Deep R Programming

Marek Gagolewski

vo.2.1 (draft)

Dr habil. Marek Gagolewski

Deakin University, Australia

Systems Research Institute, Polish Academy of Sciences
Warsaw University of Technology, Poland
https://www.gagolewski.com

Copyright (C) 2022-2023 by Marek Gagolewski. Some rights reserved.

This open-access textbook is an independent, non-profit project. It is licensed under
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (CC BY-NC-ND 4.0). Please spread the word about it.

This project received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

Product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of
a trademarked name, the names are used in an editorial fashion to the benefit of the
trademark owner, with no intention of infringement of the trademark.

Weird is the world we live in, but the following had to be written.

Every effort hasbeen made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is provided
without warranty, either express or implied. The author will of course not be held liable
for any damages caused or alleged to be caused directly or indirectly by this book.

Anyway, any bug reports/corrections/feature requests are welcome. To make this text-
book even better, please file them at https://github.com/gagolews/deepr.

Typeset with XeBIgX. Please be understanding: it was an algorithmic process, hence
the results are € [good enough, perfect).

Homepage: https://deepr.gagolewski.com/

Datasets: https://github.com/gagolews/teaching-data

Release: vo.2.1 (draft) (2023-04-27T16:44:42+1000)
ISBN: 978-0-6455719-2-9 (reserved) (vX.Y.Z; 2023; Melbourne: Marek Gagolewski)

DOI: 10.5281/zeno0d0.7490464 (Zenodo)

https://www.gagolewski.com
https://github.com/gagolews/deepr
https://deepr.gagolewski.com/
https://github.com/gagolews/teaching-data
https://doi.org/10.5281/zenodo.7490464

Contents

Preface xiii
0.1 ToR,ornottoR o v v i i e e xiii
0.2 R(GNU S)asalanguage and an environment xiii
0.3 Aims, scope, and design philosophy XV
0.4 Classification of R data types and book structure xvi
0.5 Abouttheauthor xviii
0.6 Acknowledgements xix
0.7 Youcan make thisbookbetter 0. XX

I Deep 1

1 Introduction 3
1.1 Hello,world! 3
1.2 Setting up the development environment 4

1.2.1 InstallingR L 4
1.2.2 Interactivemode 4
1.2.3 Batch mode: Working with R scripts (**) 5
1.2.4 Weaving: Automatic report generation (**) 5
1.2.5 Semi-interactive modes (Jupyter Notebooks, sending code to
anassociated Rconsole,etc.)
1.3 Atomicvectorsataglance 8
1.4 Gettinghelp 10
1.5 Exercises 11
2 Numeric vectors 13
2.1 Creating NUMEriC VeCTOIS . . . « . v v v v v v v v e e e e e e e 13
2.1.1 Numericconstantso vo .. 13
2.1.2 Concatenating vectorswithe 14
2.1.3 Repeatingentrieswithrep 14
2.1.4 Generating arithmetic progressions with seqand *:* 16
2.1.5 Generating pseudorandom numbers 17
2.1.6 Readingdatawithsean 19
2.2 Creatingnamedobjects 22
2.3 Vectorised mathematical functions 23
2.3.1 absandsqrt. 23
232 Rounding 24

2.3.3 Natural exponential function and logarithm 25

v

CONTENTS

2.3.4 Probability distributions ()
2.3.5 Specialfunctions (*)

2.4 Arithmetic operations .

2.4.1 Vectorised arithmetic operators

2.4.2 Recycling rule . .

2.4.3 Operatorprecedence ooovovviu .

2.4.4 Accumulating . .
2.4.5 Aggregating . . .
2.5 Exercises

Logical vectors
3.1 Creating logical vectors .
3.2 Comparing elements . .

3.2.1 Vectorised relational operators
3.2.2 Testing forNA,NaN,and Inf
3.2.3 Dealingwith round-offerrors (*)

3.3 Logical operations . . .

3.3.1 Vectorised logical operators
3.3.2 Operator precedencerevisited
3.3.3 Dealingwithmissingness
3.3.4 Aggregatingwithall,any,andsum
3.3.5 Simplifying predicates
3.4 Choosingelementswithifelse

3.5 Exercises

Lists and attributes

4.1 Typehierarchyand conversion
4.1.1 Explicittypecasting.
4.1.2 Implicit conversion (coercion)

4.2 Lists
4.2.1 Creatinglists . .

4.2.2 Coercingtoand fromlists

4.3 NULL L.
4.4 Object attributes

4.4.1 Developing perceptual indifference to most attributes
4.4.2 Butthere are some use cases, afterall

4.4.3 Special attributes

4.4.4 Labelling vector elements with the names attribute
4.4.5 Altering and removing attributes

4.5 Exercises

Vector indexing

5.1 headandtail

5.2 Subsetting and extracting fromvectors
5.2.1 Nonnegativeindexes

5.2.2 Negative indexes

5.2.3 Logicalindexer .

53
53
54
54
56
56
58
59
59
60
61
62
63
66
67

69
69
70
70
72
73

CONTENTS v

5.2.4 Characterindexer, 75
5.3 Replacingelements oL 77
5.3.1 Modifying atomicvectors 77
5.3.2 Modifyinglists oL 78
5.3.3 Insertingnewelements 79
5.4 Functionsrelatedtoindexing 80
5.4.1 Matching of elements in anothervector 80
5.4.2 Assigning numbersintointervals 82
5.4.3 Splitting vectors into subgroups 82
5.4.4 Orderingelements 85
5.4.5 Identifyingduplicates 87
5.4.6 Counting index occurrences 88
5.5 Preserving and losing attributes L 88
L A < 89
5.5.2 as.something 89
5.5.3 Subsetting 89
5.5.4 Vectorised functions L. 90
5.6 EXErciseso e 91
Character vectors 95
6.1 Creating charactervectors 95
6.1.1 Inputting individual strings 95
6.1.2 Manystrings, oneobject 97
6.1.3 Concatenating character vectors 98
6.1.4 Formattingobjects 98
6.1.5 Readingtextdatafromfiles 99
6.2 Patternsearching 100
6.2.1 Comparing wholestrings 100
6.2.2 Partialmatching 100
6.2.3 Matching anywhere withinastring 101
6.2.4 Using regularexpressions () 102
6.2.5 Locating pattern OCCUITENCES « o« « « o o o o o . 102
6.2.6 Replacing pattern occurrences 105
6.2.7 Splitting stringsintotokens 106
6.3 Otherstringoperations v v v, 106
6.3.1 Extractingsubstrings 106
6.3.2 Translating characters 107
6.3.3 Orderingstrings 107
6.4 Otheratomicvectortypes(*) L 108
6.4.1 Integervectors(*) 108
6.4.2 Rawvectors (*) e 109
6.4.3 Complexvectors (*) 110
6.5 EXErCiSes o v i it e e e e e e e 110
Functions 113
7.1 Creating and invoking functions 115

7.1.1 Anonymous functions L 115

Vi

II

CONTENTS

7.1.2 Namedfunctions

7.1.3 Passing arguments to functions

7.1.4 Grouping expressions with curly braces, "{"

7.2 Functional programming,
7.2.1 Functionsareobjects

7.2.2. Calling on precomputed arguments with do.call

7.2.3 Common higher-order functions

7.2.4 Vectorising functionswithMap.

7.3 Accessing third-party functions
7.3.1 UsingRpackages
Defaultpackages

Source vs binary packages ()

7.3.2 Managing dependencies (*)

7.3.3 Callingexternal programs

7.3.4 Anote oninterfacing C, C++, Python, Java, etc. ()

7.4 EXercises

Flow of execution

8.1 Conditional evaluation
8.1.1 Returnvalue,
8.1.2 Nestedifs
8.1.3 Condition: Either TRUEOrFALSE
8.1.4 Short-circuitevaluation

8.2 Exceptionhandling,

8.3 Repeatedevaluation
8.3.1 while e
8.3.2 for e e e e e e e e
8.3.3 breakandnext,
8.3.4 return L. L L L e e e e e e
8.3.5 A note on time and space complexity of algorithms (*)

8.4 EXErciSes i e e e e e e e e e e

Deeper

Designing functions
9.1 Principles of sustainabledesign
9.1.1 Towriteortoabstain
9.1.2 Topamperortochallenge
9.1.3 Tobuildortoreuse
9.2 Managingdataflow
9.2.1 Checking input data integrity and argument handling
9.2.2 Putting outputsintocontext
9.3 Organising and maintaining functions
9.3.1 Functionlibraries
9.3.2 WritingRpackages ()
Package structure (*)
Building and installing (*)

137
137
138
139
140
141
142
144
144
145
147
149
149
152

10

CONTENTS

Documenting R packages ()
9.3.3 Assuringqualitycodeo
Managing changes and working collaboratively
Test-driven development and continuous integration
Debugging
Profiling
9.4 Special functions: Syntacticsugar
9.4.1 Anoteonbackticks Lo oL
9.4.2 Dollar, 8" (*)
9.4.3 Curlybraces, {°
9.4.4 CAF L L e e e
9.4.5 Operators are functionstoo
Calling built-in operators as functions
Creating own binary operators
9.4.6 Replacement functions
Creating replacement functions
Substituting parts of vectors
Replacing attributes L.
Compositions of replacement functions
9.5 Argumentsand localvariables
9.5.1 Passby“value”.
9.5.2 Variablescope
9.5.3 Closures () e
9.5.4 Defaultarguments
9.5.5 Lazyvseagerevaluation.
9.5.6 Ellipsis, "..."
9.5.7 Metaprogramming (*)
9.6 EXercises

S3 classes
10.1 Objecttypevsclass
10.2 Generics and method dispatching
10.2.1 Generics, default, and custommethods
10.2.2 Creating Own generics o v o v o ...
10.2.3 Built-ingenerics oL
10.2.4 First-argument dispatch and calling S3 methods directly
10.2.5 Multi-class-ness
10.2.6 Operatoroverloading
10.3 Commonbuilt-inS3classes
10.3.1 Date,time, etC. . . .+ . v v v e e e e e e e e e e e
10.3.2 Factorso Lo
10.3.3 Orderedfactors
10.3.4 Formulae(*)
10.4 Argument checkingrevisited
10.5 (Over)using the forward-pipe operator, "|>" (*)
10.6 Exerciseso

vil

168
169
169
170
171
171
171
171
172
173
173
174
174
175
175
176
177
178
179
181
181
181
182
183
184
185
186
188

vl

CONTENTS

11 Matrices and other arrays

12

11.1 CreatiDn@ arrays v v v v v v v v e e e e e e e e e e
11.1.1 matrixandarray
11.1.2 Promoting and stackingvectors
11.1.3 Simplifyinglists
11.1.4 Beyond numericarrays
11.1.5 Internalrepresentation

1.2 Arrayindexing
11.2.1 Arrays are built upon basicvectors
11.2.2. Selecting individual elements
11.2.3 Selectingrowsand columns
11.2.4 Droppingdimensions
11.2.5 Selecting submatrices oL
11.2.6 Selecting elements based on logical vectors
11.2.7 Selecting based on two-column numeric matrices
11.2.8 Higher-dimensionalarrays
11.2.9 Replacingelements

11.3 COMMON PPErations « v v v v v v v v e e e e
11.3.1 Matrix transpose ¢ v b e e e e e e e
11.3.2 Vectorised mathematical functions
11.3.3 Aggregatingrows and columns
11.3.4 Binaryoperatorso

1.4 Numerical matrixalgebra ()
11.4.1 Matrix multiplication
11.4.2 Solving systems of linear equations
11.4.3 Normsandmetrics
11.4.4 Eigenvalues and eigenvectors
11.4.5 QRdecomposition
11.4.6 SVDdecomposition

11.5 S4classes (™) e e
11.5.1 DefiningS4classes
11.5.2 Accessingslots oL
11.5.3 Definingmethods
11.5.4 Defining constructorso ...
11.5.5 Inheritance L.
11.5.6 AnoteontheMatrixpackage

1.6 Exercises

Data frames

12.1 Creatingdataframes
12.1.1 data.frameand as.data.frame
12.1.2 cbind.data.frame and rbind.data.frame
12.1.3 Readingdataframes
12.1.4 Interfacing relational databases and querying with SQL ()
12.1.5 Stringsasfactors?
12.1.6 Internalrepresentation

12.2 Dataframesubsetting

223
223
223
225
226
228
229
232
232
232
233
233
234
235
236
237
238
238
238
239
239

243
243
245
245
246
248
249

251
252
253
254
255
256
257

CONTENTS IX

12.2.1 Dataframesarelists 274
12.2.2 Dataframesare matrix-like 277

12.3 COMMON OPErations . . « « « « ¢ 4 4 v vt e e e e e e e e e 280
12.3.1 Ordering@rowso i e e 280
12.3.2 Handling duplicatedrows 282
12.3.3 Joining (merging) dataframes 283
12.3.4 Aggregating and transforming columns 284
12.3.5 Handling missingvalues 286
12.3.6 Reshapingdataframes 286
12.3.7 Aggregatingdataingroups 289
12.3.8 Transformingdataingroups 297
12.3.9 Metaprogramming-based techniques (*) 300
12.3.10 A note on the dplyr (tidyverse) and data.table packages () . 303

12.4 EXErcises e e 304
13 Graphics 31
13.1 Graphicsprimitives 311
13.1.1 Symbols(points)o 314
13.1.2 Linesegments 315
13.1.3 Polygons 317
13.1.4 Text L 317
13.1.5 Rasterimages (bitmaps) (*) 318

13.2 Graphicssettings 319
13.2.1 Colours 319
13.2.2. Plot margins and clipping regions 322
13.2.3 Usercoordinates 324
13.2.4 AXESl 324
13.2.5 Plotdimensions(*) 325
13.2.6 Many figures on one page (subplots) 326
13.2.7 Graphicsdevices 328

13.3 Higher-level functions 330
13.3.1 Scatter- and function plots with plot.default and matplot . . 330
13.3.2 Barplotsand histograms 334
13.3.3 Box-and-whiskerplots 339
13.3.4 Contour plotsand heatmaps 340

13.4 Exerciseso 343
IIT Deepest 345
14 < Interfacing compiled code (*) 347
15 Unevaluated expressions (*) 349
15.1 Expressionsataglance 350
15.2 Languageobjectso 351
15.3 Calls as combinations of expressions 353
15.3.1 Browsing parsetrees o.o.oooooeee o .. 353

15.3.2 Manipulatingcalls 355

X

16

17

CONTENTS

15.4 Inspecting function definitions and arguments thereto
15.4.1 Getting the body and formal arguments
15.4.2 Getting the expression passed as an actual argument
15.4.3 Checkingifanargumentismissing
15.4.4 Determining how a functionwascalled

15.5 Exerciseso

Environments and evaluation (¥)

16.1 Frames: Environments as object containers
16.1.1 Printing oL Lo
16.1.2 Environmentsvsnamedlists
16.1.3 Hash maps: Fast element look-up byname
16.1.4 Pass-by-value, copy on demand: Not for environments
16.1.5 Anoteonreferenceclasses(**)

16.2 The environment model of evaluation
16.2.1 Getting the current environment (here: the globalone)
16.2.2. Enclosures, enclosures thereof,etc.
16.2.3 Missing names are sought in enclosing environments
16.2.4 Looking for functions
16.2.5 Inspecting thesearchpath
16.2.6 Attaching to and detaching from the searchpath
16.2.7 Masking (shadowing) objects from downunder

16.3 Closures
16.3.1 Localenvironment
16.3.2 Lexical scope and functionclosures
16.3.3 Application: Function factories
16.3.4 Accessing the calling environment
16.3.5 Packagenamespaces(*)
16.3.6 S3 method lookup by UseMethod (*)

16.4 Exercises

Lazy evaluation (**)
17.1 Evaluation of function arguments
17.2 Evaluation of defaultarguments
17.3 Ellipsis, *... revisited
17.4 on.exit () e
17.5 Metaprogramming and laziness in action: Examples (*)
17.5.1 match.arg
17.5.2 CUFVE o v e e e e e e e e e e e e e e e e e e
17.5.3 withandwithino
17.5.4 transform Lo
17.5.5 subseto oo
17.5.6 Aforward-pipeoperator
17.5.7 Otherideas (**)
17.6 Processing formulae, "~" ()
17.7 Exerciseso
17.8 OULIO .« . v v v v v e e e e e e e e e e e e e e e e e e

CONTENTS X1

Changelog 419

References 421

X1 CONTENTS

Deep R Programming is a comprehensive course on one of the most popular languages
in data science (statistical computing, graphics, machine learning, data wrangling
and analytics). It introduces the base language in-depth and is aimed at ambitious
students, practitioners, and researchers who would like to become independent users
of this powerful environment.

Although available online, this is a whole course, and should be read from the begin-
ning to the end. In particular, refer to the Preface for general introductory remarks.

This early draft is distributed in the hope that it will be useful.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF* and HTML* forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it is my hope that this publication will prove useful to those who seek know-
ledge for knowledge’s sake.

Please spread the news about it by sharing the above URLs with your mates, peers, or
students. Thank you.

Also, check out my other book, Minimalist data wrangling with Python?® [25].

Any bug/typo reports/fixes are appreciated: please submit them via this project’s Git-
Hub repository*.

Consider citing this book as: Gagolewski M. (2023), Deep R Programming, Zenodo, Mel-
bourne, DOI:10.5281/zenodo.7490464%, ISBN: 978-0-6455719-2-9, URL: https://deepr.
gagolewski.com/.

! https://deepr.gagolewski.com/deepr.pdf
% https://deepr.gagolewski.com/

3 https://datawranglingpy.gagolewski.com/
4 https://github.com/gagolews/deepr/issues
5 https://dx.doi.org/10.5281/zenodo.7490464

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://github.com/gagolews/deepr/issues
https://github.com/gagolews/deepr/issues
https://dx.doi.org/10.5281/zenodo.7490464
https://deepr.gagolewski.com/
https://deepr.gagolewski.com/

o

Preface

0.1 ToR,ornottoR

R [64] has been named the eleventh most dreaded programming language in the 2022
StackOverflow Developer Survey®.

Also, it is a free app, so there must be something wrong with it, right?
But whatever, R is deprecated anyway; the “modern” way is to use tidyverse.
Or we should all just switch to Python’.

Well, not really®.

0.2 R(GNUS)asalanguage and an environment

Let us get one thing straight: R is not just a statistical package. It is a general-purpose,
high-level programming language, that happens to be very powerful for any kind of
numerical, data-intense computing. It offers extensive support for statistical, ma-
chine learning, data analysis, data wrangling, and data visualisation applications, but
there is much more.

Initially, R? was written for statisticians, by statisticians. Therefore, it may be thought
of as a free, yet more capable (and without any strings attached), alternative to
Stata, SAS, SPSS, Statistica, Minitab, Weka, etc. Unlike in some of them, however, a
spreadsheet-like GUI is not the main gateway for performing computations on data.
In R, a user must write code to get things actually done. Despite the learning curve’s
being a little steeper for non-programmers, in the long run, it empowers their users
because they are not limited only to the most common scenarios. If some functionality
is missing or does not suit their needs, they can easily implement everything them-
selves.

6 hteps://survey.stackoverflow.co/2022/

7 https://datawranglingpy.gagolewski.com/

8 Or, as Aussies would say, yeah, nah.

° Or we should rather say: S, whose open-source reimplementation/dialect R is; see below for historical
notes. Credit must be given where credit is due.

https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://datawranglingpy.gagolewski.com/

X1V PREFACE

It is thus very convenient for rapid prototyping. It helps turn our ideas into opera-
tional code that can be tested, extended, polished, run in production, and otherwise
enjoyed overall. As an interpreted language, it can not only be executed in an inter-
active read-eval-print loop (command-result, question—answer, ...), but also in batch
mode (running whole, standalone scripts).

Thus, we would rather position R amongst such tools/languages for numerical or sci-
entific computing as Python with the NumPy ecosystem, Julia, GNU Octave, Scilab,
MATLAB, etc. However, it is more specialised in data science applications than any of
them. Hence, it provides a much smoother experience. This is why, over the years, R
has become the de facto standard in statistics and many other related fields.

Important R is a whole ecosystem (environment). It not only consists of the R lan-
guage interpreter, but also features advanced:

« graphical capabilities (see Chapter 13),
. a consistent, well-integrated help system (Section 1.4),
- ways for convenient interfacing with compiled code (Chapter 14),

- apackage system and centralised package repositories (such as CRAN and Biocon-
ductor; Section 7.3.1),

« alively community of users and developers — curious and passionate people, just
like you and me.

Note R is a free, open-source (licensed under the GNU General Public License v2)
variation upon/dialect of the very popular S system designed in the mid-1970s by Rick
A. Becker, John M. Chambers, and Allan R. Wilks at Bell Labs; see [3, 4, 5, 6] and its
later revisions [7, 9, 13, 52].

Quoting [4]:

The design goal for S is, most broadly stated, to enable and encourage good data
analysis, that is, to provide users with specific facilities and a general environ-
ment that helps them quickly and conveniently look at many displays, summar-
ies, and models for their data, and to follow the kind of iterative, exploratory path
that most often leads to a thorough analysis. The system is designed for interact-
ive use with simple but general expressions for the user to type, and immediate,
informative feedback from the system including graphic output on any of a vari-
ety of graphical devices.

PREFACE XV

S became popular because it offered much greater flexibility than the standalone stat-
istical packages. It was praised for its high interactivity and array orientation that was
known from APL, the familiar syntax of the C language that involves the use of {curly
braces}, the ability to treat code as data known from Lisp (Chapter 15), the notion of
lazy arguments (Chapter 17), and the ease of calling external C and FORTRAN routines
(Chapter 14). Its newer versions were also somewhat object-oriented (Chapter 10).

However, S was a commercial system. To address this, R (GNU S) was developed in the
mid-1990s'°by Robert Gentleman and Ross Thaka of the Statistics Department, Uni-
versity of Auckland, and many contributors; see [12, 36] for some historical notes. In
essence, R was supposed to be backwards-compatible with S, but some design choices
led to their evaluation models’ being slightly different: its design was heavily inspired
by Scheme (with its environment model of evaluation; see [1] and Chapter 16 for more
details)

0.3 Aims, scope, and design philosophy

Many users were introduced to R by means of some very advanced operations in-
volving data frames, formulae, and functions that rely on nonstandard evaluation
(metaprogramming), like:

Im(

Ozone~Solar.R+Temp,

data=subset(airquality, Temp>60, select=-(Month:Day))
) |> summary()

This is horrible.

Another group was isolated from the base R through a thick layer of third-party pack-
ages that feature an overwhelming number of functions (every operation, regardless
of its complexity, has a different name), often duplicating the core functionality, and
sometimes being quite incompatible with our traditional system.

Both families should be fine — as long as they limit themselves to solving only the
simplest and most common data processing problems.

But we yearn for more. We do not want hundreds of prefabricated recipes for popular
dishes that we can mindlessly apply without much understanding.

Our aim is to learn base R, which is supposed to be the common language (lingua franca)
for all R users. We want to be able to write code that everybody should be able to un-

10 R version 0.49 released in April 1997 (the first for which source code’ is available on CRAN), was already
quite feature-rich (e.g., implemented S3 methods, formulae, and data frames introduced in the 1991 version
of S [13]).

1° https://cloud.r- project.org/src/base/R-0/

https://cloud.r-project.org/src/base/R-0/

XVI PREFACE

derstand, and which will be likely to work without modifications ten years from now
(no slang)).

We want to be able to tackle any data-intense problem. Furthermore, we want to de-
velop skills that are transferable, so that learning new tools such as Python with NumPy
and Pandas (e.g., [25]) or Julia will be much easier later (because R is not the only not-
able environment out there).

Anyway, enough preaching. This graduate-level textbook is for independent readers
who:

« donot mind a slightly steeper learning curve at the beginning,

are able to appreciate a more cohesively and comprehensively'* organised mater-
ial,

- would like to experience the joy of solving problems by programming,
- do not want to be made obsolete by Artificial “Intelligence” in the future.

Some will benefit from it as a first introduction to R (but without all the pampering).
For others®, this will be a good course from intermediate to advanced (do not skip the
first chapters, though).

Either way, do not forget to solve all the prescribed exercises.

Good luck.

0.4 Classification of R data types and book structure
The most commonly used R data types can be classified as follows; see also Figure 1.

1. Basic types — which we discuss in the first part of this book — internal or built-in
types, upon which more complex ones are hinged:

- atomic vectors — represent whole sequences of values, where every element is
of the same type:

1 The author taught similar courses for his wonderfully ambitious undergraduate data/computer sci-
ence and maths students at Warsaw University of Technology, where such an approach has proven not dif-
ficult at all. It requires a more independent, curious, and motivated mindset, though. And that’s the way
to go, in the long run.

12 Yours truly is neither a historian, a stenographer, nor a grammarian. We allow ourselves to make a few
noninvasive idealisations for didactic purposes. Languages evolve over time, R is now different from what
it used to be, and we can shape it (slowly, because we value its stable API) to become something even better
in the future.

It might also happen that for some, this will not be a good course at all, either at this stage of their
career (come back later) or in general (no dramas). This is a non-profit, open-access project, but it does not
mean it is ideal for everyone — in such a case, give other sources a try, e.g., [8, 10, 15, 42, 53, 55, 56, 63], etc.
Some of them are freely available.

PREFACE Xvil

NULL
] logical
Atomic .
numeric
) character
list
function
factor
R Data Types
matrix
array
data.frame
Compound
formula
Date
kmeans

Figure 1: An overview of the most prevalent R data types (see Figure 17.2 for a more
comprehensive list)

- logical (Chapter 3) — includes items that are TRUE (“yes”, “present”),
FALSE (“no”, “absent”), or NA (“not available”, “missing”);

- numeric (Chapter2) - features real numbers, such as 1, 3.14, -0.0000001,
etc.;

- character (Chapter 6) — contains strings of characters, e.g., "groR",
"123", or “obOpuii IeHy’;

« function (Chapter 7) — used to group a series of expressions (code lines) so
that they can be applied on different kinds of input data to generate the
(hopefully) desired outcomes, for instance, cat, print, plot, sample, and sum;

« list (generic vector; Chapter 4) — can store elements of mixed types;

The above will be complemented with a discussion on vector indexing (Chapter 5)
and ways to control the program flow (Chapter 8).

2. Compound types — discussed in the second part — wrappers around objects of basic
types that might behave differently from the underlying primitives thanks to the
dedicated operations overloaded for them. They are:

« factor (Section 10.3.2) — a vector-like object that represents qualitative data
(on a nominal or an ordered scale);

- matrix (Chapter 11) — stores tabular data, i.e., arranged into rows and
columns, where each cell is usually of the same type;

- data.frame (Chapter12) — also used for depositing tabular data, but this time
such that each column can be of a different type;

XVIIl PREFACE

. and many more, which we or third parties can define arbitrarily using,
amongst others, the principles of S3-style object orientated-programming
(Chapter 10).

In this part of the book, we also discuss the principles of sustainable coding
(Chapter 9) as well as introduce the basic ways to prepare publication-quality
graphics (Chapter 13).

3. Some more advanced material is discussed in the third part. In most cases, we can
(and often should) easily do without it, but it is still essential to gain a full under-
standing of and control over our environment. This includes, amongst others, the
following data types:

. externalptr (sec:xptr) — provides ability to store/pass any C/C++ objects
between function calls;

« symbol (name), call, expression (Chapter 15) — objects representing unevalu-
ated R expressions that can be freely manipulated and executed if needed;

- environment (Chapter 16) — hashmaps that where can store named objects
and which form the basis of the environment model of evaluation;

« formula (Section 17.6) — used by some functions to specify supervised learn-
ing models or define operations to be performed within data subgroups,
amongst others.

We should not be surprised that we did not list any of the data types defined by a
few very popular* third-party packages. We will later see that we can most often do
without them. If that is not the case, we will become skilled enough to learn them eas-
ily ourselves.

0.5 About the author

I, Marek Gagolewski® (pronounced like Ma'rek Gong-olive-ski), am currently a Senior
Lecturer in Data Science/Applied Al at Deakin University in Melbourne, VIC, Aus-
tralia, and an Associate Professor at the Systems Research Institute of the Polish
Academy of Sciences.

My research interests are related to data science, in particular: modelling complex
phenomena, developing usable, general-purpose algorithms, studying their analyt-
ical properties, and finding out how people use, misuse, understand, and misunder-
stand methods of data analysis in research, commercial, and decision-making set-
tings. I'm an author of 90+ publications, including journal papers in outlets such as
Proceedings of the National Academy of Sciences (PNAS), Journal of Statistical Software, The R

4 Which does not automatically mean good. For instance, sugar, salt, and some drugs are very popular,
but it does not make them healthy.
15 https://[www.gagolewski.com

https://www.gagolewski.com

PREFACE XIX

Journal, Information Fusion, International Journal of Forecasting, Statistical Modelling, Phys-
ica A: Statistical Mechanics and its Applications, Information Sciences, Knowledge-Based Sys-
tems, IEEE Transactions on Fuzzy Systems, and Journal of Informetrics.

In my “spare” time, I write books for my students (also check out my Minimalist data
wrangling with Python'® [25]) and develop open-source (libre) data analysis software,
such as stringi? (one of the most often downloaded R packages), genieclust'® (a fast
and robust clustering algorithm in both Python and R), and many others®.

0.6 Acknowledgements

R, and its predecessor S, is the result of a collaborative effort of many program-
mers*®. Without their generous intellectual contributions, the landscape of data ana-
lysis would not be as beautiful as it is now. R is distributed under the terms of the GNU
General Public license version 2, and we occasionally display fragments of its source
code for didactic purposes.

We describe and use R version 4.3.0 (2023-04-21). However, we expect 99.9% of the
material covered here to be valid in future releases (consider filing a bug report if you
discover that this is not the case).

Deep R Programming is based on the author’s experience as an R user (since ~2003),
developer of open-source packages (mentioned above), tutor/lecturer (since ~2008),
and an author of a quite successful Polish textbook Programowanie w jezyku R (see [24])
which was published by PWN (1st ed. 2014, 2nd ed. 2016). Even though the current
book is an entirely different work, its predecessor served as an excellent testbed for
many ideas conveyed here.

In particular, the teaching style exercised in this book has proven successful in many
similar courses that yours truly has been responsible for, including at Warsaw Univer-
sity of Technology, Data Science Retreat (Berlin), and Deakin University (Melbourne).
I thank all my students and colleagues for the feedback given over the last 15-odd years.

However, this book received no funding, administrative, technical, or editorial sup-
port from Deakin University, Warsaw University of Technology, Polish Academy of
Sciences, or any other source.

This book was prepared in a Markdown superset called MyST?*, Sphinx**, and TeX
(XeLaTeX). Code chunks were processed with the R package knitr [58]. All fig-
ures were plotted with the low-level graphics package using the author’s own style

16 https://datawranglingpy.gagolewski.com/

17 https://stringi.gagolewski.com

18 hteps://genieclust.gagolewski.com

19 https://github.com/gagolews

20 https://www.r-project.org/contributors.html

21 https://myst-parser.readthedocs.io/en/latest/index.html
22 https://www.sphinx-doc.org/

https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://stringi.gagolewski.com
https://genieclust.gagolewski.com
https://github.com/gagolews
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html
https://myst-parser.readthedocs.io/en/latest/index.html
https://www.sphinx-doc.org/

XX PREFACE

template. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex??, sphinxcontrib-proof?*) dotted the j’s and crossed the f’s.
The Ubuntu Mono® font is used for the display of code. Typesetting of the main text
relies upon the Alegreya®® and Lato?” typefaces.

0.7 You can make this book better

)

Open, non-profit projects such as this one, have to rely on the generosity of the readers
community when it comes to quality assurance.

Ifyou find atypo, abug, or some passage that could be rewritten or extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/deepr/issues/. This way, we can make it better together.

Please consider “starring” the book’s GitHub repository*®. Some people (weirdly) use
the number of “stars” as a proxy for quality.

Also, please spread the news about this book by sharing https://deepr.gagolewski.
com/ with your mates, peers, or students. You may also generously cite it in your pub-
lications. Thank you.

23 https://pypi.org/project/sphinxcontrib-bibtex/
24 https://pypi.org/project/sphinxcontrib- proof/
%5 https://design.ubuntu.com/font/

26 https://www.huertatipografica.com/en

27 https://www .latofonts.com/

28 https://github.com/gagolews/deepr/

https://pypi.org/project/sphinxcontrib-bibtex/
https://pypi.org/project/sphinxcontrib-proof/
https://design.ubuntu.com/font/
https://www.huertatipografica.com/en
https://www.latofonts.com/
https://github.com/gagolews/deepr/issues/
https://github.com/gagolews/deepr/issues/
https://github.com/gagolews/deepr/
https://deepr.gagolewski.com/
https://deepr.gagolewski.com/

Part 1

Deep

1

Introduction

1.1 Hello, world!

Traditionally, every programming journey starts with the printing of a “Hello, World”-
like greeting. Let’s then get it over with asap:

cat("My hovercraft is full of eels.\n") # '|n' == newline
My hovercraft is full of eels.

By calling (invoking) the cat function, we printed out a given character string that we
enclosed in double quote characters.

Documenting code is a good development practice. It is thus worth knowing that any
text followed by a hash sign (that is not part of a string) is a comment, ignored by the
interpreter.

This is a comment.

This is another comment.

cat("I cannot wait", "till lunchtime.\n") # two arguments (another comment)
I cannot wait till lunchtime.

cat("# I will not buy this record.\n# It is scratched.\n")

I will not buy this record.

It 1s scratched.

By convention, in this book, the textual outputs generated by R itself are always pre-
ceded by two hashes. This makes copy-pasting all code chunks easier in the case where
the kind reader would like to experiment with them by themself (which is always
highly encouraged).

Whenever a call to some function is to be made, the round brackets are oblig-
atory. All objects within the parentheses (they are separated by commas) con-
stitute the input data to be consumed by the operation. Thus, the syntax is:
some_function_to_be_called(argumentl, argument2, etc.).

4 | DEeep

1.2 Setting up the development environment
1.2.1 Installing R

Itis quite natural to pine for the ability to execute the above code ourselves — we cannot
learn programming without getting our hands dirty.

The official precompiled binary distributions of R can be downloaded from https://
cran.r-project.org/.

For serious programming work’, we recommend, sooner rather than later, switching
to” one of the Unix-like operating systems. This includes the free, open-source (==
good) variants of GNU/Linux, amongst others, or the proprietary (== very far from
good) m**OS. The users thereof might employ their favourite package manager (e.g.,
apt, dnf, pacman, or Homebrew) to install R.

Users of other operating systems (such as Wi***ws) might consider installing
Anaconda or Miniconda if they require some level of interoperability with the Py-
thon environment, e.g., they would like to work with the Jupyter environment (Sec-
tion 1.2.5).

Below we review several ways in which we can write and execute R code. It is up to
the benign reader to research, setup, and learn the development environment that
suits their needs. As usual in real life, there is no single universal approach that always
works best in all the scenarios.

1.2.2 Interactive mode

R’s read-eval-print loop (REPL) can give us instant gratification whenever we would like
to compute something quickly, e.g., determine basic aggregates of a few numbers
entered by hand or evaluate a mathematical expression like “2+2”.

How to start the R console varies from system to system, e.g., users of Unix-like boxes
can simply execute R from the terminal (shell). Wi***ws folks can fire up the RGui from
the Start menu.

w n

Important When working interactively, the default® command prompt, “>”, means:
I am awaiting orders. Moreover, “+” denotes: Please continue. In such a case, we should
either complete the unfinished expression, or cancel the operation by pressing ESC or
CTRL+C (depends on the operating system).

> cat("And now

(continues on next page)

! For instance, when an easy interoperability with other programming languages/environments is re-
quired or when we think about scheduling jobs on Linux-based computing/container clusters.

% Or at least trying out — by installing a copy of GNU/Linux on a virtual machine (VM).

3 It can be changed; see help("options").

https://cran.r-project.org/
https://cran.r-project.org/

1 INTRODUCTION 5

(continued from previous page)

for something
completely different

it is an unfinished expression...
awaiting another double quote character and then the closing bracket...

press ESC or CTRL+C to abort input

V o+ + 4+ + + + 4+ o+

For readability, we never print out the command prompt characters in this book.

1.2.3 Batch mode: Working with R scripts (**)
The interactive mode of operation is unsuitable for more complicated tasks, though.

The users of Unix-like operating systems will be interested in another extreme, which
involves writing standalone R scripts that can be executed one by line, without any
user intervention.

To do so, in the terminal (command line, shell), we can invoke:

Rscript file.R

where file.R is the path to some source file.

Exercise 1.1 (**) In your favourite text editor (e.g., Notepad++, Kate, vi, Emacs, RStudio, or
VSCodium), create a file named test.R. Write a few calls to the cat function. Then, execute this
script from the terminal by invoking the Rscript program.

1.2.4 Weaving: Automatic report generation (**)

Reproducible data analysis* requires us to keep the results (text, tables, plots, auxiliary
files) synchronised with their generating code and data.

utils: :Sweave (the Sweave function from the utils package) and knitr [58] are two
example template processors that evaluate R code chunks within documents written
in LaTeX, HTML, or other markup languages. The chunks are replaced by the outputs
they yield.

This book is a showcase of such an approach - all the results, including Figure 2.3 and
the above “Hello, World”, were generated programmatically. Thanks to its being writ-
ten in the highly universal Markdown’ language, it could be easily converted to a single

4 The idea dates back to Knuth's literate programming concept; see [37].
5 https://daringfireball.net/projects/markdown/

https://daringfireball.net/projects/markdown/

6 | DEeep

PDF document® as well as the whole website?. Tools like pandoc and docutils facilitate
such operations.

Exercise1.2 (**) Install the knitr package by calling install.packages("knitr") from
within an R session. Then, create a text file named test.Rmd with the following content:

Hello, Markdown!

This is my first automatically generated report,
where I print messages and stuff.

i}
print("G'day!")
print(2+2)
plot((1:10)72)

Thank you for your attention.

Assuming that the file is located in the current working directory (compare Section 7.3.3), call
knitr::knit("test.Rmd") from the R console or run the following in the terminal:

Rscript -e 'knitr::knit("test.Rmd")'

Then, inspect the generated Markdown file, test.md.

Furthermore, if you have the pandoc tool installed, to generate a standalone HTML file, execute
in the terminal:

pandoc test.md --standalone -o test.html

Alternatively, forways to call external programs from R, see Section 7.3.3.

1.2.5 Semi-interactive modes (Jupyter Notebooks, sending code to an asso-
ciated R console, etc.)

The nature of the most frequent use cases of R encourages a semi-interactive work-
flow, where we progress with prototyping fast by trial-and-error.

In this mode, we write a series of short code fragments inside a standalone R script.

Each fragment implements a simple, well-defined task, such as the loading of data
files, data cleansing, feature visualisation, computations of some information ag-
gregates, etc.

Importantly, any code chunk can be sent to the associated R console and executed

6 https://deepr.gagolewski.com/deepr.pdf
7 https://deepr.gagolewski.com

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com

1 INTRODUCTION 7

therein. This way, we can inspect the results it generates at any time. If we are not
happy with the outcome, we can apply any corrections that are necessary.

There are quite a few integrated development environments (IDEs; sometimes re-
quiring additional plugins) that enable such a workflow, including JupyterLab, Emacs,
RStudio, and VSCodium.

Executing an individual code line or a whole text selection is usually done by pressing
a (configurable) keyboard shortcut such as Ctrl+Enter or Shift+Enter.

Exercise 1.3 (*) JupyterLab® is a development environment that runs in a web browser. It was

programmed in Python, but supports many programming languages. Thanks to IRkernel®, we
can use it with R.

1. Install JupyterLab and IRkernel (for instance, if you use Anaconda, run conda install
-c r r-essentials).

2. From the File menu, select Create a new R source file and save it as, e.g., test.R.
3. From the File menu, select Create a new console for editor running the R kernel.
4. Type some print “Hello, World”-like calls.

5. Press Shift+Enter (Whilst working in the editor) to send different code fragments onto the
console and execute them. Inspect the results.

See Figure 1.1 for an illustration.

— File Edit View Run Kemel Tabs Settings Help
c

= testR X [+
L i
OPEN TABS Close All
(=] = testR # <Source Editor> &
>
B testr # Press Shift+Enter to execute current line or selection
= KeRneLs SHUEDEWAAL # in the associated console below
B testR plot(rnorm(1600), rnorm(1600), main="G'day!")
» TERMINALS Shut Down All
B testR X+

plot(rnorm(1600), rnorm(1600), main="G'day!")

G'day!

%

B 0

horm(1000)
°
® 00 o

Figure 1.1: JupyterLab: A source file editor and the associated R console, where we can
run arbitrary code fragments

8 https://jupyterlab.readthedocs.io/en/stable/
9 https://irkernel.github.io/

https://jupyterlab.readthedocs.io/en/stable/
https://irkernel.github.io/

8 | DEeep

Example 1.4 () The Jupyter project, whose JupyterLab is part of; also supports the handling
of dedicated Notebooks. There, editable and executable code chunks and results they generate can
be kept together in a single . ipynb (JSON) file; see Figure 1.2 for an illustration and Chapter 1 of
[25] for a quick introduction (from the Python language kernel perspective).

This environment is quite convenient for live coding (e.g., for teachers) or performing explorat-
ory data analyses. However, for more serious programming work, the code can get quite messy
(luckily, there is always an option to export a notebook to an executable, plain text R script).

~ Jupyter Welcome (unsaved changes) R Logout

File Edit View Inset Cell Kemel Widgets Help Trusted RO

Example Jupyter Notebook
In [1]: plot(rnorm(1000), rnorm(1000), main="G'day!")

G'day!

morm(1000)

morm(1000)

Figure 1.2: An example Jupyter Notebook, where we can keep the code and the results
together

1.3 Atomic vectors at a glance

After the printing of the “Hello, World” message, a typical programming course would
normally proceed with the discussion on basic data types for storing individual nu-
meric or logical values. Next, we would be introduced to arithmetic and relational op-
erations on such scalars, followed by the definition of whole arrays or other collections
of such values, complemented by the methods to iterate over them, one element after
another.

In R, no separate types representing individual values have been defined. Instead,
what seems to be a single datum, is already a vector (sequence, array) of length 1.

2.71828 # input a number (here: the same as print(2.71828))
[1] 2.7183

(continues on next page)

1 INTRODUCTION 9

(continued from previous page)

length(2.71828) # it is a vector featuring one element
[1] 1

To create a vector of any length, we can call the ¢ function, which combines given ar-
guments into a single sequence:

c(1, 2, 3) # three vectors of length 1 -> one vector of length 3
[1] 1 2 3

length(c(1, 2, 3))

[1] 3

In Chapter 2, Chapter 3, and Chapter 6, we will discuss the most prevalent types of
atomic vectors: numeric, logical, and character ones, respectively.

c(0, 1, -3.14159, 12345.6) # four numbers
[1] 0.0000 1.0000 -3.1416 12345.6000
c(TRUE, FALSE) # two logical values

[1] TRUE FALSE
c("spam", "spam", "bacon and spam") # three character strings
[1] "spam” "spam" "bacon and spam"

We call them atomic, because they can only group together values of the same type.
Lists, which we will discuss in Chapter 4, are, on the other hand, referred to as generic
vectors — they can be used for storing items of mixed types — other lists as well.

Note Not having separate scalar types greatly simplifies the programming of numer-
ical computing tasks. Vectors are prevalent in our main areas of interest — statistics,
simulations, data science, machine learning, and all other data-oriented computing.
For example, columns and rows in tables (values of different features describing cli-
ents, ratings of items given by users) or time series (stock market prices, readings from
temperature sensors) are all best represented by means of such sequences.

Moreover, the fact that vectors are the core part of the R language makes their use
very natural — as opposed to the languages that require special add-ons for vector
processing, e.g., numpy for Python [33]. By learning different ways to process them as
awhole, instead of one element at a time, we will assure that our ideas can quickly be
turned into working code (rapid prototyping). For instance, computing summary stat-
istics such as, say, the mean absolute deviation of some sequence x, will be as effortless
as writing mean(abs(x-mean(x))). Such a code is not only easy to read and maintain,
but it is also fast to run.

10 | DEeep

1.4 Getting help
Our aim is to become independent, advanced R programmers.

Independent, however, does not mean omniscient. The R help system is the authorit-
ative source of knowledge about specific functions or more general topics. To open a
help page, we call:

help("topic") # equivalently: ?"topic"
Exercise 1.5 Sight (without going into detail) the manual on the length function by calling
help("length"). Note that most help pages are structured as follows:

1. Header: “package:base” means that the function is a base one (see Section 7.3.1 for more
details on the R package system);

2. Title;
Description: a short description of what the function does;
Usage: the list of formal arguments (parameters) to the function;

Arguments: the meaning of each formal argument explained;

S wmoRw

Detalils: technical information;
7. Value: return value explained;
8. References: further reading;
9. See Also: links to other help pages;
10. Examples: R code that is worth to run and study by yourself.

We can also search within all the installed help pages by calling:

help.search("vague topic") # equivalently: ??"vague topic"

Oftentimes, this way we will be able to find answers to our questions more reliably
than when asking DuckDuckGo or G**gle, which commonly feature many low qual-
ity/irrelevant/distracting results from splogs (they can make us lose the sacred code
writer’s flow).

Important All code chunks, including code comments and textual outputs, form an
integral part of this book’s text. They should not be skipped by the reader. On the con-
trary, they should become objects of our intense reflection and thorough investiga-
tion.

For instance, whenever we introduce a few function, it may be a good idea to look it
up in the help system. Moreover, playing with the presented code (running, modify-
ing, experimenting, etc.) is also very beneficial. We should develop the habit of asking

1 INTRODUCTION 1

ourselves questions like “what would happen if..”, and then finding the answers on
our own.

We are now ready to discuss the most significant operations on numeric vectors,
which constitute the main theme of the next chapter. See you there.

1.5 Exercises
Exercise 1.6 What are the three most important types of atomic vectors?

Exercise 1.7 According to the classification of the R data types we introduced in the previous
chapter, are atomic vectors basic or compound types?

2

Numeric vectors

In this chapter, we discuss the uttermost common operations on numeric vectors.
They are so fundamental that we will also find them in other scientific computing en-
vironments, including Python with NumPy or TensorFlow, Julia, MATLAB, GNU Octave,
or Scilab.

At first blush, the number of functions we are going to explore may seem quite large.
Still, the reader is kindly asked to place some trust (a rare thing these days) in yours
truly. It is because our selection is comprised only of the most representative and edu-
cational amongst the plethora of possible choices. More complex building blocks can
either be reduced to a creative combination of the former or be easily found - should
the need arise — in a number additional packages or libraries (e.g., the GNU GSL [27]).

A solid understanding of base R programming is necessary for the effective dealing
with the popular packages (such as data.table, dplyr, or caret). Most importantly,
base R’s API is stable, hence the code we write today will most likely work the same way
in 10 years. This is often not the case when we rely on third-party add-ons.

In the sequel, we will be advocating a minimalist, keep-it-simple approach to the art of
programming of data processing pipelines, one that is a good balance between “doing
it all by oneself”, “minimising the information overload”, “being lazy”, and “standing
on the shoulders of giants”.

Note The exercises that we suggest below are all self-contained, unless explicitly
stated otherwise. The use of language constructs that are yet to be formally intro-
duced (in particular, if, for, and while which we will explain in Chapter 8) is not only
unnecessary, but discouraged. Moreover, we recommend against taking shortcuts by
looking up partial solutions on the internet. Rather, to get the most out of this course,
the reader should be seeking relevant information within the current and preceding
chapters as well as the R help system.

2.1 Creating numeric vectors
2.1.1 Numeric constants

The simplest numeric vectors are those of length one:

14 | DEeep

-3.14
[1] -3.14
1.23e-4

[1] 0.000123

The latter is in what we call the scientific notation which is convenient means of entering
numbers of very large or small order of magnitude. Here, “e” stands for “... times 10 to
the power of..”. Therefore, 1.23e-4is equal to 1.23x10~% = 0.000123. In other words,
given 1.23, we move the decimal separator by 4 digits towards the left.

In real life, some information items may be inherently or temporarily missing, un-
known, or Not Available. R is data processing-oriented, hence it is equipped with a
special indicator:

NA_real_ # numeric NA (missing value)
[1] NA

This is similar to the Null marker in database query languages such as SQL. Note that
NA_real_is displayed simply as “NA”, chiefly for readability.

Moreover, Inf denotes the infinity (co; a value that is larger than the largest represent-
able double precision — 64 bit — floating point number) and NaN stands for not-a-number
(it is returned as the result of some illegal operations, e.g., 0/0 or co — o).

2.1.2 Concatenating vectors with c
Let us provide some ways to create numeric vectors with possibly more than 1 element.

First, the c function that we introduced in the previous chapter can be used to combine
(concatenate) many numeric vectors, each of any length, so as to form a single object:

c(1, 2, 3) # 3 vectors of length 1 -> 1 vector of length 3
[1] 1 2 3

c(1, c(2, NA_real_, 4), 5, c(6, c(7, Inf)))

[1] 1 2 NA 4 5 6 7 Inf

Note Running help("c"), we will see that its usage is like “c(...)”. In the current
context, this means that the ¢ function takes an arbitrary number of arguments. In
Section 9.5.6, we will study the dot-dot-dot (ellipsis) parameter in more detail.

2.1.3 Repeating entries with rep

Second, rep replicates the elements in a given vector a given number of times.

2 NUMERIC VECTORS 15

rep(1l, 5)

[1] 1111 1

rep(c(1, 2, 3), 4)

[1] 123123123123

In the second case, the whole vector (1, 2, 3) has been recycled (tiled) four times. Inter-
estingly, if the second argument was a vector of the same length as the first one, the
behaviour would be quite different:

rep(c(1, 2, 3), c(2, 1, 4))

[1] 1123333

rep(c(l, 2, 3), c(4, 4, 4))

[1] 111122223333

Here, each element is repeated the corresponding number of times.

If we call help("rep"), we will come across the notion like “rep(x, ...)” in the Usage
section. Unfortunately, it is rather peculiar, but reading further we discover the dot-
dot-dot stands for one of the following further parameters (see the Arguments section):

« times,
« length.out,
« each.

So far, we have been playing with times, which is listed second in the parameter list
(after x — the vector whose elements are to be repeated).

Important It turns out that the following function calls are all equivalent:

rep(c(l, 2, 3), 4) # positional matching of arguments: “x°, then ‘times"’
rep(c(1, 2, 3), times=4) # “times' 1s the second argument

rep(x=c(1, 2, 3), times=4) # keyword arguments of the form name=value
rep(times=4, x=c(1, 2, 3)) # keyword arguments can be given in any order
rep(times=4, c(1, 2, 3)) # mixed positional and keyword arguments

We can also pass eachor length.out (a dothas no special meaning in R; see Section 2.2),
but their names should be mentioned explicitly:

rep(c(1, 2, 3), length.out=7)

[1] 12312 3 1

rep(c(1, 2, 3), each=3)

[1] 111222333

rep(c(1, 2, 3), length.out=7, each=3)
[1] 1112223

16 | DEeep

Note Whether it was a good programming practice to actually implement a range of
varied behaviours inside a single function is a matter of taste. On the one hand, in all of
the examples above, we do repeat the input elements somehow, so remembering just
one function name is really convenient. Nevertheless, a drastic change in the repeti-
tion pattern depending, e.g., on the length of the times argument can be bug-prone.
Anyway, we have been warned’.

Zero-length vectors are possible too:

rep(c(1, 2, 3), 0)
numeric(0)

Even though their handling might be a little tricky (compare Chapter 9), we will see
later that they are useful in contexts like “create an empty data frame with a specific
column structure”.

Also note that R often allows for partial matching of named arguments, but its use is
abad programming practice; see Section 15.4.4 for more details.

rep(c(1, 2, 3), len=7) # not recommended (see later)

Warning in rep(c(1, 2, 3), len = 7): partial argument match of 'len' to
"length.out’

[1] 12312 31

The only reason we see the warning message is because we have manually set op-
tions(warnPartialMatchArgs=TRUE) in our environment. It is not set by default.

2.1.4 Generating arithmetic progressions withseqand *:"

Third, we can call the seq function to create a sequence of equally-spaced numbers (on
alinear scale, i.e., an arithmetic progression).

seq(1, 15, 2)
[1] 1 3 5 7 9 11 13 15

Reading the function’s help page, we note that it has the following parameters: from,
to, by, length.out, amongst others.

Thus, the above call is equivalent to:

! Some “caring” R users might be tempted to introduce two new functions now, one for generating (1,
2,3,1, 2,3, ..) only and the other outputting patterns like (1, 1, 1, 2, 2, 2, ...). They would most likely wrap
them in a new package and announce that on Twitter. But this is nothing else than a multiplication of en-
tities without actual necessity; we would end up with three functions: the original one, rep, which everyone
should know anyway because it is so basic and has been and will be used everywhere by almost everybody so
far, and the two redundant ones, whose user-friendliness is only illusory. See also Chapter 9 for discussion
on the design of functions.

2 NUMERIC VECTORS 17

seq(from=1, to=15, by=2)
[1] 1 3 5 7 911 13 15

Note that to actually means “up to”:

seq(from=1, to=16, by=2)
[1] 1 3 5 7 9 11 13 15

We can also pass length.out instead of by. In such a case, the increments or decre-
ments will be computed via the formula ((to - from)/(length.out - 1));this default
value is reported in the Usage section in help("seq").

seq(1, 0, length.out=5)
[1] 1.00 0.75 0.50 0.25 0.00

Also, this:

seq(length.out=5) # default “from' is 1

##[1] 12345

Arithmetic progressions with step equal to 1 or -1 can also be generated via the *:"
operator.

1:10 # seq(1, 10) or seq(1, 10, 1)

[1] 1 2 3 4 5 6 7 8 9 10

-1:10 # seq(-1, 10) or seq(-1, 10, 1)

[1] -1 06 1 2 3 4 5 6 7 8 910
-1:-10 # seq(-1, -10) or seq(-1, -10, -1)

[1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Note the order of precedence of this operator: “-1:10” means “(-1):10” and not
“-(1:10)”; compare Section 2.4.3.

Exercise 2.1 Takealook atthe manual page of seq_alongand seq_lenand determine whether
they can easily be done without, having seq* at hand.

2.1.5 Generating pseudorandom numbers

We can also generate sequences drawn independently from a range of univariate prob-
ability distributions.

runif(7) # uniform U(O, 1)
[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556 0.528105
rnorm(7) # normal N(O, 1)
[1] 1.23950 -0.10897 -0.11724 0.18308 1.28055 -1.72727 1.69018

2 Also note that certain configurations of seq and its variants might return vectors of type integer in-
stead of double, some of them in a compact (ALTREP) form; see Section 6.4.1.

18 | DEeep

These correspond to seven pseudorandom deviates following the uniform distribu-
tion on the unit interval (i.e., (0, 1)) and the standard normal distribution (i.e., with
expectation o and standard deviation 1), respectively; compare Figure 2.3.

For more named distribution classes (frequently occurring in various real-world stat-
istical modelling exercises), see Section 2.3.4.

Another useful function samples a number of values from a given vector, either with
or without replacement:

sample(1:10, 20, replace=TRUE) # 20 with replacement (allow repetitions)
#4 [1] 3 310 2 6 5 4 6 910 5 3 9 9 9 3 810 7 10
sample(1:10, 5, replace=FALSE) # 5 without replacement (do not repeat)
[1] 9346 1

The distribution of the sampled values does not need to be uniform; the prob argument
may be fed with a vector of the corresponding probabilities. For example, here are 20
independent realisations of the random variable X such that Pr(X = 0) = 0.9 (the
probability that we obtain o is equal to 90%) and Pr(X = 1) = 0.1:

sample(0:1, 20, replace=TRUE, prob=c(0.9, 0.1))
[1] 0660 0O01000001000000001

Note If nis a single number (a numeric vector of length 1), then sample(n, ...)is
equivalent to sample(1:n, ...). Similarly, seq(n) is a synonym for seq(1, n) orseq(1,
length(n)), depending on the length of n. This is a dangerous behaviour which can
occasionally backfire and lead to bugs (check what happens when n is, e.g., 0). Non-
etheless, we have been warned and from now on are going to be extra careful (but are
we really?). Read more at help("sample") and help("seq").

Let us stress that the numbers we obtain are merely pseudorandom, because they are
generated algorithmically. R uses the Mersenne-Twister MT19937 method [43] by de-
fault; see help("RNG") and [21, 28, 39]. By setting the seed of the random number gener-
ator, i.e., re-setting its state to a given one, we can obtain results that are reproducible.

set.seed(12345) # seeds are specified with integers
sample(1:10, 5, replace=TRUE) # a,b,c,d,e

[1] 310 8 10 8

sample(1:10, 5, replace=TRUE) # f,g,h, 1,7

[1] 2 6 6 7 10

Setting the seed to the one used previously gives:

set.seed(12345)
sample(1:10, 5, replace=TRUE) # a,b,c,d,e
[1] 310 8 10 8

2 NUMERIC VECTORS 19

We did not(?) expect that! And now for something completely different:

set.seed(12345)
sample(1:10, 10, replace=TRUE) # a,b,c,d,e,f,g,h, 1,7
[1] 310 810 8 2 6 6 7 10

Reproducibility is a crucial feature of each truly scientific experiment. The same initial
condition (here: the same seed), leads to exactly the same outcomes.

