
Notice: The HealthyCloud project has received funding from the European Union’s Horizon 2020
research and innovation programme under the grant agreement Nº965345

 2021 HealthyCloud Consortium Partners. All rights reserved.

D5.2 Analysis of existing orchestration
mechanisms for distributed

computational analyses including a
general overview to facilitate new

developments

Document Information

Contract Number 965345

Project Website http://www.healthycloud.eu/

Contractual Deadline M18, August 2022

Dissemination Level PU

Nature R

Author(s) Rosa M Badia (BSC)

Contributor(s)

Reviewer(s)
Marco Roos (LUMC), Harald Wagener
(CHARITE)

Keywords
Workflow environments, orchestration,
distributed computing

Ref. Ares(2022)6037442 - 31/08/2022

D5.2 Analysis of existing orchestration mechanisms...

1

Change Log

Version Author Date Description of Change

V0.1 Rosa M Badia 05/07/2022 Table of Content

V0.2 Rosa M Badia 19/07/2022 First version

V0.3 Rosa M Badia 26/08/2022 Version after review by Harald Wagener

V1.0 Rosa M Badia 29/08/2022 Version after reviews

 (Final Change Log entries reserved for releases

to the EC)

D5.2 Analysis of existing orchestration mechanisms...

2

Table of contents

Executive Summary 3

1. Introduction 4

2. Methodology 4

3. Overview of existing orchestrator environments 6

4. In-depth analysis of selected orchestrator environments 9

5. Conclusion (if applicable) 18

Annex I – Orchestration environments questionnaire 19

Annex II – Agenda first workshop 21

Annex III – Agenda second workshop 22

Acronyms and Abbreviations 23

D5.2 Analysis of existing orchestration mechanisms...

3

Executive Summary
This deliverable is the output of task 5.2 Understanding the challenges for
distributed computational analysis across Europe. The task activities started
defining a set of aspects for which the project would like to investigate their status
in existing workflow and orchestrator systems. These aspects relate to the
distribution of data and computation, to the support to sensitive data, and to the
support for data provenance and reproducibility. In addition to questions related to
these topics, other generic questions were put all together. An initial classification
of workflow environments and orchestrators was also done, and from there the task
searched for information about the different systems. The information was
provided in some cases by project partners, in other cases by system owners and in
other cases fetched by partners from websites or other sources of information.

From this initial catalogue, the partners involved in this activity selected the most
promising ones that were invited to present in two workshops. The workshops were
online and organized quite informally, but enabled a lot of discussion and provided
in-depth information on the topics more relevant to the project.

The information collected in the two phases of the task (catalogue elaboration and
workshops) is summarized and analysed in this deliverable.

D5.2 Analysis of existing orchestration mechanisms...

4

1. Introduction
The work has been developed on the framework of the WP5 Designing a
decentralized cloud for health data research. This work package aims to deepen
knowledge and establish scenarios on the technological challenges for enabling an
information and communications technology (ICT) infrastructure that allows secure
access to sensitive health research data across Europe. Such infrastructure will be
decentralised by design covering a broad range of infrastructures including public
and private cloud, edge, high-performance computing as well as on-premises
computing.

Another important layer of complexity to take into account is the deployment of
analytical software resources and the execution of workflows across the different
computational instances taking into consideration all the legal and ethical
limitations imposed by European regulations (GDPR) and existing national
legislations.

More specifically, this deliverable is the output of task 5.2 Understanding the
challenges for distributed computational analysis across Europe, which aims at
surveying the existing orchestration mechanisms, e.g workflows managers, that
enable distributed data-centric analysis for health research. The task has performed
a general revision of the different aspects in distributed health applications, such as
data and computation distribution, management of sensitive data, and how are
they approached in the orchestration mechanisms. An important aspect that has
also been considered in the task is how to handle properly data provenance as data
transformation is an essential part of analysis reproducibility.

Section 2 presents the methodology used in the preparation of this deliverable,
section 3 gives an overview of existing workflow and orchestration systems, section
4 presents with more detail some of the environments that were presented in the
workshops organized by task 5.2 and section 5 concludes the deliverable.

