
Level up your HPC skills
Dr Emily Kahl, Australian Institute for Bioengineering and

Nanotechnology (AIBN), The University of Queensland

(e.kahl@uq.edu.au)

• Rika Kobayashi (NCI)

• Marco De La Pierre (Pawsey)

• Marlies Hankel (RCC/QCIF)

• Shern Tee (UQ)

• Stephen Sanderson (UQ)

Acknowledgements

HPC architecture

3

• MPI (Message Passing Interface) - software library facilitating parallelism across multiple, potentially

heterogeneous computational resources.

• OpenMP: software library facilitating shared-memory parallelism (e.g. within a single server or

computer).

• Process: basic unit of parallelism employed by MPI. Processes operate as independent, persistent

instances of a given program and do not share resources.

• Thread: basic unit of parallelism employed by OpenMP. Threads can be conceptually created and

destroyed at will and share all resources on a machine.

Some terminology

4

HPC cluster architecture - CPUs

Schematic of AMD Zen3 node. Credit: Pawsey

Supercomputing Centre

• Modern clusters are becoming increasingly

heterogeneous (even for CPUs)

• Thread/core count per node can be misleading

• Non-uniform performance

• Threads on a single socket often share e.g. I/O bus –

bandwidth saturation!

• Modern HPC processors are really multiple smaller

processors that happen share a chip

• Memory hierarchies are also getting deep

• Non-uniform memory access

• Deep shared caches

• Where your code executes (e.g. MPI ranks, OpenMP

threads) can make a big difference for performance

HPC cluster architectures

6

• Can't know if you're doing the right thing if you don't measure

• We're scientists: treat optimising and deploying code like an experiment

• Collect data

• Analyse performance patterns

• Form a hypothesis for how to improve

• Collect data to test hypothesis

• Can be as simple as checking walltime when job's done (scheduler will usually do this for you)

• Large codes like LAMMPS, CP2K sometimes have this built in

• Dedicated profiling tools available on most clusters – ask your helpdesk or see the list at the end of

these slides

HPC performance – profile your code

7

Strong scaling – Amdahl’s law

8

• MPI performance determined by two main hardware factors:

1. Network latency

2. Network bandwidth

• Relative importance varies between apps

o "Speed" can refer to either of these, or both. Be clear about your needs

• Network congestion affects both, can't control this as a user

• You can control where processes are placed

• Need to be aware of network topology for maximum performance

HPC performance - MPI

9

• MPI messages between processes on the same node use shared memory

• Message passing performance dependent on memory access

• Modern CPU architecture has Non-Uniform Memory Access (NUMA):

HPC network topology - intra-node

Single HPC node 10

= low-latency

= higher-latency

• Fast network interconnects put the "super" in

"supercomputer"

• Multi-node latency very sensitive to network

topology and process placement

• Many different topologies, differ between

clusters

• Learn what your cluster uses and how to

optimise for it

• E.g. Setonix and Gadi use Dragonfly and

Dragonfly+ topologies, respectively

HPC network topology – inter-node

11

Source: Mellanox Technologies Inc.

• Processing elements (PE, e.g. nodes) organised

into groups

• Groups are all-to-all connected to each other:

• One "external" switch per group

• Few "long links"

• PEs within a group connected by different sub-

topology (e.g. tree or torus)

• Latency (almost) constant for messages within

groups, much worse for messages between

groups

Example: Dragonfly topology

12

Graph of dragonfly topology. Source:

https://commons.wikimedia.org/wiki/

File:Dragonfly-topology.svg

Job schedulers

13

• Multi-tenant clusters need some way to allocate and manage jobs/resources

• SLURM or PBS/Torque/SGE most common on HPC clusters

• Typically focused on relatively homogeneous compute jobs (e.g large DFT jobs) - batch processing

• Provide fine-grained control of resource placement/topology

• Lots of monitoring/reporting (even profiling) tools

• Traditional schedulers poorly suited to multi-stage heterogeneous workflows

• Data-intensive ML or bioinformatics pipelines are especially tricky

• New set of workflow managers gaining adoption:

• Nextflow

• Flux

• Snakemake

The lay of the land

• Used by Setonix, UQ's Bunya

• Good support for heterogeneous architectures

(e.g. GPUs, highly-nonuniform nodes, future

weird stuff?)