Note Some claim that the only unsuspicious seed is 42, but each programmer can
have their own picks. Yours truly, for example, uses 123, 1234, and 12345 as well. When
performing many runs of Monte Carlo experiments, it may be a good idea to call set.
seed(i) in the i-th iteration of a simulation we are trying to program.

Anyhow, we should make sure that our seed settings are applied consistently across all
our scripts. Otherwise, we might be accused of tampering with evidence. For instance,
here is the ultimate proof that we are very lucky today:

set.seed(1679619) # totally unsuspicious, right?
sample(0:1, 20, replace=TRUE) # so random
#4 [1] 1111 111111111111 1111

This is exactly why reproducible scripts and auxiliary data should be published along-
side all research reports or papers. Only open, transparent science can be fully trust-
worthy.

If set.seed is not called explicitly, and the random state is not restored from the previ-
ously saved R session (see Chapter 16), then the random generator is initialised based
on the current wall time and the identifier of the running R instance (PID). This may
give the impression that the numbers we generate are surprising.

Inorder to understand the “pseudo” part of the said randomness better, in Section 8.3,
we will build a very simple random generator ourselves.

2.1.6 Reading data with scan

The example text file named euraud-20200101-20200630.csv? gives the EUR to AUD
exchange rates (how many Australian Dollars can one buy for 1 Euro) from 1 January
to 30 June 2020 (remember COVID-19?). Let us preview the first couple of lines:

EUR/AUD Exchange Rates
Source: Statistical Data Warehouse of the European Central Bank System
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/
(provided free of charge)
NA
(continues on next page)

3 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

20 | DEeep

(continued from previous page)
1.6006
1.6031
NA

The four first lines that begin with “4” merely serve as comments for us, humans; they
should be ignored by the interpreter. The first “real” value, NA, corresponds to the 1st
of January (Wednesday; New Years Day; Forex markets were closed, hence a missing
observation).

The scan function can be used to read all the inputs and convert them to a single nu-
meric vector:

scan(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")
[1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132

[11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA NA 1.6154
[21] 1.6177 1.6184 1.6149 1.6127 NA NA 1.6291 1.6290 1.6299 1.6412
[31] 1.6494 NA NA 1.6521 1.6439 1.6299 1.6282 1.6417 NA NA
[41] 1.6373 1.6260 1.6175 1.6138 1.6151 NA NA 1.6129 1.6195 1.6142
[51] 1.6294 1.6363 NA NA 1.6384 1.6442 1.6565 1.6672 1.6875 NA
[61] NA 1.6998 1.6911 1.6794 1.6917 1.7103 NA NA 1.7330 1.7377
[71] 1.7389 1.7674 1.7684 NA NA 1.8198 1.8287 1.8568 1.8635 1.8226
[81] NA NA 1.8586 1.8315 1.7993 1.8162 1.8209 NA NA 1.8021

[91] 1.7967 1.8053 1.7970 1.8004 NA NA 1.7790 1.7578 1.7596
[reached getOption("max.print"”) -- omitted 83 entries]

We used the paste6 function to concatenate two long (too long to fit a single line of
code) strings to form a single URL; see Section 6.1.3.

We can also read the files located on our computer, for example:

scan("~/Projects/teaching-data/marek/euraud-20200101-20200630.csv",
comment.char="#")

uses an absolute file path that starts at the user’s home directory, denoted “~”: yours
truly’s case is /home/gagolews/.

Note For portability reasons, we should use slashes, “/”, as path separators (but see
help("file.path")and help(".Platform")). These are not only recognised by all Unix-
like boxes but also other popular operating systems. Note that URLs (such as https:
/[www.r-project.org/) feature slashes too.

Paths can also be relative to the current working directory, denoted “.”. It can be read
viaacall to getwd. Usually, itis the directory from where the R session has been started.

For instance, if the working directory was /home/gagolews/Projects/teaching-data/

https://www.r-project.org/
https://www.r-project.org/

2 NUMERIC VECTORS 21

marek, we could have written the file path equivalently as . /euraud- 20200101 - 20200630.
csv or even euraud-20200101-20200630.csv.

On as side note, ../ would denote the parent directory of the current working dir-
ectory. For instance, .. /r/iris.csv would be equivalent to /home/gagolews/Projects/
teaching-data/r/iris.csv.

Exercise 2.2 Read the help page about scan. Take note of the following formal arguments and
their meaning: dec, sep, what, comment.char, and na. strings.

Later we will discuss the read.table and read.csv, which are wrappers around scan
that can be used to read tabular data. Note that write can be used to export an atomic
vector’s contents to a text file.

Example 2.3 Figure2.1shows the graph of the aforementioned exchange rates, which was gen-
erated by calling:

plot(scan(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#"),
xlab="Day", ylab="EUR/AUD")

sl &o
&%
[}
@ o
o)
Q un o ()
2 [o 0
I~ @%
2 %)

1.70
1

Q

o

g © ®
o 8" % oy
] &m@%‘@f %%’@”%

&)

1.60
T

) 50 100 150
Day

Figure 2.1: EUR/AUD exchange rates from 2020-01-01 (day 1) to 2020-06-30 (day 182)

Somewhat misleadingly (and for the reasons that will become apparent later), the document-
ation of plot can be accessed by calling help("plot.default"). Read about, and experiment
with, different values of the main, xlab, ylab, type, col, pch, cex, lty, and lwdarguments. More
plotting routines will be discussed in Chapter 13.

22 | DEeep

2.2 Creating named objects

Often, the objects we bring forth will need to be memorised so that they can be referred
to in further computations. The assignment operator, "<-", can be used for this very
purpose:

X <- 1:3 # creates a numeric vector and binds the name ‘x' to it

The now-named object can be recalled* and dealt with as we please:

print(x) # or just 'x° in the R console

[1] 1 2 3

sum(x) # example operation: compute the sum of all elements in ‘x°
[1] 6

Important In R, all names are case-sensitive. Hence, x and X can coexist peacefully:
when set, they refer to two different objects. Also, if we tried to call Print(x) above, we
would get an error.

Typically, we will be using what we refer to as syntactic names (see Section 9.4.1
for an exception though). In the R help system (see help("make.names") and also
help("Quotes")), we read: A syntactically valid name consists of letters, numbers and the
dot or underline characters and starts with a letter or the dot not followed by a number. Names
such as . 2way are not valid, and neither are the reserved words. For the list of the latter, see
help("Reserved").

A good name is self-explanatory and thus reader-friendly: patients, mean, and aver-
age_scores are way better (if they really are what they claim they are) than xyz123, crap,
or spam. Also, it might not be such a bad idea to get used to denoting:

. vectors with x, y, z,

- matrices (and matrix-like objects) with A, B, ..., X, Y, Z,
. integer indexes with letters 1, j, k, 1,

. object sizes with n, m, d, p or nx, ny, etc.,

especially when they are only of temporary nature (for storing some auxiliary results,
iterating over collections of objects, etc.).

There are numerous naming conventions that we can adopt, but most often they are
a matter of taste; snake_case, lowerCamelCase, UpperCamelCase, flatcase, or dot.case
are equally good as long as they are used coherently (for instance, some use snake_case
for vectors and UpperCamelCase for functions). It may even be the case that we have

4 Names are bound in environment frames; see Chapter 16.

2 NUMERIC VECTORS 23

little choice but to adhere to the naming conventions agreed upon in the project we
are about to contribute to.

Note Let us stress that a dot, “.”, has no special meaning (however, see Chapter 10
and Chapter 16 for some asterisks); na.omit is as good a name as na_omit, naOmit, NA-
OMIT, naomit, and NaOmit. Users coming from some other (C, C++, Java, Python, etc.)
programming languages will need to habituate themselves to this convention.

R, as adynamic language, allows for introducing new variables at any time. Moreover,
existing names can be re-bound to new values. For instance:

(y <- c(1, 10, 100)) # bracketed expression - printing not suppressed
[1] 1 10 1600

X <-y

print(x)

[1] 1 10 100

Now x refers to a verbatim copy of y.

Note Objects are automatically destroyed when there are no more names bound with
them. In particular, by now the garbage collector should have got rid of the 1:3 vector be-
gotten above (to which the name x was bound previously). See sec:memory-management
for more details on memory management.

2.3 Vectorised mathematical functions

Mathematically, we will be denoting a given vector x of length n as (xq, x5, ..., x,,). In
other words, its i-th element is equal to x;.

Let us review some ubiquitous operations in numerical computing.

2.3.1 absandsqrt

R implements vectorised versions of the most popular mathematical functions, e.g.,
abs (absolute value, |x|) and sqrt (square root, Vx).

abs(c(2, -1, 0, -3, NA_real))
[1] 2 1 0 3 MNA

Here, vectorised means that instead of being defined to act on a single numeric value,
the function of interest is applied on each element in a vector. The i-th resulting item

24 | DEeep

is a transformed version of the i-th input. If an input is a missing value, the corres-
ponding output will be marked as “don’t know” as well.

Another example:

x <- c(4, 2, -1)

(y <- sart(x))

Warning in sqrt(x): NaNs produced
[1] 2.0000 1.4142 NaN

To attract our attention to the fact that computing the square root of a negative value
yields a not-a-number, R generated an informative warning. A warning is not an error
though: the result is being reckoned as usual.

Also the fact that the irrational y2 is displayed® as 1.4142 does not mean thatitissucha
crude approximation to 1.414213562373095048801688724209698 ...; it is only roun-
ded when printing, for aesthetic reasons. In fact, in Section 3.2.3, we will point out
that the computer’s floating-point arithmetic allows for roughly 16 decimal digits pre-
cision (but we shall see that the devil is in the detail).

print(y, digits=16) # display more significant figures
#4 [1] 2.000000000000000 1.414213562373095 NaN

2.3.2 Rounding
The following functions get rid of all or portions of fractional parts of numbers:
« floor(x) (rounds down to the nearest integer, denoted | x]),
. ceiling(x) (rounds up, denoted [x7),
« trunc(x) (rounds towards zero), and
« round(x, digits=0) (rounds to the nearest number with digits decimal digits).

For instance:

X <- ¢c(7.0001, 6.9999, -4.3149, -5.19999, 123.4567, -765.4321, 0.5, 1.5, 2.5)
floor(x)

[1] 7 6 -5 -6 123 -766 0 1 2

ceiling(x)

[1] 8 7 -4 -5 124 -765 1 2 3

trunc(x)

[1] 7 6 -4 -5 123 -765 (0] 1 2

Note Ifwe call help("round"), we will read that its usage is like round(x, digits=0),

5 There are a couple of settings in place that control the default behaviour of the print function; see width,
digits, max.print, OutDec, scipen, etc. in help("options").

2 NUMERIC VECTORS 25

which means that the digits parameter is equipped with the default value of 0. In other
words, if rounding to o decimal digits is what we need, the second argument can be
omitted.

round(x) # the same as round(x, 0)

[1] 7 7 -4 -5 123 -765 (0] 2 2

round(x, 1)

[1] 7.0 7.0 -4.3 -5.2 123.5 -765.4 0.5 1.5 2.5
round(x, -2)

[1] %] (0] (0] 0 100 -800 (0] %] (0]

2.3.3 Natural exponential function and logarithm
Moreover:

- exp(x) outputs the natural exponential function, ¢*, where the Euler's numbere =~
2.718,

« log(x, base=exp(1)) computes, by default, the natural logarithm of x, log, x
(which is most often denoted simply as log x).

Recall thatif x = €Y, thenlog, x = y, i.e., one is the inverse of the other.

log(c(0, 1, 2.7183, 7.3891, 20.0855)) # grows slowly
[1] -Inf 6 1 2 3

exp(c(0, 1, 2, 3)) # grows fast
[1] 1.0000 2.7183 7.3891 20.0855

Note These functions enjoy a number of very useful identities and inequalities, in-
cluding:

« log(x-y) =logx +logy,

« log(x¥) = ylogx,

« Y = e,

For more properties like these, take a glance at Chapter 4 of the freely available hand-
book [47].

For the logarithm to a different base, say, log; , x, we can call:

log(c(0, 1, 10, 100, 1000, 1e10), 10) # or log(..., base=10)
[1] -Inf 0 1 2 3 10

Note that iflog, x = y, thenx = bY, forany 1 # b > 0.

26 | DEeep

Note Commonly, a logarithmic scale is used for variables that grow rapidly when
expressed as functions of each other; see Figure 2.2.

x <- seq(0, 10, length.out=1001)

par(mfrow=c(1, 2)) # two plots in one figure (1 row, 2 columns)
plot(x, exp(x), type="1")

plot(x, exp(x), type="1", log="y") # log-scale on the y-axis

[©]
8 ol
or (o]
o o
Q -
o (@]
o (o} =
or (@]
n -
—~ —~
£33 s
o (@]
S8t s 8f
o
-
o
oL oL
(@] —
n
O—I I i i i 1 N L 1 1 1 1
(0] 2 4 6 8 10 (0] 2 4 6 8 10
X X

Figure 2.2: Linear- vs log-scale on the y-axis

Note that e* on the log-scale is just a straight line. Also, keep in mind that such a trans-
formation of the axes can only be applied in the case of values strictly greater than o.

2.3.4 Probability distributions (*)

It should come as no surprise that R offers an extensive support for many univariate
probability distribution families, including:

« continuous distributions, which take values being arbitrary real numbers (over the
whole possible range or in some interval):

*unif (uniform),

*norm (normal),

*exp (exponential),

*gamma (gamma, I'),

2 NUMERIC VECTORS 27

— *beta (beta, B),

- *lnorm (log-normal),

— *t (Student),

- *cauchy (Cauchy-Lorentz),
- *chisq (chi-squared, x?),

— *f (Snedecor-Fisher),

*weibull (Weibull);
with the prefix “*” being one of:
- “d” (probability density function, PDF),
— “p” (cumulative distribution function, CDF; or survival function, SF),
- “q” (quantile function, being the inverse of the CDF),
- “r” (generation of random deviates; already mentioned);

- discrete distributions, i.e., those whose possible outcomes can be easily enumer-
ated (e.g., some integers).

— *binom (binomial),

*geom (geometric),

*pois (Poisson),

*hyper (hypergeometric),

*nbinom (negative binomial);

«_ »

here, prefixes “p” and “r” have the same meaning as above, however:
- “d” now gives the probability mass function (PMF),

- “q”yields the quantile function, but one thatis defined as a generalised inverse
of the CDF.

Each distribution is characterised by a set of underlying parameters. For instance, a
normal distribution N(p, ') can be pinpointed by setting its expected value y € R
and standard deviation ¢ > 0. In R, these two have been named mean and sd, respect-
ively; see help("dnorm").

Note The parametrisations assumed in R can be subtly different from what we know
from statistical textbooks or probability courses. For example, the normal distribu-
tion can be parameterised based on either standard deviation or variance, and the ex-
ponential distribution can be defined via its expected value or the reciprocal thereof.
We thus advise the reader to study carefully the documentation of help("dnorm"),
help("dunif"), help("dexp"), help("dbinom"), and the like.

It is also worth to know the typical use cases of each of the distribution listed, e.g.,

28 | DEeep

a Poisson distribution can describe the probability of observing the number of in-
dependent events in a fixed time interval (e.g., the number of users downloading a
copy of R from CRAN per hour), and an exponential distribution can model the time
between such events; compare [22].

Exercise 2.4 Acallto hist(x)drawsahistogram, which can serve as an estimator of the under-
lying continuous probability density function of a given sample; see Figure 2.3 for an illustration.

par(mfrow=c(1, 2)) # 2 plots in 1 figure

Uniform U(0, 1)

hist(runif(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(0, 1, length.out=101)

lines(x, dunif(x, 0, 1), lwd=2) # draw the true density function (PDF)
Normal N(O, 1)

hist(rnorm(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(-4, 4, length.out=101)

lines(x, dnorm(x, 0, 1), lwd=2) # draw the PDF

=
ol O _ - —
]] (%)
0 ol
pal =
2o ey
S of s N
N < o
N})
Q a
<L
o
8 N
N
o
oL o
oL 1 1 1 1 1 O L 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 -4 -2 o 2 4
runif(10000, 0, 1) rnorm(10000, 0, 1)

Figure 2.3: Example histograms of some pseudorandom samples and the true under-
lying probability density functions: the uniform distribution on the unit interval (left)
and the standard normal distribution (right)

Draw a histogram of some random samples of different sizes n from the following distributions:

e rnorm(n, u, o)—normal N(u, o) with expected values u € {—1,0,5} (i.e., 4 being
equal to either —1, 0, or 5; read “€” as “belongs to the given set” or “in”) and standard devi-
ationso € {0.5,1,5};

2 NUMERIC VECTORS 29

« runif(n, a, b)—uniformU(a,b) ontheinterval (a,b) witha = 0andb = 1 as well
asa = —landb =1;

« rbeta(n, a, B)—betaB(a, B)witha, € {0.5,1,2};
« rexp(n, A)—exponential E(A) withratesA € {0.5,1,10};

Moreover, read about and play with the breaks, main, xlab, ylab, xLim, ylim and col paramet-
ers; see help("hist").

Example 2.5 We roll a six-sided dice twelve times. Let C be a random variable denoting the
number of cases where the “1” face is thrown. C follows a binomial distribution Bin(n, p) with
parameters n = 12 (the number of Bernoulli trials) and p = 1/6 (the probability of success
in a single roll).

The probabilities that the number of “1”s rolled will be equal to 0, 1, ..., 4, i.e., P(C = 0), P(C =
1),..., P(C = 4), respectively, can be computed based on the probability mass function (dbinom):

dbinom(0:4, 12, 1/6) # probability mass function at 5 different points
[1] 0.112157 0.269176 0.296094 0.197396 0.088828

On the other hand, the probability that we throw more than three “1”’s, P(C > 3) = 1 —
P(C < 3), can be determined by means of the cumulative distribution function (pbinom) or
survival function (pbinom(. .., lower.tail=FALSE)):

1-pbinom(3, 12, 1/6) # pbinom(3, 12, 1/6, lower.tail=FALSE)
[1] 0.12518

The smallest ¢ such that P(C < ¢) > 0.95 can be computed based on the quantile function:

gbinom(0.5, 12, 1/6)

[1] 2

pbinom(3:4, 12, 1/6) # for comparison: 0.95 is in-between
#4 [1] 0.87482 0.96365

In other words, at least 95% of the time we will be observing no more than four successes.

Also here are some pseudorandom realisations of C — the number of “1”s in 30 simulations of 12
independent dice rolls each:

rbinom(30, 12, 1/6)
#4 [1] 132440242242320410144326232211

2.3.5 Special functions (*)

Within mathematical formulae and across assorted application areas, certain func-
tions appear more frequently than others. Hence, for the sake of notational brevity
and computational precision, many of them have been assigned special names. For
instance, the following may be mentioned in the definitions related to some of the
probability distributions listed above:

30 | DEeep

. gamma(x) for x > 0 computes I'(x) = fom Lot gt

- beta(a, b)fora, b > Oyields B(a,b) = 1D = [F4a-1(1 — py>=1at.

Why do we have beta if it is merely a mix of gammas? A specific, tailored function should
be faster and more precise than its DIY version; its underlying implementation does
not have to involve any calls to gamma at all.

beta(0.25, 250) # okay

[1] 0.91213
gamma(0.25)*gamma(250)/gamma(250.25) # not okay
[1] NaN

TheI function grows so rapidly that already gamma(172) yields Inf. It is due to the fact
that a computer’s arithmetic is not infinitely precise; compare Section 3.2.3.

Special functions are plentiful; see the open-access [47] for one of the most definitive
references (and also [2] for its predecessor). R package gs1 [32] provides a vectorised
interface to the GNU GSL [27] library, which implements many of such routines.

Exercise 2.6 The Pochhammer symbol, (a), = I'(a + x) /T (a), can be computed via a call to
gsl::poch(a, x) (i.e., the pochfunction from the gsl package; see Section 7.3.1):

call install.packages("gsl") first
library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf _poch() from GNU GSL
[1] 1320 17160 240240 3603600

Read the documentation of the corresponding gsl_sf_poch function in the GNU GSL manual
available here®.

And since you are there, do not hesitate to go through the list of all the other functions, including
those related to statistics, permutations, combinations, and so forth.

Many functions also have their logarithm-of versions; see, e.g., lgamma and lbeta. Also,
for instance, dnorm and dbeta has the log parameter. Its classical use case is the (nu-
merical) maximum likelihood estimation, which involves the sums of the logarithms
of densities.

2.4 Arithmetic operations
2.4.1 Vectorised arithmetic operators
R features the following arithmetic operators:

« '+ (addition) and " -" (subtraction),

6 https://www.gnu.org/software/gsl/doc/html/

https://www.gnu.org/software/gsl/doc/html/

2 NUMERIC VECTORS 31

« **' (multiplication) and /" (division),
« "%/% (integer division) and “%%" (modulo, division remainder),
« A’ (exponentiation; synonym: " **").
They are all vectorised: they take two vectors on input and yield another vector in result.

c(1, 2, 3) * c(10, 100, 1000)
[1] 10 200 3000

We note that the multiplication was performed in an elementwise fashion: the 1st ele-
ment in the left vector was multiplied by the corresponding element in the right vector
and the result has been stored in the 1st element of the output, then the 2nd element
in the left... all right, we get the point.

Other operators are vectorised in the same manner:

0:10 + seq(0, 1, 0.1)

#4 [1] 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

0:7 / rep(3, length.out=8) # division by 3

[1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333
0:7 %/% rep(3, length.out=8) # integer division

[1] 00011122

0:7 %% rep(3, length.out=8) # division remainder

##[1] 01201201

Note that operations involving missing values also yield NAs:

c(1, NA_real_, 3, NA_real_) + c(NA_real_, 2, 3, NA_real)
[1] NA NA 6 NA

2.4.2 Recycling rule

Some of the above statements can be written more concisely. When the operands are
of different lengths, the shorter one is recycled (think: rep(y, length.out=1length(x)))
as many times as necessary.

0:7 / 3

[1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333
1:10 * c(-1, 1)

#4 [1] -1 2 -3 4 -5 6 -7 8 -9 10

2 N (0:10)

[1] 1 2 4 8 16 32 64 128 256 512 1024

We call this the recycling rule.

32 | DEeep

If an operand cannot be recycled in its entirety, a warning” is generated, but the output
is still available.

c(1, 10, 100) * 1:8

Warning in c(1, 10, 100) * 1:8: longer object length is not a multiple of
#H shorter object length

[1] 1 20 300 4 50 600 7 80

Note Some functions are also deeply vectorised, i.e., with respect to multiple argu-
ments. For example,

runif(3, c(10, 20, 30), c(11, 22, 33))
[1] 10.288 21.577 31.227

generates three random numbers uniformly distributed over the intervals (10, 11),
(20,22), and (30, 33), respectively.

Also, pmin and pmax return the parallel minimum and maximum of the corresponding
elements of the input vectors:

pmin(c(1l, 2, 3, 4), c(4, 2, 3, 1))

[1] 12 3 1

pmin(3, 1:5)

[1] 1233 3

pmax(0, pmin(1, c(0.25, -2, 5, -0.5, 0, 1.3, 0.99))) # clipping to [0, 1]
#4 [1] 0.25 0.00 1.00 0.00 0.00 1.00 0.99

Note Vectorisation and the recycling rule are perhaps most useful when applying bin-
ary operators on sequences of identical lengths or when performing vector-scalar (i.e.,
a sequence vs a single value) operations. However, there is much more: schemes like
“every k-th element” appear in Taylor series expansions (multiply by e(-1, 1)), k-fold
cross validation, etc.; see also Section 11.3.4 for use cases in matrix/tensor processing.

2.4.3 Operator precedence

Apart from the seven binary arithmetic operators, other noteworthy, already men-
tioned ones include: the unary *-* (change of sign), *:" (sequence generation), and
“<-" (assignment).

Expressions involving multiple operations need a set of rules governing the order
of computations (unless we enforce it using round brackets). We have said that

7 A few built-in functions do not warn at all when incomplete recycling is performed (e.g., paste) or can
even give an error (e.g., as.data.frame.list). Consider this inconsistency an annoying bug and hope it will
be fixed in the next decade or so.

2 NUMERIC VECTORS 33
“-1:10” means “(-1):10” rather than “-(1:10)”. But what about, say, “1+1+1+1+1*@” or
“3%2/0:5+10”?

Let us list the aforementioned operators in their order of precedence, from the least
to the most binding (see also help("Syntax")):

1. ‘<= (right-to-left),
2. "+ and -",

3. “* and /",

4. %% and “%/%",

5. 73,

6. '+ and - (unary),
7. ' (right-to-left).

Hence, “-272/3+3*4” means “((-(272))/3)+(3*4)” and not, for example, -((2~(2/
(3+3)))*4).

Note that “+" and *-°, **" and */°, as well as "%%" and "%/% have the same priority.
Expressions involving a series of operations in the same group, are evaluated left-to-
right, with the exception of *4" and “<-", which are performed from right to left.

Therefore:
. “2%3/4*5” is equivalent to “((2*3)/4)*5”,

« “27374” is the same as “2~(3~4)” (which, mathematically, we would write as 23* =
281))

o “x <- y <- 4*3%%8/2” binds both y and x with 6 and not x with the previous value
of y.

And let us remember: when in doubt, we can always bracket a subexpression to make
sure it is executed in the intended order (which can also increase readability of the
code).

2.4.4 Accumulating

The “+" and “* operators as well as the pmin and pmax functions implement element-
wise operations that are applied on the corresponding elements taken from two given
vectors:

Xq Y1 X1+ Y1
X Y2 Xp + Y2
Xz |+| Y3 [=| X3+Y3
xl’l yi’l le + yVl

However, we can also scan through all the values in a single vector and combine the
successive elements that we inspect using the corresponding operation:

34 | DEeep

- cumsum(x) gives the cumulative sum of the elements in a vector,
« cumprod(x) computes the cumulative product,

« cummin(x) yields the cumulative minimum,

« cummax(x) generates the cumulative maximum.

The i-th element in the output vector will consist of the sum/product/min/max of the
first i inputs:

X1 X1
Xo X1 + Xo
cumsum X3 = X1+ Xy + X3
Xn X1+xZ+X3+‘“+xn

For example:

cumsum(1:8)

#4 [1] 1 3 6 10 15 21 28 36

cumprod(1:8)

[1] 1 2 6 24 120 720 5040 40320
cummin(c(3, 2, 4, 5, 1, 6, 0))

[1] 3222110

cummax(c(3, 2, 4, 5, 1, 6, 0))

[1] 3345566

If we are interested only in the last cuamulant, summarising all the inputs, we have the
following functions at our disposal:

« sum(x) computes the sum of elements in a vector, Z?zl Xp=x1 +xp + - +x,,
- prod(x) outputs the product of all elements,]—[?:1 X; = X1Xp 0 Xy,

« min(x) computes the minimum,

- max(x) reckons the greatest value.

For example:

sum(1:8)

[1] 36

prod(1:8)

[1] 40320

min(c(3, 2, 4, 5, 1, 6, 0))
[1] 0

max(c(3, 2, 4, 5, 1, 6, 0))
[1] 6

2 NUMERIC VECTORS 35

Note In Chapter 7, we will discuss the Reduce function, which generalises the above
by allowing any binary operation to be propagated over a given vector.

Example 2.7 diff can be considered an inverse to cumsum: it computes the iterated difference.
Namely, it subtracts the first two elements, then the 2nd from the 3vd one, the 3rd from the 4th,
and so on. In other words, diff(x) givesy suchthaty; = x;,1 — X;.

x <- c(-2, 3, 6, 2, 15)

diff(x)

[1] 5 3 -4 13

cumsum(diff(x))

[1] 5 8 4 17

cumsum(c(-2, diff(x))) # recreates x
[1] -2 3 6 2 15

Thanks to diff, we can compute the daily changes to the EUR/AUD forex rates; see Figure 2.4.

aud <- scan(paste@("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")
aud_all <- na.omit(aud) # remove all missing values
plot(diff(aud_all), type="s", ylab="Daily change [EUR/AUD]") # "steps"
abline(h=0, lty="dotted") # draw a horizontal line at y=0

<
ol
o
3
S
x o
)
[TH)
N
QL o
S0
S O
i~
o
=2 o
S o
Qg
1
)
C‘). B 1 1 1 1 1 1 1
o 20 40 60 80 100 120
Index

Figure 2.4: Iterated differences of the exchange rates (non-missing values only)

36 | DEeep

2.4.5 Aggregating

The above functions form the basis for some popular summary statistics® (sample ag-
gregates), such as:

- mean(x) gives the arithmetic mean, sum(x)/length(x),
- var(x) yields the (unbiased) sample variance, sum((x-mean(x))~2)/(length(x)-1),
« sd(x) is the standard deviation, sqrt(var(x)),

« median(x) computes the sample median, i.e., the middle value in the sorted ver-
sion of x.

For instance?:

X <- runif(1000)
c(min(x), mean(x), median(x), max(x), sd(x))
[1] 0.00046535 0.49727780 0.48995025 0.99940453 0.28748391

Exercise 2.8 Letx be any vector of length n with positive elements. Compute its geometric and
harmonic mean, which are given by, respectively,

n
1 n . n
X;=en Lz logx; and e
i=1 Zi:l x;

When solving exercises like this one, it does not really matter what data you apply these functions
on (see, however, Section 9.3.3 for discussion). We are being abstract in the sense that the x vec-
tor can be anything: from the one that features very accurate financial predictions that will help
minimise inequity and make this world less miserable, through the data you have been collecting
forthe last the years in relation to your definitely-super-important PhD research, whatever your
company asked you to crunch today, to something related to your hobby project that you enjoy
doing after hours. Therefore, just test the above on something like “x <- runif(16)”, and move
on.

n

All the aforementioned functions return a missing value if any of the input elements
is unavailable. Luckily, they are equipped with the na. rm parameter on behalf of which
we can request the removal of NAs.

aud <- scan(paste®("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

c(min(aud), mean(aud), max(aud))

[1] NA NA NA

c(min(aud, na.rm=TRUE), mean(aud, na.rm=TRUE), max(aud, na.rm=TRUE))

[1] 1.6006 1.6775 1.8635

8 Actually, var and median, amongst others, are defined by the stats package, but this one is automatic-
ally loaded by default, so let us not make a fuss about it now.

9 Note thatmin, median, and max is a special case of quantile, which we will discuss much further, namely,
in Section 4.4.3. This is because it returns a named vector.

2 NUMERIC VECTORS 37

Note In the documentation, we read that the usage of some of the aforementioned
functions islike sum(. .., na.rm=FALSE). prod, min, and max are defined similarly. They
accept any number of input vectors, each of them can be of arbitrary length. Therefore,
min(1, 2, 3),min(c(1, 2, 3))aswellasmin(c(1, 2), 3) all return the same result.

However, we can also read that we have mean(x, trim=0, na.rm=FALSE, ...). This
time, only one vector can be aggregated and any further arguments (except trim and
na.rm) are ignored.

The extra flexibility (which we do not have to rely upon, ever) of the former group is
due their being associative operations: it holds, e.g., (2+3) +4 = 2+ (3+4). Hence,
the operations can be performed in any order, in any groups.

Also note that they are more primitive operations: it is mean that is based on sum, not
vice versa.

2.5 Exercises
Exercise 2.9 Answer the following questions:
« What is the meaning of the dot-dot-dot parameter in the definition of the c function?
o We say that the round function is vectorised; what does that mean?
o What is wrong with a call to c(sqrt(1), sqrt(2), sqrt(3))?
« What do we mean by saying that multiplication operates element-by-element?
« How does the recycling rule work when applying “+?
« How to (and why) set the seed of the pseudorandom number generator?
« What is the difference between NA_real_ and NaN?
« How are default arguments specified in the manual of; e.g., the round function?
o Isacallto rep(times=4, x=1:5)” equivalentto rep(4, 1:5)?
- List a few ways to genevate a sequence like (-1, -0.75, -0.5, ..., 0.75, 1).

o Is“-3:5"thesameas "- (3:5)"? What about the precedence of operators in expressions such
A4S “243/4%516”, “5%6+4/17%%8”, and “1+-243:4-17?

o If x is a numeric vector of length n (for some n > 0), how many values will sample(x)
output?

« Does scan support reading directly from compressed archives, e.g., . csv. gz files?

When in doubt, refer back to the material discussed in this chapter and/or the R manual.

38 | DEeep

Exercise 2.10 The following code generates an example graph of arcsine and arccosine, whose
preparation — thanks to vectorisation — is quite straightforward.

x <- seq(-1, 1, length.out=11) # increase length.out for a smoother curve

plot(x, asin(x), # asin() computed for 11 points
type="1", # lines
ylim=c(-pi/2, pi), # y axis limits like c(y_min, y_max)

ylab="asin(x), acos(x)") # y axis label
lines(x, acos(x), col="red", lty="dashed") # adds to the current plot
legend("topright"”, c("asin(x)", "acos(x)"),

lty=c("solid", "dashed"), col=c("black", "red"), bg="white")

Inspired by the above, plot the following functions: | sin x2|, |sin |x||, y/[x], and 1/(1 + ™).
Recall that the documentation of plot can be viewed by calling help("plot.default").

Exercise 2.11 It can be shown that:
n i+1
(=1)i+ 1 1 1 1
4y L g 4.
l.; 2i—1 17375777

slowly converges to 7t as n approaches co. Compute the above forn = 1,000,000 andn =
1,000,000,000 using the vectorised functions and operators discussed in this chapter, making
use of the recycling rule as much as possible.

Exercise 2.12 Let x and y be two vectors of identical lengths n, say:

X <- rnorm(100)
y <- 2*x+10+rnorm(100, 0, 0.5)

Compute the Pearson linear correlation coefficient given by:
n 1 n 1 n
i1 (xi — 7 Z]’:l xj) (yi — 7 Z]-:1]/j)
2
n 1 n n 1 n
\]Zi:1 (xi - u Zj:l xj) \/Zi:1 (1/1’ ~n 27:1]/j)

To make suve you have come up with a correct implementation, compare your result to a call to
the built-in cor(x, y).

v =

>

Exercise 2.13 (*) Look up on the internet an R package that features functions to compute the
5-day moving (volling) average and median of a given vector. Apply them on the EUR/AUD cur-
rency exchange data and plot thus obtained smoothened versions of the time series.

Exercise 2.14 (**) Computethek-moving averageusinga callto convolve(. .., type="filter").

In the next chapter we will study operations that involve logical values.

3

Logical vectors

There are three logical constants in R. Wait... how many?

3.1 Creating logical vectors

R defines three logical constants: TRUE, FALSE, and NA — meant to represent “yes”, “no”,
and “???”, respectively. Each of them, when instantiated, is an atomic vector of length
one.

Some of the functions we introduced in the previous chapter can be used to generate
logical vectors as well:

c(TRUE, FALSE, FALSE, NA, TRUE, FALSE)

[1] TRUE FALSE FALSE NA TRUE FALSE

rep(c(TRUE, FALSE, NA), each=2)

[1] TRUE TRUE FALSE FALSE NA NA

sample(c(TRUE, FALSE), 10, replace=TRUE, prob=c(0.8, 0.2))

[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE

Note Bydefault, “1”is a synonym for TRUE and “F” stands for FALSE. However, these are
not reserved keywords and can be re-assigned any other values. Therefore, we advise
against relying on them and hence we will never use them throughout the course of
this course.

Also note that the logical missing value is spelled simply as “NA” and not “NA_logical_”.
The fact that both the logical “NA” and the numeric “NA_real_” are, for the sake of
our mental well-being, both printed as “NA” on the R console, does not mean they are
identical; see Section 4.1 for discussion.

40 | DEeep

3.2 Comparing elements
3.2.1 Vectorised relational operators
Logical vectors frequently come into being as results of various festing activities.
In particular, the binary operators:
« "< (less than),

« “<=" (less than or equal),

*>" (greater than),

« “>=" (greater than or equal)

‘==" (equal),
« “1=" (not equal),
compare the corresponding elements of two numeric vectors and output alogical vector.

1<3

[1] TRUE

c(1, 2, 3, 4) == c(2, 2, 3, 8)

[1] FALSE TRUE TRUE FALSE

1:10 <= 10:1

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Thus, they operate in an elementwise manner. Moreover, the recycling rule is applied
if necessary:

3<1:5 #¢(3, 3, 3, 3, 3) <c(1, 2, 3, 4, 5)
[1] FALSE FALSE FALSE TRUE TRUE

(1, 4) == 1:4 #c(1, 4, 1, 4) == c(1, 2, 3, 4)
[1] TRUE FALSE FALSE TRUE

Therefore, we can say that they are vectorised in the same manner as the arithmetic
operators “+ , " *°, etc.; compare Section 2.4.1.

3.2.2 Testing for NA, NaN, and Inf

Comparisons against missing values and not-numbers yield NAs. Therefore, instead
of the incorrect x == NA_reals_or x == NaN, testing for missingness should rather be
performed via a call to the vectorised is.na function.

is.na(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))
[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE
is.nan(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

(continues on next page)

3 LOGICAL VECTORS 1

(continued from previous page)
[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE
is.na(c(TRUE, FALSE, NA, TRUE)) # works for logical vectors too
[1] FALSE FALSE TRUE FALSE

Moreover, is.finite is noteworthy, because it returns FALSE on Infs, NA_real_s and
NaNs.

is.finite(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE

See also the more specific is.nan and is.infinite.

3.2.3 Dealing with round-off errors (*)

In mathematics, real numbers are merely an idealisation. In practice, however, it is
impossible to store them with infinite precision (think 77 = 3.1415926535897932384626433...)
computer memory is limited and our time is precious.

Therefore, a widely agreed upon consensus had to be reached. In R, we rely on the so-
called double-precision floating point format. Floating point means that the numbers can
be both small (close to zero) and large: +2.23 x 1073% and +1.79 x 10398 are both
acceptable.

Note

2.23e-308 == 0.00
00
00
00
00
000223

1.79e308 == 17900
00
00
00
00
00

These two are quite distant from each other.

Every numeric value takes 8 bytes (or equivalently 64 bits) of memory. We are, however,
able to store only about 15-17 decimal digits:

42 | DEeep

print(0.12345678901234567890123456789012345678901234, digits=22) # 22 is max
[1] 0.1234567890123456773699

which limits the precision of our computations. The about part is — unfortunately — due
to the numbers’ being written in the computer-friendly binary, not human-aligned
decimal, base. This can lead to some unexpected outcomes.

In particular:

« 0.1cannot be represented exactly, because it cannot be written as a finite series of
reciprocals of powers of 2 (it holds 0.1 = 274 + 275 4278 + 29 4). Thisleads
to surprising results such as:

0.1 + 0.1 +0.1==20.3
[1] FALSE

Despite the fact that what follows does not show anything suspicious:

c(0.1, 0.1 + 0.1 + 0.1, 0.3)
[1] 0.1 6.3 0.3

Printing involves rounding, hence, in the above context, is misleading. Above, we
have something more like:

print(c(0.1, 0.1 + 0.1 + 0.1, 0.3), digits=22)
[1] 0.1000000000000000055511 6.3000000000000000444089
[3] 0.2999999999999999888978

. Allintegers between —253 and 253 all stored exactly — this is good news. However,
the next integer is beyond the representable range:

2753 + 1 == 2453
[1] TRUE

« The above suggests that, more generally, the order of operations may matter, in
particular, the associativity property may be violated when dealing with numbers
of different orders of magnitude:

2753 + 27-53 - 2753 - 27-53 # should be == 0.0
[1] -1.1102e-16

- Some numbers may just be just too large, too small, or too close to zero to be rep-
resented exactly:

c(sum(27((1023-52):1023)), sum(27((1023-53):1023)))
[1] 1.7977e+308 Inf

c(27(-1022-52), 27(-1022-53))

[1] 4.9407e-324 0.0000e+00

3 LOGICAL VECTORS 43

Important The double-precision floating point format (IEEE 754) is not specific to R:
it is used by most other computing environments, including Python and C++.

For discussion, see [31, 34, 39] ([30] can be of particular interest to the general statist-
ical/data analysis audience).

Can we do anything about these issues?

First, when dealing with integers of reasonable order of magnitude (a frequent case
where we are dealing various resource or case IDs in our datasets), rest assured that we
are safe: their comparison, addition, subtraction, and multiplication is always precise.

In all other cases (including applying other operations on integers, e.g., division or
sqrt), we need to be very careful with comparisons, especially involving testing for
equality, *==".

The sole fact that sin 71 = 0, mathematically speaking, does not mean that we should

expect that:

sin(pi) ==
[1] FALSE

Instead, they are so close to each other that we can treat the difference between them as
negligible. Thus, in practice, instead of testing if x = y, we will be considering:

« |x — y| (absolute error) or

lx—yl
[yl
count but obviously cannot be applied if i is very close of 0),

(relative error; which takes the order of magnitude of the numbers into ac-

and determining if these are less than some assumed error margin, ¢ > 0, say, 108
-26
or27-°.

For example:

abs(sin(pi) - 0) < 27-26
[1] TRUE

Note Note that rounding can sometimes have a similar effect as testing for almost-
equality in terms of the absolute error.

round(sin(pi), 8) == 0
[1] TRUE

Important Our recommendations are valid for the most popular applications of R,

44 | DEeep

i.e., statistical and, more generally, scientific computing®. The datasets we handle on
a daily basis do not represent accurate measurements themselves, bah, the World it-
selfis far from ideal, therefore we do not have to lose sleep over our not being able to
precisely pinpoint the exact solution.

3.3 Logical operations
3.3.1 Vectorised logical operators

Therelational operators such as *=="and "> accept only two arguments. Their chaining
is forbidden; a test which we would mathematically writeas0 < x < 1 (orx € [0,1])
cannot be expressed as “0<=x<=1"in R.

Therefore, we need a way to combine two logical conditions so as to be able to state
that “x > 0 and, at the same time, x < 1.

In such situations, the following logical operators and functions come in handy:
« "I (not, negation; unary),
. & (and, conjunction; are both predicates true?),
« |’ (or, alternation; is at least one true?),

« xor (exclusive-or, exclusive disjunction, either-or; is one and only one of the pre-
dicates true?).

They again act elementwisely and implement the recycling rule if necessary (and ap-
plicable).

x <- c(-10, -1, -0.25, 0, 0.5, 1, 5, 100)

(x >= 0) & (x <= 1)

[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
(x<0) | (x>1)

[1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
H((x < 0) | (x>1))

[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
xor(x >= -1, x <= 1)

[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

! However, in financial applications, we should rather rely on base-10 numbers (compare the 0.1 problem
above). Also note that there exist some libraries implementing higher precision floating-point numbers or
even interval arithmetic that keeps track of error propagation operation chains.

3 LOGICAL VECTORS 45

Important The vectorised ‘& and *|" operators should not be confused with their
scalar, short-circuit counterparts, “&&" and " ||, which we discuss in Section 8.1.4.

3.3.2 Operator precedence revisited

The operators introduced in this chapter have lower precedence than the arithmetic
ones. In particular, the binary "+ and *-". Calling help("Syntax") reveals that we can
extend our listing from Section 2.4.3 as follows:

1. ‘<= (right-to-left; least binding),

3.3.3 Dealing with missingness

Operations involving missing values follow the principles of the Lukasiewicz’s three-
valued logic, which is based on common sense. For instance, “NA | TRUE” is TRUE, be-
cause or needs at least one argument to be TRUE to generate such a result. On the other
hand, “NA | FALSE” is NA, because the result would be different depending on what we
substituted NA for.

Let us take a moment to contemplate the operations’ truth tables for all the possible
combinations of inputs:

u <- c(TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA)
v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)
'u

[1] FALSE TRUE NA FALSE TRUE NA FALSE TRUE NA
u&v

[1] TRUE FALSE NA FALSE FALSE FALSE NA FALSE NA
ul v

[1] TRUE TRUE TRUE TRUE FALSE NA TRUE NA NA
xor(u, v)

[1] FALSE TRUE NA TRUE FALSE NA NA NA NA

46 | DEeep

3.3.4 Aggregating with all, any, and sum

Just like in the case of numeric vectors, we can summarise the contents of logical se-
quences.

all tests whether every element in a logical vector is equal to TRUE and any determines
if there exists an element that is TRUE.

X <- runif(10000)

all(x <= 0.2) # are all values in x <= 0.2?

[1] FALSE

any(x <= 0.2) # is there at least one element in x that is <= 0.2?
[1] TRUE

Note The all function will frequently be used in conjunction with *==". This is because
the latter, as we have said above, is itself vectorised: it does not test whether a vector
as awhole is equal to another one.

z <- c(1, 2, 3)

z == 1:3 # elementwise equal

[1] TRUE TRUE TRUE

all(z == 1:3) # elementwise equal summarised
[1] TRUE

However, let us keep in mind the warning about the testing for exact equality of
floating-point numbers stated in Section 3.2.3. Sometimes, considering absolute or
relative errors might be more appropriate.

z <- sin((0:10)*pil) # sin(0), sin(pi), sin(2*pi), ..., sin(10*pi)
all(z == 0.0) # danger zone! please don't...

[1] FALSE

all(abs(z - 0.0) < 1e-9) # are the absolute errors negligible?
[1] TRUE

We can also call sum on a logical vector. Taken into account that it interprets TRUE as
numeric 1 and FALSE as 0 (more on this in Section 4.1), it will give us the number of
elements equal to TRUE.

sum(x <= 0.2) # how many elements in x are <= 0.2?
[1] 1998

Also, by computing sum(x)/length(x), we can obtain the proportion (fraction) of val-
ues equal to TRUE in x. Equivalently:

mean(x <= 0.2) # proportion of elements <= 0.2
[1] 0.1998

3 LOGICAL VECTORS 47

Naturally, we expect mean(runif(n) <= 0.2)” to be equal to 0.2 (20%), but with ran-
domness we can never be sure.

3.3.5 Simplifying predicates

Each aspiring programmer needs to become fluent with the rules governing the trans-
formations of logical conditions, for example, that the negation of “(x >= 0) & (x <
1)” is equivalent to “(x < 0) | (x >= 1)".

Each such rule is called a tautology. Here are some of them:
« 1(!p) is equivalent to p (double negation),
« !(p & q) holdsifand onlyif !p | !q(De Morgan'slaw),
« !(p | q)is!p & !q(another De Morgan's law),
« all(p) is equivalent to !any(!p).

Various combinations thereof are of course possible. Some further simplifications are
enabled by other properties of the binary operations:

. commutativity (symmetry),e.g.,a+b=b+a,axb=">bxa,

- associativity, e.g., (@ + b) + ¢ = a + (b + ¢), max(max(a,b),c)
max(a, max(b,c)),

. distributivity, e.g.,a * b+ a * ¢ = a * (b + ¢), min(max(a, b), max(a,c)) =
max(a, min(b, ¢)),

and relations, including:
. transitivity, e.g., ifa < band b < cthen surelya < c.
Exercise 3.1 Assuming that a, b, and c are numeric vectors, simplify the following expressions:
e I(b>a & b<c),
e !(a>=b & b>=c & a>=c),
e a>b & a<c | a<c & a>d,
e« a>b [a<=b,
e a<=b & a>c [a>b & a<=c,
e a<=b & (a>c | a>b) & a<=c,

o lall(a > b & b < c).

48 | DEeep

3.4 Choosing elements with ifelse

The ifelse functionis a vectorised version of the scalar if...else conditional statement
which we will do without for as long as until Chapter 8.

It allows us to select an element from either one or another vector based on some lo-
gical condition.

Acallto ifelse(l, t, f), where lis alogical vector, returns a vector y such that:

_ ti lfll is TRUE P
Yi=\ f ifl,is FALSE.

In other words, the i-th element of the result vector is equal to ¢; if /; is TRUE and to f;
otherwise.

For example:

(z <- rnorm(6)) # example vector

#4 [1] -0.560476 -0.230177 1.558708 0.070508 0.129288 1.715065
ifelse(z >= 0, z, -z) # like abs(z)

#4 [1] 0.560476 0.230177 1.558708 0.070508 0.129288 1.715065

or:

(x <- rnorm(6)) # example vector

[1] 0.46092 -1.26506 -0.68685 -0.44566 1.22408 0.35981
(y <- rnorm(6)) # example vector

#4 [1] 0.40077 0.11068 -0.55584 1.78691 0.49785 -1.96662
ifelse(x >=y, x, y) # like pmax(x, y)

[1] 0.46092 0.11068 -0.55584 1.78691 1.22408 0.35981

By now, we should not be surprised that the recycling rule is fired up if necessary:

ifelse(x > 0, x*2, Q) # squares of positive xs and O otherwise
#4 [1] 0.21244 0.00000 0.00000 0.00000 1.49838 0.12947

Note Keep in mind that all arguments are evaluated in their entirety before decid-
ing on which element should be selected. Therefore, the following call will generate a
warning:

ifelse(z >= 0, log(z), NA_real)
Warning in log(z): NaNs produced
[1] NA NA 0.44386 -2.65202 -2.04571 0.53945

This is because with log(z), we are computing the logarithms of negative values any-
way. To fix this, we can write:

3 LOGICAL VECTORS 49

log(ifelse(z >= 0, z, NA_real))
[1] NA NA 0.44386 -2.65202 -2.04571 0.53945

The calls to ifelse can naturally be nested in the case where we yearn for an if...else
if...else-type expression.

Example 3.2 Aversion of pmax(pmax(x, y), z)can bewritten as:

ifelse(x >=y,
ifelse(z >= x, z, x),
ifelse(z >= y, z, y)
)
##4 [1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

However, determining the three intermediate logical vectors is not necessary; we can save one call
to *>=" by introducing an auxiliary variable:

xy <- ifelse(x >=y, x, y)
ifelse(z >= xy, z, xy)
[1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

Exercise 3.3 Figure 3.1 depicts a realisation of the mixture Z = 0.2X + 0.8Y of two normal
distributions X ~ N(=2,0.5) andY ~ N(3,1).

n <- 100000
z <- ifelse(runif(n) <= 0.2, rnorm(n, -2, 0.5), rnorm(n, 3, 1))
hist(z, breaks=101, probability=TRUE, main="", col="white")

In other words, we generated a variate from the normal distribution that has expected value of -2
with probability 20% and from the one with expectation of 3 otherwise.
Inspired by the above, generate the following Gaussian mixtures:

- 2X + 2Y, where X ~ N(100,16) and Y ~ N(116,8),

« 0.3X +0.4Y + 0.3Z, where X ~ N(-10,2),Y ~ N(0,2),and Z ~ N(10, 2).

(*) On a side note, knowing that if X follows N (0, 1), then the scaled-shifted o X + p is distrib-
uted N(p,), the above can be equivalently written as:

w <- (runif(n) <= 0.2)
z <- rnorm(n, 0, 1)*ifelse(w, 0.5, 1) + ifelse(w, -2, 3)

50 | DEEP
o T
[aal =8
o
wn -
N L
o
@]
e |
2° i
g
v T
Q o
oL
o
wn
ol
o
o
Q -
o 1 1 1 1 1 1 1
-4 -2 o] 2 4 6 8
z
Figure 3.1: A mixture of two Gaussians generated with ifelse
|
3.5 Exercises

Exercise 3.4 Answer the following questions:

.

Why the statement “Earth is flat or the smallpox vaccine is proven effective” is obviously true?
What is the difference between NA and NA_real_?
Why is “FALSE & NA” equal to FALSE, but “TRUE & NA”is NA?

Why has “ifelse(x>=0, sqrt(x), NA_real_)”atendency to generate warnings and how
to rewrite it so as to prevent that from happening?

What is the interpretation of “mean(x >= 0 & x <= 1)™?

For some integer x and y, how to verify whether 0 < x < 100,0 < y < 100, andx < y,
all at the same time?

Mathematically, for all veal x,y > 0, it holds logxy = logx + logy. Why then
“all(log(x*y) == log(x)+log(y))” can sometimes return FALSE? How to fix this?

Is “x/y/z” always equal to “x/(y/z)”? How to fix this?

What is the purpose of very specific functions such as log1p and expm1 (see their help page)
and many other ones listed in, e.g., the GNU GSL library [27]? Is our referring to them a
violation of the beloved “let us be minimalist” approach?

Ifwe know that x may be subject to error, how to test whether x > 0 in a robust manner?

Is “y<-5"thesameas “y <- 5" orvather“y < -57?

3 LOGICAL VECTORS 51

Exercise 3.5 What is the difference between all and isTRUE? What about “==", identical,
and all.equal? Is the last one properly vectorised?

Exercise 3.6 Compute the cross-entropy loss between a numeric vector p with values in the in-
terval (0,1) and a logical vectory, both of length n (you can generate them randomly or manu-
ally, it does not matter, it is just an exercise):

L(I’/y) = % iei/
i=1

where

0= —logp; ify; is TRUE,
71 —log(1—p;) ify;isFALSE.

Interpretation: in classification problems, y; € {FALSE, TRUE} denotes the true class of the
i-th object (say, whether the i-th hospital patient is symptomatic) and p; € (0,1) a machine
learning algorithm’s confidence that i belongs to class TRUE (e.g., how sure a decision tree model
is that the corresponding person is unwell). Ideally, if y; is TRUE, p; should be close to 1 and to 0
otherwise. The cross-entropy loss quantifies by how much a classifier differs from the omniscient
one. The use of the logarithm penalises strong beliefs in the wrong answer.

By the way, if we have solved any of the exercises encountered so far by referring to
if statements, for loops, vector indexing like x[...], or any external R package, we
should go back and re-write our code. Let us keep it simple (effective, readable) by
using the base R’s vectorised operations that we have introduced.

4
Lists and attributes

After two brain-teasing chapters, it is time to cool it down a little. In this more tech-
nical part, we will introduce lists, which serve as universal containers for R objects
of any size and type. Moreover, we will also show that each R object can be equipped
with a number of optional attributes, thanks to which we will not only be able to label
elements in any vector, but also — later — introduce new complex data types such as
matrices and data frames.

4.1 Type hierarchy and conversion

So far, we were dealing with three types of atomic vectors:
1. logical (Chapter 3),
2. numeric (Chapter 2),

3. character (which we have barely touched upon yet, but rest assured that they will
be covered in detail very soon; see Chapter 6).

To determine the type of an object programmatically, we can call the typeof function.

typeof(c(1, 2, 3))

[1] "double"

typeof (c(TRUE, FALSE, TRUE, NA))

[1] "logical”

typeof(c("spam", "spam", "bacon", "gluten-free spam"))
[1] "character"

It turns out that we can easily convert between these types, either on our explicit de-
mand (type casting), or on-the-fly (coercion, when we perform an operation that expects
something different from the kind of input it was fed with).

Note () Numericvectors are reported as being either of type double (double-precision
floating-point numbers) or integer (32-bit; it is a subset of double); see Section 6.4.1.
In most practical cases, this is a technical detail which we can safely ignore; compare
also the mode function.

54 | DEeep

4.1.1 Explicit type casting

We can use functions such as as.logical, as.numeric, and as.character to coerce (con-
vert) given objects to the corresponding types.

as.numeric(c(TRUE, FALSE, NA, TRUE, NA, FALSE))

[1] 1 ONA 1INA O

as.logical(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))

[1] TRUE TRUE FALSE TRUE TRUE TRUE NA TRUE NA

Important It is easily seen that the rules are:
« TRUE~1,
« FALSE >0,
« NA>NA_real_,
and:
« O FALSE,
« NA_real_and NaN > NA,
- anything else » TRUE.

The distinction between zero and non-zero is commonly applied in other program-
ming languages as well.

Moreover, in the case of the conversion involving character strings, we have:

as.character(c(TRUE, FALSE, NA, TRUE, NA, FALSE))

#4 [1] "TRUE" "FALSE" NA "TRUE" NA "FALSE"
as.character(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))
[1] N_2H H_1H /I@H 771 n I72H 77377 NA /I_Ian ”NGN”

as.logical(c("TRUE", "True", "true", "T",

"FALSE", "False", "false", "F",

"anything other than these", NA_character_))
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE NA NA
as.numeric(c("0", "-1.23e4", "pi", "2+2", "NaN", "-Inf", NA_character_))
Warning: NAs introduced by coercion
[1] 0 -12300 NA NA NaN -Inf NA

4.1.2 Implicit conversion (coercion)

Recall that we referred to the three vector types as atomic ones: they can only be used
to store elements of the same type.

If we make an attempt at composing an object of mixed types with ¢, the common type

4 LISTS AND ATTRIBUTES 55

will be determined in such a way that storing the data is done without information
loss:

c(-1, FALSE, TRUE, 2, "three", NA)

[1] "-1" "FALSE" "TRUE" "2" "three" NA
c("zero", TRUE, NA)

[1] "zero" "TRUE" NA

c(-1, FALSE, TRUE, 2, NA)

[1] -1 0 1 2 NA

Hence, we see that logical is the least, whereas character — the most general of the
three.

Note Thelogical NAis converted toNA_real_andNA_character_in the above examples.
R users tend to rely on implicit type conversion when they write c(1, 2, NA, 4) instead
of the more explicit c(1, 2, NA_real_, 4).In most cases, this is fine.

However, occasionally, it will be wiser to be more unequivocal. For instance,
rep(NA_real_, 1e9) pre-allocates a long numeric vector, instead of a logical one.