2. Methodology
With the goal of surveying the existing approximations (workflow environment and
orchestrators) that can enable a distributed data-centric analysis for health
applications, the following set of activities were performed:

1. Definition of the classification and information that it would be queried for
each workflow environment or orchestrator

2. Identification of existing environments and systems and obtention of
answers for the different fields

3. Identification of environments that were more promising for the project
purposes

4. Organization of workshops with stakeholders to obtain more in-depth
information

D5.2 Analysis of existing orchestration mechanisms...

5

5. In-depth analysis of the results

The first activity consisted of defining a classification for the different environments.
The following categories were defined: a) application oriented, b) infrastructure
oriented, c) container environments and d) job managers. In addition, a set of
questions to be answered for each environment was defined, that included more
general questions such as website, license, user community, or maturity level, plus
other more specific to the purposes of the project:

 Whether it has been used with health data and which data was used
 If it provides support for distributed data and a short summary of how this

is achieved
 If it provides support for execution in multi-domain computing

infrastructure
 If it provides support for sensitive data and how this is dealt
 Whether it provides support for reproducibility/provenance and with which

mechanisms (i.e., containers, etc)

An online spreadsheet was set-up to include all information.

While the list of potential workflow environments and orchestrators is very long1,
the project partners identified environments that could be relevant for the project
purposes.

The answers to the questions about the different systems were provided in some
cases by the project partners and in other cases a questionnaire was sent to the
tools owners (see Annex I) to collect the answers.

Once this step was finished, we did a selection of the workflow environments and
orchestrators that we considered more relevant for the project goals. In this sense,
the answers to the specific project-related questions were considered.

Two rounds of workshops were organized with invited speakers from the relevant
selected systems. See Annex II and Annex III the agendas of the workshops. In each
of the workshops, the speakers were asked to do a concise presentation of their
systems, focusing on the following points:

 Overview of the tool

 How distributed data and computation is managed

 How sensitive data is managed

1 https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-
Workflow-systems

D5.2 Analysis of existing orchestration mechanisms...

6

 Overview of how reproducibility/provenance is handled

 Description of 1-2 success stories

In addition to the presentations, sessions of questions and answers were held after
each presentation and a final discussion session.

We acknowledge Paolo di Tommaso (Seqera Labs), Ivo Buchhalter (DKFZ), Daniele
Spiga (INFN), Daniele Lezzi (BSC), Karan Vahi (ISI, USC), Tamas Kiss (UOW), Iacopo
Colonnelli (UNITO), and Jose M Fernandez (BSC) for contributing to the workshops
with their presentations and fruitful discussion.

3. Overview of existing workflow and orchestrator
environments

Distributed computing has been evolving in the recent years and growing in
complexity. The old grid computing environments, composed of a set of computing
servers distributed geographically were superseded by the cloud computing
paradigm, which together with supercomputers and large clusters provide
computing and data intensive systems for a wide category of scientific and industrial
applications. However, the current scene for distributed computing does not only
consider the large computing systems, but also IoT (Internet of Things) devices, like
sensors or large instruments, and also devices on the edge that can be both sources
of data and provide computation capacities. In this sense, the term computing
continuum has been defined as the infrastructure that considers all these devices.

Applications have also evolved to leverage these complex infrastructures, becoming
over time more complex and demanding on the software underlying that needs to
support their execution. A special type of applications are the workflows, that
combine different components providing diverse functionalities which may
exchange large number of data items. Workflows require complex management
systems to orchestrate their execution in distributed computing infrastructures.

As previously mentioned, workflow management systems and orchestrators in
general can be classified as follows:

 Application oriented: environments that offer a developer interface for
workflow applications. The type of interfaces can be graphical, textual or
programmatic. Some environments focus in specific areas of application.
Initially, we further decomposed this category in application specific areas
such as health oriented, life sciences oriented or application agnostic.
However, a single category was decided later since this was not so relevant
to the purposes of the task. Examples of this category are NextFlow,
PyCOMPSs, Pegasus or StreamFlow.

 Infrastructure oriented: this category includes environments that enable
the orchestration of distributed computing systems, enabling to manage the
whole lifecycle application: deployment, execution, data stage-in and stage-

D5.2 Analysis of existing orchestration mechanisms...

7

out, and undeployment. In this sense, some Application oriented
environments can be delegating some or all of these functionalities to an
infrastructure-oriented orchestrator. Examples of this category are the
Infrastructure Manager, Yorc, or Occopus.

