 0.05 typically used in chemistry. 338 

In other words, stating the LOD as 𝐿plate = 1 CFU may be misleading. 339 

Figure 1 shows the probability mass functions (Equation (4)) for the microbial count data 340 

that provided the LODs of 𝐿plate = 3, 4.46 and 19.00 from Table 1 when the 𝐶𝑉 = 0, 0.5 and 1, 341 

respectively, when there is only n=1 sample and β=0.05. When 𝐶𝑉 = 0, then the count data 342 

follow a Poisson distribution, and the Poisson rate is 𝐿plate= 3 (i.e., LOD = 3 per plated volume). 343 

When the CFU data are distributed according to a negative binomial distribution with 𝐶𝑉 = 0.5 344 

and 1, the extra Poisson variability in the counts is evident by more severe right skew (i.e., 345 

thicker tails) and higher means of 𝐿plate = 4.46 and 19.00 (i.e., LODs of 4.46 and 19.00 per 346 

plated volume). In each of these cases, the probability of observing a zero count is β=0.05.  347 

 348 
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 349 

Figure 1. Distributions of the count data (CFUs) under Poisson (𝐶𝑉 =0 when LOD = 3 per 350 

plated volume) and negative binomial distributions (𝐶𝑉 =0.5, 1 when LOD = 4.46, 19 per plated 351 

volume respectively) that were used to compute some of the LODs in Table 1 when there is n=1 352 

sample and the Type II error is β=0.05. 353 

 354 
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To make clear the effect on the LOD by increasing the plate volume, we consider the 355 

LOD per mL by dividing the LOD per plated volume (𝐿plate) by the dilution and volume plated 356 

(u): LOD per mL is 
𝐿plate

𝑢×10𝑓
. Experimentalists can decrease the LOD per mL by plating the f=0th 357 

dilution and increasing the volume plated, commonly done by using multiple plates at each 358 

dilution (see Equations (5), (7) and (8)), and by increasing the number of independent replicate 359 

samples n (Equations (9) and (10)). The latter point is relevant because microbiological methods 360 

usually include more than n=1 replicate sample. Changes in how the LOD per mL for different 361 

volumes plated (u), different numbers of independent samples (n), and differing values for the 362 

𝐶𝑉 are depicted in Figure 2. The results displayed in Figure 2 illustrate the LOD per mL when 363 

the counts for each sample follow a Poisson distribution (Figure 2(a); i.e., 𝐶𝑉 = 0 and Equation 364 

(10)); when the counts for each sample exhibit moderate extra-Poisson variability (Figure 2(b); 365 

i.e., 𝐶𝑉 = 0.5 and Equation (9)); and when the counts for each sample exhibit a high level of 366 

extra Poisson variability (Figure 2(c); i.e., 𝐶𝑉 = 1 and Equation (9)). For example, when a 367 

single beaker/sample (n = 1) is assessed in an experiment resulting in 0 CFUs in a single 100µL 368 

plate volume, the LOD per plated volume is Lplate= 3 CFU/(100uL) (Table 1) when the counts are 369 

Poisson (𝐶𝑉 = 0), depicted by the black curve in Figure 2(a) as the LOD = 30 CFU/mL. The 370 

LOD decreases to 15 CFU/mL when there are zero CFUs in the 100uL plate volume in each of n 371 

= 2 independent samples, and decreases further to 10 CFU/mL when there are zero CFUs in the 372 

100µL plate volume in each of n = 3 independent samples (black curve in Figure 2(a)). Note that 373 

the 100µL plate volume can be attained by either spread-plating 100uL or by drop plating ten 374 