• Extensive monitoring and logging capabilities

• UQ Research Computing Centre has a cool tool

to generate SLURM script

templates: https://shiny.rcc.uq.edu.au/SLURM/

SLURM

15

https://shiny.rcc.uq.edu.au/SLURM/

SLURM concept Logical interpretation

NTASKS MPI Ranks

CPUS Physical CPU core

CPUS_PER_TASK CPUs per MPI process (for e.g. MPI+OpenMP)

NODES Physical compute node

SOCKETS Physical socket/chiplet

GRES Generic consumable resource (e.g. GPU)

SLURM – resource management

16

• Manage process/thread placement with srun

• Modern HPC processors are really multiple

smaller processors that share a chip

• Memory access/messaging across boundaries

(even within a node) is slow

• Lots of cores, so resource contention is also

important

• HPC administrators will typically set good

defaults for most jobs, not necessarily good for

your job

SLURM – submitting

17

AMD Zen 3 CPU architecture

Source: pawsey.org.au

srun --distribution={block|cyclic|arbitrary|plane}:{block|cyclic|arbitrary|plane}

• First option distribution of tasks to nodes, second controls distribution within nodes

• Example 1: MPI-only, processes only talk to "nearby" processes (e.g. neighbour list MD)

• Scheduling adjacent processes on the same node/socket = optimise communication

srun --nodes 4 --tasks-per-node=128 --distribution=block:block lmp […]

• Example 2: MPI+OpenMP, MPI ranks talk to to "nearby" processes, one process per socket

• Schedule nearby processes on adjacent nodes, spread out processes within nodes to minimise contention

between threads

srun --nodes=4 --ntasks-per-node=8 --cpus-per-task=16 --distribution=block:cyclic

• As always, experiment and profile!

SLURM - submitting jobs

18

• sinfo – information about node status and

partition occupancy

• squeue – what's the status of my jobs in the

queue?

• sprio – what's my job's priority? Why isn't it

running yet?

SLUM – monitoring and reporting

19

$ sinfo -O Partition,NodeList,Nodes,Gres,CPUs

PARTITION NODELIST NODES GRES CPUS

debug* bun[006-067] 62 (null) 192

general bun[006-067] 62 (null) 192

ai bun[003-005] 3 gpu:a100:3 256

gpu bun[001-002] 2 gpu:mi210:2 192

gpu bun068 1 gpu:a100:2 192

• sstat – what's the status of my (running) job?

CPU usage, memory usage, I/O patterns

• sacct – as above, but for historical jobs. Can

specify ranges. Useful for coarse-grained

profiling, keeping track of which jobs have

finished/failed

$ sstat --format=JobID,AveCPU,MinCPU,AveVMSize -j 965786

JobID AveCPU MinCPU AveVMSize

------------ ---------- ---------- ----------

965786 00:01:59 00:01:57 117936K

SLURM - monitoring and reporting

20

$ sacct -o jobid,jobname,NNodes,NCPUS,elapsed -S now-30days --user=$USER

JobID JobName NNodes NCPUS Elapsed
------------ ---------- -------- ---------- ---------- ----------
909263 cp2k-256 1 8 00:24:33

966144 build-lammps 1 256 00:00:35

• sreport - generate nice reports from SLURM job

data for a range of jobs

• Very useful when estimating resource

requirements for grant applications

SLURM – monitoring and reporting

21

sreport cluster UserUtilizationByAccount -t Hours start=2022-01-

01 Users=$USER

--

Cluster/User/Account Utilization 1 Jan 2022 - Ystday 23:59

(36201600 secs)

Usage reported in CPU Hours

--

 Cluster Login Proper Name Account Used Energy

--------- --------- --------------- --------------- -------- --------

 setonix ekahl Emily Kahl fc8 8577 0

• seff – generate detailed report about a single

job, including CPU and memory efficiency

• Important to gauge how well you're using the

cluster

• Want to aim for as close to 100% utilisation as

possible

• Sometimes number of cores can be

misleading – figure to the right reports 4 cores,

but that counts virtual cores which are unused

and not included in job accounting (re-scale by

2 to get the physical cores): more info from

Pawsey here

SLURM – monitoring and reporting

22

Example CP2K job:

$ seff 1026815

Job ID: 1026815

Cluster: setonix

User/Group: ekahl/ekahl

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 4

CPU Utilized: 01:23:52

CPU Efficiency: 49.39% of 02:49:48 core-walltime

Job Wall-clock time: 00:42:27

Memory Utilized: 188.32 MB (estimated maximum)

Memory Efficiency: 62.77% of 300.00 MB (300.00 MB/node)

https://support.pawsey.org.au/documentation/pages/viewpage.action?pageId=116131396

• Scheduler used by Gadi, many older clusters

• Less rich support for thread/process placement than SLURM

• Have to use OpenMP environment variables and mpirun to control job placement/affinity

• Usually don't need these with SLURM (use srun instead)

OMP_NUM_THREADS Number of OpenMP threads

OMP_PROC_BIND Pin threads to CPU cores

OMP_PLACES How to distribute threads on a node

mpirun --map-by How to distribute MPI ranks

PBS

23

High performance storage

24

• UNIX-like systems use the POSIX standard

• Everything is a file, files live in a hierarchical

directory structure

• /home, /scratch on clusters

• Directories spread across multiple disks/servers on

clusters, but still have a single namespace:

distributed file system, e.g. Lustre

• Familiar, convenient, works the same on every

machine

• Doesn't scale well for very large data –

abstractions are expensive!

• Strong limits on number of files – searching

through metadata gets slow

• Usually have quotas on storage and number of

files

POSIX filesystems

Image credit: RedHat, Inc.

• Python packages can be very bad for HPC filesystem performance

• e.g. Conda, pip

• Small, isolated packages probably okay

• Recursive dependencies can create LOTS of tiny files – really bad for Lustre performance

• Easy to exhaust quota on "number of files" (inodes)

• Try not to install python environments on the clusters

• Use containers where possible – image acts as a single file on disk but expands into a filesystem in

memory

• Good resource/tutorial: https://pawseysc.github.io/singularity-containers/

• (pip|conda) install --dry-run is your friend!

Python on HPC

https://pawseysc.github.io/singularity-containers/

Some Useful Tools and Resources

27

NOTE: These tools may not be available on all HPC systems. All of these are command-line tools and their

output may require some interpretation.

• lstopo: print information about the topology of the node (CPU cores, memory regions, network bus, etc).

Sub-program distributed with hwloc (itself a sub-project of OpenMPI). Will need to run via a batch or

interactive job to see details of compute nodes

• lscpu: print detailed information about the CPU on the current node. Will also need to run via a batch or

interactive job to see details of compute nodes

• LIKWID: set of tools for reporting and managing hardware and HPC resources (e.g. MPI). Some tools

are more for system administrators, but some can be installed without superuser privileges. Link

• sinfo: SLURM tool to print information about nodes and partitions, including some information on

hardware configuration

Observability tools

https://www.open-mpi.org/projects/hwloc/
https://hpc.fau.de/research/tools/likwid/

• gprof: old-school, kinda rough, limited support for parallelism, built into GNU compilers and available everywhere:

https://support.pawsey.org.au/documentation/display/US/Profiling+with+gprof

• Caliper: extremely fine-grained information, supports MPI/OpenMP/CUDA, open-source, requires source-code

modifications: https://software.llnl.gov/Caliper/index.html

• Arm Forge: Very fine-grained metrics, tracing (can view program performance as a time-series), really good GUI,

works with MPI/OpenMP/CUDA, proprietary, available on

Gadi: https://opus.nci.org.au/display/Help/Arm+HPC+Tools

• Cray PAT/perftools: decent coverage of diagnostics, optional GUI, proprietary, available on Setonix (documentation)

• Intel VTune: good coverage of low-level diagnostics and tracing, good support for OpenMP, installed on Gadi,

proprietary but costs $0: https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

• HPCToolkit: fine-grained metrics and profiling, works with MPI/OpenMP and CUDA, open-source and widely

available, somewhat complicated workflow: http://hpctoolkit.org/

• TAU: good support for profiling and tracing with MPI and OpenMP, optional GUI, open-

source: https://www.cs.uoregon.edu/research/tau/home.php

Profilers

29

https://support.pawsey.org.au/documentation/display/US/Profiling+with+gprof
https://software.llnl.gov/Caliper/index.html
https://opus.nci.org.au/display/Help/Arm+HPC+Tools
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00113914en_us&page=About_the_Cray_Performance_Measurement_and_Analysis_Tools_User_Guide.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
http://hpctoolkit.org/
https://www.cs.uoregon.edu/research/tau/home.php

• Can start and stop program execution and inspect program's state almost arbitrarily

• GDB is a superpower!