 Container environments: Container environments are a special type of
infrastructure-oriented systems that enable the management of
applications through the use of containers. Per se, a container environment
is not an orchestrator, but some support container orchestration, such as
Micado or Kubernetes.

 Job managers: In this category we consider those systems that manage the
batch execution of applications in large clusters or supercomputers through
queues. Some of these systems offer primitive workflow management,
enabling to define that a job should run only after the completion of a
previous one, for example. Examples of job managers are Slurm, LSF or grid
engine.

From the set of systems considered, the following include features that were more
interesting for the project purposes (application oriented systems are shown in blue
and infrastructure oriented orchestrators are shown in orange):

System
name

Support for
distributed data

Support for
execution in
multi-domain
computing
infrastructure

Support for
sensitive data

Support for
reproducibility/
provenance

One Touch
Pipeline (OTP)

N
N

Y, internal user
management
that is
propagated to
the file system
using unix
groups

Y, versioned
workflows and
configurarions

PyCOMPSs

Y, load and data is
distributed between the
different worker nodes.
Locality is exploited to
reduce data transfers

Y

Y, if used with
dataClay, which
can manage
different user
profiles

Y, support for
containers, tasks in
containers and the
whole application
in a container.
Provenance
provided through
RO-Crate

DODAS

Y, includes deployment of
embedded caching layer
close to the compute
resources

Y
N, it relies on iso-
certified
providers.

Y, support for
docker container
both for batch and
interactive
execution

D5.2 Analysis of existing orchestration mechanisms...

8

Galaxy Y Y

Yes. Norway
(TSD) and the
broad have
Galaxy running in
those settings.

Yes. Galaxy is
hosting and
creating all the
containers of
BioContainers. All
provenance is
captured in a
relational
database.

Parsl

Y, supports a variety of data
staging mechanisms to
move data between storage
locations and usage
locations where tasks run,
including transparent
movement of Python
objects and file transfer
using scp, ftp, http, and
Globus

Y, in
experimental
usage, and with
some issues in
production
usage; funcX
(which integrates
with Parsl) is
more reliable for
this use case

N

Y, supports
containers,
monitoring system
captures
information about
workflow
execution

Pegasus

Pegasus adds data
management tasks into the
workflow that are
responsible for retrieving
data required for the jobs in
the workflow from various
data sources. Supported
endpoints are HTTP, FTP,
GridFTP, Globus Online,
SCP, StashCache, HPSS, S3,
Google Cloud Storage, etc.

Yes, workflows
are regularly run
on Open Science
Grid (OSG) and
LIGO Data Grid  
composed of
multi-domain
clusters.
Workflows can
also run in hybrid
edge-cloud 
computing
infrastructures.

Yes, runtime
provenance stored
in database, and
also monitoring
information stored
in backends.
Reproducibility:
users can specify
containers that are
required. Pegasus
automatically
deploys the
containers to the
computing nodes.

D5.2 Analysis of existing orchestration mechanisms...

9

StreamFlow

Y, automatically manages
data transfers between
subsequent workflow steps,
without the need of a
unique shared data space.

Y, can deploy
environments,
transfer data and
offload
computation to
HPC queue
managers, Cloud
VMs and
container
orchestrators
also in the
context of a
single workflow
execution.

Partial, supports
secure data
movements
through
encrypted
channels and a
detailed control
of the
information flow
by letting users
explicitly
modelling the
mapping
between
workflow steps
and executing
locations.

Y, supports
container
executions for
portability of
results. The explicit
inclusion of a
deployment/conne
ction plan for the
execution
environment
fosters
reproducibility and
reusability. Finally,
provenance is
enabled by storing
details about
workflow
execution.

Infrastructure
Manager

N, not natively but any
distributed system can be
configured in the
infrastructure template.

Y

N, not natively
but it can be
configured in the
infrastructure
template.

Y, Using the IaC
paradigm the same
infrastructure can
be reproduced.

Elastic
Compute
Cluster EC3

N, not natively but any
distributed system can be
configured in the
infrastructure template.

Y

N, not natively
but it can be
configured in the
infrastructure
template.

Y, Using the IaC
paradigm the same
infrastructure can
be reproduced.

Indigo-PaaS

Y, includes native support
for Onedata. Any other
distributed system can be
configured in the TOSCA
template.