10µL drops. Other common plating volumes are also considered in Figure 2. The 200µL plate 375 

volume can be attained by spread-plating 100µL in each of 2 plates at the f=0th dilution for each 376 

independent beaker/sample. The 2mL plate volume can be attained by spread-plating 1mL in 377 
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each of 2 plates at the f=0th dilution for each independent beaker/sample. The LOD is 378 

substantially reduced when using microbiological methods that utilize n=3 independent replicate 379 

samples with a 1mL volume plated at the lowest dilution (f = 0). Higher values of 𝐶𝑉 (i.e., higher 380 

over-dispersion) lead to higher values of the LOD (Figures 2(b) and 2(c)). 381 

  382 
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 383 

Figure 2. The LOD per mL as a function of the number of replicate samples and the volume 384 

plated (u = 100µL, 200µL, 1mL, 2mL) at the f=0th dilution with 𝛽=0.05. (a) CFUs follow a 385 

Poisson distribution (𝐶𝑉 = 0); (b) CFUs follow a negative binomial distribution with 𝐶𝑉 = 0.5 386 

(i.e., moderate over-dispersion); (c) CFUs follow a negative binomial distribution with 𝐶𝑉 = 1 387 

(i.e., high over-dispersion). 388 
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3.2 Case Study for Estimating the Coefficient of Variation 389 
 390 

 391 

P. aeruginosa biofilms with high density of about 109 CFU/sample were grown in a high 392 

shear environment (Goeres et al. 2019). Six treatments were applied to these dense biofilms over 393 

3 experiments, and the CFUs per sample after treatment were recorded. We used data from a 394 

single lab to estimate the Poisson rate (i.e., the mean CFU, see Methods section) for each 395 

experiment and treatment combination from which we estimated the rate mean (𝜇̂), rate standard 396 

deviation (𝜎̂) and 𝐶𝑉 as 𝐶𝑉̂ = 𝜎̂/𝜇̂  (Table 2). For example, the means (Poisson rates) for the 397 

three high level bleach experiments were 8.74×104 CFU/sample, 6.1×106 CFU/sample, and 398 

1.16×104 CFU/sample. The mean of these three values is 𝜇̂= 2.07×106 and the standard deviation 399 

of these three values is 𝜎̂ = 3.49×106 which gives 𝐶𝑉̂=2.07×106/3.49×106 = 1.69 (Table 2). This 400 

𝐶𝑉̂ was used to estimate the LOD per plated volume when there are either n=1 or n=3 replicate 401 

samples in a study. 402 

The 𝐶𝑉̂ values for the six treatments ranged between 0.14 and 1.69 for this data set. The 403 

𝐶𝑉̂ and LOD values were largest for the high level of bleach and 𝐶𝑉̂ and LOD generally 404 

decreased as the number of CFUs after treatment either decreased or increased (i.e., as 405 

antimicrobial efficacy deviated from a log10 reduction around 3). Such a ‘frown-shaped’ 406 

relationship is similar to that found by Parker et al. (2018) when studying biofilm, dried surface, 407 

and sporicide tests. Interestingly, even though a higher concentration of Phenol happened to be 408 

more efficacious, on average, against these biofilms compared to the high concentration of 409 

bleach, there were always CFUs after treatment recovered from the plated volumes after the 410 

phenol treatment. Hence, the high efficacy quat-alcohol and bleach treatments for which there 411 

were many zero counts (6/9 samples (66%) and 4/9 samples (44%), respectively) are most 412 
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pertinent to calculating the LOD. The associated 𝐶𝑉̂ values were 𝐶𝑉̂𝑞𝑢𝑎𝑡−𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 0.88 and 413 

𝐶𝑉̂𝑏𝑙𝑒𝑎𝑐ℎ = 1.69 from which the LOD per plated volume was 𝐿plate = 11.6 CFUs and 1830 414 