Some functions that expect vectors of specific types can apply coercion by themselves
(or act as if they do s0):

c(NA, FALSE, TRUE) + 10 # implicit conversion logical -> numeric

[1] NA 10 11

c(-1, 0, 1) & TRUE # implicit conversion numeric -> logical

[1] TRUE FALSE TRUE

sum(c(TRUE, TRUE, FALSE, TRUE, FALSE)) # same as sum(as.numeric(...))
[1] 3

cumsum(c(TRUE, TRUE, FALSE, TRUE, FALSE))

[1] 122 3 3

cummin(c(TRUE, TRUE, FALSE, TRUE, FALSE))

[1] 1100 0

Exercise 4.1 Inone of the previous exercises, we have computed the cross-entropy loss between a

logical vectory € {0, 1}" and a numeric vectorp € (0, 1)". This measure can be equivalently
defined as:

1 n
Lpy) =~ (Zyz- log(p;) + (1 —y;) log(1 — pz’)) :
i=1

Implement the above formula (using vectorised operations, but not relying on ifelse this time)
and compute the cross-entropy loss between, say, “y <- sample(c(FALSE, TRUE), n)”and “p
<- runif(n)” forsome n. Note how seamlessly we are translating between FAL SE/TRUEs and 0/1s
in the above equation (in particular, where we let 1 — y; mean the logical negation of y;).

56 | DEeep

4.2 Lists

Lists are generalised vectors. They can be comprised of R objects of any kind, also other
lists. This is why we classify them as recursive (and not atomic) objects. They are espe-
cially useful wherever there is a need to handle some multitude as a single entity.

4.2.1 Creating lists

The most straightforward way to create a list is by means of the list function:

1ist(1, 2, 3)
[[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

[1] 3

Notice that the above is not the same as “c(1, 2, 3)”. We got a sequence that wraps
three numeric vectors, each of length one. Also, how overly talkative R is when printing
out lists!

list(c(1, 2, 3), 4, c(TRUE, FALSE, FALSE, NA, TRUE), "and so forth")

[[1]]

[1] 1 2 3

##

#w# [[2]]

[1] 4

##

[[3]]

[1] TRUE FALSE FALSE NA TRUE

##

[[4]]

[1] "and so forth"

1ist(list(c(TRUE, FALSE, NA, TRUE), letters), runif(5)) # a list of lists
[[1]]

[[1]][[1]]

[1] TRUE FALSE NA TRUE

##

[[1]][[2]]

[1] "a" "b" "C" " e UFT "gh URT M MM mpw wpw wpw wpw wmpw wpn wgw
[18] "FT ST TET T Tyt Myt Ty gt ngn

(continues on next page)

4 LISTS AND ATTRIBUTES 57

(continued from previous page)
##
##

[[2]]
[1] 0.28758 0.78831 0.40898 0.88302 0.94047

However, the str function can be used to print R objects in a more concise fashion:

str(list(list(c(TRUE, FALSE, NA, TRUE), letters), runif(5)))
List of 2

S :List of 2

..S : logtl [1:4] TRUE FALSE NA TRUE

..S : chr [1:26] "a" "b" "c" "d" ...

#4 S : num [1:5] 0.288 0.788 0.409 0.883 0.94

Note In Section 4.1, we said that the ¢ function, when fed with arguments of mixed
types, tries to determine the common type that retains the sense of data. If a coercion
to an atomic vector is not possible, the result will be a list.

c(1, "two", identity) # ‘identity’ is an object of type "function"
[[1]]

[1] 1

##

[[2]]

[1] "two"

##

[[3]]

function (x)

X

<environment: namespace:base>

Thus, the ¢ function can also be used to concatenate lists:

c(list(1), list(2), list(3)) # 3 lists -> 1 list
[[1]]

[1] 1

##

[[2]]

[1] 2

##

w# [[3]]

[1] 3

Lists can be repeated using rep:

58 | DEeep

rep(list(1:11, LETTERS), 2)

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11

##

[[2]]

[1] "A" "B" "C" "D UE" UE UGN UHM MM Mn mgn mpw mgn mynowmguonpn g
[18] "R" 'S "TT YT "YUt onx myr nzn

##

[[3]]

[1] 1 2 3 4 5 6 7 8 910 11

##

[[4]]

[1] HA " NB " NC " ND " NE " NF " NG " HH n HI n H] n HK n ”L " IIM " IIN " Iloll IIP n ”O”
[18] HR " HS " NTN Nuﬂ Nvﬂ NNN Nxﬂ Nyﬂ Hzﬂ

4.2.2 Coercing to and from lists

The conversion of an atomic vector to a list of length-1 vectors can be done via a call to
as.list:

as.list(c(1, 2, 3)) # vector of length 3 -> list of 3 length-1 vectors
#w# [[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

[1] 3

Unfortunately, calling, say, as.numeric on a list (even if it a list comprised of numeric
vectors only) will result in an error. However, we can try to flatten a list to an atomic
vector, provided that it is possible, by calling unlist.

unlist(list(list(1, 2), list(3, list(4:8)), 9))

[1] 123456789

unlist(list(list(1, 2), list(3, list(4:8)), "spam"))

[1] "1" 2" "3" "q" "5 "6" 7" "8" "spam"

Note () InChapter 11, we will mention the simplify2array function which generalises
unlist in a way that can sometimes result in a matrix.

4 LISTS AND ATTRIBUTES 59

4.3 NULL

The NULL object (the one and only object of type “NULL”) can be used as a placeholder for
any other R object or designate the absence of such.

1ist(NULL, NULL, month.name)

[[1]]

NULL

##

[[2]]

NULL

##

[[3]]

[1] "January" "February" "March" "April” "May"
[6] "June" "July" "August"” "September" "October"
[11] "November" "December"

NULL is different from a vector of length zero, because the latter has a type.

However, NULL sometimes behaves as a 0-length vector. In particular, length(NULL) re-
turns 0. Also, c called with no arguments returns NULL.

Testing for NULL-ness can be done with a call to is.null.

Important NULL is not alike NA (or it is other-typed variants); the latter can be emplaced
in an atomic vector.

c(1, NA, 3, NULL, 5) # NULL behaves as a 0-length vector here
[1] 1 NA 3 5

They both have very distinct semantics (no value vs a missing value).

Later we will see that some functions return NULL, invisibly, because they actually have
nothing interesting to yield. This is the case of print or plot, which are called because
of their side effects (printing and plotting).

Also, in some contexts, replacing content with NULL (e.g., when subsetting a list) will
actually result in its removal.

4.4 Object attributes

Lists can be used to wrap many objects and form a single, ordered collection thereof.

60 | DEeep

Attributes, on the other hand, give means to inject some extra data into an object of
any type (except NULL).

Attributes are (unordered) key=value pairs, where key in an arbitrary single charac-
ter string and value is any R object except NULL. They can be introduced by calling,
amongst others’, the structure function:

x_simple <- 1:10

X <- structure(
x_simple, # the object to be equipped with attributes
attributel="valuel",
attribute2=c(6, 100, 324)

4.4.1 Developing perceptual indifference to most attributes

Let us see how the above x is reported on the console:

print(x)

[1] 1 2 3 4 5 6 7 8 9 10
attr(, "attribute1”)

[1] "valuel”

attr(, "attribute2")

[1] 6 100 324

Note that the object of concern, “1:10”, was displayed first. We need to get used to
that; most of the time, we should treat the “attr..” parts of the display as if they were
printed in tiny font.

Equipping an object with attributes does not change its very nature (see, however
Chapter 10 for some exceptions). For example, the above x, despite featuring some ex-
tra data (metadata), is still treated as an ordinary sequence of numbers by most func-
tions:

sum(x) # the same as sum(1:10), sum() does not care about any attributes
[1] 55

typeof(x) # just a numeric vector, but with some perks

[1] "integer"

Important Attributes are generally ignored by most functions unless they have spe-
cifically been programmed to pay attention to them.

! Other ways include the replacement versions of the attr and attributes functions; see Section 9.4.6.

4 LISTS AND ATTRIBUTES 61

4.4.2 Butthere are some use cases, after all

Some R functions add attributes to the return value to sneak extra information that
might be useful, just in case.

For instance, na.omit, whose main aim is to remove missing values from an atomic
vector, yields:

y <- c(10, 20, NA, 40, 50, NA, 70)
(y_na_free <- na.omit(y))

[1] 10 20 40 50 70

attr(, "na.action")

[1] 3 6

attr(, "class")

#4 [1] "omit"

We can enjoy the NA-free version of y in any further computations:

mean(y_na_free)
[1] 38

However, the na.action attribute (we ignore the class part until Chapter 10) tells us
where the missing observations were:

attr(y_na_free, "na.action") # read the attribute value
[1] 3 6

attr(, "class")

#4 [1] "omit”

As another example, gregexpr can be used to search for a given pattern in a character
vector (for more details, see Chapter 6):

needle <- "spam|gluten" # pattern to search for: spam OR gluten
haystack <- c("spam, spam, bacon, and gluten-free spam", "spammer") # text
(pos <- gregexpr(needle, haystack))
[[1]]
[1] 1 7 24 36
attr(, "match. length")
[1] 4 4 6 4
attr(, "index. type")
[1] "chars"
attr(, "useBytes")
[1] TRUE
##
[[2]]
[1] 1
attr(, "match. length")
[1] 4
(continues on next page)

62 | DEeep

(continued from previous page)
attr(, "index. type")
[1] "chars"
attr(, "useBytes")
[1] TRUE

We sought all occurrences of the pattern within two character strings. As their number
may vary from string to string, to wrap the results in a list was a good design choice.
Each list element gives the starting positions where matches can be found (there are
four and one match(es), respectively).

Eachvector of positions also features its own match. length attribute (amongst others),
in case we need it.

Exercise 4.2 Create a list with EUR/AUD, EUR/GBE, and EUR/USD exchange rates read
from the euraud- *. csv, eurgbp-*.csv, and eurusd- *. csv files in our data repository*. Each
of its three elements should be a numeric vector storing the currency exchange rates. Further-
more, equip them with currency_from, currency_to, date_from, and date_to attributes, for
example:

#w [1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132
[11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA

attr(, "currency_from")

[1] "EUR"

attr(, "currency_to")

[1] "AUD"

attr(, "date_from")

[1] "2020-01-01"

attr(, "date_to")

[1] "2020-06-30"

Note that such additional information could of course be stored in a few separate variables (other
vectors), but then it would not be as convenient to use as the above representation.

4.4.3 Special attributes

Attributes have a great potential which is somewhat wasted by R users due to their
rarely knowing:

« that attributes exist (pessimistic scenario) or
« how to handle them (realistic scenario).
But we now know.

What is more, some attributes have been predestined to play a fundamental role in R.
Namely, the most prevalent amongst the special attributes are:

2 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek

4 LISTS AND ATTRIBUTES 63

- names, row.names, and dimnames are used to label the elements of atomic and gen-
eric vectors (see below), and also rows and columns in matrices (Chapter 11) and
data frames (Chapter 12),

« dimallows for turning flat vectors into matrices and other tensors (Chapter 11),
« levels labels the underlying integer codes in factor objects (Section 10.3.2),

« class can be used to bring forth new complex data structures based on basic types
(Chapter 10).

We call them special, because:

- they cannot be assigned arbitrary values; for instance, we will soon see that names
can only be mapped to a character vector of the length equal to that of the sequence
itislabelling,

« they can be accessed via designated functions, e.g., names, class, dim, dimnames,
levels, etc.,

« they are widely recognised by many base and third-party R functions.

However, in spite of the above, special attributes can still be managed as any other
(ordinary) ones.

Exercise 4.3 comment is perhaps the most rarely used special attribute. Create an object
(whatever) equipped with the comment attribute. Verify that assigning to it anything other than
a character vector leads to an error. Read its value by calling the comment function. Display the
object equipped with comment. Note that the print function ignores its existence whatsoever: this
is how special it is.

Important (*) The accessor functions such as names or class might return meaningful
values event if the corresponding attribute is not set explicitly; see, e.g., Section 11.1.5
for an example.

4.4.4 Labelling vector elements with the names attribute

A special attribute called names can be used to label the elements of atomic vectors and
lists.

(x <- structure(c(13, 2, 6), names=c("spam", "sausage", "celery")))
spam sausage celery
13 2 6

The labels may improve the expressivity and readability of our code and data.

Exercise 4.4 Verify that the above x is still an ordinary numeric vector by calling typeof and
sumon it.

Note that we can ignore the names attribute whatsoever. If we apply any operation dis-

64 | DEeep

cussed in Chapter 2, we will still garner the same result no matter if such extra inform-
ation is present or not.

Itisjust the print function that changed its behaviour slightly (it is a special attribute
after all). Instead of reporting:

[1] 13 2 6
attr(, "names"
[1] "spam" "sausage

"o

celery"

we got a nicely formatted table-like display. Non-special attributes are still printed in
a standard way.

#H spam sausage celery

13 2 6

attr(, "additional_attribute")

[1] 1 2 3 4 5 6 7 8 9 10

Note In Chapter 5, we will also see that some operations (such as indexing) can gain
extra features in the presence of the names attribute.

This attribute can be read by calling:

attr(x, "names") # just like any other attribute

##4 [1] "spam” "sausage" "celery"
names(x) # because it is so special
[1] "spam"” "sausage" "celery"

Named vectors can be easily created with the c and list functions as well:

c(a=1, b=2)

a b

12

list(a=1, b=2)

Sa

[1] 1

##

Sb

[1] 2
c(a=c(x=1, y=2), b=3, c=c(z=4)) # this is smart
#4 a.x a.y bc.z
1 2 3 4

Let us contemplate for a while how a named list looks like when printed on the console.
Again, it is still a list, but with some extras.

4 LISTS AND ATTRIBUTES 65

Exercise 4.5 Awhole lot of functions return named vectors. Evaluate the following expressions
and read the corresponding pages in the documentation:

« quantile(runif(100)) (note that it generalises min, median, and max),
o hist(runif(100), plot=FALSE),
- options (on a side note, take note of the digits, scipen, max. print, and width options),

o capabilities.

Note (*) Most of the time, lists are used merely as containers for other R objects. This
is a boring yet essential role. However, let us just mention here that each data frame is
in fact a generic vector (see Chapter 12): each column thereof corresponds to a named
list element:

(df <- head(iris)) # some data frame
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

#H 2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa
typeof(df) # it is just a list (with extras that'll be discussed later)
[1] "list"

unclass(df) # how it is represented exactly (without the extras)
SSepal.Length

[1] 5.1 4.9 4.7 4.6 5.0 5.4

##

SSepal.Width

[1] 3.5 3.0 3.2 3.1 3.6 3.9

##

SPetal.Length

[1] 1.4 1.4 1.3 1.5 1.4 1.7

##

SPetal.Width

#4 [1] 0.2 0.2 0.2 0.2 0.2 0.4

##

SSpecies

[1] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica

##

attr(, "row.names")

[1] 123456

66 | DEeep

Therefore, the functions we discuss in this chapter are of use in the processing of such
structured data as well.

4.4.5 Altering and removing attributes

We know that a single attribute can be read by calling attr. Their whole list is generated
with a call to attributes.

(x <- structure(c("some", "object"), names=c("X", "Y"),
attributel="valuel", attribute2="value2", attribute3="value3"))

X |4

"some" "object"

attr(, "attribute1")

[1] "valuel”

attr(, "attribute2")

[1] "value2"

attr(, "attribute3")

[1] "value3"

attr(x, "attributel") # reads a single attribute, returns NULL i1f unset

[1] "valuel”

attributes(x) # returns a named list with all attributes of an object

Snames

[1] "X" "y"

##

Sattributel

##4# [1] "valuel”

##

Sattribute2

[1] "value2"

##

Sattribute3

#4 [1] "value3"

We can alter an attribute’s value or add further attributes, by referring to the struc-
ture function once again. Moreover setting an attribute’s value to NULL gets rid of it
completely.

structure(x, attributel=NULL, attribute4="added", attribute3="modified")
X Y

"some" "object"
attr(, "attribute2")
[1] "value2"

attr(, "attribute3")
[1] "modified”

(continues on next page)

4 LISTS AND ATTRIBUTES 67

(continued from previous page)
attr(, "attributed4”)
[1] "added"

As far as the names attribute is concerned, we may generated an un-named copy of an
object by calling:

unname(x)

[1] "some" "object"
attr(, "attribute1”)
[1] "valuel”

attr(, "attribute2")
[1] "value2"

attr(, "attribute3")
[1] "value3"

In Section 9.4.6, we will discuss the so-called replacement functions which will also
enable us to modify or remove an object’s attribute in-place, by calling “attr(x,
"some_attribute") <- new_value”.

Moreover, in Section 5.5, we note that certain operations (such as vector indexing,
elementwise arithmetic operations, coercion) might not preserve all attributes of the
objects that were given as their inputs.

4.5 Exercises
Exercise 4.6 Answer the following.
« That is the meaning of “c(TRUE, FALSE) * 1:107?
o What does “sum(as. logical(x))” compute when x is a numeric vector?

« We said that atomic vectors of type character are the most general ones. Therefore, is “as.
numeric(as.character(x))” the same as “as.numeric(x)”, vegardless of the type of x?

« What is the meaning of “as. logical (x+y)” if xand y are logical vectors? What about “as.

» «

logical(x*y)”, “as.logical(1-x)”, and “as.logical(x!=y)”?

o Let x be a named numeric vector, e.g., “x <- quantile(runif(100))”. What is the result
of “2*x”, “mean(x)”, and round(x, 2)?

« Whatis the meaning of x == NULL?
« Give two ways to create a named character vector.

- Givetwoways (discussed above; there are more) to remove the names attribute from an object.

68 | DEeep

Exercise 4.7 There are a few peculiarities when joining or coercing lists. Compare the results
generated by the following pairs of expressions:

1)

as.character(list(list(1, 2), list(3, list(4)), 5))
as.character(unlist(list(list(1, 2), list(3, list(4)), 5)))
#2)

as.numeric(list(list(1, 2), list(3, list(4)), 5))
as.numeric(unlist(list(list(1, 2), list(3, list(4)), 5)))
3)

unlist(list(list(1, 2), sd))

list(1, 2, sd)

#4)

c(list(c(1, 2), 3), 4, 5)

c(list(c(1, 2), 3), c(4, 5))

Exercise 4.8 Given numeric vectors x, y, z, and w, how to combine x, y, and list(z, w) so as
to obtain list(x, y, z, w)? More generally, given a set of atomic vectors and lists of atomic
vectors, how to combine them to get a single list that features all atomic vectors as its elements
(not a list of atomic vectors and lists, not atomic vectors unwound, etc.)?

Exercise 4.9 What is the meaning of the following when x is a logical vector?
« cummin(x) and cummin(!x),
o cummax(x) and cummax(!x),
« cumsum(x) and cumsum(!x),
« cumprod(x) and cumprod(!x).

Exercise 4.10 readRDS allows for serialising R objects and writing their snapshots to disk, so
that they can be later restored very quickly via a call to saveRDS. Verify whether this function
preserves object attributes.

Exercise 4.11 (*) Use jsonlite: : fromJSONto read some JSON file in the form of a named list.

In the extremely unlikely event of us finding the current chapter boring, let us rejoice:
some of the exercises and remarks that we will encounter in the next part — devoted
to vector indexing — will definitely be deliciously stimulating!

5

Vector indexing

We now know plenty of ways to process vectors in their entirety, but how to extract and
replace specific parts thereof? We will be referring to such activities collectively as in-
dexing, because they are often performed through the index operator, *[".

5.1 headand tail

Let us begin with something more lightweight, though. The head function can be used
to fetch a few elements from the beginning of a vector.

X <- 1:10

head(x) # head(x, 6)

[1] 123456

head(x, 3) # get the first three
[1] 1 2 3

head(x, -3) # skip the last three
[1] 1234567

Similarly, tail extracts a few elements from the end of a sequence.

tail(x) # tail(x, 6)

[1] 5 6 7 8 910

tail(x, 3) # get the last three
[1] 8 9 10

tail(x, -3) # skip the first three
[1] 4 5 6 7 8 910

Both functions work on lists too*. They are useful, e.g., when we wish to preview the
contents of a big object.

! head and tail are actually S3 generics defined in the utils package. We will be able to call them on
matrices and data frames as well; see Chapter 10.

70 | DEeep

5.2 Subsetting and extracting from vectors

Given a vector x, “x[1]” returns its subset comprised of elements indicated by the in-
dexer 1, which can be a single vector of:

- nonnegative integers (gives the positions of elements to retrieve),
- negative integers (gives the positions to omit),

« logical values (states whether the corresponding element should be fetched or
skipped),

« character strings (locates the elements with specific names).

5.2.1 Nonnegative indexes

Consider the following example vectors:

(x <- seq(10, 100, 10))

[1] 10 20 30 40 50 60 70 80 90 100
(y <- list(1, 11:12, 21:23))
[[1]]

[1] 1

##

[[2]]

[1] 11 12

##

[[3]]

[1] 21 22 23

The first element in a vector is at index 1. Hence:

x[1] # the first element
[1] 10
x[length(x)] # the last element
[1] 100

Important We might have wondered why “[1]” is being displayed each time we print
out an atomic vector on the console:

print((1:51)*10)

#4 [1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
#4 [18] 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
[35] 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510

5 VECTOR INDEXING 7

It is merely a visual hint indicating which vector element we output first in each line.

Vectorisation is a universal feature of R. Hence, it comes as no surprise that the in-
dexer can be also of length greater than one.

x[c(1, length(x))] # the first and the last
[1] 10 100

x[1:3] # the first three

#4 [1] 160 20 30

Take note of some boundary cases:

x[c(1, 2, 1, 0, 3, NA_real_, 1, 11)] # repeated, 0, missing, out of bound
[1] 10 20 10 30 NA 10 NA

x[c()] # indexing by an empty vector

numeric(0)

Important Subsetting with [yields an object of the same type.

When applied on lists, the index operator always returns a list as well, even if we ask
for a single element:

y[2] # a list that includes the 2nd element

[[1]]

[1] 11 12

ylc(1, 3)] # note that this is not the same as x[1, 3] (a different story)
[[1]]

[1] 1

##

[[2]]

[1] 21 22 23

If we wish to extract a component, i.e., to dig into what is inside a list at a specific
location, we can refer to "[[:

y[[2]] # extract the 2nd element

[1] 11 12

This is exactly why R displays “[[1]]7, “[[2]]”, etc. when printing out lists on the con-
sole.

Note Calling “x[[1]1]” on an atomic vector, where 1 is a single value has almost*

% See also Section 5.5 for the discussion on the preservation of object attributes.

72 | DEeep

the same effect as “x[1]”. However, "[[* generates an error if the subscript is out of
bounds.

Note (¥) '[[" also supports multiple indexers.

y[lc(1, 3)1]
Error in y[[c(1, 3)]]: subscript out of bounds

Its meaning is different from y[e(1, 3)], though; we are about to extract a single
value, remember? Here, indexing is applied recursively. Namely, the above is equivalent
toy[[111[[3]] — we got an error because y[[1]] is of length smaller than three.

More examples:

y[lc(3, D11 # y[[3]][[1]]

[1] 21

Tist(list(7))[[c(1, 1)]] # 7, not list(7)
[1] 7

Important Take note of the behaviour in the case of non-existing items:

c(1, 2, 3)[4]

[1] NA

list(1, 2, 3)[4]

[[1]]

NULL

c(1, 2, 3)[[4]]

Error in c(1, 2, 3)[[4]]: subscript out of bounds
1ist(1, 2, 3)[[4]]

Error in list(1, 2, 3)[[4]]: subscript out of bounds

5.2.2 Negative indexes

The indexer can also be a vector of negative integers. This way, we can exclude the ele-
ments at given positions:

y[-1] # all but the first
[[1]]

[1] 11 12

##

[[2]]

[1] 21 22 23

(continues on next page)

5 VECTOR INDEXING 73

(continued from previous page)
x[-(1:3)]
[1] 40 50 60 70 80 90 100
x[-c(1, 0, 2, 1, 1, 8:100)] # 0, repeated, out of bound indexes
[1] 30 40 50 60 70

Note Negative and positive indexes cannot be mixed.

x[-1:3] # recall that -1:3 == (-1):3
Error in x[-1:3]: only 0's may be mixed with negative subscripts

Also, NA indexes are not allowed amongst negative ones.

5.2.3 Logicalindexer

Avector can also be subsetted by means of alogical vector. If they both are of identical
lengths, the consecutive elements in the latter indicate whether the corresponding
elements of the indexed vector are supposed to be selected (TRUE) or omitted (FALSE).

1xkx D 3 4 LHkkk GrEk 7 gx*kk 9P 1@%**
x[c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, NA, TRUE)]
[1] 10 50 60 80 NA 100

In other words, x[1], where 1is a logical vector, returns all x[1] with 1 such that 1[1]
is TRUE. Above, we extracted the elements at indexes 1, 5, 6, 8, and 10.

Important Let us be careful: if the element selector is NA, the selected element will be
set to a missing value (for atomic vectors) or NULL (for lists).

c("one", "two", "three")[c(NA, TRUE, FALSE)]
[1] NA "two"

list("one", "two", "three")[c(NA, TRUE, FALSE)]
[[1]]

NULL

##

[[2]]

[1] "two"

This, unfortunately, comes with no warning, which might be problematic when in-
dexers are generated programmatically.

As a remedy, we sometimes pass the logical indexer to the which function first. It re-
turns the indexes of the elements equal to TRUE, ignoring the missing ones.

74 | DEeep

which(c(NA, TRUE, FALSE))

[1] 2
c("one", "two", "three")[which(c(NA, TRUE, FALSE))]
[1] "two"

Recall that in Chapter 3, we have discussed ample vectorised operations that gener-
ate logical vectors. Anything that yields a logical vector of the same length as x can be
passed as an indexer.

X > 60 # yes, it is a perfect indexer candidate

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
X[x > 60] # select elements in x that are greater than 60

[1] 70 80 90 100

X[x < 30 | 70 < x] # elements not between 30 and 70

[1] 10 20 80 90 100

x[x < mean(x)] # elements smaller than the mean

[1] 10 20 30 40 50

x[x"2 > 7777 | logl0(x) <= 1.6] # indexing via a transformed version of x
#4 [1] 10 20 30 90 100

(z <- round(runif(length(x)), 2)) # ten pseudorandom numbers

#4# [1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46

x[z <= 0.5] # indexing based on z, not x — not a problem

[1] 10 30 60 100

The indexer is always evaluated first and then passed to the subsetting operation - this
operation does not care how such a logical vector was generated.

Furthermore, recycling rule is of course applied when necessary:

x[c(FALSE, TRUE)] # every second element

[1] 20 40 60 80 100

y[c(TRUE, FALSE)] # interestingly, there is no warning here
[[1]]

[1] 1

##

[[2]]

[1] 21 22 23

Exercise 5.1 Considerasimple database about six people, their most favourite dishes, and birth
years.

name <- c("Graham", "John", "Terry", "Eric"”, '"Michael", "Terry")
food <- c("bacon", ‘"spam", "spam", ‘"eggs", ‘"spam", "beans")
year <- c(1941, 1939, 1942, 1943, 1943, 1940)

5 VECTOR INDEXING 75

The consecutive elements in different vectors correspond to each other, e.g., Graham was born in
1941 and his favourite food was bacon.

« List the names of people born in 1941 or 1942.

o List the names of those who like spam.

« List the names of those who like spam and were born after 1940.

- Compute the average birth year of the lovers of spam.

« Give the average age, in 1969, of those who didn'’t find spam utmostly delicious.

The answers to the above must be provided programmatically, i.e., we do not just write "Eric”
and "Graham". The code must be generic enough so that it works in the case of any other database
of this kind, no matter its size.

Exercise 5.2 Remove missing values from a given vector without referring to the na. omit func-
tion.

5.2.4 Characterindexer

If a vector is equipped with the names attribute, such as this one:

X <- structure(x, names=letters[1:10]) # add names
print(x)

a b ¢ d e f g h 1 j

10 20 30 40 50 60 70 80 90 100

These labels can be referred to for the purpose of extracting the elements. To do this,
we use an indexer which is a character vector:

X[C("a", Ilfll, HaH’ Ilgll’ HZH)]
a f a g <NA>
10 60 10 70 NA

Important We have said that special object attributes add extra functionality on top
of the existing ones. Therefore, indexing by means of positive, negative, and logical
vectors is of course still available:

x[1:3]

a b c

10 20 30

x[-(1:5)]

f g h 1 J
60 70 80 90 100
x[x > 70]

h 1 j

80 90 100

76 | DEeep

Lists can also be subsetted this way.

(y <- structure(y, names=c("first", "second", "third")))
Sfirst

[1] 1

##

Ssecond

[1] 11 12

##

Sthird

[1] 21 22 23

y[c("first", "second")]

Sfirst

[1] 1

##

Ssecond

[1] 11 12

y["third"] # result is a list

Sthird

[1] 21 22 23

y[["third"]] # result is the specific element unwrapped
[1] 21 22 23

Important Labels do not have to be unique. When we have repeated names, the first
matching element is extracted:

structure(1:3, names=c("a", "b", "a"))["a"]
a
1

There is no direct way to select all but given names, just like with negative integer in-
dexers. For a workaround, see Section 5.4.1.

Exercise 5.3 Rewrite the solution to the above spam-lovers exercise assuming that we have the
three features wrapped inside a list now:

(people <- list(
Name=c("Graham", "John", "Terry", "Eric", "Michael", "Terry", "Steve"),

Food=c("bacon", "spam", "spam", ‘"eggs", "spam", "beans", "spam"),
Year=c(1941, 1939, 1942, 1943, 1943, 1940, NA_real_)
))
SName
[1] "Graham" "John" "Terry" "Eric" "Michael" "Terry" "Steve"

(continues on next page)

5 VECTOR INDEXING 77

(continued from previous page)
##
SFood
[1] "bacon" "spam" "spam" '"eggs" "spam" "beans
##
SYear
#4 [1] 1941 1939 1942 1943 1943 1940 NA

"o

spam”

Do not refer to name, food, and year directly. Instead, use the full people[["Name"]] etc. ac-
cessors. There is no need to pout, it is just tiny bit of extra work. Also note that we now have Steve
amongst us.

5.3 Replacing elements
5.3.1 Modifying atomic vectors

There are also replacement versions of the above indexing schemes. They allow us to
substitute some new content for the old one.

(x <- 1:12)

[1] 1 2 3 4 5 6 7 8 910 11 12
x[length(x)] <- 42 # modify the last element
print(x)

#¢ [1] 1 2 3 4 5 6 7 8 910 11 42

The principles of vectorisation, recycling rule, and implicit coercion are all in place:

x[c(TRUE, FALSE)] <- c("a", "b", "c")
print(x)
[1] "a" "2" "h" 4" "ch "G ngn g npn nggr nen ngpw

Long story long: first, to make sure that the new content can be poured into old wine-
skin, R needed to convert the numeric vector to a character one; compare Section 4.1.
Then, every second element therein, a total of six items, was replaced by a recycled
version of the replacement sequence of length 3. Finally, the name “x” was re-bound
to such a brought-forth object and the previous one became forgotten.

Note For more details on replacement functions in general, see Section 9.4.6. Such
operations alter the state of the object they are called on (quite a rare behaviour in
functional languages).

Exercise 5.4 Replace missingvaluesin a given numericvectorwith the arithmetic mean of well-
defined observations therein.

78 | DEeep

5.3.2 Modifying lists

List contents can be altered as well. For modifying individual elements, the safest op-
tion is to use the replacement version of the "[[* operator:

y <- list(a=1, b=1:2, c=1:3)
y[[1]] <- 100:110

y[["c"11 <- -y[["c"]]
print(y)

Sa

#4 [1] 100 101 102 103 104 105 106 107 108 109 110
##

Sb

[1] 1 2

##

Sc

[1] -1 -2 -3

The replacement version of "[* modifies a whole sub-list:

y[1:3] <- list(1, c("a", "b", "c"), c(TRUE, FALSE))
print(y)

Sa

[1] 1

##

Sb

[1] "a" "b" "c"

##

Sc

[1] TRUE FALSE

Moreover:

y[1] <- 1list(1:10) # replace 1 element with 1 object
y[-1] <- 10:11 # replace 2 elements with 2 vectors of length 1
print(y)

Sa

[1] 1 2 3 4 5 6 7 8 9 10

##

Sb

[1] 10

##

Sc

[1] 11

Note Letidxbeavector of positive indexes of elements to be modified. Overall, calling
“y[1dx] <- z” behaves as if we wrote:

5 VECTOR INDEXING 79

L. y[[tdx[1]1] <- z[[1]],
2. y[[idx[2]]] <- z[[2]],
3. y[[tdx[31]1] <- z[[3]],
and so forth.

Furthermore, z (but not idx) will be recycled if necessary, i.e., we take z[[j %%
length(z)]1] for consecutive js from 1 to the length of idx.

Exercise 5.5 Reflect upon the results of the following expressions:
o y[1] <- ¢("a", "b", "c"),
e y[[1]] <- ¢("a", "b", "c"),
« y[[1]] <- list(c("a", "b", "c")),
e y[1:3] <- ¢("a", "b", "c"),
o y[1:3] <- list(c("a", "b", "c")),
. y[1:3] <- "a",
e y[1:3] <- list("a"),

. _V[C(l, 2) 1)] <- C(”a”, ”b", ”C”),

Important Setting a list item to NULL removes it from the list completely.

y <- lst(1, 2, 3, 4)

y[1] <- NULL # removes the 1st element (i.e., 1)

y[[1]] <- NULL # removes the 1st element (i.e., now 2)
y[1] <- 1ist(NULL) # sets the 1st element (i.e., now 3) to NULL
print(y)

[[1]]

NULL

##

[[2]]

#4 [1] 4

The same notation convention is used for dropping object attributes; see Section 9.4.6.

5.3.3 Inserting new elements

New elements can be pushed at the end of the vector quite easily®.

3 And often cheaply; see Section 8.3.5 for some performance notes. Still, a warning can be generated on
each size extension if the "check.bounds" flag is set; see help("options").

80 | DEeep

(x <- 1:5)

[1] 12345

x[length(x)+1] <- 6 # insert at the end

print(x)

[1] 123456

x[10] <- 10 # insert at the end but add more items
print(x)

[1] 1 2 3 4 5 6 NA NA NA 10

The elements to be inserted can be named as well:

x["a"] <- 11 # still inserts at the end

x["z"] <- 12

x["c"] <- 13

x["z"] <- 14 # z is already there; replace
print(x)

a z c

1 2 3 4 5 6 NANA NA 10 11 14 13

Note that x was not equipped with the names attribute before — the unlabelled elements
were assigned blank labels (empty strings).

Note It is not possible to insert new elements at the beginning or in the middle of a
sequence, at least not with the index operator. By writing “x[3:4] <- 1:5” we do not
replace two elements in the middle by five other ones. However, we can always use the
c function to slice parts of the vector and intertwine them with some new content:

X <- seq(10, 100, 10)

x <- c(x[1:2], 1:5, x[5:7])

print(x)

#4# [1] 10 20 1 2 3 4 5 50 60 70

5.4 Functions related to indexing

Let us review some operations which pinpoint interesting elements in a vector (or
functions based on these).

5.4.1 Matching of elements in another vector

We know that the “==" operator acts in an elementwise manner. It compares each ele-
ment in a vector on the lefthand side to the corresponding element in a vector on the

5 VECTOR INDEXING 81

right side. Thus, missing values and the recycling rule aside, if z <- (x == y), then
z[1]is TRUE if and only if x[1] == y[i].

The “%in% operator is vectorised differently: it checks whether each element on the
lefthand side matches one of the elements on the right. Given z <- (x %in% y), z[1]
is TRUE whenever x[1] == y[j] for some j.

C("Spam”, Hbaconﬂ, Ilspamﬂ’ Ileggsﬂ’ "Spam”) %_‘Ln% c(lleggsﬂ, Ilspamﬂ’ Ilhamll)
[1] TRUE FALSE TRUE TRUE TRUE

Example 5.6 Here is how we can remove the elements of a vector that have been assigned spe-
cified labels.

(x <- structure(1:12, names=month.abb)) # example vector

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 2 3 4 5 6 7 8 9 10 11 12

x[!(names(x) %in% c("Jan", "May", "Sep", "Oct"))] # get rid of some elements
Feb Mar Apr Jun Jul Aug Nov Dec

2 3 4 6 7 8 11 12

More generally, match(x, y) gives us the index of the element in y that matches each
x[1].

match(c("spam", "bacon", "spam", "eggs", "spam"), c("eggs", "spam", "ham"))
[1] 2NA 2 1 2

match(month.abb, c("Jan", "May", "Sep", "Oct")) # is the month on the list?
[1] 1 NANANA 2 NANANA 3 4 NA NA

match(c("Jan", "May", "Sep", "Oct"), month.abb) # which month is it?

[1] 1 5 910

NA_real_denotes (by default) a no-match.

Exercise 5.7 Check out the documentation of “%in%’ to see how this operator is reduced to a call
to match. Also, verify that it treats missing values as well-defined ones.

If the elements in y are not unique, the smallest index j such that x[1] == y[j]is
returned. Therefore, for example, match(TRUE, 1) can be used to fetch the index of the
first occurrence of a positive value in a logical vector 1.

(x <- round(runif(10), 2)) # example vector

#4 [1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46
match(TRUE, x>0.8) # index of the first value > 0.8 (from the left)
[1] 4

4 A fantastic name; see Section 9.4.5.

82 | DEeep

5.4.2 Assigning numbers into intervals

findInterval can come in handy where the assigning of numeric values into real in-
tervals is needed. Namely, z <- findInterval(x, y) forincreasingy gives z[i] being
theindex j such thatx[1] is between y[j] (by default, inclusive) and y[j+1] (by default,
exclusive).

For example, a sequence of five knotsy = (—o0,0.25,0.5,0.75, o) yields a division of
the real line to the following four intervals:

[—00,0.25) [0.25,0.5) [0.5,0.75) [0.75,c0)
(6] (2)) 4)

Hence, for instance:

findInterval(c(0, 0.2, 0.25, 0.4, 0.66, 1), c(-Inf, 0.25, 0.5, 0.75, Inf))
[1] 112234

Exercise 5.8 Refer to the manual of findInterval to verify the function’s behaviour when we
do not include 4 oo as end points and how to make oo classified as a member of the 4th interval.

Exercise 5.9 Using a call to findInterval, write a statement that generates a logical vector
whose i-th element indicates whether x[1] is in the interval [0.25, 0.5]. Was this easier to write
than an expression involving “<="and *>="?

5.4.3 Splitting vectors into subgroups

split(x, z) cantake the output of match or findInterval (and many other operations)
and divide the elements in a vector x into subgroups corresponding to identical zs.

For instance, we can assign people into groups determined by their favourite dish:

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")
food <- c("bacon", '"spam", "spam", '"eggs", '"spam", "beans")
split(name, food) # group names with respect to food

Sbacon

[1] "Graham"

##

Sbeans

[1] "Terry"

##

Seggs

[1] "Eric"”

##

Sspam

[1] "John" "Terry" "Michael"

The result is a named list with labels determined by the unique elements in the 2nd
vector.

5 VECTOR INDEXING

83

Another example: here are some numbers pigeonholed into the four previously men-
tioned intervals:

x <- c(0, 0.2, 0.25, 0.4, 0.66, 1)
split(x, findInterval(x, c(-Inf, 0.25, 0.5, 0.75, Inf)))

#S'1°

[1] 0.0 0.2

##
52"

[1] 0.25 0.40

##
$°3°

[1] 0.66
##

$'4°

[1] 1

Missing values in the second argument will result in the corresponding values in the
firstargumentignored. Also, unsurprisingly, recycling rule is applied when necessary.

We can also split x into groups defined by a combination of levels of two or more vari-
ables z1, z2, etc., by calling split(x, list(zl, z2,

o))

Example 5.10 The built-in ToothGrowthis a named list (with some extra attributes that makes
us vather call it a data frame; see Chapter 12) represents the results of an experimental study in-
volving 60 guinea pigs. The experiment’s aim was to measure the effect of different vitamin C

supplement types and doses on the growth of the rodents’ teeth lengths:

ToothGrowth <- as.list(ToothGrowth) # it is a list, but with extra

ToothGrowth[["supp"]] <- as.character(ToothGrowth[["supp"]]) # was:

print(ToothGrowth)

Slen

[1] 4.2

[15] 22.5 17.3 13.6
[29] 23.3 29.5 15.2
[43] 23.6 26.4 20.0
[57] 26.4 27.3 29.4
##

Ssupp

[1] "vc" "vc" "vc"
[15] "vc" "vc" "vC"
[29] "vc" "vC" "03"
[43] "0J" "03" "0J"
[57] "0J" "03" "0J"
freid

Sdose

[1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.

11.5 7.3 5.8 6.4

14.5 18.8
21.5 17.6
25.2 25.8
23.0

"vc" "ve"
"vc" "ve"
"03" "03"
"0J" "0J"
7"

10.0
15.5

9.7
21.2

-
e
"o
97"

11.2
23.6
14.5
14.5

e
e
"o
"o

11.2 5.2 7.0

18.5
10.0
27.3

e
e
"o
97"

33.9
8.2
25.5

_—
e
"o
"o7"

25.5
9.4
26.4

e
e
03"
07"

16.5
26.4
16.5
22.4

e
e
"o
97"

16.5
32.5

9.7
24.5

e
e
"03"
-

attribs
factor

15.2
26.7
19.7
24.8

-
e
"o
97"

17.3
21.5
23.3
30.9

e
e
03"
07"

50.50.51.0 1.0 1.0 1.0 1.0 1.0 1.0

(continues on next page)

84 | DEeep

(continued from previous page)
[18] 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.5 0.5 0.5 0.5
[35] 0.5 0.5 0.5 0.50.50.51.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
[52] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

We can split lenwith respect to the combinations of supp and dose (also called interactions) by
calling:

split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_")
507 0.5

[1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7
##

SVC_0.5

#4 [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0
##

$0J 1

[1] 19.7 23.3 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3
##

SVC_1

#4 [1] 16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5
##

$0J_2

[1] 25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23.0
##

SVC 2

#4# [1] 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5

Other synonyms are of course possible, e.g., split(ToothGrowth[[1]], ToothGrowth[-1]),
split(ToothGrowth[[1]], list(ToothGrowth[[2]], ToothGrowth[[3]])), etc. However,
we should meditate upon our conscious use of double vs single square brackets here.

Functions such as Map described in Section 7.2 will enable us to compute any summary statistics
within groups (e.g., the within-group averages like with “SELECT AVG(len) FROM ToothGrowth
GROUP BY supp, dose”in SQL). We are in no hurry. However, as an appetiser, let us feed the
boxplot function with a list of vectors; see Figure 5.1.

boxplot(split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_"))

Note unsplitcan be used to revoke the effects of split. In particular, later we will get
used to calling unsplit(Map(some_transformation, split(x, z)), z) to modify the
values in x independently in each group defined by z (e.g., standardise the variables
within each class separately).

5 VECTOR INDEXING 85

-
S
I
ol — !
™ |
—— l+|
QF L____r___J
(o) R 1
b |
ot . - !
1 | —r— —1
| |
wl . BE==
—1
‘9 =
—1
wL T
0]_o.5 VC_o.5 0]_1 VC 1 0]_2 VC_2

Figure 5.1: Box-and-whisker plots of len split by supp and dose (the ToothGrowth data-
set)

5.4.4 Ordering elements

The order function finds the ordering permutation of a given vector, i.e., a sequence
of indexes which leads to a sorted version thereof.

x <- c(1024, 7, 42, 666, 0, 32787)

(o <- order(x)) # the ordering permutation of x
[1] 523416

x[o] # ordered version of x

[1] 0 7 42 666 1024 32787

Note that o[1] is the index of the smallest element in x, o[2] is the position of the 2nd
smallest, ..., and o[length(o)] is the index of the greatest value. Hence, e.g., x[o[1]]
is equivalent to min(x).

Another example:

x <- c("b", "a", "abs",
(o <- order(x))

[1] 2756 314
x[o]

#4 [1] "a" "aaaargh" "aaargh" "aargh"

"bass", "aaargh", "aargh", "aaaargh")

"

abs" np "hass"

Here, as x is a character vector, the ordering is lexicographical (like in a dictionary),
because this is exactly how “<=" on strings works.

86 | DEeep

Note The ordering permutation that order returns is unique (that is why we call it the
permutation) even for inputs containing duplicated elements. Owing to the use of a
stable sorting algorithm, ties (repeated elements) will be listed in the order of occur-
rence.

order(c(10, 20, 40, 10, 10, 30, 20, 10, 10))
#4 [1] 145892763

Above we have, e.g., five 10s at positions 1, 4, 5, 6, 9. These five indexes are guaranteed
to be listed in this very order.

Ordering can also be performed in a nonincreasing manner:

x[order(x, decreasing=TRUE)]
[1] "bass" "b" "abs" "aargh" "aaargh" "aaaargh" "a

"

Note A call to sort(x) is equivalent to x[order(x)], but the former function can be
faster in some scenarios. For instance, one of its arguments can induce a partially sor-
ted vector which can be useful if we only seek a few order statistics (e.g., the seven
smallest values). Speed is rarely a bottleneck in the case of sorting (when it is, we have
aproblem!), this is why we will not bother ourselves with such topics until the last part
of this pleasant book. Currently, we aim at expanding our repertoire of skills and abil-
ities, so that we can implement anything we can think of (rapid prototyping with the
least footprint).

Exercise 5.11 is.unsorted(x) can be used to determine if the elements in a given vector are...
not sorted with respect to “<=". Write an R expression that generates the same result by referring
to the order function. Also, assuming that x is numeric, do the same by means of a call to diff.

Note Looking athelp("order"), we see that it also accepts one or more arguments via
the dot-dot-dot parameter, “...”. This way, we can sort a vector with respect to many
criteria. If there are ties (equal observations) in the first variable, they will be resolved
by the order of elements in the second variable. This is most useful for rearranging the
rows of a data frame, which we will exercise in Chapter 12.

x <- c(10, 20, 30, 40, 50, 60)
yl <- c("a", "b", "a", "a", "b", "b")
y2 <= c("w", "w", "v", "u", "u", "v")
x[order(y1)]
[1] 10 30 40 260 50 60
x[order(y2)]
[1] 40 50 30 60 10 20
x[order(y1, y2)]
(continues on next page)

5 VECTOR INDEXING 87

(continued from previous page)
[1] 40 30 10 50 60 20
x[order(y2, y1)]
[1] 40 50 30 60 10 20

Note (*)Calling order on a permutation (a vector that is an arbitrary arrangement of
n consecutive natural numbers) determines its inverse.

x <- c(10, 30, 40, 20, 10, 10, 50, 30)

order(x)

[1] 15642837

order(order(x)) # inverse of the above permutation
[1] 15742386
(x[order(x)])[order(order(x))] # we get x again
[1] 10 30 40 20 10 10 50 30

Note that order(order(x)) can be considered as a way to rank all the elements in x. For
instance, the 3rd value in x, 40, is assigned rank 7: it is the 7th smallest value in this
vector. Note that this breaks the ties at a first-come-first-served basis. But we can also
write:

order(order(x, runif(length(x)))) # ranks with ties broken at random
[1] 25743186

For different variations of these, see the rank function.

Exercise 5.12 Recall that sample(x) returns a pseudorandom permutation of elements of a
given vector unless x is a single positive number. Write an expression that always yields a proper
rearrangement, regardless of the size of x.

5.4.5 Identifying duplicates

Whether any element in a vector was already listed in the sequence, can be verified by
calling:

x <- c(10, 20, 30, 20, 40, 50, 50, 50, 20, 20, 60)
duplicated(x)
[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

This can be used to remove repeated observations; see also unique. Note that the value
that this function returns is not guaranteed to be sorted (unlike in some other lan-
guages/libraries).

Exercise 5.13 What can be the use case of a call to match(x, unique(x))?

88 | DEeep

Exercise 5.14 Given two named lists x and y which we treat as key-value pairs, determine their
set-theoretic union (with respect to the keys), for example:

x <- list(a=1, b=2)
y <- list(c=3, a=4)

z <- ...to.do... # combine x and y
str(z)
List of 3

S a: num 4
S b: num 2
S c: num 3

5.4.6 Counting index occurrences

tabulate takes a vector of values from a set of small positive integers (e.g., indexes)
and determines their number of occurrences:

x <- c(2, 4, 6, 2, 2, 2, 3, 6, 6, 3)
tabulate(x)
[1] 04210 3

In other words, there are o ones, 4 twos, ..., and 3 sixes.

Exercise 5.15 Using a call to tabulate (amongst others), return a named vector with the num-
ber of occurrences of each unique element in a character vector. For example:

"an "on "on "on "n "n "on "o "on "on

y <-c("a", "b", "a", "c", "a", "d", "e", "e", "g", "g", "c", "c", "g")
result <- ...to.do...

print(result)

#tabcdeg

313123

5.5 Preserving and losing attributes

As attributes are conceived as extra data, it is up to a function’s authors what they will
decide to do with them. Generally, it is safe to assume that much thought has been put
into the design of base R functions. Oftentimes, they behave quite reasonably. This is
why we are going to spend some time now exploring their approaches to the handling
of attributes.

Namely, for functions and operators that aim at transforming vectors passed as their
inputs, the assumed strategy may be to:

. ignore the input attributes completely,

5 VECTOR INDEXING 89

- equip the output object with the same set of attributes, or
- take care only of some special attributes such as names, if that makes sense.

Below we explore some common patterns; see also Section 1.3 in [62].

5.51 <c

First, c drops® all attributes except names:

(x <- structure(1:4, names=c("a", "b", "c", "d"), attrib1="<3"))
abcd

12 34

attr(, "attrib1")

[1] "<3"

c(x) # only “names’ are preserved

abcd

12 34

We can therefore end up calling this function chiefly for this nice side effect. Also recall
that unname drops the labels.

unname(x)

[1] 1 2 3 4

attr(, "attrib1")
[1] "<3"

5.5.2 as.something

as.vector, as.numeric, and similar drop all attributes in the case where the output is
an atomic vector, but it might not necessarily do so in other cases (because they are S3
generics; see Chapter 10).

as.vector(x) # drops all attributes if x is atomic
#4 [1] 1 2 3 4

5.5.3 Subsetting

Subsetting with “[* (except where the indexer is not given) drops all attributes but
names (as well as dim and dimnames; see Chapter 11), which is adjusted accordingly:

x[1] # subset of labels
a
1

(continues on next page)

5 To be precise, we mean the default S3 method of c here; compare Section 10.2.4.

90 | DEeep

(continued from previous page)
x[[1]] # this always drops the labels
[1] 1

The replacement version of the index operator can be used to modify the values in an
existing vector whilst preserving all the attributes. In particular, skipping the indexer
will allow us to replace all the elements:

y <- X

y[] <- c("u", "v") # note that c("u", "v") has no attributes at all
print(y)

a b c d

"u" v "u" v

attr(, "attrib1")

[1] "<3"

5.5.4 Vectorised functions

Vectorised unary functions tend to copy all the attributes.

round(x)

abcd

12 34

attr(, "attrib1")
[1] "<3"

Binary operations should get the attributes from the longer input or both (with the
first argument preferred to the second) if they are of equal sizes.

y <- structure(c(1, 10), names=c("f", "g"), attrib1=":|", attrib2=":0")
y * x # x is longer

a b c d

#0120 3 40

attr(, "attrib1")

[1] "<3"

y[c("h", "1")] <- c(100, 1000) # add two new elements at the end
y ¥ X

#H f g h 1

1 20 300 4000

attr(, "attrib1")

[1] ":]"

attr(, "attrib2")
[1] ":0"

X *y

a b c d
1 20 300 4000
(continues on next page)

5 VECTOR INDEXING el

(continued from previous page)
attr(, "attrib1")
[1] "<3"
attr(, "attrib2")
[1] ":0"

Also, refer to Section 9.4.6 for a way to copy all the attributes from one object to an-
other.

Important Even in base R the above rules are not enforced strictly. We consider them
inconsistencies that should be, for the time being, treated as features (with which we
need to learn to live as they have not been fixed for years). But there is still hope.

As far as third-party extension packages are concerned, suffice it to say that a lot of
R programmers do not know what attributes are at all! It is always best to refer to the
documentation, perform some experiments, and/or manually assure the preservation
of the data we care about.

Exercise5.16 Check what attributes are preserved by ifelse.

5.6 Exercises
Exercise 5.17 Answer the following questions (contemplate first, then use R to find the answer):
« Whatis the result of “x[c()]?” Is it the same as “x[]”?
o Is“x[c(1, 1, 1)]” equivalentto “x[1]"?
o Is“x[1]” equivalent to “x["1"]"?
o Is“x[c(-1, -1, -1)]”equivalentto “x[-1]"?
« Whatdoes “x[c(0, 1, 2, NA)]” do?
o Whatdoes “x[0]” return?
o Whatdoes “x[1, 2, 3]”do?
o Whatabout “x[c(0, -1, -2)]”and “x[c(-1, -2, NA)]”?
« Why “x[NA]” is so significantly different from “x[c(1, NA)]”?
« Whatis “x[c(FALSE, TRUE, 2)]"?
« What will we obtain by calling “x[x<min(x)]"?
« What about “x[length(x)+1]”?

« Why “x[min(y)]” is probably a mistake? What could it mean? How can it be fixed?

92 | DEeep

"_n

« Why cannot we mix indexes of different types and write “x[c(1, "b", "c", 4)]”?Orcan
we?

« Why would we call “as.vector(na.omit(x))” instead of just na.omit(x)?
« What is the difference between sort and order?

« Whatisthe type and the length of the object returned by a callto “split(a, u)”? Whatabout
“split(a, c(u, v))”?

« How to get vid of the 7th element from a list of ten elements?
« How to get rid of the 7th, 8th, and oth element from a list of ten elements?
« How to get rid of the 7th element from an atomic vector of ten elements?

« Ifyisalist, by how many elements “y[c(length(y)+1, length(y)+1, length(y)+1)]
<- list(1, 2, 3)”willextendit?

« What is the difference between “x[x>0]” and “x[which(x>0)]"?

Exercise 5.18 If xis an atomic vector of length n, “x[5:n]” obviously extracts everything from
the sth element to the end. Does it though? Check what happens when xis of length less than five,
including o. List different ways to correct this expression so that it makes (some) sense in the case
of shorter vectors.

Exercise 5.19 Similarly, “x[length(x) + 1 - 5:1]”issupposed to return the last five elements
in x. Propose a few alternatives that ave correct also for short xs.

Exercise 5.20 Given a numeric vector, fetch its five largest elements. Make sure the code works
forvectors of length less than fve.

Exercise 5.21 We can compute a trimmed mean of some x by setting the trimargument to the
mean function. Compute a similar robust estimator of location — the p-winsorised mean, p €
[0, 0.5] defined as the arithmetic mean of all elements in x clipped to the [Q,,, Q1_,] interval,
where Qp is the vector’s p-quantile; see quantile. For example, if xis (8,5, 2,9,7, 4, 6,1, 3),
we have Qg o5 = 3and Qu.75 = 7 and hence the 0.25-winsorised mean will be equal to the
arithmetic mean of (7, 5,3, 7,7, 4,6, 3, 3).

Exercise 5.22 Let xand y be two vectors of the same length, n, and no ties. Compute the Spear-
man rank correlation coefficient given by:

6% 9

ox,y)=1- m/

whered; = r; —s;, i = 1,...,n, and r; and s; denote the vank of x; and y;, respectively. See
also the built-in cor.

Exercise 5.23 () Given two vectors x and y of the same length n, a call to approx(x, y,

.) can be used to interpolate linearly between the points (x1,Y1), (X2,Y2), ..., (X, Y,). We
can use it whenever we wish to generate new ys for previously unobserved xs (somewhere “in-
between” the data we already have). Moreover, spline(x, y, ...) can perform a cubic spline
interpolation, which is smoother; see Figure 5.2.

5 VECTOR INDEXING 93
x <- c(1, 3, 5, 7, 10)
y <- c(1, 15, 25, 6, 0)
x_new <- seq(1, 10, by=0.25)
y_newl <- approx(x, y, xout=x_new)[["y"]]
y_new2 <- spline(x, y, xout=x_new)[["y"]]
plot(x, y, ylim=c(-10, 30)) # the points to interpolate between
lines(x_new, y_newl, col="darkred", lty=2) # linear interpolation
lines(x_new, y_new2, col="navy", lty=4) # cubic interpolation
legend("topright", legend=c("linear", "cubic"),
lty=c(2, 4), col=c("darkred", "navy"), bg="white")
r .
---linear
PR -—-— cubic
Lo - \"\\‘
&~ i N,
8 = '/.://’ \\\\\\
A \
j< MNS
/ .
7 N
> oL /';' AN
- /,/’/ Y,
Q-
Iz 5 - _
27" S T~
or — \'\ -9
RN &
“ .
~ .7
ol -
\ 1 1 1 1 1
2 4 6 8 10
X

Figure 5.2: Piecewise linear and cubic spline interpolation.

Using a call to one of the above, perform the missing data imputation in the euraud-20200101-20200630.
csv®, e.g., theblanksin (0.60, 0.62, NA, 0.64, NA, NA, 0.58)should befilled soas to obtain

(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

Exercise 5.24 Given some 1< froms to< n, use findInterval to generate a logical vector of

length nwith TRUE elements only at indexes between fromand to, inclusive.

Exercise 5.25 Implement expressions that yield the same results as calls to which, which.min,
which.max, and rev functions. What is the difference between x[x>y] and x[which(x>y)]?