Y

N, not natively
but it can be
configured in the
TOSCA template.

Y, Using the IaC
paradigm the same
deployment can be
reproduced.

A subset of these systems was selected for further discussion and analysis in the
workshops. The systems presented in the workshops depended, also, in the
availability of the system owners.

4. In-depth analysis of selected workflow and orchestrator
environments

The section will compare the selected orchestrator environments especially with
regard those features that are more relevant to the project and analyse the
workshop results.

D5.2 Analysis of existing orchestration mechanisms...

10

An overview of the systems presented in the workshops is given below.
Presentations about Galaxy and SnakeMake were initially planned, but did not take
place due to final unavailability of speakers.

NextFlow2

NexFlow implements a DSL on top of a workflow management system and enables
to orchestrate and parallelise the execution. It scales to different infrastructures
and leverages containerization. Tasks can be encapsulated into containers, with
support for multiple container technologies (Docker, Singularity, ...) and support for
multiple job/cloud schedulers and infrastructures (Google cloud, AWS, Grid engine,
Slurm, Azure, Kubernetes).

An open-source version is released under license Apache v2. A commercial version
is distributed as NextFlow tower3.

Distributed data and computing is managed with the task-based paradigm. In
NextFlow, tasks are self-contained work units with no side-effects. Communication
across tasks is achieved through asynchronous messages. Scheduling of tasks is
delegated to the execution platform (each task is submitted as a job to the job
scheduler). Data is stored in a shared file system or Object storage.

Sensitive data is delegated to target cloud/infrastructure solution: AWS S3/KMS for
server-side encryption with custom keys. A secret manager has recently been added
that allows safe handling of passwords and credentials in the user pipeline.

Provenance and reproducibility is based on the use of a unique ID per task
computed as a 128 bit hash, which is used to create the task working directory. The
data generated by the task is stored in this directory. Reproducibility is supported
by containerisation together with built-in support for version control and
management based on the commonly used git software suite for version control.

One Touch Pipeline (OTP)4

One Touch Pipeline (OTP) is a data management platform for running bioinformatics
pipelines in a high-throughput setting, and for organising the resulting data and
metadata. OTP automates the complete digital process from import of raw
sequence data, via alignment and identification of genomic events, to notifying
project members their analyses are finished. OTP is not a workflow manager itself
and provides an interface with workflow environments (WES). Current supported

2 https://nextflow.io
3 https://tower.nf
4 https://gitlab.com/one-touch-pipeline/otp

D5.2 Analysis of existing orchestration mechanisms...

11

workflow managers are Roddy (native support), Snakemake and NextFlow (last two
through the WES interface). OTP only supports the execution in clusters.

OTP is project based: a project is set-up with different metadata. A project may have
users, with different roles and rights and can give different rights for files to
different users.

Project information is stored in a database, which is uses to generate statistics.
Support for in sensitive data is provided through third parties: The environment OTP
runs in has to be secure. Reproducibility is supported by enabling workflow re-run
through the data stored in the database. OTP is offered under the MIT license.

Dynamic On Demand Analysis Services (DODAS)5

DODAS (Dynamic On Demand Analysis Service) is an open-source Platform-as-a-
Service tool, which allows to deploy software applications over heterogeneous and
hybrid clouds. DODAS is currently part of the EGI-ACE Service portfolio.

DODAS aims to be an experiment agnostic cloud enabler for scientists seeking to
easily exploit distributed and heterogeneous clouds to process, manipulate or to
generate simulated data. One of the major drivers of DODAS is to reduce as much
as possible the learning curve, as well as the operational costs of managing
community specific services, while running on Cloud.

DODAS supports distributed compute resources, with different flavors: batch-like,
interactive and quasi-interactive. High-level federation of resources is done via HT-
Condor orchestrated via Kubernetes, with support for hybrid resources (HTC-HPC
and Cloud), and cloud orchestration through INDIGO-PaaS, which coordinates the
provisioning of virtualized compute resources on both private and public Clouds.

Data management supports object storage (S3) via MinIO, and POSIX-like file based
storage is also supported, connected to high-level application layers. A caching
solution for CDN is implemented with Xrootd and MinIO.

Modern federated identity management for AAI is supported through INDIGO-IAM
(i.e allows to federate EGI Check-in). Software distribution is done via CVMFS and
containers (i.e. Docker, Singularity).