CFUs in a single sample, respectively. When the plated volume is u = 200µL (as occurs when 415 

there’s 100µL in each of two plates as occurred in the biofilm case study) and when the original 416 

volume that contained the biofilm sample is V=40mL (as occurred in the biofilm case study), 417 

then the LOD per sample is 𝐿original =
𝐿plate

𝑘
=

11.63

.2/40
= 2,326 CFUs and 𝐿original =

𝐿plate

𝑘
=418 

1830.10

.2/40
= 366,020 CFUs, respectively (Equation (5) and Equation (9)). 419 

 420 

  421 
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Table 2. For six treatments against biofilms (Goeres et al. 2019), percentage of the 9 samples for 422 

which CFU=0 was observed, estimates of the CFU mean, standard deviation (SD), coefficient of 423 

variation (𝐶𝑉), and LOD per plated volume (𝐿plate) when for n=1 and n=3 and 𝛽=0.05. 424 

Treatment CFUs per sample LOD 

Level Antimicrobial 

% 

Samples 

with 

CFU=0 Mean (𝝁̂) SD (𝝈̂) 𝐶𝑉̂ n=1 n=3 

High 

Quat-alcohol 66% 6,854 5,997 0.88 11.63 1.50 

Phenol 0% 320,054 254,928 0.80 8.97 1.39 

Bleach 44% 2,066,354 3,493,446 1.69 1830.10 5.72 

Low 

Quat-alcohol 0% 10,170,009 15,771,823 1.55 559.21 4.17 

Phenol 0% 3,638,667 4,087,610 1.12 33.95 2.00 

Bleach 0% 7,735,015 7,229,797 0.94 14.53 1.59 

Untreated 
Control 0% 1,574,285,714 531,039,284 0.34 3.57 1.06 

Control 0% 2,020,000,000 289,367,126 0.14 3.09 1.01 

 425 

  426 
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4.  Discussion 427 

 Although we focused on counting CFUs, the techniques presented here can be applied to 428 

any counting process in any field of science. For example, when imaging microbes using high 429 

magnification microscopy, one may not observe any microbes in the small field of view 430 

observed. In this scenario, the Poisson model indicates that the LOD is 3 microbes per field of 431 

view (Table 1). An LOD = 3 has been reported by others when applying the Poisson distribution 432 

to define the LOD for counting processes (AOAC 2006, ISO 2016, Koenig 2021). If the field of 433 

view is 250um x 250um and the surface area of the sample is 1cm2, then a calculation similar to 434 

equation (5) shows that LOD = 3 ×
1

0.0252 = 4800 microbes spread randomly over the entire 435 

1cm2 surface of the original sample leads to a small likelihood of observing no microbes in the 436 

one field of view (with probability β=0.05). As we have seen, if there is extra-Poisson variability 437 

in the distribution of microbes over the surface, then the LOD can be much higher. 438 

In 1996, Currie proposed precise mathematical definitions for LODs (Equation (1)). 439 

Currie also provided equations for “the very special circumstances where the distribution of 𝐿̂  440 

can be taken as Normal.” Currie left readers to decide what distribution is best for their purposes 441 

indicating how the definition of the detection limit is dependent on expert opinion concerning the 442 

probability model. Because of the severe right skew in the CFU distribution and the hard lower 443 

limit at CFUs=0, normal distribution theory does not apply to CFU counting. The Poisson and 444 

negative binomial distributions accommodate these distributional constraints when modeling 445 

CFU data (as we did in equation (6)). We plotted these distributions for three different 𝐶𝑉 values 446 

and 𝛽 = 0.05 in Figure 1. Currie and others have presented analogous figures for normally 447 

distributed data (Currie 1996, Thompson and Ellison 2013).  448 
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It is expected that the coefficient of variation in the negative binomial model will be zero 449 

if the microbes are disaggregated and perfectly mixed in the initial density. No clustering and no 450 

variation in pipette volumes suggest that there would be no additional variability and thus in this 451 

scenario the CFUs will follow a Poisson distribution. If there is extra-Poisson variability, we 452 

have assumed that the Poisson rates (Λ) vary from experiment to experiment according to a 453 

gamma distribution which results in the CFU counts following a negative binomial distribution 454 

and larger LODs. It is conventional to use the negative binomial distribution to represent extra-455 