• Available almost anywhere

• Almost arbitrary control and observability for CPU-based programs.

• Terminal based, but TUI exists

• Good tutorial at Dive Into Systems

• NVIDIA/AMD have GPU-aware debuggers with GDB-like interface: cuda-gdb/rocm-gdb

• Distributed, MPI-aware debugging is hard, few available tools:

• Arm DDT (proprietary) on Gadi: https://opus.nci.org.au/display/Help/Arm+HPC+Tools

• gdb4hpc (Cray proprietary) on Setonix

• TotalView, available on Gadi: https://opus.nci.org.au/display/Help/TotalView

Debuggers

30

https://diveintosystems.org/book/C3-C_debug/gdb.html
https://opus.nci.org.au/display/Help/Arm+HPC+Tools
https://opus.nci.org.au/display/Help/TotalView

• CTCMS tutorials and guide (suggestions and contributions welcome!): https://ctcms-uq.github.io/

• UQ RCC docs: https://github.com/UQ-RCC/hpc-docs

• NCI's Gadi user guide: https://opus.nci.org.au/display/Help/Gadi+User+Guide

• Pawsey's Setonix user guide:

https://support.pawsey.org.au/documentation/display/US/Setonix+User+Guide

• Victor Eijkhout, The Art of HPC (series of textbooks and guides)

• Paul E McKenney, Is Parallel Programming Hard, And, If So, What Can You Do About It? (textbook)

• Brendan Gregg's website and and book on performance engineering

• Julia Evans, The Pocket Guide to Debugging

Good resources

31

https://ctcms-uq.github.io/
https://github.com/UQ-RCC/hpc-docs
https://opus.nci.org.au/display/Help/Gadi+User+Guide
https://support.pawsey.org.au/documentation/display/US/Setonix+User+Guide
https://theartofhpc.com/index.html
https://arxiv.org/abs/1701.00854
https://www.brendangregg.com/
https://www.brendangregg.com/systems-performance-2nd-edition-book.html
https://wizardzines.com/zines/debugging-guide/

Thank you!

32

• Qualitatively different from POSIX filesystems

• Stores unstructured data – no folders, no hierarchy

• Scales better than POSIX for very large data sets

• Objects stored in buckets – unique ID + rich metadata for

search

• Splits reads/writes from namespace manipulation

• Pull data -> read/modify -> push data

• Good for data which is read more often than it's written (e.g.

molecular geometry files)

• Used by Pawsey (Acacia), commercial cloud services (e.g.

Amazon S3) - get used to it!

Object storage

33

Image credit: RedHat, Inc.

	Untitled Section
	Slide 1: Level up your HPC skills
	Slide 2: Acknowledgements
	Slide 3: HPC architecture
	Slide 4: Some terminology
	Slide 5: HPC cluster architecture - CPUs
	Slide 6: HPC cluster architectures
	Slide 7: HPC performance – profile your code
	Slide 8: Strong scaling – Amdahl’s law
	Slide 9: HPC performance - MPI
	Slide 10: HPC network topology - intra-node
	Slide 11: HPC network topology – inter-node
	Slide 12: Example: Dragonfly topology
	Slide 13: Job schedulers
	Slide 14: The lay of the land
	Slide 15: SLURM
	Slide 16: SLURM – resource management
	Slide 17: SLURM – submitting
	Slide 18: SLURM - submitting jobs
	Slide 19: SLUM – monitoring and reporting
	Slide 20: SLURM - monitoring and reporting
	Slide 21: SLURM – monitoring and reporting
	Slide 22: SLURM – monitoring and reporting
	Slide 23: PBS
	Slide 24: High performance storage
	Slide 25: POSIX filesystems
	Slide 26: Python on HPC
	Slide 27: Some Useful Tools and Resources
	Slide 28: Observability tools
	Slide 29: Profilers
	Slide 30: Debuggers
	Slide 31: Good resources
	Slide 32: Thank you!
	Slide 33: Object storage