What about which.min(x) vs which(x == min(x))?

Exercise 5.26 Given two equal-length vectors x and y, fetch the value from the former that cor-
responds to the smallest value in the latter. Write three versions of such an expression, each deal-

ing with potential ties in y differently, for example:

6 hteps://github.com/gagolews/teaching-data/raw/master/marek/euraud- 20200101- 20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv
https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

94 | DEeep

X <- C(”G”, Hbu’ ucu’ Ndn’ ueu’ Hfu)
Yy <- C(3: 1’ 21 1: 11 4)

should choose either the first ("b"), last ("e"), or random ("b", "d", "e" with equal probability)
element from x fulfilling the above property. Make sure your code works for x being of type char-
acter or numeric as well as an empty vector.

Exercise 5.27 Implement an expression thatyields the same result as duplicated(x) for a nu-
meric vector x, but using diff and order.

Exercise 5.28 Based on matchand unique, implement your own versions of union(x, y), in-
tersect(x, y), setdiff(x, y), is.element(x, y), and setequal(x, y) for xand y being
non-empty numeric vectors.

6

Character vectors

Text is a universal, portable, economic, and efficient means of interacting between
humans and computers as well as exchanging data between programs or APIs. This
book is 99% made of text. And, wow, how much useful knowledge is in it, innit?

6.1 Creating character vectors
6.1.1 Inputting individual strings

Specific character strings are delimited either by a pair of double quotes or a pair of
single quotes (apostrophes).

"a string"

[1] "a string"

'another string' # and of course neither 'like this" nor "like this'
[1] "another string"

The only difference between these two lies in the fact that we cannot directly include,
e.g., an apostrophe in a single quote-delimited string. On the other hand, "' tis good
ol' spam"and 'I "love" bacon' are both okay.

However, we may always use escape sequences to embrace characters whose inclusion
might otherwise be difficult or impossible.

R uses the backslash, “\”, as the escape character, in particular:
« \" inputs the double quote character,
- \' - single quote,
« \\ — backslash,
« \n — new line.
(x <- "I \"love\" bacon\n\\\"/")

[1] "I |"love\" bacon\n||\|"/"

The print function (which was implicitly called to display the above object) does not
reveal the special meaning of the escape sequences. Rather, print outputs strings in

96 | DEeep

the very way which we ourselves would follow when inputting them. The number of
characters in x is 18, and not 23:

nchar(x)
[1] 18

To display the string as-it-really-is, we call:

cat(x)
I "love" bacon
\H/

Raw character constants, where the backslash character’s special meaning is dis-
abled, can be entered using the notation like r"(...)", r"{... 3", r"[... 1", F"----(..
.)----", etc.; see help("Quotes"). These can be useful when inputting regular expres-
sions (see below).

x <- r"(spam\n\\\"maps)"
print(x)

[1] "spam||n| ||| ||| "maps"
cat(x)

spam\n\\\|"maps

”

...and of course the string version of the missing value marker is “NA_character_”.

Note (*) Some output devices may support the following codes that control the posi-
tion of the caret (text cursor):

« \b — backspace (move cursor one column to the left),
« \t - tab (advance to the next tab stop, e.g., a multiply of 8),

« \r — carriage return (move to the beginning of the current line).

cat("abc\bd\tef\rg\nhij")
gbd ef
hij

These can be used on unbuffered outputs (e.g., stderr; see Section 8.3.5) to display the
status of the current operation (a simple “animated” progress bar, the print-out of the
ETA, or the % completed).

Further, certain terminals can also understand the ECMA-48/ANSI-X3.64 escape se-
quences® of the form “\u001b[.. .” to further control the cursor’s position, text colour,
and even style. For example, “\u001b[1;31m” outputs red bold text and “\ue@1b[om” re-
sets the settings to default. Give, e.g., “cat("\u601b[1;31mspam\u@@1b[6m")” or “cat("\
u001b[5;36m\ueO1b[Abacon\u001b[Espam\u601b[6m")” a try.

! https://en.wikipedia.org/wiki/ANSI_escape_code

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

6 CHARACTER VECTORS 97

Note (*) The Unicode standard 15.0 (version dated September 2022) defines over
149 186 characters, i.a., letters from different scripts, mathematical symbols, and
emojis. Each of them is assigned a unique numeric identifier; see the Unicode Char-
acter Code Charts?. For example, the inverted exclamation mark (see the Latin-1 Supple-
ment section therein) has been mapped to hexadecimal code 0xA1 (or 161 decimally).
Knowing this magic number allows us to specify a Unicode code point using one of
the following escape sequences:

« \uxxxx — codes using four hexadecimal digits,
o \Uxxxxxxxx — codes using eight hexadecimal digits.

For instance:

cat("!\ub0a1!\UOOOOEOaL!")
#g 11!

All R installations allow for working with Unicode strings (more precisely, UTF-8)
— a super-encoding which is native to most Unix-like boxes (including GNU/Linux
and m**08S). Other operating systems may use some 8-bit encoding as the system
one (e.g., latinl or cp1252), but they can be mixed with Unicode seamlessly. See
help("Encoding"), help("iconv"), and [26] for discussion.

Nevertheless, certain output devices (web browsers, LaTeX renderers, text terminals)
might be unable to display each and every Unicode character, e.g., due to some fonts
missing. As far as the processing of character data is concerned, though, this does not
matter: R does it with its eyes closed.

For example, in the PDF version? of this joyful book, none of the following Unicode
glyphs are displayed properly, because yours cordially did not care about installing
appropriate fonts in his XeLaTeX distribution. However, its HTML variant*, which is
generated from exactly the same source files as the former, will likely be rendered by
the kind reader’s web browser as intended.

cat("\Uo001f642\u2665\u0bb8\U000O1f923\U000O1f60d\u2307")
100000

6.1.2 Many strings, one object

Less trivial character vectors (meaning, of length greater than one) can be constructed
by means of, e.g., cor rep’.

% https://www.unicode.org/charts/

3 https://deepr.gagolewski.com/deepr.pdf

4 https://deepr.gagolewski.com

5 Internally, there is a string cache (a hash table), so that multiple clones of the same string do not occupy
more RAM than it is necessary.

https://www.unicode.org/charts/
https://www.unicode.org/charts/
https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com

98 | DEeep

(x <- c(rep("spam", 3), "bacon", NA_character_, "spam"))
[1] "spam" "spam" "spam" "bacon" NA "spam"

Thus, a character vectorisin fact a sequence of sequences of characters. The total num-
ber of strings can be fetched, as usual, with the length function. However, the length
of each individual string may be read via the vectorised nchar.

length(x) # how many strings?

[1] 6

nchar(x) # the number of code points in each string
[1] 4 4 4 5NA 4

6.1.3 Concatenating character vectors

paste can be used to concatenate (join) the corresponding elements of two or more
character vectors:

paste(c("a", "b", "c"), c("1", "2", "3")) # sep=" " by default

#4 [1] "a 1" "b 2" "c 3"

paste(c("a", "b", "c"), c("1", "2", "3"), sep="") # see also pastel
[1] "a1" "b2" "c3"

The function is deeply vectorised:

paste(c("a", "b", "c"), 1:6, c("!", "?2")) # implicit coercion of numbers
##[1] "a 11" b 22" "c 31" "ad 2" b5 1" "CE P

We can also collapse (flatten, aggregate) a sequence of strings into a single string:

paste(c("a”, Ilbll, HCH’ Ildll)’ Collapse:",")
[1] "a,b,c,d"

paste(c("a", "b", "c", "d"), 1:2, sep=
[1] "alb2c1d2"

, collapse="")

Unfortunately (perhaps for the so-called convenience), paste does not treat missing
values just like most other vectorised elementwise functions:

paste(c("A", NA_character_, "B"), "!", sep="")
[1] VIA!H IINA! " ”B.’ "

6.1.4 Formatting objects

Strings can also come into being by turning other R objects into text. For example, the
quite customisable (see Chapter 10) format function can be used for the pretty-printing
of data in dynamically generated reports.

6 CHARACTER VECTORS 99

X <- c(123456.789, -pi, NaN)

format(x)

[1] "123456.7890" " -3.1416" " Nan"

cat(format(x, digits=8, scientific=FALSE, dropOtrailing=TRUE), sep="\n")
123456.789

-3.1415927

NaN

Moreover, sprintf is a workhorse for turning possibly many atomic vectors to strings.
The numbers’ precision, strings’ widths and justification, etc., can be fully controlled.
Its first argument is a format string; special escape sequences starting with percent
sign, “%”, serve as placeholders for the actual values. For instance, “%s” is meant to be
replaced with a corresponding string and “%f” with a floating point value. Additional
options are available, e.g., “%10.2f” is a number that, when converted to text, will oc-
cupy ten text columns®, with two decimal digits of precision. Also, e.g., “%1$s”, “%2$s”,
...will insert the 1st, 2nd, ... argument as text.

sprintf("%.5f", pi)

[1] "3.14159"

sprintf("%s%s", "a", c("X", "Y", "Z")) # like paste(...)

[1] "aX" "aY" "az"

sprintf("key=%s, value=%.1f", c("spam", "eggs"), c(100000, 0))

[1] "key=spam, value=100000.0" "key=eggs, value=0.0"

sprintf("%.*f", 1:5, pil) # variable precision

[1] "3.1" "3.14" "3.142" "3.1416" "3.14159"

sprintf("%1Ss, %2$s, %1$s, and %1$s", "spam", "bacon") # numbered argument
[1] "spam, bacon, spam, and spam"

See help("sprintf") for more details. I recommend. Marek Gagolewski.

6.1.5 Reading text data from files

Given a raw text file, readLines can load it into memory so that it is represented as a
character vector, with each line stored in a separate string.

f <- readLines(
"https://github.com/gagolews/teaching-data/raw/master /README.md"

)

print(head(f))

[1] "# Dr [Marek](https://www.gagolewski.com)'s Data for Teaching"

[2] "

[3] "> *See the comment lines within the files themselves for"

[4] "> a detailed description of each dataset.*"

(continues on next page)

6 Actually, this is only true for 8-bit native encodings. See also sprintf from the stringx package which
takes the text width, and not the number of bytes, into account.

100 | DEeep

(continued from previous page)

[5] "
[6] "*Good* datasets are actually hard to find!"

writeLines is its counterpart. There is also an option to read or write parts of files ata
time, which me mention in Section 8.3.5. Also, cat(..., append=TRUE) can be used to
create a text file incrementally.

6.2 Pattern searching
6.2.1 Comparing whole strings

We have already reviewed a couple of ways to compare strings as a whole. For instance,
the “==" operator implements elementwise testing:

c("spam", "spam", "bacon", "eggs") == c("spam", "eggs") # recycling rule
[1] TRUE FALSE FALSE TRUE

Moreover, in Section 5.4.1, we have introduced the match function and its derivative,
the “%in%" operator, which are vectorised in a different way:

match(c("spam", "spam", "bacon", "eggs"), c("spam", "eggs"))
[1] 1 1 NA 2

c("spam", "spam", "bacon", "eggs") %in% c("spam", "eggs")
[1] TRUE TRUE FALSE TRUE

Note We should stress that these are simple, bytewise comparisons of the cor-
responding code points and as such they might not be valid in, for example, nat-
ural language processing activities; compare [18]. In particular, German word grof3
is not deemed equal to gross, although we expect that should be the case, at leastin a
German language setting. Moreover, in the rare situations where we read Unicode-
unnormalised data (say, not in the NFC form; see [17]), canonically equivalent strings
may be considered as different.

6.2.2 Partial matching

When only a consideration of the initial part of each string is required, we can call:

startsWith(c("s", "spam", "spamtastic", "spontaneous", "spoon"), "spam")
[1] FALSE TRUE TRUE FALSE FALSE

6 CHARACTER VECTORS 101

Both the above and endsWith are applied elementwisely in case of many search pre-
fixes/suffixes, just like in *==".

Partial matching of strings can be performed with charmatch. This is a each-vs-all ver-
sion of startsWith:

charmatch(c("s", "sp", "spam", "spams", "eggs", "bacon"), c("spam", "eggs"))
[1] 1 1 1NA 2 MNA

charmatch(c("s", "sp", "spam", "spoo", "spoof"), c("spam", "spoon"))

[1] 6 0 1 2 NA

Note that 0 designates that there was an ambiguity in the matching of a string to a
given table.

Note (*) In Section9.5.7, we discuss the very-advanced match.arg which is frequently
called from within other R functions to assist selecting an argument from a range of
possible choices. Furthermore, in Section 9.4.2 and Section 15.4.4, we mention the
(discouraged) partial matching of list labels and argument names in function calls.

6.2.3 Matching anywhere within a string

Fixed patterns can be also searched for anywhere within character strings using grepl:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")
grepl("spam", x, fixed=TRUE) # fixed patterns, as opposed to regexes below
[1] TRUE TRUE FALSE FALSE

Important Note that the order of arguments is like grepl(needle, haystack), not
the other way around. Also, this function is not vectorised with respect to the first
argument.

Exercise 6.1 Determine how can a call to grep(y, x, value=FALSE) and grep(y, x,
value=TRUE) be implemented based on grepl and other operations that we are already famil-
iar with.

Note As a curiosity, agrepl performs approximate matching based on Levenshtein's
edit distance. This can account for a small number of “typos”.

agrepl("spam", x)

[1] TRUE TRUE FALSE TRUE
agrepl("ham", x, ignore.case=TRUE)
[1] TRUE TRUE TRUE TRUE

102 | DEeep

6.2.4 Using regular expressions (*)

Setting perl=TRUE allows for identifying occurrences of patterns specified by the
PCRE2 regular expressions (regexes).

grepl("~spam", x, perl=TRUE) # strings that begin with ‘spam’

[1] TRUE FALSE FALSE FALSE

grepl("(?1)~spam|spam$", x, perl=TRUE) # begin or end; case ignored
[1] TRUE TRUE TRUE FALSE

Note For more details on regular expressions in general, see, e.g., [23]. The ultimate
reference for PCRE2 pattern syntax is the man” page pcre2pattern(3). R also gives ac-
cess to ERE-like TRE library (see help("regex")), which is the default one. However,
we discourage its use, because it is feature-poorer.

Exercise 6.2 The list. files function generates the list of file names in a given directory that
match a given regular expression. Forinstance, the following gives all CSV files in some directory.

list.files("../../Projects/teaching-data/r/", r"(\.csvs)") # or "||.csvs"
[1] "air_quality_1973.csv" "anscombe.csv" "iris.csv"
[4] "titanic.csv" "tooth_growth.csv" "trees.csv"

[7] "world_phones.csv"

Write a single reqular expression that matches file names ending with “. csv” or “. csv. gz”. Also,
write a regex that matches CSV files whose names do not begin with “eurusd”.

6.2.5 Locating pattern occurrences

regexpr finds the first occurrence of a pattern in each string:

regexpr("spam", x, fixed=TRUE)
[1] 1 3 -1 -1

attr(, "match. length")

[1] 4 4 -1 -1

attr(, "index. type")

[1] "chars"

attr(, "useBytes")

[1] TRUE

In particular, there is a pattern occurrence starting at the 3th code point of the 2nd
string in x. Moreover, there is no pattern match in the last string (denoted with -1).

The match. length attribute is generally more worthwhile when searching with regular
expressions.

To locate all the matches, i.e., globally, we use gregexpr:

7 http://'www.pcre.org/current/doc/html/pcrezpattern.html

http://www.pcre.org/current/doc/html/pcre2pattern.html

6 CHARACTER VECTORS 103

“spam’ followed by 0@ or more letters, case insensitively
gregexpr("(?1)spam\\p{L}*", x, perl=TRUE)
[[1]]

[1] 1

attr(, "match. length")
[1] 4

attr(, "index. type")
[1] "chars"

attr(, "useBytes")

[1] TRUE

##

[[2]]

[1] 3 12

attr(, "match. length")
[1] 8 4

attr(, "index. type")
[1] "chars"

attr(, "useBytes")

[1] TRUE

##

[[3]]

[1] 7

attr(, "match. length")
[1] 4

attr(, "index. type")
[1] "chars"

attr(, "useBytes")

[1] TRUE

##

[[4]]

[1] -1

attr(, "match. length")
[1] -1

attr(, "index. type")
[1] "chars"

attr(, "useBytes")

[1] TRUE

As we have noted in Section 4.4.2, wrapping the results in a list was a clever choice as
the number of matches can obviously vary between strings.

In Section 7.2, we will take a look at the Map function, which, along with substring
introduced below, can aid in getting the most out of such data. Meanwhile, let us just
mention that regmatches extracts the matching substrings:

104 | DEeep

regmatches(x, gregexpr("(?i)spam\\p{L}*", x, perl=TRUE))
w# [[1]]

[1] "spam"

##

[[2]]

[1] "spammite" "spam"
##

[[3]]

[1] "SPAM"

##

[[4]]

character(0)

Note (*) Let us consider what happens when a regular expression contains parenthes-
ised subexpressions (capture groups).

r <- "(?<basename>[*.]+)\\.(?<extension>[*]*)"

The above regex consists of two such parts. The first one is labelled “basename” and is
comprised of a number of arbitrary characters except for the space and the dot. The
second group, named “extension” is a substring of anything but the space. These two
are separated by a dot.

Such a pattern can be used for unpacking space-delimited lists of file names.

z <- "dataset.csv.gz something_else.txt spam"
regexpr(r, z, perl=TRUE)

[1] 1

attr(, "match. length")

[1] 14

attr(, "index. type")

[1] "chars"

attr(, "useBytes")

[1] TRUE

attr(, "capture.start")
basename extension
[1,] 1 9
attr(, "capture. length")
basename extension
[1,] 7 6
attr(, "capture.names")
[1] "basename" "extension"
gregexpr(r, z, perl=TRUE)
[[1]]

[1] 1 16

(continues on next page)

6 CHARACTER VECTORS 105

(continued from previous page)
attr(, "match. length")
[1] 14 18
attr(, "index. type")
[1] "chars"
attr(, "useBytes")
[1] TRUE
attr(, "capture.start")

basename extension
[1,] 1 9
[2,] 16 31
attr(, "capture. length")
basename extension
[1,] 7 6
[2,] 14 3

attr(, "capture.names")
[1] "basename" "extension"

The capture.* attributes give us access to the matches to the individual capture
groups, i.e., the basename and the extension.

Exercise 6.3 (*) Check out the difference between the results generated by regexec and reg-
expr as well as gregexec and gregexpr.

6.2.6 Replacing pattern occurrences

sub and gsub can replace first and all, respectively, matches to a pattern:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram"
sub("spam", "ham", x, fixed=TRUE)

##4 [1] "ham" "y hammite spam" "yummy SPAM" "sram"
gsub("spam", "ham", x, fixed=TRUE)
[1] "ham" "y hammite ham" "yummy SPAM" "sram"

Note (*)Ifaregex features some capture groups, matches thereto can be mentioned
not only in the pattern itself, but also in the replacement string:

gsub("(\\p{LI\\p{LI\\1", "\\1", "aha egg gag NaN spam", perl=TRUE)
[1] "a egg g N spam"

The above matches a letter (it is a capture group), another letter, and the former letter
again. Each such palindrome of length 3 is replaced with just the repeated letter.

Exercise 6.4 () Display the source code of glob2rx by calling print(glob2rx) and study how

106 | DEeep

this function converts wildcards such as file??2. * or *.csv to reqular expressions that can be
passed to, e.g., list. files.

6.2.7 Splitting strings into tokens

strsplit divides each string in a character vector into chunks. This time, though, the
search pattern, specifying the token delimiter, is given as the second argument:

strsplit(c("spam;spam;eggs;;bacon", "spam"), ";", fixed=TRUE)

[[1]]

[1] "spam” "spam” "eggs" " "bacon"
##

[[2]]

[1] "spam”

I

6.3 Other string operations
6.3.1 Extracting substrings

substring extracts parts of strings between given character position ranges.

substring("spammity spam", 1, 4) # from 1st to 4th character
[1] "spam"”

substring("spammity spam", 10) # from 10th to end

[1] "spam”

substring("spammity spam", c(1, 10), c(4, 14)) # vectorisation
#4 [1] "spam" "spam"

substring(c("spammity spam", "bacon and eggs"), 1, c(4, 5))

[1] "spam" "bacon"

Note There is also a replacement (compare Section 9.4.6) version of the above:

X <- "spam, spam, bacon, and spam"
substring(x, 7, 11) <- "eggs"
print(x)

[1] "spam, eggs, bacon, and spam"

Unfortunately, the number of characters in the replacement string should not exceed
the length of the part being substituted (try “chickpeas” instead of “eggs”). However,
substring replacement can be written as a composition of substring extraction and
concatenation:

6 CHARACTER VECTORS 107

paste(substring(x, 1, 6), "chickpeas", substring(x, 11), sep="")
[1] "spam, chickpeas, bacon, and spam"

Exercise 6.5 Take the output generated by regexpr and apply substringto extract the pattern
occurrences. If there is no match in some string, the corresponding output should be NA.

6.3.2 Translating characters

tolower and toupper can be used to convert between lower and upper case:

toupper("spam")
[1] "SPAM"

Note Just like many other string operations in base R, these functions perform very
simple character substitutions and they might not be valid in natural language pro-
cessing tasks. For instance, grof$ is not converted to GROSS, which is the correct case
folding in German.

Moreover, chartr translates individual characters:

chartr("\\", "/", "c:\\windows\\system\\cmd.exe") # chartr(old, new, x)
[1] "c:/windows/system/cmd.exe"

chartr("([S", ")1*", ":(C :S :[")

#H [1] ") ox o]"

In the first line, we replace each backslash with slash. The second example replaces “(”,
“[”, and “s” with “)”, “]”, and “*”, respectively.

6.3.3 Ordering strings

We have previously mentioned that operators such as “<" and “>=" as well as func-
tions like sort, order, rank, but also xtfrm® are based on the lexicographic ordering of
strings.

sort(c("chtodny", "hardy", "chladny", "hladny"))
[1] "chladny" "chtodny" "hardy" "hladny"

It is worth noting that the ordering is dependent on the currently selected locale, see
Sys.getlocale("LC_COLLATE"). For instance, in the Slovak language setting, we would
obtain "hardy" < "hladny" < "chladny" < "chtodny".

Note Many “structured” data items can be displayed or transmitted as human-

8 See Section 12.3.1 for a use case.

108 | DEeep

readable strings. In particular, we know that as. numeric can be used to convert a string
to a number. Moreover, in Section 10.3.1, we will discuss date-time objects such as
"1970-01-01 00:00:00 GMT". We will be processing them with specialised functions
such as strptime and strftime.

Important (*) As we have mentioned, many string operations in base R are not neces-
sarily portable. The stringx package defines drop-in, “fixed” replacements therefor.
They are based on the International Components for Unicode (ICU?) library, which is
a de facto standard for the processing of Unicode text, and the R package stringi;see
[26].

call install.packages("stringx") first
suppressPackageStartupMessages(library("stringx")) # load the package
sort(c("chtodny", "hardy", "chladny", "hladny"), locale="sk_SK")

[1] "hardy" "hladny" "chladny" "chtodny"

toupper("gro\u@ODF") # compare base: :toupper("gro|\uGODF")

[1] "GROSS"

detach("package:stringx") # unload the package

6.4 Other atomic vector types (%)

We have discussed four vector types: logical, double, character, and list (the lat-
ter being a generic-recursive vector). To get the complete picture of the sequence-like
types in R, let us briefly mention integer, complex, and raw atomic types, so that we
are not surprised when we encounter them.

6.4.1 Integer vectors (*)

Integer scalars can be input manually by using the L suffix:

(x <- c(1L, 2L, -1L, NA_integer_)) # looks like numeric
[1] 1 2 -1 NA

typeof(x) # but is integer

[1] "integer"

Some functions return them in certain contexts®:

° https://icu.unicode.org/

10 Actually, 1:10 returns an integer vector in a compact (ALTREDP, see [51]) form; compare the results of the
call to “.Internal(inspect(1:10))” and “.Internal(inspect(seq(1, 10, 1)))”. This way, the whole vector
does not have to be allocated which saves memory and time. At the R level, though, it behaves as any other
integer (numeric) sequence.

https://icu.unicode.org/

6 CHARACTER VECTORS 109

typeof(1:10) # seq(1, 10) as well, but not seq(1, 10, 1)
[1] "integer"”

as.integer(c(-1.1, 0, 1.9, 2.1)) # truncate/round towards 0
[1] -1 0 1 2

In the vast majority of expressions, integer vectors behave like numeric ones, and are
silently coerced to double if need be, so there is no real practical reason to distinguish
between them (they are of internal interest, e.g., when writing C/C++ extensions; see
Chapter 14). For example:

1L/2L # like 1/2 == 1.0/2.0
[1] 0.5

Note (*) R integers are 32-bit signed types. The double type can store more integers
than them (with the maximal contiguously representable integer being 2°3 vs 231 — 1
in the former case; see Section 3.2.3):

as.integer(2731-1) + 1L # 32-bit integer overflow

Warning in as.integer (2731 - 1) + 1L: NAs produced by integer overflow
[1] NA

as.integer(2731-1) + 1 == 2731 # integer+double == double - OK

[1] TRUE

(2753 - 1) + 1 == 2A53 # 0K

[1] TRUE

(2753 + 1) - 1 == 2753 # lost due to FP rounding, left result is 2753 - 1
[1] FALSE

Note Since R 3.0, there is support for vectors longer than 231 — 1 elements. As there
are no 64-bitintegersin R, these are indexed by doubles anyway (as we have been doing
all this time). Interestingly, x[1.9] is the same as x[1] and x[-1.9] means x[-1] (trun-
cation of the fractional part). This is why the notation like x[length(x)*@.2] works re-
gardless of whether the length of x is a multiple of 5 or not, which is neat.

6.4.2 Rawvectors (¥)

Vectors of type raw can store bytes, i.e., unsigned 8-bit integers, whose range is 0-255
(there are no raw NAs). For example:

as.raw(c(-1, 0, 1, 2, OxcO, 254, 255, 256, NA))
Warning: out-of-range values treated as 0 in coercion to raw
[1] 00 00 01 02 cO fe ff 00 00

110 | DEeep

They are displayed as two-digit hexadecimal (base-16) numbers. Also note that we may
enter such numbers using the “0x” prefix.

There are only few functions that deal with such vectors: e.g., readBin, charToRaw, and
rawToChar.

6.4.3 Complex vectors (*)

We can also play with vectors of type complex, with “11” representing the imaginary

unit, v—1. Complex numbers appear in quite a few engineering or scientific applic-
ations, e.g., in physics, electronics, or signal processing and are (at least: should be)
part of many university-level subjects or textbooks in mathematics™.

c(0, 1i, pi+pi*1i, NA_complex_)
#4 [1] 0.0000+0.00001 0.0000+1.00001 3.1416+3.14161 NA

Apart from the basic operators, mathematical and aggregation functions, procedures
like £ft, solve, gr, or svd can be fed with or produce such data. For more details, see
help("complex") and some matrix examples in Chapter 11.

6.5 Exercises

Exercises marked with (*) might require tinkering with regular expressions or third-
party R packages.

Exercise 6.6 Answer the following questions:

« How many characters are there in the string "ab\n| |\ t| ||| ""? What about "-{ab\n| ||
e -2

« Whatis the result of calling “paste(NA, 1:5, collapse="")"?

« Whatis the meaning of the following sprintf format strings: "%s", "%20s", "%-20s", "%f",
”%g”, u%e n, ”%Sf”, 11%5‘ Zf%%", n%. an, ”%04‘5_]:”, and ”[%""5-2]‘:] n?

« What is the difference between regexpr and gregexpr? What does “g” in the latter name
stand for?

« What is the result of a call to “grepl(c("spam”, "spammity spam”, "aubergines"),
”Spam ll)”?

« Isitalways the case that “"Aaron" < "Zorro"”?
o Why “x < "10" and “x < 10” may return different results?

« Ifxisacharactervector, is “x == x” always equal to TRUE?

1 Even the statistics/machine learning oriented ones, because of their heavy use of numerical comput-
ing, e.g., [19, 29].

6 CHARACTER VECTORS m
« If xand y are character vectors of lengths n and m, respectively, what is the length of the
output of “match(x, y)”?
« If xis a named vector, why there is a difference between “x[NA]” and “x[NA_character_]"?
o What is the difference between “x == y” and “x %in% y”?

Exercise 6.7 Let x, y, and z be atomic vectors and a and b be single strings. Generate the same

» o« » «

results as “pastena(x, collapse=b)”, “pastena(x, y, sep=a)’, “pastena(x, y, sep=a,

» « » o«

collapse=b)”, “pastena(x, y, z, sep=a)”, “pastena(x, y, z, sep=a, collapse=b)”,
assuming that pastena is a version of paste (which we do not have) that handles missing data
in a way consistent with most other functions.

Exercise 6.8 Based on list.files and glob2rx, generate the list of all PDFs on your com-
puter. Then, using file. size filter out the files smaller than 10 MiB.

Exercise 6.9 Read a text file that stores a long paragraph of some banal prose. Concatenate
all the lines to form a single, long string. Using strwrap and cat, output the paragraph on the
console, nicely formatted to fit an aesthetic width, say, 60 text columns.

Exercise 6.10 () Implement your own, simplified version of basename and dirname.

Exercise 6.11 (*) Implement an operation similar to trimws using the functions introduced in
this chapter.

Exercise 6.12 (*) Write a regex that extracts all words from each string in a given character
vector.

Exercise 6.13 (*) Write a regex that extracts, from each string in a character vector, all:
« integers numbers (signed or unsigned),
- floating-point numbers,
« numbers of any kind (including those in scientific notation),
« #hashtags,
« email@addresses,
« hyperlinks of the form http://... and https://....
Exercise 6.14 (*) What does 421, 42L, and 0x42 stand for?

Exercise 6.15 (*) Check out stri_sort in the stringi package (or sort.character in
stringx) for a way to obtain an ordering like "a1"< "a2" < "a10" < "a11" < "a100".

Exercise 6.16 (*) In sprintf, the formatter "%20s " means that if a string is less than 20 bytes
long, the remaining bytes will be replaced with spaces. Only for ASCII characters (English letters,
digits, some punctuation marks, etc.) it is true that one character is represented by 1 byte. Other
Unicode code points can take up between 2 and 4 bytes.

cat(sprintf("..%6s..", c("abc", "1!<", "aBc", "qgRe")), sep="\n") # aligned?
.. abc. .
7 .. 1l<..

(continues on next page)

112 | DEeep

(continued from previous page)
.. afc..
..qfe..

Use the stri_pad function from the stringi package to align the strings aesthetically. Altern-
atively, check out sprintf from stringx.

Exercise 6.17 (*) Implement an operation similar to stri_pad from stringi using the func-
tions introduced in this chapter.

7

Functions

R is a functional language, where functions play first fiddle. Each action we perform
reduces itself to a call to some function, or a combination thereof.

So far we have been tinkering with dozens of available functions which are part of base
R, with only few exceptions. They constitute the essential vocabulary that everyone
must be able to speak fluently.

Any operation, be it sum, sqrt, or paste, when fed with a number of arguments, gen-
erates some (hopefully useful) return value.

sum(1:10) # invoking ‘sum’ on a specific argument
[1] 55

From a user’s perspective, each function is merely a tool. To achieve a goal at hand, we
do not really have to care about what is going on under its hood, i.e., how the inputs
are actually being transformed so that, after a couple of nanoseconds or hours, we
can enjoy what has been yielded. This is very convenient: all we need to know is the
function’s specification which can be stated, for example, informally, in plain Polish
or Malay, in its help page.

In this chapter, we will learn how to write our own functions. The use of this skill is a
good development practice when we expect that some operations are to be executed
many times but perhaps on different data.

Also, some R functions are meant to invoke other functions, for instance on every ele-
ment in a list or every section of a data frame grouped by a qualitative variable, so it
is good to learn know how we can specify a custom operation to be propagated there-
over.

Example 7.1 Given some objects (whatever):

x1 <- runif(16)
x2 <- runif(32)
x3 <- runif(64)

when we want to apply the same action on different data, say, compute the root mean square,
instead of re-typing almost identical expressions (or a bunch of them) over and over again:

sqrt(mean(x1/2))
#4# [1] 0.6545
(continues on next page)

14 | DEeep

(continued from previous page)
sqrt(mean(x272)) # the same second time - borderline okay
[1] 0.56203
sqrt(mean(x372)) # tedious, barbarous, and error-prone
[1] 0.57206

we can generalise the operation to any object like x:

rms <- # bound what follows to name “rms’
function(x) # a function that takes one parameter, “x°'
sqrt(mean(x"2)) # expression to transform the input to yield output

and then re-use it on different concrete data instances:

rms(x1)

[1] 0.6545

rms(x2)

#4 [1] 0.56203
rms(x3)

[1] 0.57206

or even combine it with other function calls:

rms(sqrt(c(x1, x2, x3)))"2
[1] 0.50824

Important Does writing your own functions equal reinventing the wheel? Can
everything be found on the internet these days (including on Stack Overflow, GitHub,
or CRAN)?

Luckily, this is not the case. Otherwise, data analysts’, researchers’, and developers’
lives could be considered monotonous, dreary, and uninspiring. Plus, sometimes it is
much quicker to write a function from scratch than to get through the whole garbage
dump from where, only occasionally, we can dig out some pearls. Not to mention the
self-educative side: we become better programmers by crunching those exercises. We
are advocating for minimalism here, remember?

This and many more other important issues in function design will be reflected upon
in Chaptero.

7 FUNCTIONS 115

7.1 Creating and invoking functions
7.1.1 Anonymous functions

Functions are usually created by means of the following notation:

function(args) body
First, args is a (possibly empty) list of comma-separated parameter names which are
supposed to act as input variables.

Second, body is a single R expression which will be evaluated when the function is
called. The value that this expression yields will constitute the function’s output.

For example, here is a definition of a function which takes no inputs and generates a
constant output:

function() 1
function() 1

We thus created a function object. However, it has disappeared immediately thereafter,
as we have not used it at all.

Any function, say, f can be invoked, i.e., evaluated on concrete data, by using the nota-
tion f(argl, ..., argn), where “argl, ..., argn” are the arguments to be passed to
f.

(function() 1)() # invoking f like f(); here, no arguments are expected
[1] 1

Only now we have obtained a return value.

Note (*) Calling typeof on a function object will report "closure” (for user-defined
functions), "builtin", or "primitive" (for some built-in, base ones), for the reasons
that we explain in more detail’ in Section 9.5.3:

typeof(function() 1)
[1] "closure"

7.1.2 Named functions

Function objects can be bound with names so that they can be referred to multiple
times:

! In short: each function consists of a list of formal arguments, a body, an possibly (if it is a closure) an
enclosing environment.

116 | DEeep

one <- function() 1 # one <- (function() 1)

We created an object named one (we use bold font to indicate that it is of type function,
because functions are so important in R). We are very familiar with such a notation,
as not since yesterday we are used to writing “x <- 1”etc.

Invoking one, which can be done by writing one(), will yield a return value:

one() # (function() 1)()
[1] 1

This output can be used in further computations, for instance:

0:2 - one() # 0:2 - (function() 1)(), i.e., 0:2 - 1
[1] -1 0 1

7.1.3 Passing arguments to functions

Functions with no arguments are kind of boring, thus let us distil a more serious op-
eration:

concat <- function(x, y) paste(x, y, sep="")

Here we have created a mapping whose aim is to concatenate two objects by means of
a specialised call to paste. Yours faithfully pleads guilty to multiplying entities need-
lessly, because it should not be a problem for anyone to write paste(x, y, sep="") each
time. Yet, ‘tis merely an illustration.

“w,»

The concat function has two parameters, “x” and “y”. Hence, calling it will require the
provision of two arguments, which we put within round brackets and separate from
each other by commas.

u <- 1:5
concat("spam", u) # i.e., concat(x="spam", y=1:5)
[1] "spam1" "spam2" "spam3" " spam5"

"on

spam4

Important Notice the distinction: parameters (also called formal arguments) are ab-
stract, general, or symbolic; “something, anything that will be put in place of x when
the function is invoked”. By contrast, arguments (a.k.a. actual parameters) are con-
crete, specific, and real.

During the above call, x in the function’s body is precisely "spam", and nothing else.
Also, the u object from the caller’s environment is seen under the name y there. Most
of the time (however, see Section 16.3), it is best to think of the function as being fed
not with u per se, but the value that uis bound to, i.e., “1:5”.

Also:

7 FUNCTIONS 17

X <- 1:5

y <- "spam"

concat(y, x) # concat(x="spam", y=1:5)

[1] "spam1" "spam2" "spam3" "spam4" "spam5"

This is still a call to equivalent to concat(x=y, y=x).The argument x is being assigned
with the value of y from the calling environment, "span". Yes, one x is not the same
as the other x, and which is which is unambiguously defined by the context. Under-
standing and being able to manipulate such abstractions is basic logic and common
sense that everyone should master.

Exercise 7.2 Write a function called standardise that takes a numeric vector x as argument
and returns its standardised version, i.e., from each element in x subtract the sample arithmetic
mean and then divide it by the standard deviation.

Note Recall from Section 2.1.3 that, syntactically speaking, the following are per-
fectly valid alternatives to the positionally-matched call concat("spam", u);see Sec-
tion 15.4.4 for more details.

concat(x="spam", y=u)
concat(y=u, x="spam")
concat("spam", y=u)
concat(u, x="spam")
concat(x="spam", u)
concat(y=u, "spam")

However, the last two should particularly be avoided, for the sake of the readers’ sanity.
It is best to provide positionally-matched arguments before the keyword-based ones.

Also, in Section 10.5, we introduce the (overused) forward-pipe operator, " |>", which
enables the above to be written as “"spam" |> concat(u)”.

7.1.4 Grouping expressions with curly braces, “{"

We have been informed that a function’s body is a single R expression whose evalu-
ated value is passed to the user as its output. This may sound restrictive and contrast
with what we have experienced so far. Rarely are we faced with such simple comput-
ing tasks and we have already seen R functions performing quite sophisticated oper-
ations.

It turns out that, grammatically, a single R expression can be arbitrarily complex
(Chapter 15); we can use curly braces to group many calls that are to be evaluated one
after another.

For instance:

118 | DEeep

{
cat("first expression\n")
cat("second expression\n")
...
cat("last expression\n")

}

first expression
second expression
last expression

Note that we used four spaces to visually indent the constituents for greater readability
(some developers prefer tabs over spaces, others find two or three spaces more urbane,

but we do not). This single (compound) expression can now play a role of a function’s
body.

Important The last expression evaluated in a curly-braces delimited block will be con-
sidered its the output value.

x <- {
1
2
3 # <--- last expression: will be taken as the output value
}
print(x)
[1] 3

Note (*) The above code block can also be written more concisely by replacing newlines
with semicolons, although with perhaps some loss in readability:

{1; 25 3}
[1] 3

In Section 9.4, we will give a few more details about “{".

Example 7.3 Here is a version of the above concat function which takes care of a more Chapter
2-style missing values’ propagation:

concat <- function(a, b)
{
z <- paste(a, b, sep="")
z[is.na(a) | is.na(b)] <- NA_character_
z # last expression in the block - return value

7 FUNCTIONS 119

Example calls:

concat("a", 1:3)

[1] "a1" "a2" "a3"
concat(NA_character_, 1:3)

[1] NA NA NA

concat(1:6, c("a", NA_character_, "c"))
[1] "1a" NA "3c" "4a" NA "6c"

Let us appreciate the fact that we could keep the code brief thanks to pasteand " | implementing
the recycling rule.

Exercise 7.4 Write a function called normalise that takes a numeric vector x and returns its
version shifted and scaled to the [0, 1] interval. To do so, from each element subtract the sample
minimum and then divide it by the range, i.e., the difference between the maximum and the min-
imum. Avoid computing min(x) twice.

Exercise 7.5 Write a function that applies the robust standardisation of a numeric vector: sub-
tract the median and divide it by the median absolute deviation, 1.4826 times the median of the
absolute differences between the values and their median.

Note R is an open-source (free, libre) project — users are not only encouraged to
run the software for whatever the purpose, but also study and modify its source
code without any restrictions. This applies both to functions that we have authored
ourselves:

print(concat)

function(a, b)

w4 {

z <- paste(a, b, sep="")

z[is.na(a) | is.na(b)] <- NA_character_

z # last expression in the block - return value
}

and to the routines that are part of base R or any other extension packages:

print(union)

function (x, y)

{

#H u <- as.vector(x)
v <- as.vector(y)
#H unique(c(u, v))
}

<environment: namespace:base>

Nevertheless, some functionality might be implemented in a compiled programming
language such as C, C++, or Fortran; notice a call to .Internal in the source code of

120 | DEeep

paste, .Primitivein list, or .Callin runif. Therefore, we will sometimes have to dig
alittle bit deeper to access the underlying source code; see Chapter 14 for more details.

7.2 Functional programming

R is a functional programming language. As such, it shares a number of common fea-
tures with other languages that emphasise on the role of function manipulation in
software development (e.g., Common Lisp, Scheme, OCaml, Haskell, Clojure, F#). Let
us explore them now.

7.2.1 Functions are objects

R functions were given the right to a fair go; they are what we refer to as first-class cit-
izens. In other words, our interaction with them is not limited to their invocation; we
treat them as any other language objects. Namely, they can be:

« stored inside list objects:

list(identity, nrow, sum) # a list with three elements of type function
[[1]]

function (x)

X

<environment: namespace:base>

##

[[2]]

function (x)

dim(x)[1L]

<environment: namespace:base>

##

[[3]]

function (..., na.rm = FALSE) .Primitive("sum"

This is possible owing to the fact that lists, as we recall, can embrace R objects of
any kind.

« created and then called inside another function’s body:

euclidean_distance <- function(x, y)

{
square <- function(z) z*2 # auxiliary/internal/helper function
sqrt(sum(square(x-y))) # square root of the sum of squares

(continues on next page)

7 FUNCTIONS 121

(continued from previous page)
euclidean_distance(c(0, 1), c(1, 0)) # example call
[1] 1.4142

This is why we tend to classify functions as representatives of recursive types (com-
pare is.recursive).

- passed as arguments to other operations:

Replaces missing values with a given aggregate
of all non-missing elements:
fill_na <- function(x, filler_fun)

{
missing_ones <- is.na(x) # otherwise, we'd call is.na twice
replacement_value <- filler_fun(x[!missing_ones])
x[missing_ones] <- replacement_value
X

}

fill_na(c(O®, NA_real_, NA_real_, 2, 3, 7, NA_real_), mean)
#4 [1] 0 33237 3

fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), median)
[1] 0.0 2.5 2.5 2.0 3.0 7.0 2.5

—

We call these higher-order functions.

Note The more advanced techniques, which we will discuss in the third part of the
book, will let the functions be:

- returned as other function’s outputs,
« equipped with auxiliary data,
. generated programmatically on the fly,

. modified at runtime.

Below we review the most basic higher-order functions, in particular: do. call and Map.

7.2.2 Calling on precomputed arguments with do.call

The notation like f(argl, ..., argn) has no monopoly over how we are supposed to
call a function on a specific sequence of comma-delimited arguments: the latter do
not have to be hardcoded.

Here is an alternative. We can first prepare a number of objects to be passed as f’s
inputs, wrap them in a list 1, and then invoke do.call(f, 1) to get the same result.

122 | DEeep

words <- list(

c("spam", "bacon", '"eggs"),
c("buckwheat", "quinoa", "barley"),
c("ham", "spam", "spam")
)
do.call(paste, words) # paste(words[[1]], words[[2]], words[[3]])
[1] "spam buckwheat ham" "bacon quinoa spam" "eggs barley spam"
do.call(cbind, words) # column-bind; returns a matrix (explained later)
[,1] [,2] [,3]
[1,] "spam" "buckwheat" "ham"
[2,] "bacon" "quinoa" "spam"”
[3,] "eggs" "barley" "spam"
do.call(rbind, words) # row-bind (explained later)
[,1] [,2] [,3]
[1,] "spam" "bacon" "eggs"
[2,] "buckwheat" "quinoa" "barley"
#4 [3,] "ham" "spam" "spam"

Note that the length and content of the list passed as the second argument of do.call
can be arbitrary (possibly unknown at the time of writing the code). See Section 12.1.2
for more use cases, e.g., ways to concatenate a list of data frames (perhaps produced
by some complex chain of commands) into a single data frame.

If elements of the list are named, they will be matched to the corresponding keyword
arguments.

X <- 2°(seq(-2, 2, length.out=101))

plot_opts <- list(col="red", lty="dashed", type="1")

do.call(plot, c(list(x, log2(x), xlab="x", ylab="1log2(x)"), plot_opts))
(plot display suppressed)

Note that, e.g., plot_opts can now be reused in further calls to graphical functions.
This is very convenient as it avoids repetitions.

7.2.3 Common higher-order functions

There is an important class of higher-order functions that allow us to apply custom
operations on consecutive elements of sequences without relying on loop-like state-
ments, at least explicitly. They can be found in all functional programming languages
(e.g., Lisp, Haskell, Scala) and have been ported to various add-on libraries (functools
in Python, more recent versions of the C++ Standard Library, etc.) or frameworks
(Apache Spark and the like). Their presence reflects the obvious truth that some kinds
of operations occur more frequently than other ones.

In particular:

« Map calls a function on each element of a sequence in order to transform:

7 FUNCTIONS 123

- their individual components (just like sqrt, round, or the unary *!" operator
inR), or

— the corresponding elements of many sequences so as to vectorise a given op-
eration elementwisely (compare the binary "+ or paste),

« Reduce (also called accumulate) applies a binary operation to combine consecutive
elementsin asequence, e.g., to generate the aggregates, like, totally (compare sum,
prod, all, max) or cumulatively (compare cumsum, cummmin),

« Filter creates a subset of a sequence that is comprised of elements that enjoy a
given property (which we typically achieve in R by means of the “[* operator),

- Find locates the first element that fulfils some logical condition (compare which),
and so forth.

Below we will only focus on the Map function. The inspection of the remaining ones is
left as an exercise. This is because, oftentimes, we can be better-off with their more
R-ish versions (e.g., using the subsetting operator, "[).

7.2.4 Vectorising functions with Map

In data-centric computing, we are frequently faced with tasks that involve processing
each and every element in a sequence independently, one after another. Such use cases
can benefit from vectorised operations like those discussed in Chapter 2, Chapter 3,
and Chapter 6.

Most of the functions that we have introduced in the preceding parts, unfortunately,
cannot be applied on lists. For instance, if we try calling sqrt on a list, we will get an
error, even if it is a list of numeric vectors only. One way to compute the square root of
all elements would be to invoke sqrt(unlist(...)). It is a go-to approach if we wish
to treat all the list’s elements as one sequence. But this comes at a price of losing the
list’s structure.

We have also discussed some operations that are not vectorised with respect to all their
arguments, even though they could have been designed this way, e.g., grepl.

The Map function? applies an operation on each element in a vector or the correspond-
ing elements in a number of vectors. In many situations, it may be used as a more
elegant alternative to for loops that we will introduce in the next chapter.

First?, a call to Map(f, x) yields a list whose i-th element is equal to f(x[[1]]) (recall
that *[[* works on atomic vectors too).

For example:

% Yes, the author is aware that Map was implemented using the slightly more primitive mapply, but we are
not fond of the latter’s having the SIMPLIFY argument set to TRUE by default.

3 This use case scenario can also be programmed using lapply; lapply(x, f, ...)isequivalenttoMap(f,
X, MoreArgs=list(...)).

124 | DEeep

X <- list(# an example named list
x1=1:3,
x2=seq(0, 1, by=0.25),
x3=c(1, 0, NA_real_, 0, 0, 1, NA_real)
)
Map(sqrt, x) # x is named, hence the result will be named too
Sx1
[1] 1.0000 1.4142 1.7321
##
Sx2
[1] 0.00000 0.50000 0.70711 0.86603 1.00000
##
Sx3
[1] 1 ONA O O 1 NA
Map(length, x)
Sx1
[1] 3
##
Sx2
[1] 5
##
Sx3
[1] 7
unlist(Map(mean, x)) # compute three aggregates, convert to an atomic vector
x1 x2 X3
2.0 0.5 NA
Map(function(n) round(runif(n, -1, 1), 1), c(2, 4, 6)) # x is atomic now
[[1]]
[1] 0.4 0.8
##
[[2]]
[1] 0.5 0.8 -0.1 -0.7
##
[[3]]
[1] -0.3 0.0 0.5 1.0 -0.9 -0.7

Next, we can vectorise a given function over a number of parameters. A call to, e.g.,
Map(f, x, y, z) resultsin a list whose i-th element is equal to f(x[[1]1], v[[i]1],
z[[111). Just like in case of, e.g., paste, recycling rule will be applied if necessary.

For example, the following generates list(seq(1, 6), seq(11, 13), seq(21, 29)):

Map(seq, c(1, 11, 21), c(6, 13, 29))
[[1]]
[1] 123456

(continues on next page)

7 FUNCTIONS 125

(continued from previous page)
##
[[2]]
[1] 11 12 13
##

[[3]]
[1] 21 22 23 24 25 26 27 28 29

Moreover, we can get list(seq(1, 40, length.out=10), seq(11, 40, length.out=5),
seq(21, 40, length.out=10), seq(31, 40, length.out=5)) by calling:

Map(seq, c(1, 11, 21, 31), 40, length.out=c(10, 5))

[[1]]

#4 [1] 1.0000 5.3333 9.6667 14.0000 18.3333 22.6667 27.0000 31.3333
[9] 35.6667 40.0000

##

[[2]]

[1] 11.00 18.25 25.50 32.75 40.00

##

[[3]]

#4 [1] 21.000 23.111 25.222 27.333 29.444 31.556 33.667 35.778 37.889 40.000
##

[[4]]

[1] 31.00 33.25 35.50 37.75 40.00

Note If we have some additional arguments to be passed to the function applied
(which the function does not have to be vectorised over), we can wrap them inside
a separate list and toss it via the MoreArgs argument (2 la do.call).

unlist(Map(mean, x, MoreArgs=list(na.rm=TRUE))) # mean(..., na.rm=TRUE)
x1 x2 x3
2.0 0.5 0.4

Alternatively, we can always construct a custom anonymous function:

unlist(Map(function(xi) mean(xi, na.rm=TRUE), X))
x1 x2 x3
2.0 0.5 0.4

Exercise 7.6 Hereisan example list of files (see our teaching data repository*) with daily Forex
rates:

4 hteps://github.com/gagolews/teaching- data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek

126 | DEeep

file_names <- c(
"euraud-20200101-20200630.csv",
"eurgbp-20200101-20200630.csv",
"eurusd-20200101-20200630.csv"

Call Map to read each dataset with scan and determine the minimal, mean, and maximal value
in each series.

Exercise 7.7 Implement your own version of the Filter function based on a call to Map.

7.3 Accessing third-party functions

When we indulge in the writing of a software piece, a few questions naturally arise. Is
the problem we are facing fairly complex? Has it already been successfully addressed
in its entirety? If not, can it, or its parts, be split into manageable chunks? Can it be
constructed based on some readily available nontrivial components?

A smart developer is independent, but knows when to stand on the shoulders to cry
on. Let us explore some ways in which we can reuse the existing function libraries.

7.3.1 Using R packages

Most contributed R extensions come in the form of the so-called add-on packages,
which can include:

- reusable code (e.g., new functions),
« data (which we can exercise on),
« documentation (manuals, vignettes, etc.);
see Section 9.3.2 for some more and [59] for all the details.

Most packages are published in the moderated repository that is part of the Compre-
hensive R Archive Network (CRAN®). However, there are also other popular sources such
as Bioconductor® which specialises in bioinformatics.

To fetch a package pkg from a repository (CRAN by default; see, however, the repos
argument), we call install.packages("pkg").

A call to library("pkg") loads an indicated package and makes the exported objects
available to the user (i.e., attaches it to the search path; see Section 16.2.6).

For instance, in one of the previous chapters, we have mentioned the gs1 package:

5 https://cloud.r-project.org/
6 hteps://bioconductor.org/

https://cloud.r-project.org/
https://bioconductor.org/

7 FUNCTIONS 127

call install.packages("gsl") first
library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf poch() from GNU GSL
[1] 1320 17160 240240 3603600

Here, poch is an object exported by package gsl. If we did not call library("gsl"),
trying to access the former would result in an error.

We could also have accessed the above function without attaching it to the search path
by using the pkg: :object syntax, i.e., gsl: : poch.

Exercise 7.8 Use the find function to determine which packages define the following objects:
mean, var, find, and Map. Recall from Section 1.4 where such information can be found in these
objects’ manual pages.

Note For more information about any R extension, call help(package="pkg"). Also,
it is a good idea to visit the package’s CRAN entry at an address like https://CRAN.R-
project.org/package=pkg to access some additional information (e.g., vignettes; see also
vignette(package="pkg")). Why waste our time and energy by querying a web search
engine that willlead us to some (usually low-quality) middleman when you can acquire
authoritative knowledge directly from the source?

Moreover, it is worth exploring various CRAN Task Views’ that group the packages
into topics such as Genetics, Graphics, and Optimisation. These are edited by experts in
their relevant fields.

Important Frequently, R packages are written in their respective authors’ free time,
many of whom are volunteers/public servants/enthusiasts who are neither paid for
doing this nor it is part of the so-called their job. You can show appreciation for their
generosity by, e.g., spreading the word about their software by citing them in public-
ations (see citation(package="pkg")), talking about them during lunch time, or men-
tioning them in (un)social media. You can also help them improve the existing code
base by reporting bugs, polishing documentation, proposing new features, or clean-
ing up the redundant fragments of their APIs. Some readers will become one of them
someday (when they will come up with something useful for our community).

Default packages

Note that the always-on package base is a must-have that provides us with the most
crucial functions (vector addition, ¢, Map, library). Certain other packages are also
loaded by default:

7 https://cloud.r-project.org/web/views/

https://cloud.r-project.org/web/views/

128 | DEeep

getOption("defaultPackages")
[1] "datasets" utils"” "grDevices" "graphics" ‘"stats"
[6] "methods"

Although this list can, technically speaking, be changed, in this book we assume that
the above are always attached, because it is reasonable to do so. This is why in Sec-
tion 2.4.5, there was no need to call, for example, library("stats") before referring
to the var and sd functions.

On a side note, grbevices and graphics will be discussed in Chapter 13. methods will
be mentioned in Section 11.5. datasets brings a few example R objects that we can
exercise our skills on. Functions from utils, graphics, and stats, on the other hand,
already appeared here and there.

Source vs binary packages (*)

R is a free and open project, therefore its packages are published primarily in the
source form — so that anyone can study how they work and improve them or reuse
parts thereof in different projects.

If we call install.packages("path", repos=NULL, type="source"), we should be able
toinstall a package from sources: path can either be pinpointing a directory or a source
tarball (see help("untar"), most often as a compressed pkg_version.tar.gz file).

Note that type="source" is the default unless one is on W****ws or some m**OS boxes;
see getOption("pkgType"). This is because these two might require additional build
tools to be present in the system, especially if a package features C, C++, or Fortran
code; see Chapter 14 and Section C.3 of [61]:

« Rtools® on W****ws,
« Xcode Command Line Tools? on m**0S.

Because of these systems’ being less developer-oriented, as a courtesy to their users,
CRAN also distributes the platform-specific binary versions of the packages (.zip or
.tgz files). install.packages will try to fetch them by default.

Example 7.9 It is very easy to fetch a package’s source divectly from GitLab or GitHub, which
are quite popular hosting platforms these days. At the time of writing this, the relevant links were,
respectively:

- https://gitlab.com/user/repo/-/archive/branch/repo-branch.zip
« https://github.com/user/repo/archive/branch.zip

For example, to download the contents of the master branch in the repository rpackagedemo
owned by gagolews, we can call:

8 https://cran.r-project.org/bin/windows/Rtools/
° https://developer.apple.com/xcode/resources/

https://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/resources/

7 FUNCTIONS 129

f <- tempfile() # temporary file name - download destination
download. file("https://github.com/gagolews/rpackagedemo/archive/master.zip",
destfile=f)

Next, the contents can be extracted with unzip:

t <- tempdir() # temporary directory to extract the files to
(d <- unzip(f, exdir=t)) # returns extracted file paths

The path where the files were extracted can be passed to install. packages:

install.packages(dirname(d)[1], repos=NULL, type="source")
file.remove(c(f, d)) # clean up

Exercise 7.10 Usethe git2r package to clone the git repository located at https://github.com/
gagolews/rpackagedemo.git and install the package published therein from the current R ses-
sion.

7.3.2 Managing dependencies (*)

The currently-installed add-on packages may be upgraded to their most recent ver-
sions available on CRAN (or other indicated repository) by calling update.packages.

As a general rule, the more experienced developers we become, the less excited we get
about the new. Sure, bug fixes and some well-thought of additional features are usually
welcome, but just we wait until an updated package API for the n-th time, n > 2, breaks
our program that used to work flawlessly for so long.

Hence, when designing software projects (see Chapter 9 for more details), it is essen-
tial that we ask ourselves the ultimate question: do we really need to import that pack-
age with lots of dependencies from which we will just use only about 3-5 functions?
Wouldn't it be better to write our own version of some functionality (and learn some-
thing new, exercise our brain, etc.) or call a mature terminal-based tool?