Poisson variation in microbiology (Jones et al. 1948, Gonzalez-Barron et al. 2010). 456 

Others have modeled dilution series count data using non-Poisson distributions. Ben-457 

David & Davidson (2014), Garres et al. (2019) used a binomial distribution. Jongenburger et al. 458 

(2010) proposed modeling extra-Poisson variability with a normal distribution. Polese et al. 459 

(2021) used a generalized-Poisson distribution and Garres et al. (2022) used a hierarchical 460 

Poisson-normal distribution. Gonzalez-Barron et al. (2010) modeled count data using the 461 

negative binomial distribution as we do here, in addition to using zero-inflated Poisson and zero-462 

inflated negative binomial models. These models could be used to calculate LODs while 463 

accounting for extra-Poisson variability, although we are not aware that this has been reported in 464 

the literature. Two notable exceptions include Christen & Parker (2020) who used a hierarchical 465 

binomial-log-normal model to model count data and calculate LODs and Duarte et al. (2015) 466 

who used a Poisson-zero-inflated-log-normal model to model counts and calculate LODs. 467 

However, both Christen & Parker (2020) and Duarte et al. (2015) used LOD definitions different 468 

than that espoused by Currie (1996) as we do here. Interestingly, Duarte et al (2015) and Garre et 469 

al (2022) advocate for the use of the negative binomial model for analyzing microbial 470 

enumeration data. We used the negative binomial model to calculate LODs.  471 
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There are several methods for estimating the coefficient of variation (𝐶𝑉) in practice 472 

when modelling extra-Poisson variability using the negative binomial model. We proposed a 473 

method with a possible extension using bootstrapping. This approach provides a straightforward 474 

method for computing the 𝐶𝑉̂ using simple means and standard deviations without the need for 475 

applying specialized software. Other approaches to estimating the 𝐶𝑉 would be to directly model 476 

the CFU data using a negative binomial or a zero-inflated negative binomial model. In the former 477 

case the 𝐶𝑉 is estimated as the square root of the inverse of the shape parameter (𝐶𝑉 = 1 √𝑑⁄ ). 478 

In our experience, small samples sizes and zero CFUs may adversely impact the accuracy and 479 

precision of the estimates and model convergence. The best approach to estimating the 𝐶𝑉 is a 480 

topic for future research. Some processes have been run for many years and so the 𝐶𝑉 may be 481 

estimated using the approach we describe. Given little information on the experimental study 482 

conditions (e.g., for a new microbe under study), experimentalists can choose a smaller value of 483 

the 𝐶𝑉 in experiments where there is little over-dispersion expected (i.e., random microbe 484 

distribution that may occur when studying planktonic bacteria) or a greater value of the 𝐶𝑉 when 485 

more over-dispersion is expected (i.e., when the microbe distribution is expected to have more 486 

clumps that may occur when studying biofilm bacteria). Using CFU data from a biofilm study 487 

(Goeres et al. 2019) of six different treatments, estimates for the 𝐶𝑉 ranged from 0.14 to 1.69 for 488 

efficacious treatments. For the highly effective treatments applied to these biofilms that resulted 489 

in CFU=0 in many samples, the 𝐶𝑉 estimates were large, at 0.88 and 1.69. That is, 490 

overdispersion was high when counting CFUs from biofilm assays. Based on previous 491 

observations that biofilm assays are more variable (Parker et al. (2018)), we conjecture that 492 

overdispersion is lower (i.e., 𝐶𝑉 will be smaller) for assays that study planktonic bacteria and 493 

bacteria dried onto surface. 494 
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5. Conclusions 495 

We propose an approach, based on the negative binomial distribution, for determining the LOD 496 

for any quantitative method that counts microbes, whether from plates, filters, or microscopy. 497 

This approach accounts for extra-Poisson variation that could occur as a result of technical or 498 

microbiological variations. The extra-Poisson variation is quantified by a coefficient (CV) of 499 

variation that we illustrate how to calculate using real data. 500 

  501 
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