DODAS per se does not implement anything specific for sensitive data. Relies on
Enhanced Privacy and Compliance Cloud (EPCC).

5 https://dodas-ts.github.io/dodas-apps/

D5.2 Analysis of existing orchestration mechanisms...

12

Data provenance is supported via MinIO metadata and user defined metadata
enrichment. Reproducibility is supported through workflow automation based on
triggers and events.

DODAS relies on services which software is under Apache 2.0 License.

PyCOMPSs6

PyCOMPSs is a task-based programming model that enables the parallel execution
of workflows in distributed computing infrastructures. PyCOMPSs enables to have
the application code independent of the infrastructure: same code can run with
different back-ends: cloud, HPC, etc. It supports multiple cloud and container
environments.

The data distribution supports both data stored on local file systems and shared file
systems. The runtime performs the necessary data transfers (both objects in
memory and files) between nodes, giving the illusion of a single large file system or
memory.

PyCOMPSs offers support for persistent storage: objects in persistent memory are
accessed as regular objects. Through dataClay supports different user profiles which
can be used to implement support for sensitive data

There is ongoing work in the integration with Trusted Execution Environments
through Scone (TUD). All communications from containers are encrypted.

Provenance is supported thanks to a recent development based on RO-CRATE. A
logger registers unique accesses to files and directories, to automatically identify
inputs and outputs of the workflow. A post-process extracts the information to
generate the RO-Crate (using ro-crate-py library).

Reproducibility is under development, through the HPC Workflows as a Service
(HPCWaaS) paradigm. HPCWaaS will enable workflows to be defined by developers
and later instantiated and executed by users. The technology is based on
containerization of all the components.

PyCOMPSs is provided under Apache v2 license.

Pegasus7

The Pegasus project encompasses a set of technologies that help workflow-based
applications execute in a number of different environments including desktops,

6 compss.bsc.es
7 http://pegasus.isi.edu

D5.2 Analysis of existing orchestration mechanisms...

13

campus clusters, grids, and clouds. It supports the separation between workflow
description and workflow execution. In addition, it offers tools for task execution -
monitoring, debugging, fault tolerance…

Pegasus involves three different components: the Pegasus planner which maps
workflows to infrastructure, the DAGMan workflow engine that manages
dependencies and reliability and the HTCondor scheduler/broker which is used as a
broker to interface with different schedulers.

Pegasus is deployed with a workflow submit node and one or more compute sites.
With regard data, it differentiates between input sites, that host input data, and
data staging site, which coordinates the data movement for the workflow.

Is also offers the Pegasus-transfer tool, with support for multiple protocols for data
transfer (http, scp, gridftp, …) which also does credential management.

Pegasus supports provenance by tracking at run-time information about the
workflow execution. It gets information from the workflow logs tracking
information about the jobs and stores this information in a relational database. It
also supports real-time monitoring with the Pegasus dashboard.

Pegasus does not provide any specific support for sensitive data and it is highly
dependent on the actual environment. Also, it does not support for
encryption/decryption. It has support for secure protocols to transfer data (can use
scp, s3, ssh, gridftp).

Pegasus provides comes an end-to-end integrity checking that ensures data does
not get corrupted in transit. This tool performs integrity checksums on input files
before job starts with support for sha256 checksums. Is able to detect failures amnd
a job failure is triggered if checksums fail.

Reproducibility is natively supported from the workflow description. Support for
containers is also provided: users can use containers with their executable
preinstalled (each job runs in a container). Support for multiple container
environments is provided.

Pegasus is provided under Apache v2 license.

Micado8

Micado is a cloud orchestrator aiming at giving support to reusable microservices
that communicate between each other.

8 https://micado-scale.readthedocs.io/

D5.2 Analysis of existing orchestration mechanisms...

14

Micado aims at giving support when deploying applications and to dynamically
adjust the execution. Provides automated application deployment based on TOSCA-
based descriptions (topology and policies) and automated scaling based on highly
customisable scaling policies. It supports scaling at container and virtual machine
levels. It also comes with advanced security settings.

Microservices are deployed into the cloud based on the topology and (TOSCA
description). After deployment the status of the application is monitored. Based on
the monitoring the environment can be changed, taking into account the specified
scaling policies. If running out of resources, new resources can be allocated.