Otherwise, as all the historical versions of all the packages are archived on CRAN™,
some software dependency management can easily be conducted by storing differ-
ent version of packages in different directories (only one version of a package can be
loaded at a time though). This way, we can create some sort of an isolated environment
for the add-ons.

To fetch the locations where packages are sought (in this very order), call:

. libPaths()

[1] "/home/gagolews/R/x86_64-pc-linux-gnu-library/4.3"
[2] "/usr/local/lib/R/site-library"

[3] "/usr/lib/R/site-library"

[4] "/usr/lib/R/library"

19 https://cran.r- project.org/src/contrib/Archive/

https://github.com/gagolews/rpackagedemo.git
https://github.com/gagolews/rpackagedemo.git
https://cran.r-project.org/src/contrib/Archive/

130 | DEeep

The same function can be used to add new folders to the search path; see also the envir-
onment variable R_LIBS_USER (e.g., help("Sys.setenv")). The install.packages func-
tion will honour them as target directories, see its 1ib parameter for more details.

Moreover, the packages may deposit some auxiliary data on the user’s machine. There-
fore, it might be a good idea to set the following directories (via the corresponding
environment variables) as relative to the current project:

tools::R_user_dir("pkg", "data") # R_USER _DATA_DIR
[1] "/home/gagolews/.local/share/R/pkg"
tools::R_user_dir("pkg", "config") # R _USER CONFIG _DIR
[1] "/home/gagolews/.config/R/pkg"
tools::R_user_dir("pkg", "cache") # R _USER _CACHE DIR
[1] "/home/gagolews/.cache/R/pkg"

7.3.3 Calling external programs

Many tasks can naturally be accomplished by calling external programs. Such an ap-
proach is particularly natural on Unix-like systems, which classically follow a modular,
minimalist design patterns: there are many tools at a developer’s hand and each tool
is specialised at solving a single, well-defined problem.

Apart from the many standard Unix commands™, we can consider, for example:

« pandoc'? converts documents between markup formats, e.g., Markdown, reStruc-
turedText, LaTeX, LibreOffice Writer, EPUB;

. pdflatex, xelatex, and lualatex compile LaTeX documents to PDF;

- convert (from ImageMagick™) applies various operations on bitmap graphics (scal-
ing, cropping, conversion between formats);

. graphviz' and PlantUML® can be used to create various graphs and diagrams;

« jupyter-nbconvert converts Jupyter’® notebooks (see Section 1.2.5) to other
formats such as LaTeX, HTML, Markdown, etc.;

« python, {program}perl, ...can be called to perform tasks that can be expressed more
easily in languages other than R;

and so forth.

Good news is that R not only can be called from the shell (in an interactive or batch
mode; see Section 1.2), but also it can serve well as a glue language itself.

The system2 function can be used to invoke any system command. Communication

" hteps://en.wikipedia.org/wiki/List_of_Unix_commands
2 hteps://pandoc.org/

B https://imagemagick.org/

14 https://graphviz.org/

’5 https://plantuml.com/

16 https://jupyter.org/

https://en.wikipedia.org/wiki/List_of_Unix_commands
https://pandoc.org/
https://imagemagick.org/
https://graphviz.org/
https://plantuml.com/
https://jupyter.org/

7 FUNCTIONS 131

between such programs can be done by means of, e.g., intermediate text, JSON, CSV,
XML, or any other files. The stdin, stdout, and stderr arguments can be used to con-
trol the redirection of the standard I/O streams.

system2("pandoc", "-s input.md -o output.html")
system2("bash", "-c 'for 1 in "seq 1 2 10" ; do echo $i; done'", stdout=TRUE)
[1] "1" "3" "5" 7" rgr
system2("python3", "-", stdout=TRUE,
input=c(
"{mport numpy as np",
"print(repr(np.arange(5)))"
)
[1] "array([0, 1, 2, 3, 4])"

Note that the current working directory can be read and changed by means of a call to
getwd and setwd, respectively. It is the directory from where the current R session was
started.

Important Relying on system2 assumes that the commands referred to are available
onthe target platform. Hence, it might not be portable, unless additional assumptions
are made (e.g., that a user runs some Unix system, that certain libraries are installed
therein). We strongly recommend GNU/Linux or FreeBSD for both software devel-
opment and production use, as they are free, open, developer-friendly, user-loving,
reliable, ethical, and sustainable.

7.3.4 Anote oninterfacing C, C++, Python, Java, etc. (*)

Most stand-alone data processing algorithms are implemented in compiled, slightly
lower-level programming languages. This usually makes them faster and more re-
usable in other environments. For instance, it is often the case that an industry-
standard library is written in very portable C, C++, or Fortran and has some bindings
available for easier access from within R, Python, Julia, etc. This is the case with FFTW,
LIBSVM, mlpack, OpenBLAS, ICU, and GNU GSL, amongst many others.

For basic ways to interact with such compiled code, see Chapter 14.

Also, the rJava package can be used to dynamically create JVM objects and access their
fields and methods. Similarly, reticulate can be used to access Python objects, in-
cluding numpy arrays and pandas data frames (but see also the rpy2 package for Python).

Important We should not feel obliged to use R in all the parts of a data pro-
cessing pipeline. Some activities can be expressed more naturally in other lan-
guages/environments (e.g., parse raw data and create an SQL database in Python, but
visualise it in R). We can use other tools as the glue language (including R, Python, or
Bash) that will steer the data flow in the right direction.

132 | DEeep

7.4 Exercises
Exercise 7.11 Answer the following questions:
« Whatistheresultof “x <- 2; x <- function(x) x2; x(x)"?
« How to write a function that returns two objects?
o What is a higher-order function?
« What are the use cases of do. call?
« Why a call to Map is not necessary in the expression “Map(paste, x, y, z)”?

« What is the difference between Map(mean, x, na.rm=TRUE) and Map(mean, x, More-
Args=list(na.rm=TRUE))?

o What do we mean when we write stringx: : sprintf?

« How to get access to the vignettes (tutorials, FAQs, etc.) of the data. table and dplyr pack-
ages? Why perhaps 95% of R users would just googleit and what is sub-optimal about this
strategy?

« What is the difference between a source and a binary package?
« How to update the base package?

« How to assure that we will always run an R session with only specific versions of a set of
packages?

Exercise 7.12 Write a function that computes the Gini index of a vector of positive integers x,
which, assuming x; < X, < ... < x,,, is equal to:

S (n=2i+ 1)x;
(n=1) Z:’l:l X

Exercise 7.13 Implement a function between(x, a, b) that verifies whether each element
in x is in the [a, b] interval or not. Return a logical vector of the same length as x. Make sure
the function is correctly vectorised with respect to all the arguments and handles missing data
correctly.

G(x1,...,x,) =

Exercise 7.14 Write your own version of the strrep function called dup.

dup <- ...to.do...

dup(c("a", "b", "c"), c(1, 3, 5))
#4 [1] "a" "bbb" "ccccc”
dup("a”, 1:3)

[1] "a" "aa" "aaa"
dup(c('a’, b7, "), 4)

[1] "aaaa" "bbbb" "cccc"

7 FUNCTIONS 133

Exercise 7.15 Given a list x, generate its sublist with all the elements equal to NULL removed.
Exercise 7.16 Implement your own version of the built-in sequence function.

Exercise 7.17 Using Map, how can we generate window indexes like:

[[1]]

[1] 1 2 3
##

[[2]]

[1] 2 3 4
##

[[3]]

[1] 345
it

[[4]]

[1] 456

Write a function windows (k, n) thatyieldsk index windows with elements between 1 and n (the
above example is for k=3 and k=6).

Exercise 7.18 Implement a function movstat(f, x, k) thatcomputes, using Map, a given ag-
gregate fof each k consecutive elements in x. For instance:

movstat <- ...to.do...

x <- c(1, 3, 5, 10, 25, -25) # example data
movstat(mean, x, 3) # 3-moving mean
[1] 3.0000 6.0000 13.3333 3.3333
movstat(median, x, 3) # 3-moving median

[1] 3.0000 6.0000 13.3333 3.3333

Exercise 7.19 Write a function to extract all q-grams, q > 1, from a given character vector.
Return a list of character vectors. For examples, 2-grams (bigrams) in "abcd” ave: "ab", "bc”,
“Cd”\.

Exercise 7.20 Recodea charactervectorwith a small number of distinct values to a vector where
each unique code is assigned a positive integer from 1 to k. Example calls and the corresponding
expected results:

recode <- ...to.do...
recode(c(ﬂaﬂ, NGN’ Ilall, Nb”, Ilbll))
[1] 11122

recode(c("x", "z", "y", "x", "y", "x"))
##[1] 132121

Exercise 7.21 Implement a function that returns the number of occurrences of each unique ele-
ment in a given atomic vector. The return value should be a numeric vector equipped with a names
attribute.

134 | DEeep

count <- ...to.do...

count(c(5, 5, 5, 5, 42, 42, 954))

5 42 954

4 2 1

count(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", NA_character_))
w X y z <NA>
1 5 3 1 1

Hint: use match and tabulate.

Exercise 7.22. Implement a function that extends upon the built-in duplicated, indicating
which occurrence (starting from the beginning of the vector) of a repeated value a given value
constitutes.

duplicatedn <- ...to.do...

duplicatedn(c("a", "a", "a", "b", "b"))

[1] 12312

duplicatedn(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", "z"))
[1] 11122314532

Exercise 7.23 Based on a call to Map, implement a function my_split such that, given a vec-
tor x and an atomic vector y of the same length as x, my_split(x, y) yields the same result as
split(x, y).

Exercise 7.24 Extend my_split to handle the second argument being a list of the form

list(y1l, y2, ...)thatrepresentsthe product of many levels. Iftheys are of different lengths,
apply the recycling rule.

Exercise 7.25 Implement my_unsplit being your own version of the built-in unsplit. Make
sureit holds my_unsplit(split(x, g), g) == xfor xand gof the same lengths.

Exercise 7.26 Write a function that takes as arguments: (a) an integer n, (b) a numeric vector
x of length k and no duplicated elements, (c) a vector of probabilities p of length k; verify that

p; = 0foralliand Zle p; = 1. Based on a random number generator from the uniform
distribution on the unit interval, generate n independent realisations of a random variable X
suchthat Pr(X = x;) = p; fori = 1,..., k. Hint: to obtain a single value:

1. generateu € [0, 1],
2. fimdm € {1,...,k} suchthatu € (Z;":_ll pjs Z]."il pj],
3. theresultisthenx,,.

Exercise 7.27 Write a function that takes as arguments: (a) an increasingly sorted vector x of
length 1, (b) any vector y of length n, (c) a vector z of length k and elementsin [x1, x,,). Letf be
the piecewise linear spline that interpolates the points (x1,Y1), ..., (X,,, Y,,). Return a vector w
oflength k such thatw; = f (z;).

Exercise 7.28 (*) Write functions dpareto, ppareto, gpareto, and rpareto that implement
the basic functions related to the Pareto distribution; compare Section 2.3.4.

7 FUNCTIONS 135

8

Flow of execution

The ifelse and Map functions are very powerful, but they allow us to process only the
consecutive elements in a vector.

Thus, let us (finally!) discuss different ways to alter a program’s control flow manually,
based on some criterion, and to evaluate the same expression a number of times, but
perhapson different data. Before proceeding any further, let us, however, contemplate
on the fact that we have managed to do without them for such a long time — and the
data processing exercises we learnt to solve were far from trivial.

8.1 Conditional evaluation

Life is full of surprises, so we would be nice if we were able to adapt to whatever the
circumstances are going to be.

The following evaluates a given expression ifand only if alogical condition is true.

if (condition) expression

When performing some other_expression is preferred rather than doing nothing in
the case of the condition’s being false, we can write:

if (condition) expression else other_expression

For instance:

(x <- runif(1)) # to spice things up

[1] 0.28758

if (x > 0.5) cat("head") else cat("tail")
tail

Many expressions can of course be grouped with curly braces, “{".

if (x > 0.5) {
cat("head")
X <- 1

(continues on next page)

138 | DEeep

(continued from previous page)

} else {

cat("tatl")

X <- 0
}
tail
print(x)
[1] 0

Important At the top level, we should not put a new line before else, otherwise we will
getan error like Error: unexpected 'else' in "else".This is because the interpreter
enthusiastically executes the statements been read line by line as soon as it regards
them as stand-alone expressions. In this case, we first get an if without else, and
then, separately, a dangling else without the preceding if.

This does not happen when a conditional statement is part of an expression group,
because the latter is read in its entirety.

function (x)
{ # opening bracket - start
if (x > 0.5)
cat("head")
else # not dandling, because {...} is read as a whole
cat("tail")
} # closing bracket - expression ends

As an exercise, try removing the curly braces and see what happens.

8.1.1 Returnvalue

if" is a function (compare Section 9.4), hence has a return value — the result of eval-
uating the conditional expression.

(x <- runif(1))

[1] 0.28758

y <- if (x > 0.5) "head" # no else
print(y)

NULL

y <- if (x > 0.5) "head" else "tail"
print(y)

[1] "tail”

This is particularly useful when a call to “if" is the last expression in the code block
constituting a function’s body.

8 FLOW OF EXECUTION 139

mint <- function(x)

{
if (x > 0.5) # the last expression (actually, the only one)
"head" # this can be the return value...
else
"taill" # or this one, depending on the condition
}
mint(x)
[1] "tail”

unlist(Map(mint, runif(5)))
[1] "tail" "head" "tail" "head" "head"

Example 8.1 Add-on packages can be loaded using requireNamespace. Contrary to library,
the former does not fail when a package is not available. Also, it does not attach it to the search
path; see Section 16.2.6.

Instead, it returns a logical value indicating if the package is available for use. This can be use-
ful inside other functions where the availability of some additional features depends on the user
environment’s configuration:

process_data <- function(x)

{
if (requireNamespace("some_extension_package", quietly=TRUE))
some_extension_package: :very_fast_method(x)
else
normal_method(x)
}

8.1.2 Nested ifs

If more than two test cases are possible, i.e., when we need to go beyond either con-
dition or !condition, then we can use the following construction:

if (a) {
expression_a

} else if (b) {
expression_b

} else if (c) {
expression_c

} else {
expression_else

This evaluates all conditions a, b, ... (in this order) until the first positive case is found,
and then executes the corresponding expression.

140 | DEeep

Note that the above is nothing else than a series of nested if statements:

if (a) {
expression_a
} else {
if (b) {
expression_b
} else {
if (o) {
expression_c
} else {
expression_else

but written in a less readable! manner.

Exercise 8.2 Write a function named sign that determines if a given numeric value is "pos -

non

itive", "negative”, or "zero".

8.1.3 Condition: Either TRUE or FALSE

if expects a condition that s a single, well-defined logical value, either TRUE or FALSE.
Thence, problems may arise when this is not the case.

If the condition is of length not equal to one, we get an error:
if (c(TRUE, FALSE)) cat('"spam")
Error in 1f (c(TRUE, FALSE)) cat("spam"): the condition has length > 1

if (logical(0)) cat("bacon")
Error in 1f (logical(0)) cat("bacon"): argument is of length zero

We cannot pass a missing value either:

if (NA) cat("ham")
Error in 1f (NA) cat("ham"): missing value where TRUE/FALSE needed

Important If we think that we are absolutely immune to the writing of code violating
the above constraints, just we wait until the condition becomes a function of data for
which there is no sanity-checking in place.

mint <- function(x)
if (x > 0.5) "H" else "T"
(continues on next page)

! (*) Somewhat related is the switch function which relies on lazy evaluation of its arguments (Chapter
17). Still, it can always be replaced by a series of ifs.

8 FLOW OF EXECUTION 141

(continued from previous page)

mint(0.25)

[1] "T"

mint(runif(5))

Error in 1f (x > 0.5) "H" else "T": the condition has length > 1
mint(log(rnorm(1))) # not obvious, only triggered sometimes

Warning in log(rnorm(1)): NaNs produced

Error in 1f (x > 0.5) "H" else "T": missing value where TRUE/FALSE needed

In Chapter 9, we will be particularly interested in ways to assure input data integrity,
so that situations such as above will either fail gracefully or succeed bombastically.

Here, we should probably make sure that x is a single finite numeric value. Alternat-
ively, we had rather test whether all(x > 0.5, na.rm=TRUE).

Interestingly, objects other that logical are accepted: they will be coerced if needed.

X <- 1:5

if (length(x)) # i.e., length(x) != 0, but way less readable
cat("length is not zero")

length is not zero

Recall that coercion of numeric to logical yields FALSE if and only if the original value
is zero.

8.1.4 Short-circuit evaluation

Specially for formulating logical conditions in if and while (see below), we have the
scalar " || (alternative) and “&&" (conjunction) operators.

FALSE || TRUE
[1] TRUE
NA || TRUE
[1] TRUE

Contrary to their vectorised counterparts (*|* and "&"), the scalar operators are lazy
(Chapter 17) in the sense that they evaluate the first operand and then determine if the
computing of the second one is necessary (because, e.g., FALSE & whatever is always
FALSE anyway).

Therefore,

if (a && b)
expression

is equivalent to:

142 | DEeep

if (a) {
if (b) { # compute b only if a is TRUE
expression

and:

if (a || b)
expression

corresponds to:

if (a) {
expression

} else if (b) { # compute b only if a is FALSE
expression

}

For instance, “is.vector(x) && length(x) > 0 && x[[1]] > 0”is a safe test that
takes into account that “x[[1]]” has only the desired meaning for objects that are not
non-empty vectors.

Some other examples (recall that the expressions within the curly braces are evaluated
one after another and that the result is determined by the last value in the series):

{cat("spam"); FALSE} || {cat("ham"); TRUE} || {cat("cherries"); FALSE}
spamham

[1] TRUE

{cat("spam"); TRUE} && {cat("ham"); FALSE} && {cat("cherries"); TRUE}
spamham

[1] FALSE

Exercise 8.3 Study the source code of isTRUE and isFALSE and determine if these functions
could be useful in formulating the conditions within the if expressions.

8.2 Exception handling

Exceptions are exceptional, but they may happen and break things. For instance, when
we try to download a file and the internet connection drops. Or an optimisation al-
gorithm fails to converge. Or we just have a bug in our code. Or:

read.csv("/path/to/a/file/that/does/not/exist")
Warning in file(file, "rt"): cannot open file '/path/to/a/file/that/does/

(continues on next page)

8 FLOW OF EXECUTION 143

(continued from previous page)

not/exist': No such file or directory
Error in file(file, "rt"): cannot open the connection
Three types of conditions are frequently observed:

. errors — they stop the flow of execution,

- warnings — non critical, but can be turned into errors (see warn in option),

- messages — they transmit some diagnostic information.
These can be manually triggered by means of stop, warning, and message functions.

Errors (but warnings too) can be handled by means of the tryCatch function, amongst
others.

tryCatch({ # block of expressions to execute, until an error occurs
cat("a\n")
stop("b") # error - breaks the linear control flow
cat("c\n")
1

error = function(e) { # executed immediately upon an error
cat(sprintf("error: %s\n", e[["message"]]))

}s

finally = { # always executed at the end, regardless of error occurrence
cat("finally!\n")

)
a

error: b
finally!

The two other conditions can be ignored by calling suppressWarnings and suppress-
Messages.

log(-1)

Warning in log(-1): NaNs produced

[1] NaN

suppressWarnings(log(-1)) # yeah, yeah, we know what we're doing
[1] NaN

Exercise 8.4 At the time of writing of this book, the data. table package emits a message upon
attachment. Call suppressMessages to silence it. Note that consecutive calls to Uibrary do not
reload an alveady loaded package, therefore the message will only be seen once per R session.

Related functions include stopifnot discussed in Section 9.2 and on.exit mentioned
in Section 17.4; see also Section 9.3.3 for some code debugging tips.

144 | DEeep

8.3 Repeated evaluation
And now for something completely different... time for the elephant in the room!

We have been able to do without loops so far (and will be quite all right in the second
part of the book too), because many data processing tasks can be written in terms of
vectorised operations such as “+°, sqrt, sum, '[, Map, and Reduce. Oftentimes, com-
pared to their loop-based counterparts, they are not only much more readable but also
more efficient. We will explore this in the exercises below.

However, at times, using an explicit while or for loop might be the only natural way
of solving a problem, for instance, when processing chunks of data streams. Also, an
explicitly “looped” algorithm may occasionally have better* time or memory complex-

ity.

8.3.1 while

if considers a given logical condition and thus determines whether to execute a given
statement. On the other hand,

while (condition) # single TRUE or FALSE, as in ‘if"
expression

evaluates a given expression as long as the logical condition is true. Therefore, it is ad-
visable to make the condition dependent upon some variable that can be modified by
the expression.

i<-1

while (i <= 3) {
cat(sprintf("%d, ", 1))
1i<-1+1

}

1, 2, 3,

Nested loops are of course possible too:

i1<-1
while (1 <= 2) {
j< 1
while (j <= 3) {
cat(sprintf("%d %d, ", 1, 3))
j<-j+1
}
cat("\n")
(continues on next page)

2 But in such cases it will often benefit from a rewrite in C or C++; see Chapter 14.

8 FLOW OF EXECUTION 145

(continued from previous page)
1<-1+1
}
11, 12, 1 3,
21, 22, 23,

Example 8.5 Implement a simple linear congruential pseudorandom number generator that,
given some seed X € [0, m), outputs a sequence (X1, X5, ...) defined by:

X; = (aX;_1 +c) mod m,

with, e.g.,a = 75,c = 74, and m = 216 + 1 (here, mod is the division reminder, *%%’). Note
that this generator has poor statistical properties and should not be used in practice. In particular,
after some number of operations k, we will find a cycle such that X = X1, X1 = Xp, ...

8.3.2 for
The for-each loop:

for (name in vector)
expression

takes each element, from the beginning to the end, in a given vector, assigns it some
name, and evaluates the expression.

Example:

fridge <- c("spam", "spam", "bacon", "eggs")
for (food in fridge)

cat(sprintf("%s, ", food))
spam, spam, bacon, eggs,

One more:

for (1 in 1:length(fridge)) # better: seq along(fridge), see below
cat(sprintf("%s, ", fridge[i]))
spam, spam, bacon, eggs,

Just one more, promise:

for (1 in 1:2) {
for (j in 1:3)
cat(sprintf("%d %d, ", i1, j))
cat("\n")
}
11, 12, 13,
21, 22, 2 3,

146 | DEeep

Note that the iterator still exists after the loop’s watch has ended:

print(i)
[1] 2
print(j)
[1] 3

Important Writing:

for (1 in 1:length(x))
print(x[i])

is not necessarily safe, because if x is an empty vector, then:

x <- logical(0)

for (i1 in 1:length(x)) print(x[i])
[1] NA

logical(0)

Recall from Chapter 5 that x[1] tries to access an out of bounds element here and x[0]
returns nothing.

We generally suggest replacing 1:length(x) with seq_along(x) or seq_len(length(x)).
wherever possible.

Note The model for loop above is roughly equivalent to:

name <- NULL

tmp_vector <- vector

tmp_iter <- 1

while (tmp_iter <= length(tmp_vector)) {
name <- tmp_vector[[tmp_iter]]
expression
tmp_iter <- tmp_iter + 1

Note that tmp_vector is determined before the loop itself. Hence, any changes to vec-
tor will not influence the execution flow. Also note that due to the use of "[[*, the loop
can be applied on lists as well.

Example 8.6 Let x be a list and f be a function. The following code generates the same result as
Map(f, x):

n <- length(x)

(continues on next page)

8 FLOW OF EXECUTION 147

(continued from previous page)
ret <- vector("list", n) # a new list of length 'n’
for (i in seq_len(n))
ret[[1]] <- f(x[[1]])

Example 8.7 Let xand ybetwo lists and fbe afunction. Here is the most basic version of Map (£,
x, y). Notethat x and y might be of different lengths.

nx <- length(x)
ny <- length(y)
n <- max(nx, ny)
ret <- vector("list", n)
for (i in seq_len(n))
ret[[1]] <- fOx[[((1-1)%%nx)+1]], y[[((i-1)%%ny)+1]])

Feel free to upgrade the above by adding a warning like the longer argument is not a multiple
of thelength of the shorter one. Also, rewrite it without the use of the modulo operators, “%% .

8.3.3 breakand next

break can be used to escape the currentloop. next skips the remaining expressions and
advances to the next iteration (to where the testing of the logical condition occurs).

Here is a rather random example:

X <- runif(1000)
s <- 0
for (e in x) {
if (e > 0.1)
next

print(e)
if (e < 0.01)
break

S<-s+e
}

[1] 0.045556
[1] 0.04206

[1] 0.024614
[1] 0.045831
[1] 0.094841
[1] 0.00062477
print(s)

[1] 0.2529

148 | DEeep

Computes the sum of the elements in x that are less than or equal to 0.1 from the be-
ginning, stopping at the first element less than o0.01.

Note that we have used the frequently occurring design pattern:

for (e in x) {
if (condition)
next

many_statements...

which is equivalent to:

for (e in x) {
if (!condition) {
many_statements...

but avoids introducing a nested block of expressions.

Note (*) There is a third loop type,

repeat
expression

which is a shorthand for

while (TRUE)
expression

i.e., itis a possibly infinite loop. Such loops are useful when implementing situations
such as do-stuft-until-a-thing-happens, e.g., when we want to execute a command at
least once.

i<-1

repeat { # while (TRUE)
simulate dice casting until we throw "1"
if (runif(1) < 1/6) break # not an infinite loop after all
i <- 1+1

}

print(i)

[1] 6

Exercise 8.8 What is wrong with the following code?

8 FLOW OF EXECUTION 149

j<-1

while (j <= 10) {
if (7 %% 2 == 0) next
print(j)
j<-3j+1

}

Exercise 8.9 What about this one?

j o<1
while (j <= 10);
j<-J+1

8.3.4 return

return, when called from within a function, immediately yields a specified value and
goes back to the caller.

For example, here is a simple recursive function that flattens a given list:

my_unlist <- function(x)
{
if (is.atomic(x))
return(x)

so 1f we are here, x is definitely not atomic
out <- NULL
for (e in x)

out <- c(out, my_unlist(e))

out # or return(out); it's the last expression anyway, so not necessary

my_unlist(list(list(list(1, 2), 3), list(4, list(5, list(6, 7:10)))))
[1] 1 2 3 4 5 6 7 8 9 10

Note that return is a function: the round brackets are obligatory,

8.3.5 Anote ontime and space complexity of algorithms (*)

Analysis of algorithms (e.g., [14, 40]), can give us a rough estimate of their run times
or memory consumption as a function of the input data size, especially for big data.

In scientific computing and data science, we most often deal with vectors (sequences)
or matrices/data frames (tabular data). Therefore, we might be interested in determ-
ining how many primitive operations need to be performed as a function of their length
n or the number of rows n and columns p, respectively.

150 | DEeep

The O (Big-Oh) notation, for instance, can express the upper bounds for time/resource
consumption in asymptotic cases. For instance, we say that the time complexity is
O(n?), if for large n, the number of operations to perform will be proportional to at
most the square of the vector size (more precisely, there exists m and C > 0 such that
for alln > m, the number of operations is < Cn?).

Therefore, if we have two algorithms that solve the same task, one that has O(1?) time
complexity, and other of O(1%), it is better to choose the former, because for large
problem sizes we expect it to be faster.

Moreover, whether time grows proportionally to logn, V7, n, nlogn, n%, n3, or 2,

can be useful in predicting how big the data can be if we have a fixed deadline or not
too much space left on the disk.

Exercise 8.10 The hclust function determines a hierarchical clustering of a dataset. It is fed
with an object that stores the distance between all the pairs of input points. Therearen(n—1) /2
(i.e., O(n?)) unique point pairs for any given n. One numeric scalar (double type) takes 8 bytes
of storage. If you have 16 GB or RAM, what is the largest dataset that you can cluster on your
machine using this function?

Oftentimes, we can learn about the time or memory complexity of the functions we
use from their documentation; see, e.g., help("findInterval").

Example 8.11 A coursein data structuves in algorithms, which this one is not, will give us plenty
of opportunities to implement many algorithms ourselves. This way, we can gain a lot of insights
and intuitions.

Forinstance, this is a O (n)-time algorithm:

for (i1 in seq_len(n))
expression

and this is one runs in O (n?) time:

for (i in seq_len(n))
for (j in seq_len(n))
expression

as long as, of course, the expressionis rather primitive (e.g., operations on scalar variables).

R is a very expressive language and hence quite complex and lengthy operations can look pretty
innocent (it is a glue language for rapid prototyping, after all).

For example:
for (i in seq_len(n))

for (j in seq_len(n))
z <~z + x[[1]] + y[[7]]

can be seen as O(n) if each element in the lists x and y as well as z itself are atomic vectors of
length n.

8 FLOW OF EXECUTION 151

Similarly,

Map(mean, x)

is O(n?) if xis a list of n atomic vectors each of length n.

Note A quite common statistical scenario involves the generation of a data buffer of
a fixed size:

ret <- c()
for (1 in n)
ret[[1]] <- generate_data(i) # here: ret[[length(ret)+1]] <- ...

This notation, however, involves the growing of the ret array in each iteration. Luckily,
since R version 3.4.0, each such size extension has amortised O (1) time due to the fact
that some more memory is internally reserved for its prospective growth (dynamic
arrays; see, e.g., Chapter 17 of [14]).

However, it would still be better to pre-allocate the output vector and grant it the de-
sired, final size already upon creation.

Note that we can construct vectors of specific lengths and types in an efficient way
(more efficient than with rep) by calling:

numeric(3)

[1] 00 0
numeric(0)

numeric(0)
logical(5)

[1] FALSE FALSE FALSE FALSE FALSE
character(2)

#4 [1] """
vector("numeric", 8)
[1] 000000060
vector("list", 2)

[[1]]

NULL

##

[[2]]

NULL

Note Notall data fitinto memory, but it does not mean that we should start installing
Apache Hadoop and Spark immediately. Some datasets can be processed on a chunk-
by-chunk basis.

152 | DEeep

R enables data stream handling (some can be of infinite length) through file connec-
tions, for example:

f <- file("https://github.com/gagolews/teaching-data/raw/master /README.md",
open="r") # a big file, the biggest file ever

i1i<-0

while (TRUE) {
few_lines <- readlLines(f, n=4) # read only four lines at a time
if (length(few_lines) == 0) break
i <- 1 + length(few_lines)

}

close(f)

print(i) # the number of lines

##4 [1] 96

Many functions support reading from/writing to already established connections of
different types, e.g., file, gzfile, textConnection, batch-by-batch.

A frequent scenario involves reading a very large CSV, JSON, or XML file only thou-
sands of lines/records at a time, parsing and cleansing them, and exporting to SQL
databases (which we will exercise in Chapter 12).

Also note that the always-open text connections stdout and stderr (for writing), and
stdin (for reading) are by default mapped to the “terminal/console” and “keyboard”,
respectively. Call scan, cat, and stop to interact with such sources/targets.

8.4 Exercises

Note that, from now on, we should stay alert. Many, if not all, of the following tasks
can still be implemented without the explicit use of the R loops, but based only on the
operations covered in the previous chapters. If this is the case, try implementing both
the looped and loop-free version. Use microbenchmark: :microbenchmark or proc.time
to compare the run-times?.

Exercise 8.12 Answer the following questions:

o Let x be a numericvector. When does if (x > 0) ... yield awarning? When does it give an
error? How to prevent this?

« Whatis the dangling else?

« What happens if you put if as the last expression in a curly braces block within a function’s
body?

3 It might be the case that a for-based solution is faster (e.g., for larger objects) because of the use of a
more efficient algorithm. Such cases will especially benefit from a rewrite in C or C++ (Chapter 14).

8 FLOW OF EXECUTION 153

o Why dowe say that “&& and " [| are lazy? What are their use cases?

« What is the difference between "&&" and “&'?

« Can whilealways be replaced with for? What about the other way around?
« What is wrong with “return (1+2)*3"?

Exercise 8.13 Verify which of the following can be safely used as logical conditions in if state-
ments. If that is not the case for all x, y, ..., determine the additional conditions that should be
imposed in order to make them valid.

e X == 0,

. x[y] > 6,

e any(x>0),

e match(x, y),

e any(x %in% y).

Exercise 8.14 What can go wrong in the following code chunk, depending on the type and form
of x? Consider as many scenarios as possible.

count <- 0
for (i in 1:length(x))
if (x[i1] > 0)

count <- count + 1

Exercise 8.15 Implement shift_left(x, n)and shift_right(x, n). Theformer function
getsrid of the first n observations in x and adds n missing values at the end of the resulting vector,
e.g., shift_left(c(1, 2, 3, 4, 5), 2)isc(3, 4, 5, NA, NA). On the other hand,
shift_right(c(1, 2, 3, 4, 5), 2)isc(NA, NA, 1, 2, 3).

Exercise 8.16 Implement your own version of diff.

Exercise 8.17 Write a function that determines the longest increasing trend in a given numeric
vector, i.e., the length of the longest subsequence of consecutive elements that are increasing. For
example, theinput c(1, 2, 3, 2, 1, 2, 3, 4, 3)shouldyield 4.

Exercise 8.18 Implement the functions that round down and round up, to a number of decimal
digits, each element in a numeric vector.

This concludes the first part of this magnificent book.

Part 11

Deeper

9
Designing functions

In Chapter 7, we learnt how to write our own functions. This skill is vital to enforcing
the good development practice of avoiding the repetition of code: running the same
command sequence on different data.

This chapter is devoted to the designing of such reusable modules so that they are
easier to use, test, and maintain. We also provide some more technical details, which
were not of the highest importance upon our first exposure to this topic, but which
are crucial to our better understanding of how R works.

9.1 Principles of sustainable design

Good design is more art than science. As usual in real life, we will need to make many
compromises. This is because improving things with regard to one criterion some-
times makes them worse with respect to other aspects’ (also which we are not aware
of). Also, not everything that counts can and will be counted. Below are some obser-
vations, ideas, and food for thought.

9.1.1 To write or to abstain

Functions that we write ourselves can oftentimes be considered merely creative com-
binations of the building blocks available in base R or a few high-quality add-on pack-
ages®. Some are simpler than others. Thus, there is a question if a new operation
should be introduced at all: whether we are faced with the case of multiplying entities
without necessity.

On the one hand, the DRY (don't repeat yourself) principle tells us that most frequently
used (say, at least three times) code chunks should be generalised in the form of a new
function. As far as non-trivial operations are concerned, this is definitely a correct
approach.

On the other hand, not every generalisation is necessarily welcome. Let us say that we
are lazy and tired of writing g(f(x)) for the n-th time. Why don’t we therefore intro-

! Compare the notion of Pareto efficiency.
2 If some non-trivial operation is missing, we can always implement it at the C language level; see
Chapter 14.

158 Il DEEPER

duce h defined as a combination of g and £? This might seem like a good idea, but let
us not take it for granted: being tired might be an indication of our body and mind
needing a rest; being lazy can be a call for more self-discipline (not an overly popular
word these days, but still, a precious trait).

Example 9.1 paste0is a specialised version of paste, but having the sep argument hardcoded
to an empty string.

« Even if this might be the most often applied use case, is the introduction of a new function
justifiable? Is it so hard to write “paste="""each time?

« Would changing paste’s default argument be better? That of course would harm backward
compatibility, but what strategies could we apply to make the transition as smooth as pos-
sible?

« Would it be better to introduce a new version of paste with sep defaulting to "", informing
the users that the old version is deprecated and to be removed in, say, two years? Or maybe
one year is better? Or five?

Example 9.2 In R 4.0, deparse1 has been introduced: it is merely a combination of deparse
(see below) and paste:

print(deparsel)

function (expr, collapse = " ", width.cutoff = 500L, ...)
paste(deparse(expr, width.cutoff, ...), collapse = collapse)
<environment: namespace:base>

Let us say this covers 90% of use cases: was introducing it a justified idea then? What if that num-
ber was 99%?

Overall, more functions contribute to the information overload. We do not want our
users to be overwhelmed by too many choices. Luckily, nothing is cemented once and
for all. Had we done bad design choices resulting in our API's being bloated, we can
always clean up those that no longer spark joy.

9.1.2 To pamper or to challenge

Think about the kind of audience we would like to serve: is it our team only, students,
professionals, certain client groups, etc.? Do they have mathematical, programming,
engineering, or scientific background? Not everything that is appropriate for one co-
hort, will be valuable for another. And not everything that is good for some now, will
be beneficial for them in the long run. People (their skills, attitudes, etc.) change.

Example 9.3 Assumewe arewriting afriendly and inclusive package for novices who would like

9 DESIGNING FUNCTIONS 159

to grasp the basics of data analysis as quickly? as possible. Without much effort, it would enable
them to solve 80-95% of the most common, easy problems.

Think of introducing the students to a function that returns five largest observations in a given
vector. Let us call it nlargest: so pleasant to use. It makes the students feel empowered quickly.

Still, when faced with the remaining 5-20% tasks, they will have to learn another, more advanced,
generic, and powerful tool anyway (in our case, the base R itself). Are they determined and skilled
enough to do that? Time will tell. The least we can do is to be explicit about it.

Recall that it took us some time to arrive at order and subsetting via " [*. Assuming that we read
this book from the beginning to the end and solve all the exercises, which we should, we are now
able to implement the said nlargest (and lots of other functions) ourselves, using a single line of
code. This will also pay off in many scenarios that we will be facing in the future, e.g., when we
consider matrices and data frames.

Yes, everyone will be reinventing their own nlargest this way. But this constitutes a great exer-
cise: by our being too nice, some might have lost an opportunity to learn a new, more universal
skill.

Although most of the users would really love to minimise the effort put into all their
activities, ultimately, they sometimes need to learn new things. Let us thus not be
afraid to teach them stuff.

Furthermore, we do not want to discourage experts (or experts to-be) by presenting
them with overly simplified solutions that keep their hands tied when something more
ambitious needs to be done.

9.1.3 To build or to reuse

In the short term, the fail fast philosophy encourages us to build our applications using
prefabricated components. Thisis fantastic at the early stage of its life cycle. If we build
something really simple or whose purpose is merely to illustrate an idea, show-off how
“awesome” we are, or to educate, let us be explicit about it so that other users do not
feel obliged to treat our product (exercise) seriously.

In the (not so likely, probabilistically speaking) event of its becoming successful, we
should start thinking about the project’s long-term stability and sustainability. After
all, relying on third-party functions, packages, or programs makes our software pro-
jects less... independent. This may be problematic, because:

- the dependencies might not be available on every platform or may behave differ-
ently across various system configurations,

3 We will leave the reflection on whether this is at all feasible for another time.

Note that this strategy is employed by many companies (and drug dealers): make the introductory exper-
ience super-smooth and fun. At the same time, do not allow your users to become independent too easily.
Instead, make them rely on your product lines/proprietary solutions/payable services etc.

The free software movement, with its do-it-yourself approach, emphasises on users’ becoming autonom-
ous. This does not contradict the user-friendliness (but that many open-source projects could benefit from
becoming less exclusive is a different story, and this book tries to make a change in this area too).

160 Il DEEPER

« they may be huge (and can depend on other external software too),

« their APIs may change which could result in our project’s not working anymore,

- their functionality can change which can lead to some unexpected behaviours.
Hence, it might be a good idea to rewrite some parts from scratch on our own.

Exercise 9.4 Identify some R packages on CRAN with many dependencies. See what functions
do they import from other packages. How often it is just a few lines of code?

The Unix philosophy emphasises upon the building and using of minimalist yet non-
trivial, single-purpose, high quality pieces of software that can work as parts of more
complex pipelines. R serves as a glue language quite well.

In the long run, some of our software projects might converge to such a tool - it might
be a good idea to standardise our API (e.g., make it available from the command-line;
Section 1.2) so that the users of other languages can benefit from our work too.

Important If our project is merely a modified interface/front-end to a standalone
program developed by others, we should be humble about it and make sure it is not us
who get all the credit for other people’s work.

Also, we should state very clearly how can the original tools be used to achieve the same
goals, e.g., when working from the command line.

9.2 Managing data flow

A function, most of the time, can and should be treated as a black box:its callers do not
have to care what it hides inside. After all, they are supposed to use it: given some in-
puts, they expect a well-defined (read: explained in very detail in the function's manual;
see Section 9.3.2) outputs.

9.2.1 Checking input data integrity and argument handling

A function takes R objects of any kind as arguments, but it does not mean that feeding
it with every- or any-thing is healthy for its guts.

When designing functions, it is best to handle the inputs in a manner similar to base
R’s behaviour. This will make our contributions easier to handle.

Unfortunately, base R functions frequently do not handle arguments of similar kind
100% consistently. Such variability might be due to many reasons and, in essence, is
not necessarily bad. Usually, there might be many different possible behaviours and
choosing one over another will make a few users unhappy anyway. Some choices might
not be optimal, but they are for historical compatibility (e.g., with S). Of course, it

9 DESIGNING FUNCTIONS 161

might also happen (but the probability is low) that there is a bug or something is not
at all well designed.

This is why it is better to keep the vocabulary quite restricted (and we advocate for such
minimalism in this book): even if there are exceptions to the general rules, with fewer
functions, they are simply easier to remember.

Consider the following case study, illustrating that even the extremely simple scenario
where we deal with a single positive integer, is not necessarily straightforward.

Exercise 9.5 In mathematical notation, we usually denote the number of objects in a collection

U

with the famous “n”.

Itis implicitly assumed that such n is a single natural number (although whether this includes
0 or not should be specified at some point). The functions runif, sample, seq, rep, strrep, and
class: :knntake it as arguments. But nothing prevents their users from trying to challenge them
by passing:

e 2.5, -1,0, 1-1e- 16 (non-positive numbers, non-integers);

« NA_real_, Inf (not finite);

o 1:5(not of length 1; after all, there ave no scalars in R)

« numeric(0) (an empty vector);

o TRUE, NA, c(TRUE, FALSE, NA), "1",¢("1", "2", "3") (non-numeric, but coercible to);
o list(1), list(1, 2, 3), list(1:3, 4) (non-atomic);

o "spam" (utter nonsense);

« as.matrix(1), factor(7), factor(c(3, 4, 2, 3)), etc. (compound types; see Chapter
10).

Read the aforementioned functions’ reference manuals and call them on different inputs, noting
how differently they handle such atypical arguments.

Sometimes we will rely on other functions to handle the data integrity checking for
us.

Example 9.6 Let us consider the following function that generates n pseudorandom numbers
from the unit interval rounded to d decimal digits. We strongly believe or hope (good faith and
high competence assumption) that its authors knew what they were doing when they wrote:

round_rand <- function(n, d)
{
X <- runif(n) # runif will check if 'n' makes sense
round(x, d) # round will determine the appropriateness of ‘d°

}

What constitutes correct n and d and how the function behaves when not provided with positive
integers is determined by the two underlying functions, runif and round:

162 Il DEEPER

round_rand(4, 1) # the expected use case
[1] 0.3 0.8 0.4 0.9

round_rand(4.8, 1.9) # 4, 2

[1] 0.94 0.05 0.53 0.89

round_rand(4, NA)

[1] NA NA NA NA

round_rand(0, 1)

numeric(0)

If well thought-out and adequately documented, many such design choices can be
defended. Some programmers will opt for high uniformity/compatibility across nu-
merous tools, but there are cases where some exceptions/diversity do more good than
harm.

Yet, we should keep in mind that the functions we write might be part of a more com-
plicated data flow pipeline, where some other function generates a value that we did
not expect (because of a bug therein or because we did not study its manual) and this
value is used as input to our function. In our case, this would correspond to the said n
or d being determined programmatically.

Example 9.7 Continuing the previous example, the following might be somewhat challenging
with regard to our being flexible and open-minded:

round_rand(c(100, 42, 63, 30), 1) # length(c(...)), 1)
[1] 0.7 0.6 0.1 0.9

round_rand("4", 1) # as.numeric(...), 1

[1] 0.2 0.0 0.3 1.0

Sure, it is quite convenient, but might lead to problems that are hard to diagnose.

Also note the not-really informative error messages in cases like:

round_rand(NA, 1)

Error in runif(n): invalid arguments

round_rand(4, "1")

Error in round(x, d): non-numeric argument to mathematical function

Hence, some defensive design mechanisms are not a bad idea, especially if they lead to
generating an informative error message.

Important stopifnot gives a convenient means to assert the enjoyment of our expect-
ations about a function’s arguments (or some intermediate values). A call to stopi-
fnot(condl, cond2, ...)is more or less equivalent to:

if (!(is.logical(cond1l) && !any(is.na(condl)) && all(condl)))
stop(" cond1” are not all TRUE")
if (!(is.logical(cond2) && 'any(is.na(cond2)) && all(cond2)))
(continues on next page)

9 DESIGNING FUNCTIONS 163

(continued from previous page)

stop("'cond2’ are not all TRUE")

Thus, if all the elements in the given logical vectors are TRUE, nothing happens and we
can safely move on.

Example 9.8 We can rewrite the above function as follows:

round_rand2 <- function(n, d)

{
stopifnot(
is.numeric(n), length(n) == 1,
is.fintite(n), n > 0, n == floor(n),
is.numeric(d), length(d) == 1,
is.finite(d), d > 0, d == floor(d)
)
x <- runif(n) # runif will check if n makes sense
round(x, d) # round will determine the appropriateness of d
}

round_rand2(5, 1)

[1] 6.7 6.7 0.5 0.6 0.3

round_rand2(5.4, 1)

Error in round_rand2(5.4, 1): n == floor(n) is not TRUE
round_rand2(5, "1")

Error in round_rand2(5, "1"): is.numeric(d) is not TRUE

Thisimplements the strictest test for “a single positive integer” possible. Inthe case of any violation
of the underlying condition, we get a very informative error message.

Example 9.9 At other times, we might be interested in argument checking like:

if (!is.numeric(n))
n <- as.numeric(n)

if (length(n) > 1) {
warning("only the first element will be used")
n <- n[1]

}

n <- floor(n)

stopifnot(is.finite(n), n > 0)

Thisway, "4" and c(4.9, 100) will all be accepted as 4*.

We see that there is always a tension between being generous/flexible and pre-
cise/restrictive. Also, for some functions, it will be better to behave differently than

Note that here we rely on S3 generics is.numeric and as.numeric; see Section 10.4.

164 Il DEEPER

the others, because of their particular use cases. Too much uniformity is as bad as
chaos. Overall, we should rely on common sense, but add some lightweight foolproof
mechanisms.

It is our duty to be explicit about all the assumptions we make or exceptions we allow
(by writing good documentation; see Section 9.3.2).

We will revisit this topic in Section 10.4.

Note Example exercises related to the improving of the consistency of base R's hand-
ling of arguments in different domains include the vetrs and stringx packages®. Can
these contributions be justified?

Exercise 9.10 Reflect on how you would handle the following scenarios (and how base R and
other packages or languages you know deals with them):

- a vectorised mathematical function (empty vectors? non-numeric inputs? what if it is
equipped with the names attribute? what if it has other ones?);

- an aggregation function (what about missing values? empty vectors?);

« a function vectorised with regard to two arguments (elementwise vectorisation? recycling
rule? only scalar vs vector or vector vs vector of the same length allowed? what if one argu-
ment is a vow vector and the other is a column vector);

« a function vectorised with respect to all arguments (really all? maybe some exceptions are
necessary?);

o afunction vectorised with respect to the first argument but not the second (why such a restric-
tion? when?).

Find a few functions that match each case.

9.2.2 Putting outputs into context

The functions we write do not exist in a vacuum. We should put them into a much
broader context: how are they going to be used when combined with other tools?

As a general rule, our functions should generate outputs of predictable kind, so that
when we write and read the code chunks that utilise them, we can easily deduce what
is going to happen.

Example 9.11 Some base R functions do not adhere to this rule for the sake of (questionable)
users’ convenience. We will meet a few of them in Chapter 11 and Chapter 12. In particular, sap-
ply and the underlying simplify2array, can return a list, an atomic vector, or a matrix.

simplify2array(list(1, 3:4)) # list
w# [[1]]

(continues on next page)

5 Yours truly is the author of the latter and thus is guilty of multiplying entities beyond necessity.

9 DESIGNING FUNCTIONS 165

(continued from previous page)
[1] 1
##
[[2]]
[1] 3 4
simplify2array(list(1, 3)) # vector
[1] 1 3
simplify2array(list(1:2, 3:4)) # matrix
[,1] [,2]
[1,] 1 3
[2,] 2 4

Further, the index operator with drop=TRUE, which is the default, may output an atomic vector.
But it may as well yield a matrix or a data frame.

(A <- matrix(1:6, nrow=3)) # an example matrix
[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Al1,] # vector

[1] 1 4

A[1:2,] # matrix

[,1] [,2]

[1,] 1 4

#w [2,] 2 5

A[1, , drop=FALSE] # matrix with 1 row
[,1] [,2]

[1,] 1 4

We proclaim that the default functions’ behaviour should be to return the object of
the most generic kind possible (if there are other options), and then to either have a
further argument which must be explicitly set if we really wish to simplify the output,
or we should ask the user to call a simplifier explicitly.

In the latter case, the simplifier should probably fail issuing an error if it is unable
to neaten the object or at least apply some brute force solution (e.g., or “fill the gaps”
somehow itself, possibly with a warning).

Example 9.12 For instance:

as.numeric(A[1:2,]) # always returns a vector

[1] 1245

stringi::stri_list2matrix(list(1, 3:4)) # fills the gaps with NAs
[,1] [,2]

[1,] "1" "3"

[2,] NA "4"

166 Il DEEPER

Ideally, a function should perform one (and only one) well-defined task. If a function
tends to generate objects of different kinds, depending on the arguments provided,
maybe it is better to write two functions instead?

Exercise 9.13 Functions such as rep, seq, and sample do not perform a single task. Or do they?

Note (*)In a purely functional programming language, we can assume the so-called
referential transparency: a call to a pure function can always safely be replaced with the
value it is supposed to generate. If this is true, then for the same set of argument val-
ues, the output is always the same. Furthermore, there are no side effects. In R, it is
not really the case:

« a call can introduce/modify/delete variables in other environments (see Chapter
16), e.g., the state of the random number generator,

« due to lazy evaluation, functions are free to interpret the argument forms (passed
expressions, i.e., not only: values) in whatever way they like (see Section 9.5.7, Sec-
tion 12.3.9, and Section 17.5),

- printing, plotting, file reading, database access have apparent consequences with
regard to the state of some external resources.

Important Each function must return some value, but there are several instances
(e.g., plotting, printing), where this does not make sense.

In such a case, we should consider returning invisible(NULL), aNULL whose first print-
ing will be suppressed.

Compare the following:

(function() NULL)() # anonymous function, called instantly
NULL

(function() invisible(NULL))() # printing suppressed

x <- (function() invisible(NULL))()

print(x) # no longer invisible

NULL

Take a look at the return value of the built-on cat.

9 DESIGNING FUNCTIONS 167

9.3 Organising and maintaining functions
9.3.1 Function libraries

Definitions of frequently-used functions or datasets can be emplaced in separate
source files (.R extension) for further reference.

Such libraries can be executed by calling:

source("path_to_file.R")

Exercise 9.14 Create a source file (script) named mylib. R, where you define a function called
nlargest which returns a few largest elements in a given atomic vector.

From within another script, call source("mylib.R") (note that relative paths to refer to the cur-
rent working director; (compare Section 2.1.6) and then write a few lines of code where you test
nlargest on some example inputs.

9.3.2 Writing R packages (*)

When a function library grows substantially, or when there is a need for equipping it
with the relevant manual pages® (Section 9.3.2) or compiled code (Chapter 14), turning
it into an own R package (Section 7.3.1) might be a good idea (even if it is only for our
own or small team’s purpose).

Important Note that you do not have to publish your package on CRAN?. Many users
are tempted to submit whatever they have been tinkering around with for a while.
Have mercy on the busy CRAN maintainers and do not contribute to the information
overload, unless you have come up with something potentially useful for other R users
(make it less about you, and more about the community; thank you in advance). R
packages can always be hosted on and installed from, for instance, GitLab or GitHub.

Package structure ()
A source package is merely a directory containing some special files and subdirectories:

- DESCRIPTION — a text file that gives the name of the package, its version, authors,
dependencies upon other packages, license, etc.;

« NAMESPACE — a text file containing directives stating which objects are to be expor-
ted so that they are available to the package users, and which names are to be im-
ported from other packages;

6 This should read: i.e., always.
7 And always consult the CRAN Repository Policy at https://cran.r- project.org/web/packages/policies.
html.

https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html

168 Il DEEPER
« R — a directory with R scripts (.R files), which define, e.g., functions, example
datasets, etc.;

- man — a directory with R documentation files (.Rd), describing at least all the ex-
ported objects; see Section 9.3.2;

. src — optional; compiled code, see Chapter 14;
. tests — optional; tests to run on the package check, see Section 9.3.3.

See Section 1in [59] for more details and other options: there is no need for us to repeat
the information from the official manual as everyone can read it themself.

Exercise 9.15 Inspect the source code of the example package available for download from hitps:
//github.com/gagolews/rpackagedemo/.

Building and installing (*)

Recall from Section 7.3.1 that a source package can be built and installed by calling:

install.packages("pkg_directory", repos=NULL, type="source"

Then it can be used as any other R package (Section 7.3.1). In particular, it can be loaded
and attached to the search path (Section 16.2.6) via a call to:

library("pkg")

This makes all the objects marked as exportable in its NAMESPACE file available to the
user; see also Section 16.3.5.

Exercise 9.16 Create your own package mypkg featuring some of the solutions to the exercises
you have solved whilst studying the material in the previous chapters. When in doubt, refer to
the official manual, [59].

Note (¥) The building and installing of packages also be done from the command line:

R CMD build pkg_directory # creates a distributable source tarball (.tar.gz)
R CMD INSTALL pkg-version.tar.gz
R CMD INSTALL --build pkg_directory

Also, some users could potentially benefit from creating own Makefiles that help auto-
mate the processes of building, testing, checking, etc.

Documenting R packages (*)

Documenting functions and commenting code thoroughly is critical, even if we just
write for ourselves. Most programmers sooner or later will note that they find it hard
to determine what a piece of code is doing after they took a break from it. In some
sense, we always write for external audiences, which includes our future self.

https://github.com/gagolews/rpackagedemo/
https://github.com/gagolews/rpackagedemo/

9 DESIGNING FUNCTIONS 169

The help system is one of the stronger assets of the R environment. By far we should
have interacted with many man pages and got a good idea of what constitutes an in-
formative documentation piece.

From the technical side, R Documentation (.Rd) files should be emplaced in the man
subdirectory of a source package. All exported objects (e.g., functions) should be de-
scribed clearly. Additional topics can be covered too.

During the package install, the .Rd files are converted to various output formats, e.g.,
HTML or plain text, and displayed upon a call to the well-known help function.

Documentation files use a LaTeX-like syntax, which looks quite obscure to an un-
trained eye. The relevant commands are explained in very detail in Section 2 of Writing
R Extensions [59].

Note The process of writing .Rd files by hand might be tedious, especially keep-
ing track of the changes to the \usage and \arguments commands. Rarely do we re-
commend the use of third-party packages, because base R facilities are usually good
enough, but roxygen2 might be worth a try, because it really makes the developers’
lives easier. Most importantly, it allows for documentation to be specified alongside
the functions’ definitions, which is much more natural.

Exercise 9.17 Add a few manual pages to your example R package.

9.3.3 Assuring quality code

Below we mention some good development practices related to maintaining quality
code. This is an important topic, but writing about them is tedious to the same ex-
tent that reading about them is boring, because it is the more-artistic part of software
engineering. After all, these are some heuristics that are learnt best by observing and
mimicking what the others are doing (and hence the exercises below will encourage
to do so).

Managing changes and working collaboratively

It is a good idea to employ some source code version control system, such as git, to
keep track of the changes made to the software.

Note Itisworth investing some time and effort to learn how to use git from the com-
mand line; see https://git-scm.com/doc.

There are a few hosting providers for git repositories, with GitLab and GitHub being
particularly popular choices amongst open-source software developers.

Not only do they support working collaboratively on the projects, they also are
equipped with additional tools for reporting bugs, suggesting feature requests, etc.

https://git-scm.com/doc

170 Il DEEPER

Exercise 9.18 Find where the source code of some of your favourite R packages or other open-
source projects is hosted. Explore the corresponding repositories, feature trackers, wikis, discus-
sion boards, etc. Note that each community is different and is governed by different guidelines:
after all, we are from all over the world.

Test-driven development and continuous integration

It is often hygienic to include some principles of test-driven development when writ-
ing own functions.

Exercise 9.19 Assume that, for some reasons, we were asked to write a function to compute the
root mean square (quadratic mean) of a given numeric vector. Before implementing the actual
routine, it is a good idea to reflect upon what we want to achieve, especially how we want our
function to behave in certain boundary cases.

stopifnot gives simple means to ensure a given assertion is fulfilled. If that is the case, it will
move forward quietly.

Let us say we have come up with the following set of expectations:

stopifnot(all.equal(rms(1), 1))
stopifnot(all.equal(rms(1:100), 58.16786054171151931769))
stopifnot(all.equal(rms(rep(pi, 10)), pi))
stopifnot(all.equal(rms(numeric(@)), 0))

Write a function rms that fulfils the above assertions.

Exercise 9.20 Implement your own version of the sample function (assuming replace=TRUE),
using calls to runif. Start by writing a few unit tests.