It relies on different tools and environments. Cloud orchestrators: Terraform or
Occopus; Containers: Kebernetes (Swarm also, but not used now); Monitoring:
Prometheus. Micado components include a Submitter, a Policy Keeper and a
machine learning Optimiser.

The distribution aspects in Micado are based on the microservice architecture. For
computation it provides support for multi-cloud and edge/fog applications.,
including portability between multiple clouds. Data distribution supports solutions
native to Kubernetes and Terraform. However, applications are responsible for
moving the data and computation is driven by the microservices invocation. The
support for Edge works the same as with the cloud.

Micado implements some advance security solutions, with user authentication and
authorization and secret management in master node (via Hasicorp Vault). Also, it
uses kubernetes secret in the worker node.

Sensitive data is not handled by default, but they have given support to a specific
use case in hospitals, with security solutions to manage sensitive data and deployed
with Micado.

In addition to the microservices execution, Micado can be configured to support
batch job execution. It is implmented with the JQueuer manager that receives a json
description. Micado supports the execution of a number of jobs in a number of
workers that can be scaled.

Reproducibility is not a strong point, with no direct support. Although a rich set of
monitoring information is collected, it is not currently stored. There is a potential to
extend with provenance support, e.g. via ProvToolbox.

Micado is provided under Apache v2 license.

StreamFlow

StreamFlow provides runtime support for hybrid acyclic workflows on
multicontainer environments. It can run in multiple heterogeneous resources.
StreamFlow relies on open standard Common Workflow Language (CWL), based on

D5.2 Analysis of existing orchestration mechanisms...

15

YAML, for the workflow description. The description of the execution environment
is provided in a model file. StreamFlow provides support for container and multi-
container environments. With regard data, StreamFlow does not require a shared
data space among involved workers.

StreamFlow supports the executing of workflows in multiple execution
environments, such as docker containers, ssh accessible nodes or cluster job
managers. A workflow in StreamFlow is a set of steps. A step becomes fireable when
all its predecessors have completed. The required software environment needs to
be deployed (i.e., container or service) as well as data should have been transferred
by the runtime before the step is executed. Data is transferred with ssh.

Sensitive data is implicitly supported in StremFlow by moving the computation to
the node where the sensitive data is. When data transfers are unavoidable,
StreamFlow ensures that data is passed through encrypted channels (SSH or HTTPS
WebSockets). In the future, they plan to support trusted execution environments
and data encryption at rest.

StreamFlow provides portability through container support (Docker and
Singularity). The explicit description of the execution environment (the locations
topology) fosters reproducibility and reusability. Provenance is provided through
storing log information about scheduling, execution location, commands, and
intermediate results. In the future, they plan to adopt a more standardised
provenance format (e.g. an extended version of CWLProv that handles distributed
workflows).

StreamFlow is provided under LGPLv3 license.

WfExS

WfExS is a high-level workflow execution service backend, through the setup on
reproducible, secure execution environments, focusing in HPC environments.
WfExS is more an orchestrator than a workflow engine, focusing on enabling the
access to human sensitive data from analytical workflows. It has a strong focus on
reproducible and replicable analysis, and RO-Crate is used to describe the different
digital objects which were involved in a workflow execution.

It considers secure execution scenarios where due to legal requirements data needs
to stay where it is and computation needs to be moved there. Alternatively,
computational resources stay and data needs to be securely moved (encryption).

It is based on the use of permanent or public identifiers: workflow available in
public repositories (i.e., WorkflowHub, Dockstore); containers are used by
workflows; inputs and reference datasets.

D5.2 Analysis of existing orchestration mechanisms...

16

WfExS keeps cached copies of everything unless it is sensitive data. It keeps a clear
separation among the workflow execution scenario preparation (where all the
preconditions are materialized), workflow execution (no external resource should
be queried or fetched) and the export of results. It maintains a separate working
directory for each execution with a copy of the inputs, workflow and containers is
kept, as well as intermediate, outputs and metadata from the execution. In case of
sensitive data, the whole working directory is encrypted with a FUSE encryption
filesystem (gocryptfs, encfs).

To execute a workflow, WfExS fetches the description of the workflow (NextFlow
and CWL are supported). Encrypted user keys are used to access the computing
resources and delegates the execution to other workflow engines. There is
challenge on keeping the working directory transparently encrypted in a distributed
environment.