There are also a couple of R packages that support writing and executing unit tests,
including testthat, tinytest (which is a lighter-weight version of the former), Runit,
or realtest. However, in the most typical use cases, relying on stopifnot is powerful
enough.

Exercise 9.21 (*) Consult the Writing R Extensions manual [59] about where and how to
include unit tests in your example package.

Note (*) R includes a built-in mechanism to check a couple of code quality areas:
running R CMD check pkg_directory from the command line (preferably using the
most recent version of R) can suggest a number of improvements.

Also, it is possible to use various continuous integration techniques that are automat-
ically triggered when pushing changes to our software repositories; see GitLab CI or
GitHub Actions. For instance, it is possible to run a package build, install, and check
process upon every git commit. Also, CRAN features some continuous integration
services, including checking the package on a range of different platforms.

9 DESIGNING FUNCTIONS 171

Debugging

For all his life, the current author has been debugging his programs primarily by
manually printing the state of the suspicious variables (printf and the like) in different
areas of the code. Hahaha, so old school. Yet, weirdly efficient.

R has an interactive debugger; see the browser function. Also, refer to Section 9 of [63]
for more details.

Some IDEs (e.g., RStudio) support this feature, too; see their corresponding docu-
mentation.

Profiling

Typically, a program spends a relatively long time executing only a small portion of
code. The Rprof function can be a helpful tool to identify which chunks might need a
rewrite, for instance, using a compiled language (Chapter 14).

Please remember, though, that not only implementations of algorithms that have
hight computational complexity can form a bottleneck, but also data input and out-
put (such as reading files from disk, printing messages, on the console, querying Web
APIs, etc.).

9.4 Special functions: Syntactic sugar

Some functions, such as “*°, are somewhat special. They can be referred to using an
alternative syntax which, for some reason, most of us accepted as the default one. Be-
low we will reveal, amongst others, that “5 * 9” reduces to an ordinary function call:

***(5, 9) # a call to ‘*' with 2 arguments, equivalent to 5 * 9
[1] 45

9.4.1 Anote on backticks

In Section 2.2, we have mentioned that we can assign (as in “<-") syntactically valid
names to our objects. Most identifiers comprised of letters, digits, dots, and under-
scores can be used directly in R code.

Nevertheless, it is possible to label our objects however we like: non-syntactically valid
(nonstandard) identifiers just need to be enclosed in backticks (back quotes, grave ac-
cents):

‘42 a quite peculiar name :0 lollolll® <- c(a=1, ‘b c'=2, '42°=3, "!1'=4)
1/(1+exp(-"42 a quite peculiar name :0 lollolll’))
a b c 42 !

0.73106 0.88080 0.95257 0.98201

172 Il DEEPER

Of course, such names are less convenient, but still: backticks let us refer to them in
any context.

9.4.2 Dollar, *$" ()

The dollar operator, *$", can be used as an alternative accessor to a single elementin a
named list®.

If labelis a syntactically valid name, then x$1label does the same job as x[["label"]]
(saving five keystrokes: such a burden!).

x <- list(spam="a", eggs="b", ‘eggs and spam'="c", best.spam.ever="d")
x$eggs

[1] "b"

xSbest.spam.ever # recall that a dot has no special meaning in most contexts
[1] "d"

Nonstandard names must still be enclosed in backticks

x5 eggs and spam” # x[["eggs and spam"]] is okay as usual
[1] "en

We are minimalist-by-design here. Thence, we will tend to avoid this operator, as
it does not really increase the expressive power of our function repertoire. Also, it
neither works on atomic vectors nor on matrices.

Furthermore, it does not work with names that are generated programmatically:

what <- "spam"

x$what # the same as x[["what"]] - we don't want this
NULL

x[[what]] # works fine

[1] "a"

The support for the partial matching of element names has been added to provide the
users working in quick-and-dirty, interactive programming sessions with some relief
in the case where they find the typing of the whole label extremely problematic:

x$s # x[["s"]] would return NULL; you will get no warning here!
Warning in x$s: partial match of 's' to 'spam'
[1] "a"

It is generally a bad programming practice, because the result depends on the names
of other items in x (which might change later) and can decrease code readability. The
only reason why we have obtained a warning message was because this book enforces
the options(warnPartialMatchDollar=TRUE) setting, which, sadly, is not the default.

8 And hence also from data frames.

9 DESIGNING FUNCTIONS 173

Note the behaviour on ambiguous partial matches:

x$egg # ambiguous resolution
NULL

As well as on element assignment:

x$s <- "e"

str(x)

List of 5

S spam : chr "a"
S eggs : chr "b"

"

5 eggs and spam : chr "c
S best.spam.ever: chr "d"
$s "

This did not modify spam: it added a new element, s.

9.4.3 Curlybraces, "{"

A block of statements grouped with curly braces, “{*, corresponds to a function call.
When we write:

{
print(TRUE)
cat("two")
3

}

[1] TRUE

two

[1] 3

The parser translates it to a call to:

{"(print(TRUE), cat("two"), 3)
[1] TRUE

two

[1] 3

When the above is executed, every argument, one by one, is evaluated. Then, the last
value is returned as the result of that call.

9.4.4 if
if is a function, too; as mentioned in Section 8.1, it returns the value corresponding
to the expression evaluated conditionally. Hence, we may write:

174 Il DEEPER

if (runif(1) < 0.5) "head" else "tail"
[1] "head"

but also:

“if (runif(1) < 0.5, "head", "tail")
[1] "head"

Note A calllike “if"(test, what_if_true, what_if_false) can only work correctly
because of the lazy evaluation of function arguments; see Chapter 17.

On a side note, while, for, repeat can also be called that way, but they return invis-
ible(NULL).

9.4.5 Operators are functions too
Calling built-in operators as functions

Every arithmetic, logical, and relational operator is translated to a call to the corres-
ponding function. For instance:

CHCR(C-T(3), 4), 5) #2+4(-3)% < 5
[1] TRUE

Also, x[1] is equivalent to "["(x, i) and x[[1]] mapsto "[[(x, i).

Knowing this will not only enable us to manipulate unevaluated R code (Chapter 15)
or access the corresponding manual pages (see, e.g., help("[")), but also write some
expressions in a more concise manner. For instance,

x <- list(1:5, 11:17, 21:23)
unlist(Map('[*, x, 1)) # 1 is a further argument passed to ‘[
[1] 1 11 21

is equivalent to a call to Map(function(e) e[1], x).

Note Unsurprisingly, the assignment operator, “<-", is a function too. It returns the
assigned value, invisibly.

Knowing that “<-" binds right to left (compare help("Syntax")), this is why the expres-
sion“a <- b <- 1”resultsin both a and b being assigned 1:it is equivalent to “*<-"("a",
‘<= ("b", 1))’ and “*<-"("b", 1)” returns1I.

Owing to the pass-by-value semantics (Section 9.5.1) we can also expect that we will
always be (with the exception of environments, Chapter 16) assigning a copy of the value
on the righthand side.

9 DESIGNING FUNCTIONS 175

X <- 1:6

y <- x # makes a copy (but delayed, on demand, for performance reasons)
y[c(TRUE, FALSE)] <- NA_real_ # modify every 2nd element

print(y)

[1] NA 2 NA 4 NA 6

print(x) # state of x has not changed — x and y are different objects
#4 [1] 123456

This is especially worth pointing out to Python (amongst others) programmers, where
the above assignment would mean that x and y both refer to the same (shared) object
in the computer’s memory.

However, with no harm done to semantics, the actual copying of x is postponed until
absolutely necessary (Section 16.1.4). This is efficient both time- and memory-wise.

Creating own binary operators

We can also introduce our own binary operators named like “%myopname% " :

"%:)% <- function(el, e2) (el+e2)/2
5 %:)% 1:10
[1] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Recall that “%%" and “%/%" are built-in operators denoting division remainder and in-
teger division. Rarely will we be defining our own operators, but when we encounter
a similar one next time, we will no longer be surprised. For instance, in Chapter 11, we
will learn about *%*%", which implements matrix multiplication.

Note In Chapter 10, we will note that most existing operators can be overloaded for
objects of different types.

9.4.6 Replacement functions

Functions generally do not change the state of their arguments. However, there is
some syntactic sugar that allows us to replace objects or parts thereof with new con-
tent. We call them replacement functions.

For instance, three of the following calls replace the input x with its modified version:

X <- 1:5 # example input

x[3] <- 0 # replace the 3rd element with 0

length(x) <- 7 # "replace" length

names(x) <- LETTERS[seq_along(x)] # replace the names attribute
print(x) # ‘x° is now different

(continues on next page)

176 Il DEEPER

(continued from previous page)

A B C D E F G
1 2 0 4 5 NANA

Creating replacement functions

Areplacement function is a mapping named like “name<-" with at least two paramet-
ers:

« x (the object to be modified),
« ... (possible further arguments),
« value (as the last parameter;the object on the righthand side of the “<-" operator).

Most often, we will be interacting with existing replacement functions, not creating
our own ones. But knowing how to do the latter is key to understanding this language
feature.

For example:

‘add<-" <- function(x, where=TRUE, value)
{
x[where] <- x[where] + value
X # the modified object that will replace the original one

The above aims to add some value to a subset of the input vector x (by default, to each
element therein) and return its altered version that will replace the object it has been
called upon.

y <- 1:5 # example vector
add(y) <- 10 # calls ‘add<-'(y, value=10)
print(y) # y has changed

[1] 11 12 13 14 15

add(y, 3) <- 1000 # calls ‘add<-"(y, 3, value=1000)
print(y) # y has changed again

[1] 11 12 1013 14 15

We see that calling “add(y, w) <- v” works as if we have called “y <- “add<-"(y, w,
value=v)”.

Note (*)Accordingto [63], acall “add(y, 3) <- 1000”is a syntactic sugar precisely for:

“*tmp** <- y # temporary substitution
y <- ‘“add<-'(“*tmp**, 3, value=1000)
rm("*tmp*") # remove the named object from the current scope

This has atleast two implications. First, in the unlikely event that a variable “*tmp*" ex-

9 DESIGNING FUNCTIONS 177

isted before the call to the replacement function, it will be no more, it will cease to be. It
will be an ex-variable. Second, the temporary substitution guarantees that y must ex-
ist before the call (a function’'s body does not have to refer to all the arguments passed;
because of lazy evaluation, see Chapter 17, we could get away with it otherwise).

Substituting parts of vectors

The replacement versions of the subsetting operators are named as follows:
« “[<-"isused in substitutions like “x[1] <- value”,
« “[[<-" is called when we perform “x[[1]] <- value”,
« “$<-" isused whilst calling “x$i <- value”.

Here is a use case:

X <- 1:5

"[<-"(x, c(3, 5), NA_real_) # returns a new object
[1] 1 2 NA 4 NA

print(x) # does not change the original input

[1] 12345

On a side note, “length<-" can be used to expand or shorten a given vector by calling
“length(x) <- new_length”;see also Section 5.3.3.

X <- 1:5

x[7] <- 7

length(x) <- 10

print(x)

#4 [1] 1 2 3 4 5NA 7 NA NA NA
length(x) <- 3

print(x)

[1] 1 2 3

Despite the fact that, semantically speaking, calling "[<-" results in the creation of a
new vector (a modified version of the original one), we may luckily expect some per-
formance optimisations happening behind the scenes.

Exercise 9.22 Write a function “extend<-", which pushes new elements at the end of a given
vector, modifying it in place.

‘extend<-" <- function(x, value) ...to.do...

Example use:

x <- 1
extend(x) <- 2 # push 2 at the back
extend(x) <- 3:10 # add 3, 4, ..., 10
(continues on next page)

178 Il DEEPER

(continued from previous page)
print(x)
[1] 1 2 3 4 5 6 7 8 910

Replacing attributes

Many replacement functions deal with the re-setting of objects’ attributes (Sec-
tion 4.4).

In particular, for each special attribute, there is also its replacement version, e.g.,
“names<-, class<-, dim<-", “levels<-, etc.

X <- 1:3

names(x) <- c("a", "b", "c") # change the ‘names’ attribute
print(x) # x has been altered

a b c

12 3

Individual (arbitrary, including non-special ones) attributes can be set using “attr<-"
and all of them can be established by means of a single call to “attributes<-".

X <- "spam"

attributes(x) <- list(shape="oval", smell="meaty")
attributes(x) <- c(attributes(x), taste="umami")
attr(x, "colour") <- "rose"

print(x)

[1] "spam"”

attr(, "shape")

[1] "oval”

attr(, "smell")

#4 [1] "meaty"

attr(, "taste")

[1] "umami"

attr(, "colour")

[1] "rose"

Also note that setting an attribute to NULL results, by convention, in its removal:

attr(x, "taste") <- NULL # this is tasteless now
print(x)

[1] "spam”

attr(, "shape")

[1] "oval”

attr(, "smell")

#4 [1] "meaty"

attr(, "colour")

(continues on next page)

9 DESIGNING FUNCTIONS 179

(continued from previous page)
[1] "rose”
attributes(x) <- NULL # remove all
print(x)
[1] "spam”

Which can be useful in contexts such as:

x <- structure(c(a=1, b=2, c=3), some_attrib="value")
y <- ‘attributes<-"(x, NULL)

Here, x retains its attributes, and y is a version of x with metadata removed.

Compositions of replacement functions

Updating only selected names like:

x <- c(a=1, b=2, c=3)
names(x)[2] <- "spam"
print(x)

a spam c

1 2 3

is possible due to the fact that “names(x)[1] <- v”is equivalent to:

old_names <- names(x)
new_names <- '[<-'(old_names, i1, value=v)
X <- ‘names<-'(x, value=new_names)

”

Important More generally, a composition of replacement calls “g(f(x, a), b) <- vy
yields a result equivalent to “x <- “f<-"(x, a, value="g<- (f(x, a), b, value=y))”.
Note that both f and "f<-" need to be defined, but having g is not necessary.

Exercise 9.23 (¥) Whatis “h(g(f(x, a), b), c) <- y”equivalentto?

Exercise 9.24 Write a (very handy!) function “recode<-" which replaces specific elements in
a character vector with some other ones, allowing the following interface:

‘recode<-" <- function(x, value) ...to.do...

x <- c("spam", "bacon", "eggs", "spam", "eggs")

recode(x) <- c(eggs="best spam", bacon="yummy spam")

print(x)

[1] "spam” "yummy spam" "best spam" "spam" "best spam"

We see that the named character vector gives a few from="to" pairs, e.g., all eggs are to be re-
placed by best spanm.

180 Il DEEPER

Now, determine which calls are equivalent to the following:

x <- c(a=1, b=2, c=3)

recode(names(x)) <- c(c="z", b="y") # or equivalently = ... ?
print(x)

#Hay z

12 3

y <- list(c("spam", "bacon", "spam"), c("spam", "eggs", "cauliflower"))
recode(y[[2]]) <- c(cauliflower="broccoli") # or = ... ?
print(y)

[[1]]

[1] "spam" "bacon" "spam"

##

[[2]]

[1] "spam" "eggs" "broccoli"

Exercise 9.25 (*) Considerthe recode<-" function from the previous exercise.

Hereis an example matrix with the dimnames attribute whose names attribute is set (more details
in Chapter11):

(x <- Titanic["Crew", "Male", ,])

Survived

Age No Yes

Child 0 0

Adult 670 192

recode(names(dimnames(x))) <- c(Age="age", Survived="survived")

print(x)
#H survived
age No Yes

Child 06 0
Adult 670 192

This changes the x object. For each of the following subtasks, write a single call that alters
names (dimnames (x)) without modifying x in-place but returning a recoded copy of:

o names(dimnames(x)),

o dimnames(x)),

e X.

Exercise 9.26 (*) Consider the *recode<-" function once again but now let an example object
be a data frame featuring a column of class factor:

X <- iris[c(1, 2, 51, 101),]
recode(levels(x[["Species"]])) <- c(
setosa="SET", versicolor="VER", virginica="VIR"

(continues on next page)

9 DESIGNING FUNCTIONS 181

(continued from previous page)

print(x)

#H Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 SET
2 4.9 3.0 1.4 0.2 SET
51 7.0 3.2 4.7 1.4 VER
101 6.3 3.3 6.0 2.5 VIR

Without modifying x in-place, how to change levels(x[["Species"]]) and return an altered
copy of:

o levels(x[["Species"]]),

o« x[["Species"]],

o x?

9.5 Arguments and local variables
9.5.1 Passby “value”

As a general rule, functions cannot change the state of their arguments®. We can think
of them as being passed by value, i.e., as if their copy was made.

test_change <- function(y)

{
y[1] <- 7
y

}

X <- 1:5

test_change(x)

[1] 72345
print(x) # same
[1] 12345

If the above was not the case, the state of x would have been changed after the call.

9.5.2 Variable scope

Function arguments, as well as any other variables we create inside a function’s body,
are relative to each call to that function.

 With the exception of objects of type environment, which are passed by reference; see Chapter 16. Also,
the fact that we have access to unevaluated R expressions can cause further deviations to this rule (see be-
low).

182 Il DEEPER

test_change <- function(x)

{
X <- x+1
zZ <- -X
z

}

X <- 1:5

test_change(x*10)

[1] -11 -21 -31 -41 -51

print(x) # x in the function's body was a different x

[1] 12345

print(z) # z was local

Error in eval(expr, envir, enclos): object 'z' not found

Both x and z are local variables. They only live whilst our function is being executed.
The former temporarily masks' the object of the same name from the caller’s context.

Important Itisa good development practice to refrain from referring to objects not
created within the current function, especially to “global” variables. We can always
pass an object as an argument explicitly.

Note Itisa function call as such, not curly braces per se that form a local scope.

Writing “x <- { y <- 1; y + 1 }”,yisnot an auxiliary variable; it is an ordinary
named object created alongside x.

Ontheotherhand, in“x <- (function() { z <- 1; z + 1 })()”, zwill not be available
thereafter.

9.5.3 Closures (¥)

Most user-defined functions are, in fact, representatives of the so-called closures; see
Section 16.3.2 and [1]. They not only consist of an R expression to evaluate but also can
carry some auxiliary data.

For instance, given two equal-length numeric vectors x and y, a call to approxfun(x,
y) returns a function that linearly interpolates between the consecutive points (x1, 1),
(X5,1>), and so forth, so that a corresponding y can be determined for any x.

10 In Chapter 16, we will discuss this topic in-depth; objects are bound to their names within environ-
ments. Moreover, R uses lexical (static) scoping, which is not necessarily intuitive, especially taking into
account that a function’s environment can always be changed.

9 DESIGNING FUNCTIONS 183

x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x*2)

f2 <- approxfun(x, x"3)

f1(0.75) # check that it is quite close to the true 0.752
[1] 0.565

f2(0.75) # compare with 0.75"3

[1] 0.4275

Inspecting, however, the source codes of the above functions:

print(f1)

function (v)

.approxfun(x, y, v, method, yleft, yright, f, na.rm)
<environment: 0x560784ab71f8>

print(f2)

function (v)

.approxfun(x, y, v, method, yleft, yright, f, na.rm)
<environment: 0x560784c25798>

we might wonder how they can produce different results: it is evident that they are
identical. It turns out, however, that they internally store some additional data that is
referred to upon their calls:

environment(f1)[["y"]]

[1] 0.00 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00
environment(f2)[["y"]]

#4 [1] 0.000 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1.000

This and many more we will explore in great detail in the third part of this book.

9.5.4 Default arguments

We have already mentioned above that when designing functions performing complex
tasks, we will sometimes be faced with a design problem: how to find a sweet spot
between being generous/mindful of the diverse needs of our users and making the
API neither overwhelming nor oversimplistic.

We know that it is best if a function performs a single well-specified task, but also
allows its behaviour to be tweaked, if one wishes to do so. This principle can be facil-
itated by the use of default arguments.

For instance, log computes logarithms, by default, the natural ones.

log(2.718) # the same as log(2.78, base=exp(1)) — default base
[1] 0.9999

log(4, base=2) # different base

[1] 2

184 Il DEEPER

Exercise 9.27 Study the documentation of the following functions and note the default values
that they define: round, hist, grep, and download. file.

We can easily define our own functions equipped with such recommended settings:

test_default <- function(x=1) x

test_default() # use default

[1] 1

test_default(2) # use something else
[1] 2

Most often, default arguments are just constants, e.g., 1. Generally, though, they can
be any R expressions, also including a reference to other arguments passed to the same
function; see more in Section 17.2..

Note that default arguments will most often appear and the end of the parameter list,
but see Section 9.4.6 (on replacement functions) for a well-justified exception.

9.5.5 Lazyvs eager evaluation

In some languages, function arguments are always evaluated prior to a call. In R,
though, they are only computed when actually needed. We call it lazy or delayed evalu-
ation. Recall thatin Section 8.1.4, we introduced the short-circuit evaluation operators
11" (or) and "&&" (and). They are able to do their job precisely thanks to this mechan-
ism.

Example 9.28 In the following example, we do not use the function’s argument at all:

lazy testl <- function(x) 1 # x not used at all

lazy testi({cat("and now for something completely different!"); 7})
[1] 1

Otherwise, we would see a message being printed out on the console.

Example 9.29 Next, let us use x amidst other expressions in the body:

lazy test2 <- function(x)

{
cat("it's... ")
y <- x+x # using x twice
cat(" a man with two noses")
y

}

lazy_test2({cat("and now for something completely different!"); 7})
1t's... and now for something completely different! a man with two noses
[1] 14

9 DESIGNING FUNCTIONS 185

Note that an argument is evaluated once, and its value is stoved for further reference. If that was
not the case, we would see two messages like and now. . ..

We will elaborate on this in Chapter 17.

9.5.6 Ellipsis,*..."
Let us start with an exercise.

Exercise 9.30 Note the presence of *..." in the parameter list of ¢, list, structure, cbind,
rbind, cat, Map (and the underlying mapply), lapply (a specialised version of Map), optimise,
optim, uniroot, integrate, outer, aggregate. What purpose does it serve, according to these
functions’ manual pages?

We can create a variadic function by placing a dot-dot-dot (ellipsis; see help("dots")), *.
.., somewhere in its parameter list. The ellipsis serves as a placeholder for all objects
passed to the function but not matched by any formal (named) parameters.

The easiest way to process arguments passed via " ... programmatically (see also Sec-
tion 17.3) is by redirecting them to list.

test_dots <- function(...)
list(...)

test_dots(1, a=2)
[[1]]

[1] 1

##

Sa

[1] 2

Such a list can be processed just like... any other R list. What we can do with these
arguments is only limited by our creativity (in particular, recall from Section 7.2.2 the
very powerful do.call function). Still, there are two major use cases of the ellipsis™:

- create a new object by combining an arbitrary number of other objects:

c(1, 2, 3) # 3 arguments

[1] 1 2 3

c(1:5, 6:7) # 2 arguments

[1] 1234567

structure("spam") # 0 additional arguments

#4 [1] "spam"

structure("spam", color="rose", taste="umami") # 2 further arguments
[1] "spam"

attr(, "color")

[1] "rose"

(continues on next page)

' Which is somewhat similar to Python's *args and **kwargs in a function’s parameter list.

186 Il DEEPER

(continued from previous page)
attr(, "taste")
[1] "umami"
cbind(1:2, 3:4)
#H# [,1] [,2]
[1,] 1 3
[2,] 2 4
cbind(1:2, 3:4, 5:6, 7:8)
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
##[2,] 2 4 6 8
sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 42)
[1] 108

« pass further arguments (as-is) to other methods :

lapply(list(c(1, NA, 3), 4:9), mean, na.rm=TRUE) # mean(x, na.rm=TRUE)
[[1]]
[1] 2
##
[[2]]
[1] 6.5
integrate(dbeta, 0, 1,
shapel=2.5, shape2=0.5) # dbeta(x, shapel=2.5, shape2=0.5)
1 with absolute error < 1.2e-05

Example 9.31 The documentation of lapply (let us call help("lapply") now) states that this
function is defined as lapply (X, FUN, ...).Here, the ellipsis is a placeholder for a number of
optional arguments that can be passed to FUN. Hence, if we denote the i-th element of a vector X
by X[[1]], calling lapply(X, FUN, ...)will return alist whose i-th element will be equal to
FUN(X[[1]], ...).

Exercise 9.32 Usingasingle callto Lapply, generate a list with three numeric vectors of lengths
3,9, and 7, respectively, drawn from the uniform distribution on the unit interval. Then, upgrade
your code to get numbers sampled from the interval [—1,1].

9.5.7 Metaprogramming (*)

In the third part of this book, we will learn that we can access the expressions passed
as functions’ arguments programmatically. In particular, a call to the composition of
deparse and substitute can convert them to a character vector:

test_deparse_substitute <- function(x)
deparse(substitute(x))

test_deparse_substitute(testing+1+2+3)

(continues on next page)

9 DESIGNING FUNCTIONS 187

(continued from previous page)
[1] "testing + 1 + 2 + 3"
test_deparse_substitute(spam & spam”2 & bacon | grilled(spam))
[1] "spam & spam”2 & bacon | grilled(spam)"

Exercise 9.33 Check out the y-axis label generated by plot.default((1:100)2). Inspect its
source code. Note a call to the two aforementioned functions.

Similarly, call shapiro. test(log(rlnorm(100))) and take note of the data: field.

A function is free to do with such an expression whatever it likes. For instance, it can
change it and then evaluate it in a very different context. Thanks to such a language
feature, certain operations can be expressed much more compactly. In theory, it is a
potent tool. Unfortunately, it is easy to find many practical examples where it has been
over/misused and made the learning or using of R confusing.

Example 9.34 () The built-in subset and transform use metaprogramming techniques to
specify basic data frame transformations (see Section 12.3.9 and Section 17.5). For instance:

transform(
subset(
iris,
Sepal.Length>=7.7 & Sepal.Width >= 3.0,
select=c(Species, Sepal.Length:Sepal.Width)

)s

Sepal.Length.mm=Sepal.Length/10
)
Species Sepal.Length Sepal.Width Sepal.Length.mm
118 virginica 7.7 3.8 0.77
132 virginica 7.9 3.8 0.79
136 virginica 7.7 3.0 0.77

Note that none of the arguments (except iris) makes sense outside of the function call contexts.
In particular, neither Sepal.Length nor Sepal. Width variables exist.

The two functions took the liberty to interpret the arguments passed how they felt like. They have
created their own virtual reality within our well-defined world. The reader must refer to their
documentation to discover the meaning of such special syntax.

Note (*) Some functions have rather peculiar default arguments. For instance, in the
manual page of prop.test, we read that the alternative parameter defaultsto c("two.
sided", "less", "greater") but that "two.sided" is actually the default one.

If we call print(prop.test), we will find the code line responsible for this behaviour:
“alternative <- match.arg(alternative)”. Consider the following example:

test_match_arg <- function(x=c("a", "b", "c")) match.arg(x)

(continues on next page)

188 Il DEEPER

(continued from previous page)
test_match_arg() # missing argument — choose 1st
[1] "a"
test_match_arg('"c") # one of the predefined options
[1] "c”
test_match_arg("d") # unexpected setting
Error in match.arg(x): 'arg' should be one of "a", "b", "c"

In this setting, match.arg only allows an actual parameter from a given set of choices
but selects the first option, if the argument is missing.

Unfortunately, we have to learn this behaviour by heart, because actually looking at
the above source code gives us no clue about this being possible whatsoever. If such an
expression was normally evaluated, we would either be using the default argument or
whatever the user passed as x (but then the function would not know about the range
of possible choices). A call to “match.arg(x, c("a", "b", "c"))” could guarantee the
desired functionality and would be much more readable. Instead, metaprogramming
techniques allowed match.arg to access the enclosing function’s default argument list
without our explicitly referring to them.

One may ask: why is it so? The only sensible answer to this will be “because its pro-
grammer decided it must be this way”. Let us contemplate this for a while. In cases
like these, we are dealing not with some base R language design choice that we might
like or dislike, but which we should just accept as an inherent feature. Rather, we are
struggling intellectually because of some programmer’s (mis)use (in good faith...) of
R’s flexibility itself. They have introduced a slang/dialect on top of our mother tongue,
whose meaning is valid only within this function. Blame the middleman, not the en-
vironment, please.

This is why here we generally advocate for avoiding relying on metaprogramming-
based techniques wherever possible. We shall elaborate on this in the third part of this
book.

9.6 Exercises
Exercise 9.35 Answer the following questions:

« Will “stopifnot(1)” stop? What about “stopifnot(NA)”, “stopifnot(TRUE, FALSE)”,
and “stopifnot(c(TRUE, TRUE, NA))”?

« What does the *if " function return?
« Does “attributes<-"(x, NULL)modify x?

« When can we be interested in calling * [and " [<-" as functions (and not as operators) dir-
ectly?

9 DESIGNING FUNCTIONS 189

« How to define our own binary operator? Can it have some default arguments?
« What are the main use cases of *..."?
o What is wrong with transform, subset, and match.arg?

o When a call like “f(-1, do_something_that_takes_a_million_years())” does not ne-
cessarily have to be a bad idea?

« Whatisthe difference between “names (x)[1] <- "new name"” and “names(x[1]) <- "new
name"”?

o What might be the form of x if it is legit to call it like x[[c(1, 2)]1()()O)[[1]11()()?
Exercise 9.36 What is the return value of a call to “f(list(1, 2, 3))”?

f <- function(x)
{
for (e in x) {
print(e)
}
}

Isit NULL, invisible(NULL), x[[length(x)]], or invisible(x[[length(x)]])?

Exercise 9.37 The split function also has its replacement version. Study its documentation to
learn how it works.

Exercise 9.38 A call to Us(envir=baseenv()) returns all objects defined in the base package
(see Chapter 16). List the names corresponding to some replacement functions.

Important Apply the principle of test-driven development when solving the remain-
ing exercises (or those which you have skipped intentionally).

Exercise 9.39 Implement your own version of the Position and Find functions. Evaluation
should stop as soon as the first element fulfilling a given predicate has been found.

Exercise 9.40 Implement your own version of the Reduce function.

Exercise 9.41 Write a function slide(f, x, k, ...) which returns a list y of size
length(x)-k+1suchthaty[[i]] = f(x[i:(i+k-1)], ...)

unlist(slide(sum, 1:5, 1))
[1] 12345
unlist(slide(sum, 1:5, 3))
[1] 6 9 12
unlist(slide(sum, 1:5, 5))
w [1] 15

Exercise 9.42 Using slide defined above, write another function that counts how many in-

190 Il DEEPER

creasing pairs of numbers are featured in a given numeric vector. For instance, in (0, 2, 1,
1, 0, 1, 6, 0),therearethreesuch pairs: (0, 2), (0, 1), (1, 6).

Exercise 9.43 (*) Write your own version of tools::package_dependencies with re-
verse=TRUE based on information extracted by calling utils: :available. packages.

10

S3 classes

Let x be a randomly generated matrix with 1 000 000 rows and 1 000 columns, y be a
data frame with results from the latest survey indicating that things are not the way
most people (no matter the side of the many political spectra) think they are, and and
z be another matrix, this time with many zeroes.

Human brain is not capable of handling too much information which is too specific.
This is why we have a natural tendency to group different entities based on their sim-
ilarities so as to form some more abstract classes thereof.

Also, many of us are inherently lazy. Thus, oftentimes we will take shortcuts to min-
imise energy (at a price to be paid later).

Printing out a matrix, a data frame, and a time series are all still instances of the dis-
playing of things, although they surely differ in detail. Now that ad probably forgot-
ten which objects are hidden behind x, y, and z, being able to simply call “print(y)”
without having to recall that, yes, y is a data frame, might seem quite appealing.

This chapter introduces the so-called S3 classes [13], which provide a lightweight object
oriented programming (OOP) approach for automated dispatching of calls to generics
of the type “print(y)” to concrete methods such as “print.data.frame(y)”, based on the
class of the object they are invoked upon.

S3 classes in their essence are beautifully simple'. They are inspired* by the well-
thought-through concepts present in other functional programming languages (such
as the Common Lisp Object System; see below). Ultimately, those generics and methods
are ordinary R functions (Chapter 7) and classes are merely additional object attributes
(Section 4.4).

Of course this does not mean that wrapping our heads around them will be effortless.
However, unlike other “class systems™, S3 is ubiquitous in R programming: suffice it

! However, some classes, even the built-in ones that we describe here, can be poorly designed (e.g, some
crucial methods might be missing, they can be not-well-interoperable with other classes, etc.). Do not
blame this messenger. Remember that the R environment is still very reliable. Also, there are cases where
changing the current behaviour in one place could lead to undesirable consequences elsewhere.

2 They were built on top of the ordinary (“old S”) R, hence have certain limitations what we discuss in the
sequel: classes cannot be formally defined (often we will use named lists for representing objects, and we
know we cannot be any more flexible than this), and the dispatching can only be based on the class of one
(usually the first, but, e.g., binary operators take both types into account) of the arguments.

3 Other class systems may give an impression that they are alien implants that were forcefully added to
our language to solve a specific, rather narrow class of problems; e.g., S4 (Section 11.5), Reference Classes
(Section 16.1.5), and other ones proposed by third-party packages

192 Il DEEPER

to say that factors, matrices, and data frames discussed in the next chapters are quite
straightforward, S3-based extensions of the concepts we have introduced so far.

10.1 Object type vs class

Recall that typeof (introduced in Section 4.1) returns the internal type of any R object.
Even though there are only few admissible cases thereof?*, they open the world of end-
less possibilities®.

The basic types we covered so far (mostly atomic and generic vectors; compare Figure 1
in the Preface) provide a basis for more complex data structures. This is thanks to the
fact that they can be equipped with arbitrary attributes (Section 4.4).

typeof (NULL)

[1] "NULL"

typeof(c(TRUE, FALSE, NA))

[1] "logical”

typeof(c(1, 2, 3, NA_real))

[1] "double"

typeof(c("a", "b", NA_character_))
[1] "character"

typeof (list(list(1, 2, 3), LETTERS))
[1] "list"

typeof (function(x) x)

[1] "closure"

The interesting fact is that most compound types, whose most prevalent instances are
constructed using the mechanisms discussed in this chapter®, only pretend they are
something different from what they actually are. They are often quite good at doing
their job, though, and hence might be useful. By knowing what is under their hood
we will demystify them and become able to manipulate their state outside of the pre-
scribed use cases.

Important Setting the class attribute might make some objects behave differently in
certain scenarios.

Example10.1 Let us consider two identical objects equipped with different class attributes.

4 Their listishardcoded at the C language level; compare the list of SEXPTYPEs in [62] and see also Chapter
14.

5 In particular, in sec: xptr, we mention externalptrs which are simply pointers to memory allocated on
the heap, so these might be any instances of C structs or C++ classes, etc. This makes R a very extensible
language.

6 But of course there is more; see the S4 and other systems discussed in Section 11.5.

10 S3 CLASSES 193

xt <- structure(123, class="POSIXct") # POSIX calendar time
xd <- structure(123, class="Date")

Despite that both objects are being represented using numeric vectors:

c(typeof(xt), typeof(xd))
[1] "double" "double"

When printed, they are decoded quite differently:

print(xt)

[1] "1970-01-01 10:02:03 AEST"
print(xd)

[1] "1970-05-04"

In the former case, 123 is treated as the number of seconds since the so-called UNIX epoch, 1970-
01-01T00:00:00+0000. The latter is deciphered as the number of days since the said (quite
widely used in computer systems by the way) timestamp.

We may hence suspect, and we are absolutely right, that there exists some underlying mechanism
that actually calls a version of print that is dependent on an object’s virtual class.

That this only depends on the class attribute, which might be set, unset, or reset quite freely, is
emphasised below:

attr(xt, "class") <- "Date" # change class from POSIXct to Date
print(xt) # same 123, but now interpreted as Date

[1] "1970-05-04"

as.numeric(xt) # drops all attributes

[1] 123

unclass(xd) # drops the class attribute; ‘attr<-'(xd, "class", NULL)
[1] 123

We are having so much fun that one more illustration can only add to joy.

Example10.2 Consider an example data frame:

X <- iris[1:3, 1:2] # a subset of a built-in example data frame
print(x)
Sepal.lLength Sepal.Width

1 5.1 3.5
2 4.9 3.0
3 4.7 3.2

This is an object of the following class (an object whose c lass attribute is set t0):

attr(x, "class")
[1] "data.frame"

194 Il DEEPER

Some may say, and they are absolutely right, that we have not covered data frames yet: this is
the topic of Chapter 12, which is still ahead of us. However, from the current perspective, we are
interested in the fact that an R data frame is merely a list (Chapter 4) of vectors of the same lengths
equipped with names and row. names attributes.

typeof(x)

[1] "list"

attr(x, "class") <- NULL # or x <- unclass(x)
print(x)

SSepal.Length

[1] 5.1 4.9 4.7

##

SSepal.Width

[1] 3.5 3.0 3.2

##
attr(, "row.names")
[1] 1 2 3

Important Revealing how x is actually represented, enables us to process it (although
perhaps not in the most convenient or efficient manner) using the extensive skill set
that we have already’ developed by studying the material covered in the previous part
of our book (including solving all the exercises). This can be particularly useful, espe-
cially bearing in mind that some (built-in or third-party) data types are not particularly
well-designed.

Note again that attributes are simple additions to R objects. However, as we said in
Section 4.4.3, certain attributes are special, and class is one of them.

In particular, we can set class to be only a character vector (possibly of length greater
than one; see Section 10.2.5).

X <- 12345
attr(x, "class") <- 1 # character vectors only
Error in attr(x, "class") <- 1: attempt to set invalid 'class' attribute

Furthermore, there exists the class function that can read the value of the class at-
tribute. Its replacement version is also available.

class(x) <- "Date" # set; the same as attr(x, "class") <- "Date"
class(x) # get; the same as attr(x, "class")
[1] "Date"

Important The class function always yields a value, even if the corresponding at-

7 For instance, consider once again the example from Section 5.4.3 that applies the split function on a
data frame reduced to a list.

10 S3 CLASSES 195

tribute is not set. We call it an implicit class. Compare between the following and the
outputs generated by typeof:

class(NULL) # no ‘class’ set, because NULL cannot have attributes at all
[1] "NULL"

class(c(TRUE, FALSE, NA)) # no attributes, so class is implicit (= typeof)
[1] "logical"

class(c(1, 2, 3, NA_real_)) # typeof yields "double"

[1] "numeric"

class(c("a", "b", NA_character_))

[1] "character”

class(list(list(1, 2, 3), LETTERS))

[1] "list"

class(function(x) x) # typeof yields "closure"

[1] "function"

Also, in Chapter 11, we will note that any object equipped with the dim attribute also
has an implicit class:

(x <- as.matrix(c(1, 2, 3)))

[,1]

[1,] 1

#[2,] 2

#4 [3,] 3

attributes(x) # ‘class’ is not amongst the attributes
sdim

[1] 3 1

class(x) # implicit class

#4 [1] "matrix" "array"

typeof(x) # it is still a numeric vector (under the hood)
[1] "double"

10.2 Generics and method dispatching
10.2.1 Generics, default, and custom methods

Let us inspect the source code of the print function:

print(print) # sic!/
function (x, ...)
UseMethod("print")
<environment: namespace:base>

196 Il DEEPER

Any function like the above® we will call from now on an S3 (S version 3) generic. Its
only job is to invoke UseMethod("print"). This dispatches the control flow to another
function, referred to as method, based on the class of the first argument.

Important Even though it cannot be implied by the reading the above source code, all
arguments passed to the generic will also be available’ in the method dispatched to.

For example, let us define an object of class categorical (a name that we have just
come up with; we could have called it cat, CATEGORICAL, or SpanishInquisitionaswell),
which will be our own version of the famous built-in factor type that we discuss later.

X <- structure(
C(]'J 3, 2’ 1’ 1’ 1’ 3),
levels=c("a", "b", "c"),
class="categorical"

We assume that such an object is a vector of small positive integers (codes) equipped
with the levels attribute being a character vector of length no less than the maximum
of the said integers. The first category will be used to decipher the meaning of code
“r”, for example. Hence, the above vector represents a sequence 4, ¢, b, a, 4, 4, c.

We have not defined any special method for the printing of objects of class categor -
ical. Hence, when we call print, the default (fallback) method will be called:

print(x)

[1] 1321113
attr(, "levels")
[1] "a" "b" "c"
attr(, "class")

[1] "categorical”

This is the standard function for displaying numeric vectors that we are all well famil-
iar with. Its name is print.default, and we can always call it directly:

print.default(x) # the default print method
#4 [1] 1321113

attr(, "levels")

[1] "a" "b" "c"

(continues on next page)

8 Some functions can have a version of UseMethod hidden at the C language level (internally); see Sec-
tion 10.2.3.

9 This uses a quite obscure hack. It should also be noted that UseMethod heavily relies on metaprogram-
ming (compare Chapter 17). Therefore, it should not be considered an ordinary function call. For instance,
it can only be called inside a function’s body. Also, once called, it does not return to the generic. Before
dispatching to a particular method, it creates a couple of hidden variables which give more detail on the
operation conveyed, e.g., *.Generic’ or *.Class'; see help("UseMethod") and Section 5 in [63].

10 S3 CLASSES 197

(continued from previous page)
attr(, "class")
[1] "categorical”

We can, however, introduce our own method for the custom printing of objects of class
categorical, whose name must precisely be print.categorical:

print.categorical <- function(x, ...)
{
x_character <- attr(x, "levels")[unclass(x)]
print(x_character) # calls ‘print.default"’
cat(sprintf("Categories: %s\n",
paste(attr(x, "levels"), collapse=", ")))
invisible(x) # this is what all print methods do; see help("print")

Now, calling print automatically dispatches the control flow to the above method:

print(x)
[1] "a" "c" "b" "a" "a" "a" "c"
Categories: a, b, ¢

Of course, the default method can still be called; calling print.default(x) directly will
output the same result as before.

Note print.categorical has been equipped with the dot-dot-dot attribute, because
the generic print had one too; we should always ensure consistency ourselves™.

10.2.2 Creating own generics

Introducing new S3 generics is as straightforward as defining a function that calls
UseMethod.

For instance, here is a dispatcher which allows for creating new objects of class cat-
egorical based on other objects:

as.categorical <- function(x, ...)
UseMethod("as.categorical") # synonym: UseMethod("as.categorical", x)

We always need to define the default method:

as.categorical.default <- function(x, ...)

{
x <- as.character(x)
(continues on next page)

19 In particular, the checking of S3 generic/method consistency is part of R package check.

198 Il DEEPER

(continued from previous page)
xu <- unique(sort(x)) # drops NAs
structure(
match(x, xu),
class="categorical",
levels=xu

Testing:

as.categorical(c("a", "c", "a", "a", "d", "c"))
[1] "a" "c" "a" "a" "d" "c"

Categories: a, c, d

as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))
[1] "3" "6" "4" NA "9" "9" "6¢" NA "3"

Categories: 3, 4, 6, 9

Note that print.categorical has been invoked twice here. The above is quite flexible
already, because it relies on the generic (Section 10.2.3) as.character, which handles
a wide variety of data types. Of course, it does not mean we cannot be more precise
about some particular ones.

Example 10.3 Forinstance, we might want to forbid the conversion from lists, because this does
not necessarily make sense:

as.categorical.list <- function(x, ...)
stop("conversion of lists to categorical is not supported")

The users can always be instructed in the method’s documentation that they are the ones re-
sponsible for an explicit conversion of list objects to something different prior to a call to as.
categorical. Whether this was a good design choice, time will tell.

Example10.4 Note that the default method deals with logical vectors perfectly fine:

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.default
[1] "TRUE" "FALSE" NA NA "FALSE"
Categories: FALSE, TRUE

However, we might still want to introduce a specialised version, because we know a slightly more
efficient algorithm (and we have nothing better to do) based on the fact that FAL SE and TRUE con-
verted to numeric yield o and 1, respectively:

as.categorical. logical <- function(x, ...)

{
x <- as.logical(x) # or stopifnot(is.logical(x)) ?
structure(

(continues on next page)

10 S3 CLASSES 199

(continued from previous page)
x + 1, #only 1, 2, and NAs will be generated
class="categorical”,
levels=c("FALSE", "TRUE")

}

This yields the same result, but is a bit faster:

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.logical
[1] "TRUE" "FALSE" NA NA "FALSE"
Categories: FALSE, TRUE

Note that we have performed some argument validation at the beginning, because a user is al-
ways able to call a method directly on an R object of any kind (which is a good thing!; see Sec-
tion 10.2.4). In other words, there is no guarantee that the argument x must be of type logical.

10.2.3 Built-in generics

Many functions and operators we have introduced so far are in fact S3 generics: print,
head, ‘[, '+, "<=", as.character, as.list, round, log, sum, c, and na.omit, to name a
few.

Some of them might not even call UseMethod explicitly; dispatching can be done
internally, at the C language level". Overall, the list of all S3 generics is some-
what difficult to generate'>. Luckily, at least the internal ones are enumerated in
help("InternalMethods") and help("groupGeneric").

Example 10.5 Let us overload the as. character method. The default one does not make much
sense for the objects of our custom type:

as.character(x)
[1] ”1 n H3 n 112 n 111 n 111 n 111 n 173 n

So:

as.character.categorical <- function(x, ...)
attr(x, "levels")[unclass(x)]

And now:

1 Which is quite unfortunate because it decreases transparency; we need to look this information up
somewhere in the documentation (instead of simply inspecting a function's source code; see, e.g., cbind).
Also, it allows for some methods to be hardcoded at the C language level too, and thus be unoverload-
able. Some of such design choices can somewhat be defended, though, as they increase execution speed
or memory consumption. However, we are not particularly happy about them.

2 See also .knownS3Generics and .S3_methods_table which are related to the advanced topics we cover in
Section 16.3.6.

200 Il DEEPER

as.character(x)
[1] "a" "c" "b" "a" "a" "a" "c"

Exercise 10.6 Overload the unique method for objects of class categorical.

Exercise 10.7 Overload the rep method for objects of class categorical.

Example 10.8 New types should be designed carefully. For instance, if we forget to consider
overloading the to-numeric converter, we might end up with some users being puzzled> when
they see:

(x <- as.categorical(c(4, 9, 100, 9, 9, 100, 42, 666, 4)))
[1] "4" "9" "100" "9" "9" "100" "42" "666" "4"
Categories: 100, 4, 42, 666, 9

as.double(x) # as.double.default(x)

[1] 251551342

Hence, we might want to introduce:

as.double.categorical <- function(x, ...)

{
as.double.default(as.character.categorical(x))
as.double(as.character(x))

}

Which now yields:

as.double(x) # as.double.categorical(x)
[1] 4 9 100 9 9 100 42 666 4

Note We can still use unclass to fetch the codes:

unclass(x)

[1] 251551342

attr(, "levels")

[1] "100" "4" "42" "666" "9"

This is because the above returns a class-free object, which is now guaranteed to be
handled by the default methods (print, subsetting, as.character, etc.).

B3 It is a different story if this is our conscious design choice and that this is the behaviour we really
want. If we document this thoroughly (see how help("factor") discusses the behaviour of a to-numeric
conversion), only a user’s ignorance will there be to blame when they still are confused about this behaviour.
Remember that we can never make an API totally foolproof and that there will always be someone who
will challenge/stress-test our ideas. Bad design is always bad, but being overprotective has its cons as well.
Choose your audience wisely.

10 S3 CLASSES 201

Exercise10.9 What would happen if we used as.numeric instead of unclass in print.
categorical and as.character. categorical?

Exercise 10.10 Update the above methods in such a way that we can also create named objects
of class categorical (i.e., equipped with the names attribute).

Exercise 10.11 Note that the levels of x are sorted lexicographically, not numerically. Introduce
a single method that would make the above code (when re-run without any alterations) generate
a more natural result.

10.2.4 First-argument dispatch and calling S3 methods directly

With S3, the dispatching is done most often based on the class of only one* argument:
by default, the first one from the parameter list.

For example, the ¢ function is a generic which dispatches on the class of the first argu-
ment. Let us overload it for categorical objects (or, more precisely, create a function
that will be dispatched to when the generic is called upon a series of objects such that
the first element is of the said class).

c.categorical <- function(...)
as.categorical(
unlist(
lapply(list(...), as.character)

It converts each argument to a character vector (relying on the generic as.character
to take care of the details) and makes use of the fact that unlist converts a list of such
atomic vectors to a single sequence of strings.

Calling ¢ with the first argument being of class categorical dispatches to the above
method:

x <- c(9, 5,7, 7, 2)

XC <- as.categorical(x)

c(xc, x) # c.categorical

#4 [1] "9" "s" tyv o tyvor2tovgr o vgm tyw o tyvonpr
Categories: 2, 5, 7, 9

However, if the first argument is, say, unclassed, the default method will be consulted:

c(x, Xc) # default c
[1] 9577242331

4 Thisis R, so there are, of course, many exceptions to this rule which were made for the (debatable) sake
of the R users’ convenience. In particular, in Section 12.1.2 we mention that cbind and rbind will dispatch
to the data. frame method if at least one argument is a data frame (and other ones are unclassed). Binary
operators dispatch on the type of both operands; see Section 10.2.6. Furthermore, it is worth noting that the
S4 class system that we discuss in Section 11.5 allows for dispatching based on the classes many arguments.

202 Il DEEPER

This method ignores the class attribute and sees xc as-it-is, a barebone numeric vec-
tor:

“attributes<-"(xc, NULL) # the underlying codes
[1] 42 3 3 1

This is not a bug! This is a well-documented (and now explained) behaviour. After all,
compound types (classed objects) are merely emulated through the basic ones.

Important In most cases, S3 methods can be called directly to get the desired out-
come:

c.categorical(x, xc) # force a call to the specific method
[1] 779 " 775 " N7” N7” 772 n 779 n 775 n N7H H7H VI2 "

Categories: 2, 5, 7, 9

We said “in most cases”, because some methods can be:

« hardcoded at the C language level (for instance, there is no c.default defined at
all’s),

« hidden (defined in a package’s namespace but not exported); see Section 16.3.6,

- overloaded as a group; see Section 10.2.6 and help("groupGeneric").

Example10.12 Just for fun, let us find a partition of the iris dataset into three clusters using
the k-means algorithm:

res <- kmeans(iris[-5], centers=3, nstart=10)

print(res)

K-means clustering with 3 clusters of sizes 50, 62, 38
##

Cluster means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.0060 3.4280 1.4620 0.2460
2 5.9016 2.7484 4.3935 1.4339
3 6.8500 3.0737 5.7421 2.0711
##

Clustering vector:

[1] 1111111111111 1111111111111111111111
##[36] 1111111111111 1122322222222222222222
#[71] 22222223222222222222222222222

[reached getOption("max.print"”) -- omitted 51 entries]

(continues on next page)

15 Dispatching to internal methods can also be done... internally. For instance, overloading "<.character®
(or Compare.character; see below) will have no effect unless the base "< is replaced with a custom one that
makes an explicit call to UseMethod. Most often, we can expect that the built-in types (e.g., atomic vectors),
factors, data frames, and matrices and other arrays might be treated specially.

10 S3CLASSES 203

(continued from previous page)
##
Within cluster sum of squares by cluster:
[1] 15.151 39.821 23.879
(between_SS / total_SS = 88.4 %)

##

Available components:

##

[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault”

The above is an object of class:

class(res)
[1] "kmeans"

which in fact is a:

typeof(res)
[1] "list"

The underlying list looks like:

unclass(res)

Scluster

[1] 1111111111111 1111111111111111111111
[36] 1111111111111 1122322222222222222222
#H[71] 22222223222222222222222222222

[reached getOption("max.print") -- omitted 51 entries]

##

Scenters

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.0060 3.4280 1.4620 0.2460
#H 2 5.9016 2.7484 4.3935 1.4339
3 6.8500 3.0737 5.7421 2.0711
##

Stotss

[1] 681.37

##

Swithinss

[1] 15.151 39.821 23.879
##

Stot.withinss

[1] 78.851

##

(continues on next page)

204 Il DEEPER

(continued from previous page)
Sbetweenss
[1] 602.52
##
Ssize
[1] 50 62 38
##
Siter
[1] 2
##
Sifault
[1] 0

We already know that the above was displayed in a fancy way only because there is a print
method overloaded for objects of class kmeans.

But is there really?

print. kmeans
Error in eval(expr, envir, enclos): object 'print.kmeans' not found

Even though the method is hidden (internal) in the stats package’s namespace, from Sec-
tion 16.3.6 we will learn that it can be accessed by calling getS3method("print", "kmeans")
or referring to stats: : :print. kmeans (note the triple colon).

10.2.5 Multi-class-ness

The class attribute can be instantiated as a character vector of any length. For ex-
ample:

(tl <- Sys.time())

[1] "2023-04-27 15:26:35 AEST"

(t2 <- strptime("2021-08-15T12:59:59+1000", "%Y-%m-%dT%H:%M:%S%z"))
[1] "2021-08-15 12:59:59"

Let us inspect the classes of these two objects:

class(t1)
[1] "POSIXct" "POSIXt"
class(t2)
[1] "POSIX1t" "POSIXt"

In Section 10.3.1, we will discuss date-time classes in more detail: this is where we
will take note that the former is represented as a numeric vector, whilst the latter is
a list. Hence, primarily, these two should be seen as instances of two distinct types.
However, both of them have a lot in common, hence it was a wise design choice to also
allow them to be seen as the representatives of the same generic category of POSIX
time objects.

10 S3 CLASSES 205

Important When calling a generic function'® f on an object x of classes' classi,
class2, ..., classK (in this order), UseMethod (f, x) dispatches to the method determ-
ined as follows:

1. if f.class1is available'®, call it;

2. otherwise, if f.class2 is available, call this one;
3. .

4. otherwise, if f.classK is available, invoke it;

5. otherwise, refer to the fallback f.default.

Example10.13 There is a method diff for objects of class POSIXt featuring a statement:

r <- if (inherits(x, "POSIXlt")) as.POSIXct(x) else x

This way, we can be handling both POSIXct and POSIX1t instances via the same procedure.

Let us see in this simple scheme no magic. It is nothing more than what we described
above: a way of determining which method should be called for a particular R object.
It can of course be used as a mechanism to mimic (and certainly it was inspired by)
the idea of inheritance in object-oriented programming languages, but note that the
S3 system does not allow for defining classes in any formal manner.

For example, we cannot say that objects of class POSIXct inherit from POSIXt or each
object of class POSIXct is also an instance of POSIXt. The class attribute can still be set
arbitrarily on an per-object basis: we can create ones whose class is simply POSIXct
(without the POSIXt part) or even ¢("POSIXt", "POSIXct") (in this very order).

Note Inany method, itis possible to call the method corresponding to the next class
by calling NextMethod.

Forinstance, if we are in f.class1, a call to NextMethod(f) will try invoking f.class2. If
such a method does not exist, further methods in the search chain will be tried, falling
back to the default method if necessary. An example will be given below.

10.2.6 Operator overloading

Operators are ordinary functions (Section 9.4.5). Even though what follows can par-
tially be implied by what we have said above, as usual in R, there will be some oddities.

16 The case of binary operators is handled differently; see Section 10.2..6.

17 yseMethod dispatches on the implicit class as determined by the class function (note that the class
attribute does not necessarily have to be set in order for class to return a sensible answer).

18 For more details on S3 method lookup; see Section 16.3.6.

206 Il DEEPER

For example, let us overload the index operator for objects of class categorical. Look-
ingathelp("["), we see that the default method has two arguments: x (the categorical
object being sliced) and 1 (the indexer). Ours will have the same interface then:

‘[.categorical’ <- function(x, i)

{
structure(
unclass(x)[1], # [(unclass(x), 1)
class="categorical",
levels=attr(x, "levels") # the same levels as input
)
}

However, we note that the default S3 method, “[.default’, is hardcoded at the C lan-
guage level. Therefore, we cannot refer to it directly. This is why we had to call unclass.
Alternatively, we can also call NextMethod:

‘[.categorical’ <- function(x, i)

{
structure(
NextMethod("["), # call default method, passing ‘x' and "i°
class="categorical",
levels=attr(x, "levels") # the same levels as input
)
}

We can also introduce the replacement version of this operator:

‘[<-.categorical® <- function(x, i, value)
{
levels <- attr(x, "levels")
value <- match(value, levels) # integer codes corresponding to levels
structure(
NextMethod("[<-"), # call default method, passing ‘x°, "i1°
class="categorical",
levels=1levels # same levels as input

, ‘values’

or, equivalently:

structure(

*[<-"(unclass(x), 1, value=match(value, attr(x, "levels"))),
class="categorical”,

levels=attr(x, "levels")

#)

Testing:

10 S3 CLASSES 207

X <- as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))
x[1:4]

[1] "3" "6" "4" NA

Categories: 3, 4, 6, 9

x[1:4] <- c("6", "7")

print(x)

[1] "6" NA "6" NA "9" "9" "6" NA "3"

Categories: 3, 4, 6, 9

Note how we handled the case of non-existing levels and that the recycling rule has
been automagically inherited (amongst other features) from the default index oper-
ator.

Exercise 10.14 Do these two operators preserve the names attribute of x? Is indexing with neg-
ative integers or logical vectors supported as well? Why is that/is that not the case?

Furthermore, let us overload the “==" operator. Assume® that we would like two cat-
egorical objects be compared based on the actual labels they encode, in an element-
wise manner:

‘==.categorical’ <- function(el, e2)
as.character(el) == as.character(e2)

We are feeling lucky: by not performing any type checking, we rely on the particular
as.character methods corresponding to the types of el and e2. Also, assuming that
as.character always®° returns an object of type character, we dispatch to the default
method for *==" (which handles atomic vectors).

Some examples:

as.categorical(c(1, 3, 5, 1)) == as.categorical(c(1, 3, 1, 1))
[1] TRUE TRUE FALSE TRUE

as.categorical(c(1l, 3, 5, 1)) == c(1, 3, 1, 1)

[1] TRUE TRUE FALSE TRUE

c(1, 3, 5, 1) == as.categorical(c(1, 3, 1, 1))

[1] TRUE TRUE FALSE TRUE

Important In the case of binary operators, dispatching is done based on the classes
of both arguments. In all three example calls above, we call *==.categorical’, regard-
less of whether the classed object is the first or the second operand. If two operands

19 There are of course many possible ways to implement the “==" operator for the discussed objects. For
instance, it may return either a single TRUE or FALSE depending if two objects are identical (although probably
overloading all.equal would be a better idea). We could also be comparing the corresponding underlying
integer codes instead of the labels, etc.

20 Which of course does not have to be the case; it is merely an assumption based on our belief in the
common sense of other developers.

208 Il DEEPER

are classed and different methods are overloaded for both of them, a warning will be
generated and the default internal method will be called.

‘==.A" <- function(el, e2) "A"

‘==.B" <- function(el, e2) "B"

structure(c(1, 2, 3), class="A") == structure(c(2, NA, 3), class="B")
Warning: Incompatible methods ("==.A", "==.B") for "=="

[1] FALSE NA TRUE

Note (*) By defining a single 0ps method, we can define the meaning of all binary
operators at once.

Ops.categorical <- function(el, e2)

{
if (!(.Generic %in% c("<", ">", "<=", "s>=", "==", "1=")))
stop(sprintf("%s not defined for 'categorical' objects", .Generic))
el <- as.character(el)
e2 <- as.character(e2)
NextMethod(.Generic) # dispatch to the default method (for character)
}

as.categorical(c(l, 3, 5, 1)) > c(1, 2, 4, 2)
[1] FALSE TRUE TRUE FALSE

Here .Generic is a variable representing the name of the operator (generic) being in-
voked; see sec:use-method.

Other group generics are: Summary (including functions such as min, sum, and all), Math
(abs, log, and round, etc.), and Complex (e.g., Re, Im); see help("groupGeneric") for more
details. Note that sometimes we will need to rely on registerS3methed to force R to
recognise a custom method related to such generics.

10.3 Common built-in S3 classes

Let us discuss some noteworthy built-in classes, including the ones that represent
date/time information and factors (ordered or not).

Classes for representing tabular data will be dealt with in separate parts of this text-
book, owing to their importance and ubiquity. Namely, matrices and other arrays are
covered in Chapter 11, and data frames in Chapter 12.

10 S3 CLASSES 209

The inspecting of other® interesting classes is left as a simple exercise to the kind
reader.

10.3.1 Date, time, etc.

The Date class can be used to represent... dates.

(x <- c(Sys.Date(), as.Date(c("1969-12-31", "1970-01-01", "2023-02-29"))))
#4# [1] "2023-04-27" "1969-12-31" "1970-01-01" NA

class(x)

[1] "Date”

Complex types are built upon basic ones; underneath, what we deal with is:

typeof(x)

[1] "double"

unclass(x)

[1] 19474 -1 0 NA

which is the number of days since the so called UNIX epoch, 1970-01-01T00:00:00+0000
(midnight GMT/UTC).

The P0OSIXct (calendar time) class can be used to represent date-time objects:

(x <- Sys.time())

[1] "2023-04-27 15:26:35 AEST"
class(x)

[1] "POSIXct" "POSIXt"
typeof(x)

[1] "double"

unclass(x)

[1] 1682573196

Underneath, it is the number of seconds since the UNIX epoch. By default, whilst
printing, the current default timezone is used (see Sys. timezone). However, such ob-
jects can be equipped with the tzone attribute.

structure(1, class=c("POSIXct", "POSIXt")) # using current default timezone
[1] "1970-01-01 10:00:01 AEST"

structure(1, class=c("POSIXct", "POSIXt"), tzone="UTC")

##4 [1] "1970-01-01 00:00:01 UTC"

In both cases, the time is 1 second after the beginning of UNIX epoch. In the former,
it is displayed in the current local timezone, though (on the author’s PC).

Exercise 10.15 Use ISOdatetimetoinspect how midnightsare displayed in different timezones.

2! An (incomprehensive) approximation to the list of available classes can be generated by calling unique(.
S3_methods_table[, 2]).

210 Il DEEPER

There is also the POSIX1t (local time) class, which is represented using a list of atomic
vectors?2.

(x <- as.POSIXlt(c(a="1970-01-01 00:00:00", b="2030-12-31 23:59:59")))
a b

"1970-01-01 00:00:00 AEST" "2030-12-31 23:59:59 AEDT"

class(x)

[1] "POSIXIt" "POSIXt"

typeof(x)

#4# [1] "list”

str(unclass(x)) # calling str instead of print to make display more compact
List of 11

S sec : onum [1:2] 0 59

#4 S min : int [1:2] 0 59

#4 S hour : int [1:2] 6 23

#4# S mday : int [1:2] 1 31

S mon : int [1:2] 0 11
S year : Named int [1:2] 70 1360
..- attr(*, "names")= chr [1:2] "a" "b"

#4# S wday : int [1:2] 4 2

S yday : int [1:2] 0 364

S isdst : int [1:2] 0 1

S zone : chr [1:2] "AEST" "AEDT"

S gmtoff: int [1:2] NA NA

- attr(*, "tzone")= chr [1:3] "" "AEST" "AEDT"
- attr(*, "balanced")= logi TRUE

Exercise 10.16 Read about the meaning of each named element, especially mon and year; see
help("DateTimeClasses").

The manual states that POSIXlt is supposedly closer to human-readable forms than
POSIXct, but it is a matter of taste. Some R functions return the former, and some
yield the latter type.

Exercise 10.17 The two main functions for date formatting and parsing, strftime and strp-
time, use special field formatters (similar to those used by sprintf). Read about them in the R
manual. What type of inputs do they accept? What outputs do they produce?

There is a number of methods overloaded for objects of the said classes. In fact, the
first call in this section already involved the use of c.Date.

Exercise 10.18 Play around with the overloaded versions of seq, rep, and as.character.

Note that a specific number of days or seconds can be added to or subtracted from a
date or time, respectively. However, - (see also diff) can also be applied on two date-
time objects, which yields an object of class difftime.

22 Which was inspired by C’s tm structure defined in <time.h>.

10 S3 CLASSES 21

Sys.Date() - (Sys.Date() - 1)
Time difference of 1 days
Sys.time() - (Sys.time() - 1)
Time difference of 1 secs

Exercise10.19 Check out how objects of class di fftime are internally represented.

Applying other arithmetic operations on date-time objects yields an error. Also note
that because date-time objects are just numbers, they can be compared to each other
using binary operators*® and methods such as sort and order?* could be applied
thereon.

Exercise10.20 Check out the stringx package which replaces the base R date-time processing
functions with their more portable counterparts.

Exercise 10.21 proc. time can be used to measure the time to execute a given expression:

tO <- proc.time() # timer start

... to do - something time-consuming ...
sum(runif(1e7)) # whatever, just testing
[1] 4999488

print(proc.time() - t0) # elapsed time
#H user system elapsed

0.239 0.024 0.262

The function returns an object of class proc_time. Inspect how it is represented internally.

10.3.2 Factors

The factor class is often used to represent categorical (qualitative) data, e.g., species,
groups, types. In fact, the example categorical class that we played with above has
been inspired by the built-in factor.

(x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon"))

[1] "spam" "spam" "bacon" "sausage" "spam" "bacon”
(f <- factor(x))
[1] spam spam bacon sausage spam bacon

Levels: bacon sausage spam

Take note of how factors are printed: there are no double quote characters around the
labels and the list of levels is given at the end.

Internally, such objects are represented as integer vectors (Section 6.4.1) with ele-

23 The overloaded group generic Ops prevents us from adding or multiplying two dates and defines the
meaning of the comparison operators. As an exercise, check out its source code.
24 See an exercise below on the use of xtfrm.

212 Il DEEPER

ments between 1 and k with the special (as in Section 4.4.3) levels attribute being a
character vector of length k.

class(f)

##4# [1] "factor”
typeof (f)

[1] "integer"
unclass(f)

[1] 331231
attr(, "levels")

"o

[1] "bacon" "sausage" "spam"
attr(f, "levels") # also: levels(f)
[1] "bacon" "sausage" "spam"

Factors are often used instead of character vectors defined over a small number of
unique labels?®, where there is a need to manipulate their levels easily.

attr(f, "levels") <- c("a", "b", "c") # also levels(f) <- c(....new...)
print(f)

[1] cca b ca

Levels: a b c

The underlying codes remain the same.

Certain operations on vectors of small integers are relatively easy to implement, es-
pecially those concerning element grouping: splitting, counting, plotting (e.g., Fig-
ure 13.17). It is because the integer codes can naturally be used whilst indexing other
vectors. In Section 5.4, we mentioned a few functions related to this, such as match,
split, findInterval, and tabulate. Specifically, the latter can be implemented like “for
each i, increase count[factor_codes[1]] by one”.

Exercise10.22 Study the source code of the factor function. Note the use of as. character,
unique, order, and match.

Exercise 10.23 Implement a simplified version of table based on tabulate. It should work for
objects of class factor and return a named numeric vector.

Exercise 10.24 Implement your own version of cut based on findInterval.

Important The as.numeric method has not been overloaded for factors. Therefore,
when we call the generic, the default method is used: it returns the underlying integer
codes as-is. This can surprise the unaware users when they play with factors that fea-
ture levels consisting of strings representing integer numbers:

25 [63] states: Factors are currently implemented using an integer array to specify the actual levels and a second array
of names that are mapped to the integers. Rather unfortunately users often make use of the implementation in order to
make some calculations easier. This, however, is an implementation issue and is not guaranteed to hold in all implement-
ations of R. Still, fortunately, this has been a de facto standard for factors for a very long time.

26 Recall that there is a global (internal) string cache, hence having many duplicated strings is not an issue,
memory-use-wisely.

10 S3 CLASSES 213

(g <- factor(c(11, 15, 16, 11, 13, 4, 15))) # converts numbers to strings
#4 [1] 11 15 16 11 13 4 15

Levels: 4 11 13 15 16

as.numeric(g) # the underlying codes

[1] 2452314

as.numeric(as.character(g)) # to get the numbers en-coded

#4# [1] 11 15 16 11 13 4 15

Unfortunately, support for factors is often hardcoded at the C language level, which
will make this class behave less predictably (from the R perspective). In particular, the
manual overloading of methods for factor objects might have no effect.

Important If fis a factor, then x[f] does not behave like x[as.character(f)] (index-
ing by labels, using the names attribute). Instead, we get x[as.numeric(f)] (the under-
lying codes will determine the positions).

h <- factor(c("a", "b", "a", "c", "a", "c"))

levels(h)[h] # the same as c("a", "b", "c")[c(1, 2, 1, 3, 1, 3)]
[1] "a" "b" "a" "c" "a" "c"

c(b="x", c="y", a="z")[h] # names are not used whilst indexing
b ¢ b a b a

#g "x" ty" Ux" "zt xt "z

c(b="x", c="y", a="z")[as.character(h)] # names are used now

a b a c a c

W wyn wom w o m_w o m
X z z

V4

More often than not, indexing by factors will happen “accidentally”, leading to our
being slightly puzzled. In particular, factors look much like character vectors when
they are featured in data frames:

(df <- data.frame(A=c("x", "y", "z"), B=factor(c("x", "y", "z"))))
AB

1 X X

#H2yy

3 z z

class(df[["A"]1])

[1] "character"

class(df[["B"]])

[1] "factor"

(*) Up until R 4.0, many functions (including data. frame and read.csv) had the string-
sAsFactors option (see help("options")) set to TRUE, which resulted in all character
vectors’ being automatically converted to factors when, e.g., creating data frames
(compare Chapter 12). Luckily, this is no longer the case, but they can still be en-

214 Il DEEPER

countered sporadically: for instance, the built-in iris dataset has the fifth column of
class:

class(iris[["Species"]])
[1] "factor”

Important Be careful when combining factors and not-factors:

x <- factor(c("A", "B", "A"))
c(x, "C")

#4# [1] "1" "2 "1 "C"

c(x, factor("C"))

[1] ABAC

Levels: A B C

Exercise10.25 Notethatwhen subsetting a factor object, the result will have the levels attrib-
ute inherited as-is.

flc(1, 2)] # drop=FALSE
[1] c ¢
Levels: a b c

However:

flc(1, 2), drop=TRUE]
[1] c c
Levels: c

Implement your own version of the droplevels function which removes the unused attributes.

Exercise 10.26 The replacement version of the index operator does not automatically add new
levels to the modified object:

x <- factor(c("A", "B", "A"))

‘[<-"(x, 4, value="C") # like in x[4] <- "C"

Warning in “[<-.factor (x, 4, value = "C"): invalid factor level, NA
#H generated

[1] A B A <NA>

Levels: A B

Implement your own version of * [<-. factor]" which is capable of doing so.

10 S3 CLASSES 215

10.3.3 Ordered factors

Note that when creating factors, we can enforce a particular ordering and the number
of levels:

x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon")
factor(x, levels=c("eggs", "bacon", "sausage", "spam"))

[1] spam spam bacon sausage spam bacon

Levels: eggs bacon sausage spam

If we want the arrangement of the levels to define a linear ordering relation over set
of the labels, we can call:

(f <- factor(x, levels=c("eggs", "bacon", "sausage", "spam"), ordered=TRUE))
[1] spam spam bacon sausage spam bacon

Levels: eggs < bacon < sausage < spam

class(f)

[1] "ordered" "factor"

This yields an ordered factor, which enables comparisons like:

f[f >= "bacon"] # what's not worse than bacon?
[1] spam spam bacon sausage spam bacon
Levels: eggs < bacon < sausage < spam

How is that possible? Well, based on information provided in this chapter it will come
as no surprise that it is because... someone has implemented a comparison operator
for objects of class ordered.

10.3.4 Formulae (%)

Formulae are created by means of the "~' operator. Some R users employ them
to specify widely-conceived statistical models in functions such as m (e.g., linear re-
gression), glm (logistic regression etc.), aov (analysis of variance), wilcox.test (the
two-sample Mann-Whitney-Wilcoxon test), aggregate (computing aggregates within
data groups), boxplot (box-and-whisker plots for a variable split by a combination of
factors), or plot (scatter plots); see also Chapter 11 in [53].

For instance, they can be used to describe symbolic relationships such as:
« “yasalinear combination of x1, x2, and x3”,
« “y grouped/split by a combination of x1 and x2”,

where y, x1, etc., are, for example, column names in some data frame.

Due to the fact that formulae are interpreted by the corresponding functions, and not
the R language itself, programmers are free to assign them any meaning. As their syn-
tax is quite esoteric, beginners might find them confusing. Hence, we will discuss
them much later: in Section 17.6.

216 Il DEEPER

For now, good news is that the use of formulae can usually quite easily be avoided*’.

10.4 Argument checking revisited

Recall that anything can be passed as a function’s input. Here are some additions to
the topic we touched upon in Section 9.2.1.

Despite that compound objects are internally represented through basic types (such as
numeric vectors, lists, or combinations thereof) and attributes, unless we really know
better (which, by the way, this book is all about), we should be relying on the hopefully
well-thought-out methods developed by the class’ designer.

Ideally, when checking arguments passed to a function, determining if an object is of
a desired type should be solely done by means of the generics like is.class. If that is
not the case, a call to as. class should be used to make sure we will be dealing with an
object of the desired type.

If a conversion is not possible, either because a specific method is unavailable or be-
cause its designer decided that this must be the case, whatever the consequences are
is not necessarily our problem anymore.

We should explain to the user that the input type assurance is done via this very mech-
anism and, in case they get any surprising results, they should check/redefine the un-
derlying is.class or as.class themselves.

This is of course not watertight, and there will be users complaining that they get un-
expected or confusing (in their opinion) outputs. With infinitely many potential types,
however, we cannot respond to every possible situation.

Example10.27 As an illustration, here is a function that counts the number of occurrences of
items in a numerised (digitised?) version of a given object:

numtable <- function(x)

{
if (!is.numeric(x)) x <- as.numeric(x) # two generics!
u <- unique(x)
structure(
tabulate(match(x, u)),
names=as.character(u)
)
}

27 For example, In.fit can be used instead of m. It is slightly more difficult to learn, surely, but has
the added benefit of making sure the user knows that all model variables are not magical (especially the
nonlinear/mixed effect terms).

10 S3 CLASSES 217

Let us assume that the user has been informed (in the corresponding documentation page) that x
must be a numeric vector (as in is. numeric) or an object coercible to (by means of as. numeric).

The callers will be stress-testing our function in many different ways:

numtable(c(1, 3, 5, 5, 1, 5))
135
2 1 3

This is an intended behaviour.

nUMtable(C(”l N, 773771 ”5”) 775”’ I11 IY’ 775”))
135
213

This makes sense too, a character vector consisting of number-strings has been fed on input.

" " "on "o "on

numtable(c("a", "e", "z", "z", "a", "z"))

Warning in numtable(c("a", "e", "z", "z", "a", "z")): NAs introduced by
coercion

<NA>

6

Does the output make no sense? Of course, it does, they have just passed something not easily
coercible to a numeric vector. Note the warning that suggests theve is something wrong. The user
needs to correct their possible mistake by themself.

numtable(list(1, 2, 3:10, 2))
Error in numtable(list(1, 2, 3:10, 2)): 'list' object cannot be coerced to
#H type 'double'

Again, makes sense. ‘But I think that this function should apply unlist automatically’ — well,
if you want such a behaviour, why don’t you call numtable(unlist(...)) yourself? It is not so

difficult.

numtable(factor(c(1, 3, 5, 5, 1, 5)))
12 3
213

Is this confusing? No; this is a well-documented behaviour of as.numeric on objects of type
factor (whichwas designed by another developer). A user should know (but we can remind them
about it in the documentation) that in this case, as. character should rather be called first.

Of course, sometimes users might discover bugs or unexpected behaviours, especially related to
boundary cases we have not been considerate enough to inspect. We are of course the ones to blame
forthe following:

numtable(numeric(0)) # bug: this should be corrected

(continues on next page)

218 Il DEEPER

(continued from previous page)
<NA>
0

10.5 (Over)using the forward-pipe operator, " |>" (¥)

The object-oriented programming paradigm is useful when we wish to define a new
data type, perhaps even a hierarchy of types. Many development teams find it an ef-
ficient tool to organise larger pieces of software. Yet, in the broad data science and
numerical computing domains, more often than not, we are the consumers of object-
orientation rather than class designers.

Thanks to the discussed method dispatch mechanism, our language is easily extens-
ible and something that mimics a new data type can easily be introduced. Most im-
portantly, methods can be added or removed during run-time, e.g., when importing
external packages.

However, R is still a functional programming language, where functions not only are
first-class citizens; they are privileged. Of course, there are some inherent limitations
stemming from the ingenious simplicity of S3: method dispatch is usually based only
on the type of the first function argument, classes cannot be defined formally (but see
Section 11.5) and that there is no real encapsulation (we cannot actually hide data from
a user?®). However, overall the whole concept has proven quite versatile.

In functional programming, emphasis is on operations (verbs), not data (nouns). This
leads to avery readable syntax, for example (assuming that square, x, and y are sensibly
defined), the mean squared error can be written as:

mean(square(x-y))

This is very user-centric. However, when implementing more complex data pro-
cessing pipelines, a programmer thinks “first, I need to do this, then I need to do that,
and afterwards..”. When they write it down, there can be some pressing of HOME and
END keys on the keyboard involved. This should not be a problem for most program-
mers.

finally(thereafter(then(first(x))))

However, some people are inherently lazy, always complaining and/or always trying
to “optimise” things.

28 Which can be good, right?

2% Do not get yours truly wrong, improving things is generally good, but overall, in the long run, as a
compulsive habit (“this is what (some) stakeholders want”, “we need to be agile and responsive”, etc.), it is
not really sustainable (also for the environment!). Less is better, even though a little harder. By introducing
a new, paralle] syntax, we not only duplicate the existing features and cause some divide in the community

10 S3 CLASSES 219

Example 10.28 Base R is of course extremely flexible and we can introduce new vocabulary as
we please. In Chapter 12, we study an example, where we define:

« group_by (a function that splits a data frame with respect to a combination of levels in given
named columns and returns a list of data frames with class 1ist_dfs),

- aggregate. list_dfs (which applies a given aggregation function on each column of each
data frame in a given list), and

« mean. list_dfs (a specialised version of the former that calls mean).

The specifics do not really matter now, let us just consider the notation we use when the operations
are chained:

select a few rows and columns from the ‘iris’' data frame:

iris_subset <- iris[51:150, c("Sepal.Width", "Petal.Length", "Species")]
compute the averages of all variables grouped by Species:
mean(group_by(iris_subset, "Species"))

Species X Mean

1 versicolor Sepal.width 2.770

2 versicolor Petal.Length 4.260

3 virginica Sepal.Width 2.974

4 virginica Petal.Length 5.552

This is quite readable: we compute the mean in groups defined by Species in a subset of the iris
data frame. All verbs appear on the lefthand side of the expression, with the last (the most im-
portant?) operation being listed first.

By the way, self-explanatory variable names and rich comments are priceless.

In more traditional object-oriented programming languages, either the method list
is sealed inside3° the class’ definition (like in C++), or some peculiar patches must be
applied to inject a method (like in Python)*. There, it is the objects that are told what
to do: they are treated as black boxes.

Some popular languages rely on the message-passing syntax, where operations are
propagated (and written) left-to-right instead of inside-out. For instance, in C++ and
Python (amongst many others), “obj.method1().method2()” means “call method1 on obj
and then call method2 on the result.

Since R 4.1.0, there is a pipe operator®?, " | >*, which is merely a syntactic sugar for trans-
lating between the message-passing and function-centric notion. In a nutshell, writ-
ing:

(some users will be introduced to the system through the new interface and not know the old one, others will
have to learn the new syntax to be able to communicate with the former group) but also introduce a whole
new set of issues (how to make the new functions interoperable with each other in a seamless manner, etc.).

3% When methods are parts of particular classes, there can be a lot of duplicated code. Functional OOP
can be more developer-friendly as we can implement all methods related to roughly the same functionality
in one spot.

31 See also the concept of extension methods in C# or Kotlin or, to some extent, class inheritance.

32 Tt was inspired by *| " in Bash and " |>@" in F# and Julia (which are part of the language specification).
Also, there is a “%>% operator (and related ones) in the R package magrittr.

220 Il DEEPER

x |> £ [>g(y) [>hO
(x-y) |> square() [> mean()

is equivalent, respectively, to:

h(g(f(x), y))

mean(square(x-y))

This syntax is developer-centric: it emphasises on the order in which the operations
are executed, something that could always be achieved with the function-centric form
and perhaps a few auxiliary variables.

The placeholder *_* can be used in the righthand side of the pipe operator (only once)
to indicate that the lefthand side should be matched to a specific named argument of
the function to be called. Otherwise, the lefthandside always becomes passed as the
first argument.

Therefore, the two following expressions are equivalent:

x |> median() |> '-'(el=x, e2=_) |> abs() |> median()
median(abs(x-median(x)))

Example10.29 In the above example, a pipe operator version of the iris aggregation exercise
would look like:

iris_subset |> group_by("Species") [> mean()

Expressions in the righthand side must always be proper calls. Therefore, the use of
round brackets is obligatory. Thus, when passing anonymous functions, we should be
writing:

runif(10) |> (function(x) mean((x-mean(x))*2))() # note the () at the end
[1] 0.078184

Peculiarly, in R 4.1.0, a “shorthand” notation notation for creating functions was in-
troduced. We can save seven keystrokes and write “\(...) expr”instead of “function(.
..) expr”.

runif(10) |> (\(x) mean((x-mean(x))"2))() # note the *()° at the end
[1] 0.078184

This book is minimalist by design and there is nothing that cannot be achieved without
the pipe operator. Hence, we will be refraining® ourselves from using it.

Note When writing code interactively, we may sometimes benefit from the use of the

33 Which some readers would name an uncool (old-school) approach, but we do not care. Remember that
the functional syntax is the native one and we have to be able to understand it anyway.

10 S3 CLASSES 221

rightward *->" operator. Suffice to say that “name <- value” and “value -> name” are
synonymous.

This way we can write some lengthy code, store the result in an intermediate variable,
and then continue on in the next line (possibly referring to that auxiliary value more
than once). In the long run, multiplying entities without necessity is unsustainable.

For instance:

runif(10) -> .; mean((.-mean(.))"2)
[1] 0.078184

or:

iris[, c("Sepal.Width", "Petal.Length", "Species")] -> .

[.[, "Species"] %in% c("versicolor", "virginica"),] -> .
mean(group_by(., "Species"))

Species X Mean

1 versicolor Sepal.wWidth 2.770

2 versicolor Petal.Length 4.260

3 virginica Sepal.wWidth 2.974

4 virginica Petal.Length 5.552

*." is as good a variable name as any other one.

10.6 Exercises
Exercise 10.30 Answer the following questions:
- How to display the source code of the default methods for head and tail?

« Can there be, at the same time, one object of class c("A", "B") and another one of class
C(NB H’ IIA u)?

« If fis a factor, what are the velationships between as.character(f), as.numeric(f), as.
character(as.numeric(f)), and as.numeric(as.character(f))?

- If xis a named vector and fis a factor, is x[f] equivalent to x[as. character (f)] or rather
x[as.numeric(f)]?

Exercise 10.31 A user calls:

plot(x, y, col="red", ylim=c(1, max(x)), log="y")

where x and y ave numeric vectors. Consult help("plot") for the meaning of the ylimand log
arguments. Was that straightforward?

222 Il DEEPER

Exercise 10.32 Explain why the two following calls yield significantly different results and
present a workaround:

c(Sys.Dbate(), "1970-01-01")
[1] "2023-04-27" "1970-01-01"
c("1970-01-01", Sys.Date())
[1] "1970-01-01" "19474"

Exercise 10.33 Write methods head and tail for our example categorical class.

Exercise10.34 (¥) Write an R package that defines S3 class categorical and a couple of meth-
ods therefor. Note the need for the use of the S3method divective NAMESPACE; see [59].

Exercise 10.35 Inspect the result of a call to binom. test(79, 1600). Find the method respons-

ible for the pretty-printing of such objects.

Exercise10.36 Inspecttheresultofacalltorle(c(1, 1, 1, 4, 3, 3, 3, 3, 3,, 2, 2)).

Find the method responsible for the pretty-printing of such objects.

Exercise 10.37 Read moreaboutthe connectionclass;seethe Value sectionin help("connections").

Exercise 10.38 Read about the subsetting operators overloaded for the package_versionclass;
see help("numeric_version").

Exercise10.39 There are xtfrm methods overloaded for classes such as numeric_version,
difftime, Date, and factor. Find out how they work and where they might be useful (especially
in relation to order and sort; see also Section 12.3.1).

Exercise 10.40 Give an example where split(x, list(y1, y2)) (with default arguments)
will fail to generate the correct result.

Exercise 10.41 Write a function that determines the mode, i.e., the most frequently occurring
value in a given object of class factor. If the mode is not unique, return a randomly chosen one
(each with the same probability).

Exercise 10.42 Implement your own version of the gl function.

Exercise 10.43 Check out which built-in date-time functions the stringx package replaces
with more portable ones.

11

Matrices and other arrays

When we equip an atomic or generic vector with the dim attribute, it automatically
becomes an object of S3 class array. In particular, two-dimensional arrays (primary
S3 class matrix) allow us to represent tabular data where items are aligned into rows
and columns:

structure(1:6, dim=c(2, 3)) # a matrix with 2 rows and 3 columns
[,1] [,2] [,3]
[1,] 1 3 5
#w [2,] 2 4 6

This (combined with the fact that there are many built-in functions overloaded for the
matrix class) opens up a range of new possibilities, which we explore in this chapter.
In particular, we discuss how to perform basic algebraic operations such as matrix
multiplication, transpose, finding eigenvalues, and performing various decomposi-
tions. We also cover data wrangling operations such as array subsetting and column-
and rowwise aggregation.

Important Oftentimes, a numeric matrix with n rows and m will be used to represent
n points (samples) in an m-dimensional (with m features or variables) space, R™.

Furthermore, in the next chapter, we will introduce data frames: matrix-like objects
whose columns can be of any (not necessarily the same) type.

11.1 Creating arrays
11.1.1 matrixand array

A matrix can be conveniently created by means of the matrix function.

(A <- matrix(1:6, byrow=TRUE, nrow=2))
[-1]1 [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

224 Il DEEPER

The above converted an atomic vector of length six into a matrix with two rows. The
number of columns was determined automatically (ncol=3 could have been passed to
get the same result).

Important By default, the elements of the input vector are read columnwisely:

matrix(1:6, ncol=3) # byrow=FALSE
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

A matrix can be equipped with dimension names, being a list of two character vectors
of appropriate sizes, labelling each row and column, in this order:

matrix(1:6, byrow=TRUE, nrow=2, dimnames=1list(c("x", "y"), c("a", "b", "c")))
abc
x 12 3
#y 456

Alternatively, to create a matrix, we can use the array function, which requires the
number of rows and columns be specified explicitly.

array(1:6, dim=c(2, 3))
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Note that the elements are consumed in a column-major manner.

Arrays of dimensionality other than 2 are also possible. Here is a one-dimensional ar-
ray. When printed, it is indistinguishable from an atomic vector (but still the class
attribute is set to array):

array(1:6, dim=6)
[1] 123456

And now for something completely different: a three-dimensional array of size 3-by-
4-by-2

array(1:24, dim=c(3, 4, 2))
#o, , 1

##

[,1] [,2] [,3] [,4]
#4 [1,] 1 4 7 10
[2,] 2 5 8 11
##[3,] 3 6 9 12

(continues on next page)

##

##, , 2

##

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

11 MATRICES AND OTHER ARRAYS 225

(continued from previous page)

which can be thought of as two matrices of size 3-by-4 (because how else can we print

out a 3D object on a 2D console?).

The array function can be fed with the dimnames argument too. For instance, the above
three-dimensional hypertable would require a list of three character vectors, of sizes

3, 4, and 2, respectively.

Exercise 11.1 That 10-dimensional arrays ave also possible the reader is encouraged to try out

themself.

11.1.2 Promoting and stacking vectors

We can promote an ordinary vector to a column vector, i.e., a matrix with one column

by calling:
as.matrix(1:2)
[,1]
[1,] 1
[2,] 2
cbind(1:2)

[,1]
#4 [1,] 1
#[2,] 2

and to a row vector:

t(1:3) # transpose
[1]1 [,2] [,3]
[1,] 1 2 3
rbind(1:3)

[-1] [,2] [,3]
[1,] 1 2 3

Actually, cbind and rbind stand for column- and row-bind; they allow multiple vectors

and matrices be stacked one after/below another:

rbind(1:4, 5:8, 9:10, 11) # row bind

[,11 [,2] [,3] [,4]

(continues on next page)

226 Il DEEPER

(continued from previous page)
[1,] 1 2 3 4
#[2] 5 6 7 8
##[3,] 9 10 9 10
#4 [4,] 11 11 11 11
cbind(1:4, 5:8, 9:10, 11) # column bind
[,1] [,2] [,3] [,4]
[1,] 1 5 9 11
##[2,] 2 6 10 11
##[3,] 3 7 9 11
[4,] 4 8 10 11
cbind(1:2, 3:4, rbind(11:13, 21:23)) # vector, vector, 2x3 matrix
[,1] [,2] [,3] [.,4] [,5]
[1,] 1 3 11 12 13
[2,] 2 4 21 22 23

and so forth.

Unfortunately, the generalised recycling rule is not implemented in full:

cbind(1:4, 5:8, cbind(9:10, 11)) # different from cbind(1:4, 5:8, 9:10, 11)
Warning in cbind(1:4, 5:8, cbind(9:10, 11)): number of rows of result 1is
#H not a multiple of vector length (arg 1)

[,1] [,2] [,3] [,4]

#[1,] 1 5 9 11

[2,] 2 6 10 11

Note that the first two arguments are of length four.

11.1.3 Simplifying lists

simplify2array is an extension of the unlist function. Given a list of atomic vectors,
each of length one, it will return a flat atomic vector. However, if a list of equisized
vectors of greater lengths is given, these will be converted to a matrix.

simplify2array(list(1, 11, 21)) # each of length 1
[1] 1 11 21

simplify2array(list(1:3, 11:13, 21:23, 31:33)) # each of length 3
[,1] [,2] [,3] [,4]

[1,] 1 11 21 31

[2,] 2 12 22 32

[3,] 3 13 23 33

simplify2array(list(1, 11:12, 21:23)) # no can do
[[1]]

[1] 1

##

(continues on next page)

11 MATRICES AND OTHER ARRAYS 227

(continued from previous page)
[[2]]
[1] 11 12
##

[[3]]
[1] 21 22 23

Note that in the second example, each vector becomes a separate column of the res-
ulting matrix’.
See Section 12.3.7 for a few more examples.

Example11.2 There are quite a few functions that call the above automatically by default (com-
pare the simplify or SIMPLIFY (sic!) argument in sapply, tapply, mapply, replicate, etc.).

Forinstance:

min_mean_max <- function(x) c(Min=min(x), Mean=mean(x), Max=max(x))
sapply(split(iris[["Sepal.Length"]], iris[["Species"]]), min_mean_max)

setosa versicolor virginica
Min 4.300 4.900 4.900
Mean 5.006 5.936 6.588
Max 5.800 7.000 7.900

Take note of what constitutes the columns of the return matrix.

Exercise 11.3 Nofe the behaviour of as.matrix on list arguments. Write your own version
of simplify2array named as.matrix. list that always returns a matrix. If a list of non-
equisized vectors is given, fill the missing cells with NAs.

Important Sometimes a call to do.call(cbind, x)) might be a better idea than a
referral to simplify2array. Provided that x is a list of atomic vectors, it always returns
a matrix: shorter vectors are recycled (which might be welcome, but not necessarily).

do.call(cbind, list(a=c(u=1), b=c(v=2, w=3), c=c(i=4, j=5, k=6)))

Warning in (function (..., deparse.level = 1) : number of rows of result
#H is not a multiple of vector length (arg 2)

abc

#1124

j 135

k126

Example 11.4 Consider a named toy list of numeric vectors:

x <- list(a=runif(10), b=rnorm(15))

! Which can easily be explained by the fact that matrix elements are stored in a columnwise order.

228 Il DEEPER

Compare the results generated by sapply (which calls simplify2array):

sapply(x, function(e) c(Mean=mean(e)))

a.Mean b.Mean

0.57825 0.12431

sapply(x, function(e) c(Min=min(e), Max=max(e)))
a b

Min 0.045556 -1.9666

Max 0.940467 1.7869

with its version based on do. call and cbind:

sapply2? <- function(...)
do.call(cbind, lapply(...))

sapply2(x, function(e) c(Mean=mean(e)))

a b

Mean 0.57825 0.12431

sapply2(x, function(e) c(Min=min(e), Max=max(e)))
a b

Min 0.045556 -1.9666

Max 0.940467 1.7869

Note that sapply may return an atomic vector with somewhat surprising names.

11.1.4 Beyond numeric arrays

Arrays built upon atomic vectors other than numeric ones are possible too. For in-
stance, later we will stress that comparisons featuring matrices are performed ele-
mentwisely, which results in logical matrices:

A >=3

[,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] TRUE TRUE TRUE

Furthermore, matrices of character strings can be useful too:

matrix(strrep(LETTERS[1:6], 1:6), ncol=3)

[,1] [,2] [,3]
o [1’] uArr HCCCH ”EEEEE”
[2,] "BB" "DDDD" "FFFFFF"

And of course complex matrices:

A+ 11
it [,1] [,2] [,3]

(continues on next page)

11 MATRICES AND OTHER ARRAYS 229

(continued from previous page)
[1,] 1+11 2+11 3+11
[2,] 4+11 5+11 6+11

We are not limited to atomic vectors: lists can be a basis for arrays as well:

matrix(list(1, 11:21, "A", list(1, 2, 3)), nrow=2)
[,1] [.2]

[1,] 1 "

[2,] integer,11 list,3

Some elements are not displayed properly, but they are still there.

11.1.5 Internal representation

An object of S3 class array is an atomic vector or a list equipped with the dims attribute,
which is a vector of nonnegative integers. Interestingly, we do not have to set the class
attribute explicitly: the accessor function class will return an implicit* class anyway
(compare Section 4.4.3).

class(1) # atomic vector

[1] "numeric"

class(structure(1, dim=rep(1, 1))) # 1D array (vector)
##4 [1] "array"

class(structure(1l, dim=rep(1, 2))) # 2D array (matrix)
[1] "matrix" "array"

class(structure(1, dim=rep(1, 3))) # 3D array

[1] "array"

Note that a 2-dimensional array is additionally of class matrix.

Optional dimension names are represented by means of the dimnames attribute, which
is alist of d character vectors, where d is the array’s dimensionality.

(A <- structure(1:6, dim=c(2, 3), dimnames=list(letters[1:2], LETTERS[1:3])))
A BC

#al35s

#b246

dim(A) # or attr(A, "dim")

[1] 2 3

dimnames(A) # or attr(A, "dimnames")

[[1]]

[1] "a" "b"

##

(continues on next page)

2 Also, note that calling unclass on a matrix has no effect.

230 Il DEEPER

(continued from previous page)

[[2]]
[1] ”A n ”B n /Icll

Important Internally, elements in an array are always stored in the columnwise
(column-major, Fortran) order:

as.numeric(A) # drop all attributes to reveal the underlying numeric vector
[1] 123456

Setting byrow=TRUE in a call to the matrix only affects the order in which this function
reads a given source vector, not the column/row-majorness.

(B <- matrix(1:6, ncol=3, byrow=TRUE))
[,1] [.2] [,3]

[1,] 1 2 3

[2,] 4 5 6

as.numeric(B)

[1] 142536

The two said special attributes can be modified through the replacement functions
“dim<-" and ‘dimnames<-" (and of course “attr<-" as well). In particular, changing dim
does not alter the underlying atomic vector; it only affects how other functions, in-
cluding the corresponding print method, interpret their placement on a virtual grid:

“dim<-"(A, c(3, 2)) # not the same as transpose of A
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

What we have obtained is a different view on the same flat data vector. Also, dimnames
were dropped because its size became incompatible with the newly requested dimen-
sionality.

Exercise 11.5 Study the source code of the nrow, NROW, ncol, NCOL, rownames, row. names, and
colnames functions.

Interestingly, for one-dimensional arrays, the names function returns a sensible value
(based on the dimnames attribute which is a list featuring one character vector), despite
the names attribute’s not being set.

What is more, dimnames itself can be named:
names(dimnames(A)) <- c("ROWS", "COLUMNS")
print(A)

(continues on next page)

11 MATRICES AND OTHER ARRAYS 231

(continued from previous page)
COLUMNS
ROWS A B C
al3s’
b24e6

It is still a numeric matrix, but the presentation thereof is slightly prettified.

Exercise 11.6 outer applies a given (vectorised elementwisely) function on each pair of ele-
ments from two vectors, forming a two-dimensional result grid. Based on two calls to rep, im-
plement your own version thereof.

Some examples:

outer(c(x=1, y=10, z=100), c(a=1, b=2, c=3, d=4), "*") # multiplication
a b c d

X 1 2 3 4

#y 10 20 30 40

z 100 200 300 400

outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings

[,11 [.,2] [,3] [,4] [,5] [.6] [,7] [,8]

[1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"

[2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"

"_n

Exercise 11.7 Show how match(y, z)canbeimplementedwith outer. Isitstime and memory
complexity optimal, though?

Exercise11.8 tablecreates a contingency matrix/array that counts the number of unique pairs
of corresponding elements from one or more vectors of equal lengths. Implement its one- and two-
argument version based on tabulate.

For example:

tips <- read.csv(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/other/tips.csv"), comment.char="#") # a data.frame (list)

table(tips[["day"]])

##

Fri Sat Sun Thur

19 87 76 62

table(tips[["smoker"]], tips[["day"]])

##

Fri Sat Sun Thur

#%# No 4 45 57 45

Yes 15 42 19 17

232 Il DEEPER

11.2 Arrayindexing

Array subsetting can be performed by means of an overloaded® *[* method, which we
will usually provide with many indexers — two in the matrix case; see help("[").

In this section, we will be referring to the two following example matrices.

(A <- matrix(1:12, byrow=TRUE, nrow=3))
[1] [,2] [,3] [,4]
[1,] 1 2 3 4
##[2,] 5 6 7 8
[3,] 9 10 11 12

B <- A
dimnames(B) <- list(
c("a", "b", "c"), # row labels

c("x", "y", "z", "w") # column labels

X Yy zZ w
#al 2 3 4
b5 6 7 8
c 9 10 11 12

Subsetting higher-dimensional arrays will be covered at the end.

11.2.1 Arrays are built upon basic vectors

Firstly, let us note, though, that subsetting based on one indexer (as in Chapter 5) will
refer to the underlying flat vector.

For instance:
Al6]
[1] 10

This is the element in the third row, second column: recall that values are stored in a
column-major order.

11.2.2 Selecting individual elements

Mathematically, we say that our example 3-by-4 real matrix A € R3*4 is like:

a1 A12 413 14 1 2 3 4
A=\ a1 app ay3 a4 |=|5 6 7 8
431 A3z A33 A3zq4 9 10 11 12

3 Hidden deeply at the C language level.

11 MATRICES AND OTHER ARRAYS 233

Matrix elements are aligned in a two-dimensional grid. They are organised into rows
and columns. Hence, we can pinpoint a cell using two indexes: 4; ; refers to the i-th
row and the j-th column.

Similarly in R:

A[3, 2] # 3rd row, 2nd column

[1] 10

B["c", "y"] # using dimnames == B[3, 2]
[1] 10

11.2.3 Selecting rows and columns

Some textbooks, and we are fond of this notation here as well, mark with a; . a vector
that consists of all the elementsin thei-throwand witha,_; allitemsin thej-th column.

In R, these will correspond to one of the indexers being left out.

A[3, 1 # 3rd row

[1] 9 10 11 12
A[, 2] # 2nd column
[1] 2 6 10
B["c", 1 # or B[3,]
W oxX Yy z w

9 10 11 12

B[, "y"] # or B[, 2]
a b c

2 6 10

Let us stress that A[1], A[1, 1, and A[, 1] have all different meanings. Also, we see
that the results’ dimnames are adjusted accordingly; see also unname which can take care
of them once and for all.

Exercise11.9 Use duplicated to remove repeating rows in a given numeric matrix (see also
unique).

11.2.4 Dropping dimensions

Extracting an individual element or a single row/column from a matrix yields an
atomic vector. If the dim attribute consists of 1s only, it will be removed whatsoever.

In order to obtain proper row and column vectors, we can request the preservation
of the dimensionality of the output object (and, more precisely, the length of dim) by
passing drop=FALSE to "[.

A[1, 2, drop=FALSE] # 1st row, 2nd columns
[,1]
#4 [1,] 2

(continues on next page)

234 Il DEEPER

(continued from previous page)
A[1, , drop=FALSE] # 1st row
#H [,17 [,2] [,3] [,4]
##[1,] 1 2 3 4
A[, 2, drop=FALSE] # 2nd column

[,1]
[1,] 2
[2,] 6
[3,] 10

Important The drop argument unfortunately defaults to TRUE. Many bugs could be
avoided more easily otherwise, especially when the indexers are generated program-
matically.

See also the drop function which gets rid of the dimensions that have only one level.

Note For list-based matrices, we can also use a multi-argument version of "[[to
extract the individual elements.

C <- matrix(list(1, 11:12, 21:23, 31:34), nrow=2)

C[1, 2] # for °[°, input type is the same as the output type, hence a list
[[1]]

[1] 21 22 23

C[1, 2, drop=FALSE]

[,1]

[1,] integer,3

C[[1, 2]] # extract

[1] 21 22 23

11.2.5 Selecting submatrices

Indexing based on two vectors, both of length two or more, extracts a sub-block of a
given matrix:

A[1:2, c(1, 2, 4)] # rows 1 and 2, columns 1, 2, and 4
[-1] [,2] [,3]

[1,] 1 2 4

#[2,] 5 6 8

B[c("a", "b"), -3]

#OXyw

#al24

b 56 8

11 MATRICES AND OTHER ARRAYS 235

Note again that drop=TRUE is the default, which affects the behaviour if one of the in-
dexers is a scalar.

Alc(1, 3), 3]
[1] 3 11
Alc(1, 3), 3, drop=FALSE]
[,1]
[1,] 3
[2,] 11

Exercise 11.10 Overload the split function for the matrix class in such a way that, given a
matrix with n rows and an object of class factor of length n (or a list of such objects), a list of n
matrices is returned. For example:

split.matrix <- ...to.do...

A <- matrix(1:12, nrow=3) # matrix whose rows are to be split
s <- factor(c("a", "b", "a")) # determines the grouping of rows
split(A, s)

Sa

[,1] [,2] [,3] [,4]

##¢ [1,] 1 4 7 10

#[2,] 3 6 9 12

##

Sb

[,1] [,2] [,3] [,4]

[1,] 2 5 8 11

11.2.6 Selecting elements based on logical vectors

Logical vectors can also be used as indexers, with consequences that are not hard to
guess:

A[c(TRUE, FALSE, TRUE), -1] # select 1st and 3rd row, all but 1st column
[,1] [,2] [,3]

[1,] 4 7 10

[2,] 6 9 12

B[B[, "x"]>1 & B[, "x"]<=9,] # all rows where x is in (1, 9]

#ooXxX 'y z w

b5 6 7 8

c 9 10 11 12

A[2, colMeans(A)>6, drop=FALSE] # 2nd row of the columns with means > 6
[,1] [,2]

[1,] 8 11

Note In Section 11.3, we note that comparisons involving matrices are performed in
an elementwise manner, for example:

236 Il DEEPER

A>7

(1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE TRUE
[2,] FALSE FALSE TRUE TRUE
[3,] FALSE FALSE TRUE TRUE

Such logical matrices can be used to index other matrices of the same size. This always
yields a (flat) vector in return.

A[A>7]
[1] 8 9 10 11 12

This nothing else than the single-indexer subsetting involving two flat vectors (a nu-
meric and a logical one); the dim attributes are not considered here.

Exercise 11.11 Implement your own versions of max. col, lower . tri, and upper. tri.

11.2.7 Selecting based on two-column numeric matrices

We can also index a matrix A with a two-column matrix of positive integers I, for in-
stance:

(I <- cbind(
c(1, 3, 2, 1, 2),
c(2, 3, 2, 1, 4)
)
[,1] [,2]
[1,] 1 2

[2,] 3 3
[3,] 2 2
[4,] 1 1
[5,] 2 4

Now A[I] gives an easy access to:
e A[I[1, 1], I[1, 2]],
« A[I[2, 1], I[2, 2]],
« A[I[3, 1], I[3, 2]],

and so forth. In other words, each row of I gives the coordinates of the elements to
extract.

A[I]
[1] 4 9 5 111

11 MATRICES AND OTHER ARRAYS 237

This is exactly A[1, 2], A[3, 31, A[2, 2], A[1, 1], A[2, 4].The resultis always a
flat vector.

Note which can also return a list of index matrices:

which(A>7, arr.ind=TRUE)

row col
[1,] 2 3
[2,] 3 3
[3,] 1 4
[4,] 2 4
[5,] 3 4

Moreover, arrayInd can be used to convert flat indexes to multidimensional ones.

Exercise 11.12 Implementyour own version of arrayInd and a function performing the inverse
operation.

Exercise 11.13 Implement your own version of diag.

11.2.8 Higher-dimensional arrays
For d-dimensional arrays, indexing can involve up to d indexes.

This is particularly useful for dim-named arrays that represent contingency tables over
a Cartesian product of multiple factors. The built-in datasets: : Titanic object is an
example of this:

str(dimnames(Titanic)) # for reference (note that dimnames are named)
List of 4

S Class : chr [1:4] "ist" "2nd" "3rd" "Crew"
S Sex 2 chr [1:2] "Male" "Female"
S Age :chr [1:2] "Child" "Adult"

S Survived: chr [1:2] "No" "Yes"
Titanic["Crew", "Male", "Adult", "Yes"]
[1] 192

gives the number of adult male members of the crew who survived the accident. Also:

Titanic["Crew", , "Adult",]
Survived
Sex No Yes
Male 670 192
Female 3 20

and so on.

238 Il DEEPER

Exercise 11.14 Check if the above four-dimensional array can be indexed by means of matrices
with four columns.

11.2.9 Replacing elements

There is of course also a multidimensional version of the replacement subsetting func-
tion, "[<-".

Generally, subsetting drops all attributes except names, dim, and dimnames (unless it
does not make sense otherwise). The replacement variant of the index operator mod-
ifies vector values but generally preserves all the attributes.

This enables transforming matrix elements like:

B[B<10] <- A[B<10]"2
print(B)

##oOoXx y z w

a 1 16 49 100
#4# b 4 25 64 121
c 9 10 11 12
B[] <- rep(seq_len(NROW(B)), NCOL(B)) # NOT the same as B <- ...
print(B)
#OoXyzw
##al111
#b2222

c 3333

Take note of the preservation of dimand dimnames.

Exercise 11.15 Given a character matrix with entities that can be interpreted as numbers like:

(X <- rbind(X:C(a:”l”, b:”2”), y:C(”3”, u4u)))

a b
P Y
##y "3" "

convert it to a numeric matrix with a single line of code. Preserve all attributes.

11.3 Common pperations
11.3.1 Matrix transpose

The matrix transpose, mathematically denoted with AT, is available via a call to t:

11 MATRICES AND OTHER ARRAYS 239

(A <- matrix(1:6, byrow=TRUE, nrow=2))
[1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

t(A)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Hence, if B = AT, then it is a matrix such that b;; = aj;. In other words, in the
transposed matrix, rows become columns and columns become rows.

For higher-dimensional arrays, a generalised transpose can be achieved with aperm
(try permuting the dimensions of Titanic). Also note that the conjugate transpose of
a complex matrix A is done via Conj(t(A)).

11.3.2 Vectorised mathematical functions

Vectorised functions such as sqrt, abs, round, log, exp, cos, sin, etc., operate on each
element of a given array*.

A <- matrix(1/(1:6), nrow=2)

round(A, 2) # rounds every element in A
[,1] [,2] [,3]

#4 [1,] 1.0 0.33 0.20

#4 [2,] 0.5 0.25 0.17

Exercise 11.16 Using a single call to matplot, which accepts the y argument be a matrix, draw
a plot of sin(x), cos(x), | sin(x)|, and | cos(x)|forx € [—27,671].

11.3.3 Aggregating rows and columns

When we call an aggregation function on an array, it will reduce all elements to a single
number:

(A <- matrix(1:12, byrow=TRUE, nrow=3))
[,1] [,2] [,3] [.,4]

##[1,] 1 2 3 4

##[2,] 5 6 7 8

[3,] 9 10 11 12

mean(A)

[1] 6.5

4 They are simply applied on each element of the underlying flat vector. In Section 5.5, we have men-
tioned that unary functions preserve all attributes of their inputs, hence also dim and dimnames.

240 Il DEEPER

The apply function may be used to summarise individual rows or columns in a matrix:
- apply(A, 1, f)applies a given function f on each row of a matrix A;
. apply(A, 2, f)applies f on each column of A.

For instance:

apply(A, 1, mean) # synonym: rowMeans(A)
[1] 2.5 6.5 10.5

apply(A, 2, mean) # synonym: colMeans(A)
[1] 56 7 8

Note that the function being applied does not have to return a single number:

apply(A, 2, range) # min and max

[,1] [,2] [,3] [,4]

#4 [1,] 1 2 3 4

[2,] 9 10 11 12

apply(A, 1, function(row) c(Min=min(row), Mean=mean(row), Max=max(row)))
[,1] [,2] [,3]

Min 1.0 5.0 9.0

Mean 2.5 6.5 10.5

Max 4.0 8.0 12.0

Take note of the columnwise order of the output values.

apply works on higher-dimensional arrays too:

apply(Titanic, 1, mean) # 1st dimension - Class

1st 2nd 3rd Crew

40.625 35.625 88.250 110.625

apply(Titanic, c(1, 3), mean) # w.r.t. Class (1st) and Age (3rd)
Age

Class Child Adult

1st 1.50 79.75

2nd 6.00 65.25

3rd 19.75 156.75

Crew 0.00 221.25

11.3.4 Binary operators

In Section 5.5, we have stated that binary elementwise operations, such as addition
or multiplication, preserve the attributes of the longer input or both (with the first
argument preferred to the second) if they are of equal sizes.

Taking into account that:

- anarray is simply a flat vector equipped with the dim attribute, and

11 MATRICES AND OTHER ARRAYS 241

- we refer to the respective default methods when applying binary operators

allows us to deduce how "+, “<=", “&", etc. behave in a number of different contexts.

Array-Array. First, let us note what happens when we operate on two arrays of
identical dimensionalities.

(A <- rbind(c(1, 10, 100), c(-1, -10, -100)))
##t [,1] [,2] [,3]

[1,] 1 10 100

[2,] -1 -10 -100

(B <- matrix(1:6, byrow=TRUE, nrow=2))

w# [-1] [,2] [,3]

[1,] 1 2 3

#w [2,] 4 5 6

A + B # elementwise addition

[-1]1 [,2] [,3]

[1,] 2 12 163

[2,] 3 -5 -94

A * B # elementwise multiplication (not: algebraic matrix multiply)
[,1] [,2] [,3]

[1,] 1 20 300

[2,] -4 -50 -600

This is simply the addition and multiplication of the corresponding elements of two
given matrices.

Array-Scalar. Second, we can apply scalar-matrix operations:

(-1)*B

[,1] [,2] [,3]

[1,] -1 -2 -3

[2,] -4 -5 -6

AN2

[,1] [,2] [,3]
[1,] 1 100 10000
[2,] 1 100 10000

These multiplied each element in B by -1 and squared every element in A, respectively.

Also note that the behaviour of relational operators is similar:

A>=18&A <= 100

[1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE

242 Il DEEPER

Array-Vector. Next, based on the recycling rule and the fact that elements are ordered
columnwisely, we get that:

B * c(10, 100)

##t [,1] [,2] [,3]
[1,] 10 20 30
[2,] 400 500 600

multiplied every element in the first row by 10 and each element in the second row by
100.

Note that if wish to multiply each element in the first, second, ..., etc. column by the
first, second, ..., etc. value in a vector, we should not call:

B * c(1, 100, 1000)

[,1] [,2] [,3]
[1,] 1 2000 300
[2,] 400 5 6000

but rather:

t(t(B) * c(1, 100, 1000))
[,1] [,2] [,3]
[1,] 1 200 3000
[2,] 4 500 6000

or:

t(apply(B, 1, “*', c(1, 100, 1000)))
[,1] [,2] [,3]
[1,] 1 200 3000
[2,] 4 500 6000

Exercise 11.17 Write a function which standardises the values in each column of a given mat-
rix: for each column, from every element, subtract the mean and then divide it by the standard
deviation. Try to do it in a few different ways, including via a call to apply, sweep, scale, or
based solely on arithmetic operators.

Note Some sanity checks are being done on the dim attributes, so not every configur-
ation is possible. Notice the following peculiarities:

getOption("error"

NULL

A + t(B) # dim==c(2, 3) vs dim==c(3, 2)

Error in A + t(B): non-conformable arrays

A * cbind(1, 10, 100) # this is too good to be true

Error in A * cbind(1, 10, 100): non-conformable arrays

(continues on next page)

11 MATRICES AND OTHER ARRAYS 243

(continued from previous page)
A * rbind(1, 10) # but A * c(1, 10) works...
Error in A * rbind(1, 10): non-conformable arrays

A+ 1:12
Error in eval(expr, envir, enclos): dims [product 6] do not match the
length of object [12]

A + 1:5 # partial recycling is okay

Warning in A + 1:5: longer object length is not a multiple of shorter
object length

[,1] [,2] [,3]

[1,] 2 13 105

[2,] 1 -6 -99

11.4 Numerical matrix algebra (*)

Many data analysis and machine learning algorithms, in their essence, involve quite
simple matrix algebra and numerical mathematics. Suffice to say that anyone serious
about data science and scientific computing should learn the necessary theory; see,
for example, [29] and [30].

Risaconvenient interface to the well-tested and stable algorithms from, amongst oth-
ers, LAPACK and BLAS®. Below we mention only a few of them. Note that there are many
third-party packages featuring hundreds of algorithms tackling differential equa-
tions, constrained and unconstrained optimisation, etc.; exploring the relevant CRAN
Task Views® can give a good overview.

11.4.1 Matrix multiplication

performs elementwise multiplication. For what we call (algebraic) matrix multi-
plication, we should use the “%*%" operator.

Refreshing from a basic linear algebra course, matrix multiplication can only be per-
formed on two matrices of compatible sizes: the number of columns in the left matrix
must match the number of rows in the right operand.