An important component in WfExS is the fetcher that obtains the contents required
for an execution: workflows' description, containers, reference datasets, inputs...
WfExS provides multiple fetchers' implementations based on http, ftp, S3 between
others and is planning to support others.

Reproducibility is planned by re-executing workflows from previously generated
RO-CRATEs.

WfExS is provided under Apache v2 license.

4.1. Workshop final discussion

In addition to the specific questions to each workflow or orchestration system
presentation, the following situation was presented to all speakers to address it
from the point of view of their frameworks:

Imagine there are multiple hospitals, each with their own clusters or computational
nodes, geographically distributed. Also, hospitals have their own databases with
data with privacy/sensitvity issues. Sometimes this data would not be possible to be
moved for sensitivity issues, but there is a need to run workflows that involve
multiple of these venues. How do you think your solution can help in this scenario?

We highlight some the more relevant answers below:

PyCOMPSs: part of the computation can be done in each hospital with the data they
own. Then, a PyCOMPSs application can be orchestrating the different parts and
exchange processed data between the nodes (intermediate results, which do not
have sensitivity issues). Since PyCOMPSs can also support services orchestration, a
micro-service can be deployed in each of the nodes and the COMPSs runtime will
orchestrate the whole execution. The support for trusted environments is delegated
to Scone.

D5.2 Analysis of existing orchestration mechanisms...

17

DODAS: Using only a distributed environment can be not efficient all time. If we
consider that sensitive data can be anonymized, some steps can be distributed and
others run centralized in the cloud.

NextFlow: the strategy will be to move the computation where the data is. Some
hybrid cases can be also considered. Multiple users can deploy in multiple nodes.

Micado: in this case, the application should provide the data protection aspects. A
Micado instance can be deployed in each execution node and Micado workers
would run in a secure environment, although data is not encrypted in Micado.

StreamFlow: StreamFlow will be aware that data cannot be moved from worker to
worker. The master will do the exchange of the intermediate results that can be
transferred.

Pegasus: this scenario can be quite straightforward supported in Pegasus. During
the site selection phase, you can select sites based on the data in that node.

4.2. Workshops' conclusion and guidelines for the future

Analysing the status of current workflow and orchestration environments
presented in the workshops we find out that the community is considering the
aspects required for an HRIC infrastructure.

Basic support for distributed data and computing is provided by all studied systems.
In fact, workflow environments have had a long tradition of execution in distributed
environments originated from grid computing initiatives. However, this distribution
of data and computing is considered in different ways by the different systems. For
example, while PyCOMPSs can run a whole workflow as a single job in an HPC
cluster, NextFlow or StreamFlow submit steps of the workflow as individual jobs.
Also, support for cloud environments is available for most of the systems, as well as
support for containerized executions.

Reproducibility and provenance are also well tackled by most of the solutions, by
providing means to store details about executed workflows that can be used to
reproduce the workflows or to analyze the data analysis process.

What is less common is the support for sensitive data. Most of them rely on third
party solutions or are only able to provide solutions based on encryption, without
support for more complex solutions that can consider which pieces of data are
sensitive or not, and different user profiles. While WfExS focuses on the access of
human sensitive data, we consider the field is an open topic to be considered by the
community.

Therefore, HRIC applications can be based on existing mature workflow
environment solutions by reinforcing aspects related to the support of sensitive
data. The community have been working on these environments for a long time and
it will be important to not reinvent the wheel when considering the frameworks to

D5.2 Analysis of existing orchestration mechanisms...

18

support HRIC applications. In this sense, it will be good to involve the stakeholders
of the workflow environments in the design of the HRIC application workflows.

For the forseeable future, there is no simple out of the box solution to provide
workflow execution systems that can handle sensitive data easily. HRICs will need
to implement appropriate technical infrastructure and technical and organizational
measures to ensure the proper handling of sensitive data irrespective of the HRIC
application they choose.

5. Conclusion
This deliverable presents the results of task 5.2 of the HealthyCloud project. The
task has surveyed a large number of workflow environments and orchestrators,
with the goal of analysing the characteristics that are more relevant to the project.

Some of the available environments fulfil most of the needs of HRIC applications
and provide good starting points for their development.

D5.2 Analysis of existing orchestration mechanisms...

19

Annex I – Orchestration environments questionnaire

Notice: The HealthyCloud project has received funding from the European Union’s Horizon 2020
research and innovation programme under the grant agreement Nº965345

 2021 HealthyCloud Consortium Partners. All rights reserved.

Questions for D5.2 Analysis of existing
orchestration mechanisms for distributed
computational analyses

Workflow environment/orchestrator name:

Assessment made by:

Contact:

Date of assessment: dd/mm/yyyy

Answer briefly the following questions:

1. URL of environment

2. Open Source (Y/N), License

3. Maturity level (TRL or similar)

4. Being used with health data (Y/N), which data has been used

Answer with a bit of detail the following questions:

5. Support for distributed data (Y/N), indicate short summary of how this

is achieved

D5.2 Analysis of existing orchestration mechanisms...

20

DX.X Deliverable Name
Version X.X

1

6. Support for execution in multi-domain computing infrastructure (Y/N)

7. Support for sensible data (Y/N), how this is dealt

8. Support for reproducibility/provenance (Y/N, mechanism, i.e.,
containers, etc)

9. Main initiatives where it has been used (give number and a short list in
case of many)

D5.2 Analysis of existing orchestration mechanisms...

21

Annex II – Agenda first workshop

Notice: The HealthyCloud project has received funding from the European Union’s Horizon 2020
research and innovation programme under the grant agreement Nº965345

 2021 HealthyCloud Consortium Partners. All rights reserved.

1st HealthyCloud workshop
Analysis of existing orchestration mechanisms
for distributed computational analyses

Location:

https://rediris.zoom.us/j/3606864208?pwd=UFZWL0xueEw5MWhnM0Z6a
FlBeW1ZZz09

Meeting ID: 360 686 4208

Passcode: 318244

Date: 27/05/2022

Time: 10:00 to 12:30 CEST

Agenda

10:00 - 10:15 Welcome and short introduction Rosa M Badia (BSC)
10:15 - 10:30 Galaxy Bjoern Groening
10:30 - 10:45 SnakeMake Johannes Köster
10:45 - 11:00 NextFlow Paolo Di Tommaso
11:00 - 11:15 OTP Ivo Buchhalter
11:15 - 11:30 DODAS Daniele Spiga
11:30 - 11:45 PyCOMPSs Daniele Lezzi
11:45 - 12:15 Discussion Rosa M Badia (moderator)
12:15 - 12:30 Workshop conclusion Rosa M Badia (moderator)

D5.2 Analysis of existing orchestration mechanisms...

22

Annex III – Agenda second workshop

Notice: The HealthyCloud project has received funding from the European Union’s Horizon 2020
research and innovation programme under the grant agreement Nº965345

© 2021 HealthyCloud Consortium Partners. All rights reserved.

2nd HealthyCloud workshop
Analysis of existing orchestration mechanisms
for distributed computational analyses

Location:

https://rediris.zoom.us/j/3606864208?pwd=UFZWL0xueEw5MWhnM0Z6a
FlBeW1ZZz09

Meeting ID: 360 686 4208

Passcode: 318244

Date: 06/07/2022

Time: 16:00 to 18:30 CEST

Agenda

16:00 - 16:15 Welcome and short introduction Rosa M Badia (BSC)
16:15 - 16:35 Pegasus Ewa Deelman
16:35 - 16:55 Micado Tamas Kiss
16:55 - 17:15 StreamFlow Iacoppo Colonnelli
17:15 - 17:35 Wfex Jose M Fernandez
17:35 - 18:15 Discussion Rosa M Badia (moderator)
18:15 - 18:30 Workshop conclusion Rosa M Badia (moderator)

D5.2 Analysis of existing orchestration mechanisms...

23

Acronyms and Abbreviations

Each term should be bulleted with a definition.

Below is an initial list that should be adapted to the given deliverable.

- CA – Consortium Agreement
- D – deliverable
- DoA – Description of Action (Annex 1 of the Grant Agreement)
- EB – Executive Board
- EC – European Commission
- GA – General Assembly / Grant Agreement
- HPC – High Performance Computing
- IPR – Intellectual Property Right
- KPI – Key Performance Indicator
- M – Month
- MS – Milestones
- PM – Person month / Project manager
- WP – Work Package
- WPL – Work Package Leader