Given A € R™" and B € R”*", their multiply is a matrix C = AB € R such
that¢; ; is the dot product of the i-th row in A and the j-th column in B:

p
cij=a; b ;= Z ai,kbk,j/
k=1

5 (*) Note that we can select the underlying implementation of BLAS at R’s compile time; see Section A.3
in [61]. Some of them are faster than others.
6 https://cran.r- project.org/web/views/

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/

244 Il DEEPER

fori=1,...,nandj=1,...,m.

For instance:

(A <- rbind(c(1, 1, 1), c(-1, 1, 0)))
[,1] [.2] [,3]

##[1,] 1 1 1

##[2,] -1 1 0

(B <- rbind(c(3, -1), c(1, 2), c(6, 1)))
[,1] [,2]

[1,] 3 -1

#[2,] 1 2

[3,] 6 1

A %*% B

[,1] [,2]

[1,] 10 2

[2,] -2 3

Note When applying "%*%" on one or more flat vectors, their dimensionality will be
promoted automatically to make the operation possible. Note that, however, c(a, b)
%*% c(c, d) givesascalarac + bd, and not a 2-by-2 matrix.

Further, crossprod(A, B) yields AIB and tcrossprod(A, B) determines ABT more
efficiently than relying on "%*%" . Note that we can omit the second argument and get
AT A and AA, respectively

crossprod(c(1, 1)) # Euclidean norm squared

[,1]

[1,] 2

crossprod(c(1, 1), c(-1, 1)) # dot product of two vectors
[,1]

w [1,] 0

crossprod(A) # same as t(A) %*% A, i.e., dot products of all column pairs
[,1] [.2] [,3]

[1,] 2 (0] 1

[2,] 0 2 1

[3,] 1 1 1

Recall that if the dot product of two vectors is equal to o, we say that they are ortho-
gonal (perpendicular).

Exercise 11.18 (*) Write your own versions of cov and cor: functions to compute the covariance
and correlation matrices. Make use of the fact that the former can be determined with crossprod
based on a centred version of an input matrix.

11 MATRICES AND OTHER ARRAYS 245

11.4.2 Solving systems of linear equations

The solve function can be used to solve m systems of n linear equations of the form
AX = B, where A € R™" and X, B € R (via the LU decomposition with partial
pivoting and row interchanges).

11.4.3 Norms and metrics

Given an n-by-m matrix A, calling norm(A, "1"), norm(A, "2"), and norm(A, "I"), we
can compute the operator norms:

n
Al = maxj_y g 4l
IAX|
1Al 71 (A) = SUPgycpm TxI2

% lIxl>
1Al Max;_1,.n Xi=1 i,

where o gives the largest singular value (see below).

Also, passing "F" as the second argument yields the Frobenius norm, [|Allp =

n m
Yot Zj:l al.z,]., and "M" computes the max norm, ||All; = maxfill’fj_":,i la; ;1.
Note thatif A is a column vector, then |A||r and ||A||, are equivalent and are referred to
asthe Euclidean norm. Moreover, ||Allp; = I|All; give the supremum norm and outputs
lAll; the Manhattan (taxicab) one.

Exercise 11.19 Given an n-by-m matrix A representing m vectors in R", normalise each
column so that you obtain m unit vectors, i.e., whose Euclidean norm is 1.

Further, dist determines all pairwise distances between a set of n vectors in R™, writ-
ten as a n by m matrix.

For example, let us consider three vectors in R?:

(X <- rbind(c(1, 1), c(1, -2), c(0, 0)))
[,1] [,2]

[1,] 1 1

[2,] 1 -2

[3,] 0 0

as.matrix(dist(X, "euclidean"))

1 2 3

1 0.0000 3.0000 1.4142

2 3.0000 0.0000 2.2361

3 1.4142 2.2361 0.0000

From that we see that the distance between the 1st and the 3rd vector is ca. 1.41421.
Euclidean, maximum, Manhattan, and Canberra distances/metrics are available,
amongst others.

Exercise 11.20 dist returns an object of S3 class dist. Inspect how it is represented.

Example11.21 adistimplements a couple of string metrics. For example:

246 Il DEEPER

x <- c("spam", "bacon", "eggs", "spa", "spams", "legs")
names(x) <- x

(d <- adist(x))

spam bacon eggs spa spams legs

spam %] 5 4 1 1
bacon 5
eggs 4
spa 1
spams 1
legs 4

L L i 1 ©
N A RN G0
A N O AU
A O N AN O
S A AN O A

gives the Levenshtein distances between each pair of strings. In particular, we need two edit op-
evations (character insertions, deletions, or replacements) to turn "eggs"into "legs" (add L and
remove g).

Example 11.22 Objects of class dist can be used to perform hierarchical clusterings of datasets.
For example:

h <- hclust(as.dist(d), method="average") # see also: plot(h, labels=x)
cutree(h, 3)

spam bacon eggs spa spams legs

1 2 3 1 1 3

yields a grouping into 3 clusters determined by the average linkage ("legs" and "eggs" are

"o "o

grouped together, "spam", "spa”, "spams" form another cluster, and "bacon" is a singleton).

11.4.4 Eigenvalues and eigenvectors

eigen returns a sequence of eigenvalues (Aq, ..., A,,) (ordered nondecreasingly w.r.t.
|A;]) and a matrix V whose columns define the corresponding eigenvectors (scaled to
unit length) of a given matrix X. To recall, by definition it holds that Xv. ; = A;v. ;.

Here are the eigenvalues and the corresponding eigenvectors of an example matrix
(defining rotation in 2D by 71/3):

(R <- rbind(c(cos(pi/3), -sin(pi/3)), c(sin(pi/3), cos(pi/3))))
[,1] [,2]

[1,] 0.50000 -0.86603

[2,] 0.86603 0.50000

eigen(R)

eigen() decomposition

Svalues

[1] 0.5+0.866031 0.5-0.866031

##

Svectors

[,1] [,2]

(continues on next page)

11 MATRICES AND OTHER ARRAYS 247

(continued from previous page)
[1,] 0.70711+0.000001 0.70711+0.000001
[2,] 0.00000-0.707111 0.00000+0.707111

Example11.23 Consider a pseudorandom sample from a bivariate” normal distribution; see
Figure11.1.

Z <- matrix(rnorm(2000), ncol=2) # independent N(O, 1)
Z <- Z %*% rbind(c(1, 0), c(0, sqrt(5))) # scaling

Z <- Z %*% R # rotation

Z <- t(c(10, -5) + t(Z)) # translation

plot(Z, asp=1)

-2

Z[,2]

-8

5 10 15

Figure 11.1: Example bivariate normal sample

It is known that eigenvectors of the covariance matrix correspond to the principal components of
the original dataset and the eigenvalues give the variance explained by them:

eigen(cov(Z))

eigen() decomposition
Svalues

[1] 5.18609 0.98386
##

Svectors

[,1] [.2]

(continues on next page)

7 For drawing random samples from any multivariate distribution, refer to the theory of copulas, e.g.,
[45]. There are a few R packages on CRAN that implement the most popular models.

248 Il DEEPER

(continued from previous page)
[1,] -0.86715 0.49804
[2,] -0.49804 -0.86715

this roughly corresponds to the principal divections [sin(7t/3), cos(7t/3)] and the thereto-
orthogonal [cos(7t/3), — sin(7r/3)] with variances of 5 and 1, respectively. Still, this method
of performing a PCA is not particularly numerically stable; see below for an alternative.

11.4.5 QR decomposition

We say that a real n-by-m matrix Q, n > m, is orthogonal, whenever Q7 Q = I (iden-
tity matrix) which is equivalent to its columns being orthogonal unit vectors (note that
if Q is a square matrix, then Q7 = Q! ifand onlyif Q”Q = QQ” =1I).

Let A be a real® n-by-m matrix with n > m. Then A = QR is its QR decomposition
(in the so-called narrow form), if Q is an orthogonal n-by-m matrix and R is an upper
triangular m-by-m one.

The qr function returns an object of S3 class qr from which we can extract the two
components; see the gr.Q and gr.R functions.

Example11.24 Let X be an n-by-m data matrix, representing n points in R™, and a vector
y € R" of the desired outputs corresponding to each input. For fitting a linear model x* 0,
where 0 is a vector of m parameters, we can use the method of least squares, which minimises

L) =Y (xT0—y,)" = 1X0 - y13

i=1

-1
It might be shown that if X = QR, then 0 = (X'X) X'y = R™1QTy, which can
conveniently be determined via a call to gr . coef.

In particular, we can fit a simple linear regression model y = ax + b by consideringX = [x,1]
and @ = [a, b], for example (see Figure 11.2):

x <- cars[["speed"]]
y <- cars[["dist"]]
X <- cbind(x, 1) # the model is theta[1]*x + theta[2]*1

qrX <- qr(X)
(theta <- solve(qr.R(qrX)) %*% t(qr.Q(qrX)) %*% y) # or: qgr.coef(qrX, y)
#H [,1]
x 3.9324
-17.5791

plot(x, y, xlab="speed", ylab="dist") # scatter plot
abline(theta[2], theta[1], lty=2) # add the regression line

8 A can also be a complex matrix, which results in its QR decomposition’s being such that Q is a unitary
matrix.

11 MATRICES AND OTHER ARRAYS 249

SE o
o
8t
o]
0 O_1
2 o = /’6/
o -8
2ot o Q--70
= o .9 g o)
0 T 0
Qt _-“00©
o _o-9O OO0 o f0)
. - 9,9'@ o0 8
~ 0-7700 g5
o __.--~ o
(o} = Q’Tl © 1 1 1 1
5 10 15 20 25
speed

Figure 11.2: The built-in cars dataset and the fitted regression line

Note that solve with one argument determines the inverse of a given matrix. The fitted model is
y =3.93241x — 17.5791.

The same approach is used by Um. fit, which is the workhorse behind the lmmethod accepting an
R formula (which some readers might be familiar with; compare Section 17.6).

Im. fit(cbind(x, 1), y)[["coefficients"]] # also: Im(dist~speed, data=cars)
X
3.9324 -17.5791

11.4.6 SVD decomposition

Given a real n-by-m matrix X, its singular value decomposition (SVD) is given by X =
UDVT, where D is a p-by-p diagonal matrix (featuring the so-called singular values of
X,dig > ... 2 dp,p > 0, p = min{n, m}) and U, V are orthogonal matrices of size
n-by-p and m-by-p, respectively.

svd may not only be used to determine the solution to linear regression® but also to per-
form the principal component analysis'®. Namely, V gives the eigenvectors of X' X.
Assuming that X is centred at 0, the latter is precisely its scaled covariance matrix.

Example11.25 Continuing the PCA example above, we can determine the principal directions
also by calling:

-1
9 As the pseudoinverse X* = (XTX) " XT = VvD*UT = R71QT, with X*X = I. Here D" isa
transposed version of D featuring the reciprocals of its non-zero elements.
10 See the source code of getS3method("prcomp", "default").

250 Il DEEPER

Zc <- apply(Z, 2, function(x) x-mean(x)) # centred version of Z
svd(Ze)[["v"]]

[,1] [,2]

[1,] -0.86715 0.49804

[2,] -0.49804 -0.86715

11.5 S4classes (%)

The concept of the S3-style object oriented programming is based on a brilliantly
simple idea (see Chapter 10): calling a generic f(x) automatically dispatches to a
method f.class_of_x(x) or f.default(x) in the case where the former does not ex-
ist. Naturally, it has some inherent limitations:

« classes cannot be formally defined; the class attribute may be assigned arbitrarily
onto any object”,

« argument dispatch is performed only'* with regard to one data type®.

In most cases, and with appropriate level of mindfulness, this is not a problem at all.
However, it is a typical condition of programmers who come to our world from more
mainstream languages (e.g., C++; yours truly included) until they appreciate the true
beauty of R’s being somewhat different. Before they fully develop such an acquired
taste, though, they grow restless as “R is not a real object oriented system because it
lacks polymorphism, encapsulation, formal inheritance, and so on and so forth, and
something must be done about it”. The truth is that it had not have to, but with high
probability it would have anyway in one way or another.

And so when the fourth version of the S language was introduced in 1998 (see [9]),
it brought a new object oriented system which we are used to referring to as S4. Its
R version has been implemented in the methods package. Below we discuss it briefly;
for more details, see help("Classes_Details") and help("Methods_Details") as well
as [10] and [11].

Note (*) S4 was loosely inspired by the Common Lisp Object System (with its def-
class, defmethod, etc.; see, e.g., [20]). In the current author’s opinion, the S4 system
is somewhat an afterthought. Due to appendages like this, R seems like a patchwork

11 A partial solution to this could involve defining a method like validate.class_name, that is called fre-
quently and which checks whether a given object enjoys some desired constraints.

12 Although there are functions featuring some workarounds (see, e.g., cbind which dispatches to cbind.
data.frame if one argument is a data frame and the remaining ones are vectors or matrices). Also, we said
in the previous chapter that binary operators consider the classes of both operands.

3 Hypothetically, we can imagine an OOP system relying on methods named like method.class_name1.
class_name2 where dispatching is based on two argument types. This would be beautiful, but it is not the
caseinR.

11 MATRICES AND OTHER ARRAYS 251

language; suffice it to say that it was not the last attempt to do a somewhat more real
OOP in the overall functional R: the story will continue in Section 16.1.5.

The main problem with all the OOP approaches is that each of them is parallel to S3
which never lost its popularity and is still at the very core of our language. We are
thus covering them for the sake of completeness, because that's what must be done.
After all, with non-zero probability, the reader will sooner or later come across such
objects (e.g., below we explain the meaning of notation like x@slot). Also, yours truly
rebelliously suggests taking statements such as “for new projects, it is recommended
to use the more flexible and robust S4 scheme provided in the methods package” (see
help("UseMethod")) with a pinch of salt.

11.5.1 Defining S4 classes
An S4 class can formally be registered by means of a call to setClass.

For instance:

library("methods") # in the case where it is not auto-loaded
setClass("categorical", slots=c(data="integer", levels="character"))

defines a class named categorical with two slots data and levels being integer and
character vectors, respectively. Note that this notation is already quite peculiar: there
is no assignment which would suggest that we have introduced something novel.

An object of the above class can be instantiated by calling new:

z <- new("categorical", data=c(1L, 2L, 2L, 1L, 1L), levels=c("a", "b"))
print(z)

An object of class "categorical”

Slot "data":

[1] 1221 1

##
Slot "levels":
[1] "a" "b"

That z is of the recently-introduced class can be verified as follows:

is(z, "categorical")

[1] TRUE

class(z) # also: attr(z, "class")
[1] "categorical”

attr(, "package")

[1] ".GlobalEnv"

Important Some R packages will be importing from the methods only for the sake of

252 Il DEEPER

being able to access the convenient is function — it does not mean they are defining
new S4 classes.

Note S4 objects are marked as being of the following basic type:

typeof(z)
[1] "S4"

For technical details on how they are internally represented, see Section 1.12 in [62].
In particular, in our case, all the slots are simply stored as object attributes:

attributes(z)

Sdata

[1] 1221 1
##

Slevels

[1] "a" "b"

##

Sclass

[1] "categorical”
attr(, "package")
[1] ".GlobalEnv"

11.5.2 Accessing slots

Reading or writing slot contents can be done by means of the *@" operator and the slot
function or their replacement versions.

z@data # or slot(z, "data")
[1] 122 1 1
z@levels <- c("A", "B")

Note The '@ operator can only be used on S4 objects and some sanity checks are
automatically performed:

z@unknown <- "spam"

Error in (function (cl, name, valueClass) : 'unknown' is not a slot in
#H class "categorical”

z@Qdata <- "spam"

Error in (function (cl, name, valueClass) : assignment of an object of
class "character" is not valid for @'data' in an object of class
#H "categorical”; is(value, "integer") is not TRUE

11 MATRICES AND OTHER ARRAYS 253

11.5.3 Defining methods

For the S4 counterparts of the S3 generics (Section 10.2), see help("setGeneric").
Luckily, there is a good degree of interoperability between the S3 and S4 systems.

Let us start by introducing a new method for the well-known as.character generic.
Instead of defining as.character.categorical, we need to register a new routine with
setMethod.

setMethod(
"as.character", # name of the generic
"categorical”, # class of 1st arg; or: signature=c(x="categorical")
function(x, ...) # method definition
x@levels[x@data]
)
Testing:

as.character(z)
[1] "A" "B" "B" "A" "A"

The S4 counterpart of print is show:

setMethod(

"show",

"categorical”,

function(object)

{
x_character <- as.character(object)
print(x_character) # calls ‘print.default"’
cat(sprintf("Categories: %s\n",

paste(object@levels, collapse=", ")))

Interestingly, it is involved automatically upon a call to print:

print(z) # calls ‘show' for ‘categorical’
[1] NA n HB n HB n ”A n ”A "
Categories: A, B

Methods that dispatch on the type of multiple arguments are possible too, for example:

setMethod(
"split",
c(x="ANY", f="categorical"),
function (x, f, drop=FALSE, ...)
(continues on next page)

254 Il DEEPER

(continued from previous page)

split(x, as.character(f), drop=drop, ...)

allows the first argument to be of any type (like a default method), and:

setMethod(
"split",
c(x="matrix", f="categorical"),
function (x, f, drop=FALSE, ...)
lapply(
split(seq_len(NROW(x)), f, drop=drop, ...), # calls the above
function(i) x[1, , drop=FALSE])

is a version tailored for matrices. Testing:

A <- matrix(1:35, nrow=5) # whatever
split(A, z) # matrix,categorical

SA

[,1] [,2] [,3] [,4] [,5] [.6] [,7]
[1,] 1 6 11 16 21 26 31
[2,] 4 9 14 19 24 29 34
[3,] 5 10 15 20 25 30 35
##

SB

[,1] [,2] [,3] [,4] [,5] [.6] [,7]
#¢ [1,] 2 7 12 17 22 27 32
#4 [2,] 3 8§ 13 18 23 28 33
split(1:5, z) # ANY,categorical

SA

[1] 145

##

SB

[1] 2 3

Exercise 11.26 Overload the *[* operator for the categorical class

11.5.4 Defining constructors

We can also overload the initialize method which is automatically called by new:

setMethod(
"initialize", # class name
"categorical", # method name
function(.Object, x)

(continues on next page)

11 MATRICES AND OTHER ARRAYS 255

(continued from previous page)
{ # the method itself
X <- as.character(x) # see above
Xu <- unique(sort(x)) # drops NAs

.Object@data <- match(x, xu)
.Object@levels <- xu

.Object # return value - a modified object

This allows for constructing new objects of class categorical based on an object like x
above, for instance:

w <- new("categorical", c("a", "c", "a", "a", "d", "c"))
print(w)

[1] "a" "c" "a" "a" "d" "c"

Categories: a, c, d

Note that we have not set the two slots directly. They were automatically taken care of
by initialize.

Exercise 11.27 Set up a validating method for our class; see help("setValidity").

11.5.5 Inheritance
New S4 classes can be derived from existing ones, for instance:

setClass("binary", contains="categorical")

is a child class inhering all slots from its parent. We can, for example, overload the
initialisation method for it:

setMethod(

"initialize",

"binary",

function(.0Object, x)

{
X <- as.character(as.integer(as.logical(x)))
xu <- c("e", "1")
.Object@data <- match(x, xu)
.Object@levels <- xu
.Object

Testing:

256 Il DEEPER

new("binary", c(TRUE, FALSE, TRUE, FALSE, NA, TRUE))
[1] "1" "0" "1" "9" NA "1"
Categories: 0, 1

Note that we are still using the show method of the parent class.

11.5.6 A note on the Matrix package

The Matrix package is perhaps the most widely known showcase of the S4 object-
orientation (and that is the reason why we cover S4 in this very chapter). It defines
classes and methods for dense and sparse matrices, including rectangular, symmet-
ric, triangular, band, and diagonal ones.

For instance, large graph (e.g., in network sciences) or preference (e.g., in recom-
mender systems) data can be represented using sparse matrices (those which feature
many os; after all, it is extremely more common for two vertices in a network to not be
joined by an edge than to be connected).

For example:

library("Matrix")

(A <- Diagonal(x=1:5))

5 x 5 diagonal matrix of class "ddiMatrix"
[,1] [,2] [,3] [,4] [.5]

[1,] 1

[2,] . 2 .

[3,] . . 3 .

[4,] . . . 4 .

[5,] 5

created a real diagonal matrix. Moreover:

B <- as(A, "sparseMatrix")

B[1, 2] <- 7

B[4, 1] <- 42

print(B)

#4 5 x 5 sparse Matrix of class "dgCMatrix"
##

[1,] 17 .

#[2,] . 2.

#4[3,] . . 3.

[4,] 42 . . 4 .

#[5] 5

yields a general sparse real matrix in the CRC (compressed, sparse, column-oriented)
format.

For more information on the package, see vignette(package="Matrix").

11 MATRICES AND OTHER ARRAYS 257

11.6 Exercises

Exercise 11.28 Let X be a matrix with dimnames set, e.g.:

X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix
dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names
print(X)

a b c d

[1,]1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

Explain (in your own words) the meaning of the following expressions involving matrix subset-
ting. Note that not each of them is valid.

< X1,],

« X[, 3],

e X[, 3, drop=FALSE],

« X[3],

e X[, "a"],

e X[, ¢("a", "b", "c")],
o X[, -2],

« X[X[,1] > 5,],

« X[X[,1]>5, ¢("a", "b", "c")],

o X[X[,1]>=5 & X[,1]<=10,],

o X[X[,1]>=5 & X[,1]<=10, c("a", "b", "c")],
e X[, (1, "b", "d")].

Exercise 11.29 Assuming that Xis an array, what are the differences between the following in-
dexing schemes?

e X["1", JvsX[1,],

e X[, "a", "b", "c"JvsX["a", "b", "c"JvsX[, c("a", "b", "c")]vsX[c("a", "b",
"e)],

o X[1]vs X[, 1]JvsX[1,],

o X[X>0]vs X[X>0, JvsX[, X>0],

o X[X[, 1]>0]vsX[X[, 1]>0,]vs X[, X[,1]>0],

o X[X[, 1]>5, X[1, J<10]vsX[X[1,]>5, X[, 1]<10].

258 Il DEEPER

Exercise 11.30 Give a few ways to create a matrix like:

[,1] [,2]

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 2 1

[5,] 2 2

[6,] 2 3
and one like:

[,1] [,2] [,3]
[1,] 1 1

[2,] 1 1 2
[3,] 1 2 1
[4,] 1 2 2
[5,] 1 3 1
[6,] 1 3 2
w [7,] 2 1 1
[8,] 2 1 2
[9,] 2 2 1
[10,] 2 2 2
[11,] 2 3 1
[12,] 2 3 2

Exercise 11.31 For a given real n-by-m matrix X, determine the bounding hyperrectangle of
thusly encoded n input points in an m-dimensional space. Return a 2-by-m matrix B with

bl/j = mini xl',]' and bzlj = max; xl‘,]'.

Exercise11.32 Let t be vector of n integers in {1, ..., k}. Write a function to one-hot-encode

each t;: return a o-1 matrix R of sizen-by-k such thatr; ; = 1ifand only ifj = t;. For example,
ift =[1,2,3,2,4)andk = 4, then:

1 000
01 00
R={0 010
0100
0001

On a side note, such a representation is useful when solving, e.g., a multiclass classification prob-
lem by means of k binary classifiers.

Then, write another function, but this time setting r; ; = lifandonly ifj > t;, e.g.:
111

=

Il
OO OO
O = O =
O ==
_ e e

11 MATRICES AND OTHER ARRAYS 259

Important Kind reminder: as usual, try to solve all the exercises without the use of
explicit for and while loops (provided that it is possible).

Exercise 11.33 Given an n-by-k real matrix, apply the softmax function on each row, i.e., map
exp(x,-,]-)

x;,j to . Then, one-hot decode the values in each row, i.e., find the column number

Sle1 xp(x; 1)
with the greatest value. Return a vector of size n with elementsin {1, ..., k}.

Exercise 11.34 Assume that an n-by-d real matrix X represents n points in R%. Write a func-
tion (but do not refer to dist) that determines the pairwise distances between all the n points and
agiveny € R4, Return a vectord of lengthnwithd; = |Ix; . — yll,.

Exercise11.35 Let X and Y be two real-valued matrices of sizes n-by-d and m-by-d, respect-
ively, representing two sets of points in R?. Return an integer vector r of length m such that r;
indicates the index of the point in X with the least distance to (the closest to) the i-th pointin Y,
ie,r; =arg min]- ||X]~,, =Y.l

Exercise 11.36 Write your own version of the built-in utils::combn.

Exercise 11.37 Time series are vectors or matrices of class ts equipped with the tsp attribute,
amongst others. Refer to help("ts") for more information about how they are represented and
what S3 methods have been overloaded for them.

Exercise 11.38 (*) Numeric matrices can be stored in a CSV file, amongst others. Usually, we
will be loading them via read. csv, which returns a data frame (see Chapter 12), for example:

X <- as.matrix(read.csv(
pasted(
"https://github.com/gagolews/teaching-data/",
"raw/master/marek/eurxxx-20200101-20200630.csv"
)s
comment.char="#",
sep=","

)

Write your own function read_numeric_matrix(file_name, comment, sep)whichisinstead
based on a few calls to scan. Use file to establish a file connection to be able to ignore the com-
ment lines and fetch the column names before reading the actual numeric values.

Exercise 11.39 (*) Using readBin, read the t10k-1images-idx3-ubyte.gz from the MNIST
database homepage™. The output object should be a three-dimensional, 10000-by-28-by-28 ar-
ray with real elements between 0 and 255. Refer to the File Formats section therein for more de-
tails.

Exercise 11.40 (**) Circular convolution of discrete-valued multidimensional signals can be
performed by means of fft and matrix multiplication, whereas affine transformations require

4 https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist/

https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist/
https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist/

260 Il DEEPER

only the latter. Apply various image transformations such as sharpening, shearing, and rotating
on the MNIST digits and plot the results using the image function.

Exercise 11.41 (*) Using constrOptinm, find the minimum of the Constrained Betts Function
f(x1,xp) = 0.01x% + x3 — 100 with linear constraints 2 < x; < 50, —50 < x, < 50, and
10x1 = 10 + x,. (**) Also, use solve. QP from the quadprog package of find the minimum.

12

Data frames

Most matrices are built on top of atomic vectors and hence allow items of the same
type to be arranged into rows and columns. Data frames (objects of S3 class data.
frame, firstintroduced in [13]), on the other hand, are collections of vectors of the same
lengths or matrices with identical row counts, hence allowing to represent structured!
data of possibly heterogeneous types, for instance:

class(iris) # ‘iris’ is an example built-in data frame
[1] "data.frame"
iris[c(1, 51, 101), 1 # 3 chosen rows from ‘iris’

#H Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
101 6.3 3.3 6.0 2.5 virginica

is a mix of numeric and factor-type data.

The good news is that not only data frames are built upon named lists (e.g., to extract
a column we can refer to "[["), but also many functions recognise them to be matrix-
like, (e.g., to select specific rows and columns, two indexes can be passed to “[" like in
the example above). Hence, it will soon turn out that we already know a lot about how
to perform basic data wrangling activities, even if we do not full realise it now.

Important Some of us will approach this chapter biased by what we know from else-
where, including our experience with some popular third-party packages for data
frame processing. The art is to filter out that information as noise (at least, for the
time being). We will show how powerful base R vocabulary is and how much can be
implied from the material covered in the preceding chapters. And yes, this book is like
a good thriller/drama/love story: it is meant to be read from the beginning to end, so
please go back to the start of this comprehensive course if you happened to pop in here
by accident or driven by “but I need to know now”. Good morning.

! We are already highly skilled in handling unstructured data and turning it to something that is much
more regular: the numerous functions for processing numeric and character vectors as well as lists that we
have covered in the first part of this book allow us to extract meaningful data from text, handle missing
values, engineer features, and so forth.

262 Il DEEPER

12.1 Creating data frames
12.1.1 data.frame and as.data.frame

Most frequently, we create data frames based on a series of logical, numeric, or char-
acters vectors of identical lengths. The data.frame function is particularly useful in
such a scenario:

(x <- data.frame(
a=c(TRUE, FALSE),
b=1:6,
c=runif(6),
d=c("spam", "spam", "eggs")

)

#H ab c d

1 TRUE 1 0.77437 spam

2 FALSE 2 0.19722 spam

3 TRUE 3 0.97801 eggs

4 FALSE 4 0.20133 spam

5 TRUE 5 0.36124 spam

6 FALSE 6 0.74261 eggs

Note that shorter vectors were recycled. That the diverse column types were retained
and no coercion has been made, can be verified, e.g., by calling:

str(x)

'data. frame': 6 obs. of 4 variables:
S a: logl TRUE FALSE TRUE FALSE TRUE FALSE
#4 S b:int 123456

S c:num 0.774 0.197 0.978 0.201 0.361 ...
S d: chr "spam" "spam" "eggs" "spam" ...

We can also fetch the class of each column directly by calling (compare Section 12..3):

sapply(x, class) # the same as unlist(Map(class, x))
a b c d

"o

"logical" "integer" "numeric" "character"

Important For many reasons (see, e.g., Section 12.1.5 and Section 12.1.6), we recom-
mend to have the type of each column always checked, for instance by calling the str
function.

Many objects, such as matrices, can easily be coerced to data frames using particular
as.data.frame methods.

12 DATA FRAMES 263

Here is an example matrix:

(A <- matrix(1:6, nrow=3,
dimnames=11st(

NULL, # no row labels
c("u", "v") # some column labels

M)

uv

[1,] 1 4

[2,] 2 5

[3,] 36

Let us convert it to a data frame:

as.data.frame(A) # as.data.frame.matrix
U v
114
#2225
3 36

Note that a matrix with no row labels is printed slightly differently than a data frame
with (as it will soon turn out) the default row.names.

Named lists are amongst other candidates for a meaningful conversion. Consider an
example list, where each element is a vector of the same length as the other ones:

(1 <- Map(
function(x) {
c(Min=min(x), Median=median(x), Mean=mean(x), Max=max(x))

1.

split(iris[["Sepal.Length"]], iris[["Species"]])
)
Ssetosa

Min Median Mean Max
4.300 5.000 5.006 5.800
##

Sversicolor

Min Median Mean Max
4.900 5.900 5.936 7.000
##

Svirginica

Min Median Mean Max
4.900 6.500 6.588 7.900

Each list element will be turned to a separate column:

264 Il DEEPER

as.data.frame(l) # as.data.frame.list

setosa versicolor virginica
Min 4.300 4.900 4.900
Median 5.000 5.9600 6.500
Mean 5.006 5.936 6.588
Max 5.800 7.000 7.900

Sadly, as.data.frame.list is not particularly fond of lists of vectors of incompatible
lengths:

as.data.frame(list(a=1, b=11:12, c=21:23))
Error in (function (..., row.names = NULL, check.rows = FALSE, check.names
= TRUE, : arguments imply differing number of rows: 1, 2, 3

The above vectors could have been recycled with a warning, but they were not.

as.data.frame(list(a=1:4, b=11:12, c=21)) # recycling rule okay
a b c
1 1 11 21
#2212 21
3 3 11 21
4 4 12 21

The method for the S3 class table (mentioned in Chapter 11) can be helpful as well.
Here is an example contingency table together with its unstacked version.

(t <- table(mtcars[["vs"]], mtcars[["cyl"]1]))

##

4 6 8

0 1 3 14

110 4 0

as.data.frame(t) # as.data.frame.table; see the stringsAsFactors note below!
Var1l Var2 Freq

1 0 4 1
2 1 4 10
3 o 6 3
4 1 6 4
5 0 8 14
6 1 8 o

Actually, as.data.frame.table is so useful that we might want to call it directly on any
array. This way, we can convert it from the so-called wide format to the long one; see
Section 12.3.6 for more details.

Note The above method is based on expand.grid, which determines all combinations
of a given series of vectors.

12 DATA FRAMES 265

expand.grid(1:2, c("a", "b", "c")) # see the stringsAsFactors note below!
Var1l Var2

1 1 a
#H 2 2 a
3 1 b
4 2 b
5 1 c
6 2 c

Overall, many classes of objects can be included? in a data frame; the popular choices
include Date, POSIXct, and factor. It is worth noting that the data.frame function
calls the corresponding as.data. frame method, and format is used whilst printing the
columns.

Example 12.1 Here are two custom methods for what we would like to call from now on an S3
class spam:

as.data. frame.spam <- function(x, ...)
structure(
list(x),
class="data. frame",
row.names=seq_along(x)
)
format.spam <- function(x, ...)
paste@("*", x, "*")

Testing data frame creation and printing:

data. frame(
a=structure(c("a", "b", "c"), class="spam"),
b=factor(c("spam", "bacon", "spam")),
c=Sys.Date()+1:3

)

a b c

1 *a* spam 2023-04-28

2 *b* bacon 2023-04-29

3 *c* spam 2023-04-30

12.1.2 cbind.data.frame and rbind.data.frame

There are data frame-specific versions of cbind or rbind (which we discussed in
the context of stacking matrices in Section 11.1.2). They are used quite eagerly:

2 Also, the attributes of objects stored as matrix columns will generally be preserved (even if they are not
displayed by print; see str though).

266 Il DEEPER

help("cbind") states that they will be referred to if at least® one of its arguments is
a data frame and the other arguments are atomic vectors or lists (possibly with the
dim attribute).

For example:

x <- iris[c(1, 51, 101), c("Sepal.Length", "Species")] # whatever
cbind(Yummy=c(TRUE, FALSE, TRUE), X)

Yummy Sepal.Length Species
1 TRUE 5.1 setosa
51 FALSE 7.0 versicolor
101 TRUE 6.3 virginica

added a new column to a data frame x. Moreover:

rbind(x, list(42, "virginica"))
Sepal.Length Species

1 5.1 setosa
51 7.0 versicolor
101 6.3 virginica
11 42.0 virginica

added a new row. Note that columns are of different types. Hence, the values to row-
bind were provided as a generic vector. The list can also be named. It can consist of
vectors of length greater than one, given in any order:

rbind(x, list(
Species=c("virginica", "setosa"),
Sepal.Length=c(42, 7)

))

Sepal.Length Species
1 5.1 setosa
51 7.0 versicolor
101 6.3 virginica
11 42.0 virginica
2 7.0 setosa

Sometimes referring to these methods directly will be necessary. Consider an example
list of atomic vectors:

x <- list(a=1:3, b=11:13, c=21:23)

First, we call the generic which dispatches to the default method:

3 This is a clear violation of the rule that an S3 generic dispatches on the type of only one (usually: first)
argument; an exception made for the sake of the questionable user convenience. Also, note that there is no
cbind.default method available: it is hardcoded at the C language level.

12 DATA FRAMES 267

do.call(cbind, x)
a b c
[1,] 1 11 21
[2,] 2 12 22
[3,] 3 13 23

If we want to make sure we garner a data frame in result, we need to write:

do.call(cbind.data.frame, x)
a b c
1 1 11 21
#2212 22
3 3 13 23

This is particularly useful in the context of fetching outputs from Map and its friends,
which are wrapped inside a list. For instance:

1 <- unname(Map(
function(x) list(
Sepal.Length=mean(x[["Sepal.Length"]]),
Sepal.Width=mean(x[["Sepal.Width"]]),
Species=x[["Species"]][1]
),
split(iris, iris[["Species"]]) # split.data.frame; see below
)
str(l)
List of 3
S :List of 3
..S Sepal.lLength: num 5.01
..S Sepal.Width : num 3.43
..S Species : Factor w/ 3 levels "setosa", "versicolor",..: 1
S :List of 3
..S Sepal.Length: num 5.94

..S Sepal.Width : num 2.77

..S Species : Factor w/ 3 levels "setosa", "versicolor",..: 2
S :List of 3

..S Sepal.Length: num 6.59

..S Sepal.wWidth : num 2.97

..S Species : Factor w/ 3 levels "setosa", "versicolor",..: 3

This was nothing more than a fancy way to obtain an illustrative list, which we may
now turn into a data frame by calling:

do.call(rbind.data.frame, 1)
Sepal.lLength Sepal.Width Species
1 5.006 3.428 setosa

(continues on next page)

268 Il DEEPER

(continued from previous page)
2 5.936 2.770 versicolor
3 6.588 2.974 virginica

On the other hand, do.call(rbind, 1) does not return a particularly friendly object
type:

do.call(rbind, 1)

Sepal.Length Sepal.Width Species
[1,] 5.006 3.428 setosa
#4# [2,] 5.936 2.77 versicolor
[3,] 6.588 2.974 virginica

Despite the pretty face, it is a matrix... over a list:

str(do.call(rbind, 1))

List of 9

S : num 5.01

#4 S : num 5.94

S : num 6.59

S : num 3.43

S :onum 2.77

S : num 2.97

S : Factor w/ 3 levels "setosa","versicolor”,..: 1
S : Factor w/ 3 levels "setosa","versicolor”,..: 2
S : Factor w/ 3 levels "setosa","versicolor”,..: 3
- attr(*, "dim")= int [1:2] 3 3

- attr(*, "dimnames")=List of 2

.S NULL

..S : chr [1:3] "Sepal.Length" "Sepal.Width" "Species"

12.1.3 Reading data frames

Structured data can be imported from external sources, such as CSV/TSV (comma/tab-
separated values) or HDF5 files, relational databases supporting SQL (see Sec-
tion 12.1.4) web APIs (e.g., through the curl and jsonlite packages), spreadsheets
[60], and so on.

In particular, read.csv and the like fetch data from plain text files consisting of records
where fields are separated by commas, semicolons, tabs, etc.

For instance:

x <- data.frame(a=runif(3), b=c(TRUE, FALSE, TRUE)) # example data frame
f <- tempfile() # temporary file name
write.csv(x, f, row.names=FALSE) # export

This created a CSV file which looks like:

12 DATA FRAMES 269

cat(readLines(f), sep="\n") # print file contents
"a","b"

0.287577520124614, TRUE

0.788305135443807, FALSE

0.4089769218117, TRUE

The above can be read by calling:

read.csv(f)

#H a b
1 0.28758 TRUE
2 0.78831 FALSE
3 0.40898 TRUE

Exercise12.2 Checkout help("read. table") foralong list of tunable parameters, especially:
sep, dec, quote, header, comment.char, and row. names. Further, note that reading from com-
pressed files is supported directly.

Important CSV is by far the most portable and user-friendly format for exchanging
matrix-like objects between different programs and computing languages (e.g., Py-
thon, Julia, LibreOffice Calc, etc.). Such files can be opened in any text editor.

Note As mentioned in Section 8.3.5, it is possible to process data frames on a chunk-
by-chunk basis, which is beneficial especially when data do not fit into memory (com-
pare the nrows argument to read.csv).

12.1.4 Interfacing relational databases and querying with SQL (*)

The pBI package provides a universal interface for particular database management
systems whose drivers are implemented in additional add-ons such as RSQLite, RMari-
aDB, RPostgreSQL, etc., or, more generally, RODBC or odbc. For more details, see Section
4 of [60].

Example 12.3 Let us play with an in-memory (volatile) instance of an SQLite database.

library("DBI")
con <- dbConnect(RSQLite::SQLite(), ":memory:")
This returns an object representing a database connection which we can refer to in further com-

munication.

An easy way to create a database table is to call:

dbWriteTable(con, "mtcars", mtcars) # ‘mtcars’ is a toy built-in data frame

270 Il DEEPER

Alternatively, dbExecute could have been referred to in ovder to send SQL statements such as
CREATE TABLE ... followed by a series of INSERT INTO

Some data retrieval can now follow:

dbGetQuery(con, "
SELECT cyl, vs, AVG(mpg) AS mpg_ave, AVG(hp) AS hp_ave
FROM mtcars
GROUP BY cyl, vs

")

cyl vs mpg_ave hp_ave

1 4 0 26.000 91.00
2 4 1 26.730 81.80
3 6 0 20.567 131.67
4 6 1 19.125 115.25
5 8 0 15.100 209.21

This gives us an ordinary R data frame which we can process in the same fashion as any other
object of this kind.

At the end, the database connection must be closed.

dbDisconnect(con)

Exercise12.4 Database passwords should never be stored in plain text files, let alone in R
scripts in version-controlled repositories. Consider a few ways for fetching credentials program-
matically:

« using environment variables (see help("Sys.getenv")),
« using the keyring package,

« calling system2 (Section 7.3.3) to retrieve it from the system keyring (e.g., the keyring pack-
age for Python provides a platform-independent command-line utility).

12.1.5 Strings as factors?

The following is so critical that we will devote a separate subsection to discuss it, so
that we always remain vigilant (such is life: maintaining some level of mindfulness is
often a good idea).

Important Some functions related to data frames automatically convert character
vectors to factors. This behaviour is frequently controlled by the stringsAsFactors ar-
gument thereto.

Thisis particularly problematic due to the fact that, when printed, factor and character
columns look identical:

12 DATA FRAMES 271

(x <- data.frame(a=factor(c("U", "V")), b=c("U", "V")))
#4 ab
1 UU
#2VV

We recall from Section 10.3.2 that factors can be nasty. For example, passing factors
as indexers in "[* or converting them with as.numeric might give counterintuitive
(for the uninformed) results. Also, new factor levels must be added manually when
we want to extend them with more diverse data. This can cause some unexpected be-
haviour in contexts such as:

rbind(x, c("W", "W"))

Warning in ‘[<-.factor'(*tmp*", ri, value = "W"): invalid factor level,
NA generated

ab

1 uu

2 Vv

3 <NA> W

It is therefore a good habit to have the data types always checked, for instance:

str(x)

'data. frame': 2 obs. of 2 variables:
S a: Factor w/ 2 levels "U","V": 1 2

S b: chr "uU" "V"

Before R 4.0, a number of functions, including data.frame and read.csv had the
stringsAsFactors argument defaulting to TRUE. This is no longer the case for many
of them.

However, exceptions to this rule still exist, e.g., including as.data.frame.table and
expand.grid. Besides, some built-in example data frames have factor-typed columns
inherited from the old days, e.g.:

class(iris[["Species"]])
[1] "factor"

We observe that the Species column in iris is not of type character. Thence, adding a
new variety might be oblique:

iris2 <- iris[c(1, 51, 101),] # example subset
levels(iris2[["Species"]]) <- c(levels(iris2[["Species"]]), "croatica")
rbind(iris2, c(6, 3, 3, 2, "croatica"))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
51 7 3.2 4.7 1.4 versicolor

(continues on next page)

272 Il DEEPER

(continued from previous page)

101 6.3 3.3 6 2.5 virginica
#4 4 6 3 3 2 croatica

Alternatively, we could have simply converted the Species column to character.

12.1.6 Internal representation

Objects of S3 class data. frame are built upon lists of vectors of the same length or
matrices with identical row counts, which define consecutive columns thereof. Apart
from class, they must be equipped with the following special attributes:

- names — a character vector (as usual in any named list) labelling the columns or
their groups,

- row.names — a character or integer vector with no duplicates nor missing values,
doing what advertised.

Therefore, a data frame can be created from scratch by calling, for example:

structure(
list(a=11:13, b=21:23), # sets the ‘names’ attribute already
row.names=1:3,
class="data.frame"

)

a b

1 11 21

#H 2 12 22

3 13 23

Here is a data frame based on a length-5 list, a matrix with five rows, and a length-5
numeric vector, with some fancy row names on top:

structure(

1ist(
a=list(1, 1:2, 1:3, numeric(0), -(4:1)),
b=cbind(u=11:15, v=21:25),
c=runif(5)

)s

row.names=c("spam", "bacon", "eggs", "ham", "aubergine"),

class="data.frame"

)

a b.ub.v c
spam 1 11 21 0.28758
bacon 1, 2 12 22 0.78831
eggs 1, 2, 3 13 23 0.40898
ham 14 24 0.88302

aubergine -4, -3, -2, -1 15 25 0.94047

12 DATA FRAMES 273

In general, the columns of type list can contain anything, e.g., other lists or R func-
tions. Including atomic vectors of varying lengths just like above allows for creating
something a la ragged arrays — a pretty handy scenario.

The issue with matrix entries, on the other hand, is that they appear as if they were
many, but — as it will turn out in the sequel — they are often treated as a single com-
plex column, e.g., by the index operator (see Section 12.2). Therefore, from this per-
spective, the above data frame has three columns, not four. Such objects can be output
by aggregate (see Section 12.3), amongst others. Nevertheless, they can be very useful
too, forming natural column groups which can be easily accessed and batch-processed
in the same way.

Important Unfortunately, data frames with list or matrix columns cannot be nor-
mally created with the data. frame nor cbind functions which might explain why they
are less popular. This behaviour is dictated by the particular underlying as.data.frame
methods which are called by both of them. As a curiosity, see help("I") though.

Exercise 12.5 Verify that for a data frame featuring a matrix column, the latter does not require
column names (the second dimnames) set.

The names and row.names attributes are special in the sense of Section 4.4.3. In partic-
ular, they can be accessed or modified by the corresponding functions.

It is worth noting that row.names(df) always returns a character vector, even when
attr(df, "row.names") is an integer vector. Further, setting row.names(df) <- NULL
will re-set* this attribute to the most commonly desired case of consecutive natural
numbers, for example:

(x <- iris[c(1, 51, 101), 1) # comes with some sad row names

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
101 6.3 3.3 6.0 2.5 virginica
row.names(x) <- NULL # reset to seq_len(NROW(x))

print(x)

Sepal.length Sepal.Width Petal.lLength Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 7.0 3.2 4.7 1.4 versicolor
3 6.3 3.3 6.0 2.5 virginica

Exercise 12.6 What is the name of the replacement version of the row.names method for the
data. frame class?

Exercise 12.7 Implement your own version of expand. grid.

4 attr<-"(df, "row.names") does not feature the same sanity checks as “row.names<-"(df) does. For
instance, it is easy to corrupt a data frame by setting a too-short row.names attribute.

274 Il DEEPER

Exercise 12.8 Implement your own version of xtabs, but which does not rely on a formula
interface (compare Section 10.3.4). Allow three parameters: a data frame, the name of the
“counts” column and the names of the cross-classifying variables. Hence, my_xtabs(x, "Freq",
c("Var1", "Var2")) should be equivalent to xtabs (Freq~Var1+Var2, x).

12.2 Data frame subsetting
12.2.1 Data frames are lists

Data frames are named lists, where each element represents an individual column.
Therefore’, length yields the number of columns and names gives their respective la-
bels.

Let us play with the following data frame:

(x <- data.frame(
a=runif(6),
b=rnorm(6),
c=LETTERS[1:6],
d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),
d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
))
a bc di1 daz
1 0.287578 0.070508 A FALSE FALSE
2 0.788305 0.129288 B TRUE TRUE
3 0.408977 1.715065 C FALSE FALSE
4 0.883017 0.460916 D NA TRUE
5 0.940467 -1.265061 E FALSE FALSE
6 0.045556 -0.686853 F NA TRUE
typeof(x) # each data frame is a list

[1] "list”
length(x) # the number of columns
[1] 5

names(x) # column labels
[1] "a" "b" "c" "d1" "d2"

The one-argument versions of extract and index operators behave as expected. "[[
fetches (looks inside) the contents of a given column:

5 This is a strong word. This implication relies on an implicit assumption that the primitive functions
length and names have not be contaminated by treating data frames differently than named lists. Luckily,
thatisindeed not the case. Also, despite the fact that we have the index operators specially overloaded for the
data. frame class, they behave quite reasonably and, as we will see, they allow for a mix of list- and matrix-
like behaviours.

12 DATA FRAMES 275

x[["a"11 # or x[[1]]
[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

and “[" returns a data frame (a list with extras) comprised of the specified elements:

x["a"]l # or x[1]

a

1 0.287578

2 0.788305

3 0.408977

4 0.883017

5 0.940467

6 0.045556

x[c(TRUE, TRUE, FALSE, TRUE, FALSE)]
a b di1
1 0.287578 0.070508 FALSE
2 0.788305 0.129288 TRUE
3 0.408977 1.715065 FALSE
4 0.883017 0.460916 NA
5 0.940467 -1.265061 FALSE
6 0.045556 -0.686853 NA

Just like with lists, the replacement versions of the said operators can be used to add
new or replace existing columns.

y <- head(x, 1) # for a more compact display

y[["a"]] <- round(y[["a"]1], 1) # replaces the column with new content
y[["b"]] <- NULL # removes the column, like, totally

y[["e"]] <- 10*y[["a"]]"*2 # adds a new column at the end

print(y)

ac d1 a2 e

1 0.3 A FALSE FALSE 0.9

Example 12.9 Some spam for thought to show how much we already know — a few common use
cases of indexing and vectorised functions:

y <- head(x, 1) # for a more compact display

Move column ato the end:

ylunique(c(names(y), "a"), fromLast=TRUE)]
bc d1 daz a
1 0.070508 A FALSE FALSE 0.28758

Remove column aand c:

276 Il DEEPER

y[-match(c("a", "c"), names(y))]
b d1 daz
1 0.070508 FALSE FALSE

All columns between a and c:

y[match("a", names(y)):match("c", names(y))]
a bc
1 0.28758 0.070508 A

Names starting with d:
ylgrep("*d", names(y))]

d1 dz
1 FALSE FALSE

Change name of column c to z:

names(y)[names(y) == "c"] <- "z" # in-place
print(y)
a bz d1 dz2

1 0.28758 0.070508 A FALSE FALSE

Change names: d2to uand d1to v:

names(y)[match(c("d2", "d1"), names(y))] <- c("v", "u") # in-place
print(y)

a bz u v

1 0.28758 0.070508 A FALSE FALSE

Note Some R users might prefer the *$" operator over "[[*, but we do not. By default,
the former supports partial matching of column names which might be appealing
when R is used interactively. Nonetheless, it does not work on matrices, nor it allows
for programmatically generated names. It is also trickier to use on non-syntactically
valid labels; compare Section 9.4.1.

Exercise12.10 Write a function names_replace that changes the name of a data frame
columns based on a translation table given in a from=to fashion, for instance:

names_replace <- function(x, ...) ...to.do...
X <- data.frame(a=1, b=2, c=3)
names_replace(x, c="new _c", a="new_a")

#4 new_a b new_c

1 12 3

12 DATA FRAMES 277

12.2.2 Data frames are matrix-like

Data frames can be considered “generalised” matrices. They store data of any kind
(possibly mixed) organised in a tabular fashion. Some functions mentioned in the pre-
vious chapter will hence be overloaded for the data frame case. These include: dim (des-
pite the lack of the dim attribute), NROW, NCOL, and dimnames (which is of course based
on row.names and names).

For example:

(x <- data.frame(
a=runif(6),
b=rnorm(6),
c=LETTERS[1:6],
d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),
d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
)
#H a b c d1 d2
1 0.287578 0.070508 A FALSE FALSE
2 0.788305 0.129288 B TRUE TRUE
3 0.408977 1.715065 C FALSE FALSE
4 0.883017 0.460916 D NA TRUE
5 0.940467 -1.265061 E FALSE FALSE
6 0.045556 -0.686853 F NA TRUE
dim(x) # the number of rows and columns
[1] 6 5
dimnames(x) # it is not a matrix, but a matrix-like object
[[1]]
[1] "1" "2" "3" "gn o "svorgn
##
[[2]]
[1] "a" "b" "c" "d1" "d2"

In addition to the list-like behaviour, which only allows for dealing with particular
columns or groups thereof, the '[* operator was also equipped with the ability to take
two indexers:

x[1:2, 1 # first two rows

a bc d1 dz

1 0.28758 0.070508 A FALSE FALSE

2 0.78831 0.129288 B TRUE TRUE

x[x[["a"]] >= 0.3 & x[["a"]] <= 0.8, -2] # or use x[, "a"]
ac d1 d2

2 0.78831 B TRUE TRUE

3 0.40898 C FALSE FALSE

278 Il DEEPER

Recall the drop argument to “[* and its effects on matrix indexing. It the current case,
its behaviour will be similar with regard to the operations on individual columns:

x[, 1] # synonym: x[[1]], because drop=TRUE

#4 [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556
x[, 1, drop=FALSE] # synonym: x[1]

a

1 0.287578

2 0.788305

3 0.408977

4 0.883017

5 0.940467

6 0.045556

Also, note that when we extract a single row and more than one column, drop does not
really apply. It is because columns (unlike in matrices) can potentially be of different

types:

x[1, 1:2] # two numeric columns but the result is still a numeric
#H a b
1 0.28758 0.070508

However:

x[1, 1]

[1] 0.28758
x[1, 1, drop=FALSE]
a

1 0.28758

Note Once again let us take note of logical indexing featuring missing values:

x[x[["d1"]], 1]

a b c di d

##H 2 0.78831 0.12929 B TRUE TRUE

NA NA NA <NA> NA NA

NA.1 NA NA <NA> NA NA
x[which(x[["d1"]]),] # drops missing values
a bc di d2

2 0.78831 0.12929 B TRUE TRUE

The default behaviour is consistent with many other R functions: it explicitly indic-
ates that something is missing (we are selecting a “don’'t know”; hence, the result is
“don’t know” as well). Unfortunately, this comes with no warning. As we rarely check
manually for missing values in the outputs, our absent-mindedness can lead to code
bugs.

12 DATA FRAMES 279

By far, we might have already noted that the index operator adjusts (not: resets) the
row.names attribute. For instance:

(xs <- x[head(order(x[["a"]], decreasing=TRUE), 3), 1)
a bc d1 dz2
5 0.94047 -1.26506 E FALSE FALSE
4 0.88302 0.46092 D NA TRUE
2 0.78831 0.12929 B TRUE TRUE

It is a version of x comprised of only top three values in the u column. Indexing by
means of character vectors will refer to row.names and names:

Xs[|I5|I, C(llaﬂ’ Ilbll)]
#H a b
5 0.94047 -1.2651

Note that this is not the same as “xs[5, c¢("a", "b")]”, despite the fact that row.names
is formally an integer vector here.

Note If a data frame features a matrix, we need to use the index/extract operator
twice in order to access a specific sub-column:

(x <- aggregate(iris[1], iris[5], function(x) c(Min=min(x), Max=max(x))))

#4 Species Sepal.Length.Min Sepal.Length.Max
1 setosa 4.3 5.8
2 versicolor 4.9 7.0
3 virginica 4.9 7.9

x[["Sepal.Length"]][, "Min"]
[1] 4.3 4.9 4.9

In other words, neither “x[["Sepal.Length.Min"]]” nor “x[, "Sepal.Length.Min"]”
works.

As far as the replacement version of the index operator is concerned, it is a quite flex-
ible tool, allowing the new content to be a vector, a data frame, a list, or even a matrix.

Exercise 12.11 Write two replacement functions®. First, set_row_names which replaces the
row. names of a data frame with the contents of a specific column, for example:

(x <- aggregate(iris[1], iris[5], mean)) # some data frame
Species Sepal.Length
1 setosa 5.006

(continues on next page)

6 (*) Compare pandas.DataFrame.set_index and pandas.DataFrame.reset_index in Python.

280 Il DEEPER

(continued from previous page)

2 versicolor 5.936
3 virginica 6.588
set_row_names(x) <- "Species"
print(x)

#H Sepal.Length
setosa 5.006
versicolor 5.936
virginica 6.588

Second, reset_row_names Which converts row. names to a standalone column of a given name,
forinstance:

reset_row_names(x) <- "Type"

print(x)

Sepal.lLength Type
1 5.006 setosa
2 5.936 versicolor
3 6.588 virginica

These two functions may be handy as they allow for writing “x[something,]” instead of
“x[x[["column"]] %in% something,]”.

12.3 Common operations

Below we review the most commonly applied operations related to data frame
wrangling. We have a few dedicated functions or methods overloaded for the data.
frame class. However, we have already mastered the necessary skills to deal with this
kind of objects through our hard work, in particular involving the solving of the ex-
ercises in the preceding chapters. Let us repeat: data frames are just lists exhibiting
matrix-like behaviour.

12.3.1 Ordering rows

Ordering rows in a data frame with respect to different criteria can be easily achieved
by means of the order function and the two-argument version of [.

For instance, here are the top six cars in terms of the time (in seconds) to complete a
402-metre race:

mtcarsé <- mtcars[order(mtcars[["gsec"]])[1:6], 1]
mtcars6[["model"]] <- row.names(mtcars6)
row.names(mtcarsé) <- NULL

(continues on next page)

12 DATA FRAMES 281

(continued from previous page)

print(mtcars6)

#H mpg cyl disp hp drat wt gsec vs am gear carb model
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora
3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro 728
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360
6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

order uses a stable sorting algorithm, therefore sorting with respect to a different cri-
terion will not break the relative ordering of qsec in row groups with ties:

mtcarsé6[order(mtcars6[["cyl"]1]),]
#H mpg cyl disp hp drat wt qgsec vs am gear carb model
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora
3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro 728
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

Example 12.12 Notice the difference between ordering by cyl and gear vs gear and cyl:

mtcars6[order(mtcars6[["cyl"]], mtcars6[["gear"]]),]

mpg cyl disp hp drat wt gsec vs am gear carb model
6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino
3 13.3 8 350 245 3.73 3.84 15.41 0O 0 3 4 Camaro 728
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

mtcarsé6[order(mtcarsé6[["gear"]], mtcarse6[["cyl"]]),]

#H mpg cyl disp hp drat wt qgsec vs am gear carb model
3 13.3 8 350 245 3.73 3.84 15.41 0O 0 3 4 Camaro Z28
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360
6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

Note Mixing a increasing and decreasing ordering is tricky as the decreasing argu-
ment to order currently does not accept multiple flags in all the contexts. Perhaps the
easiest way to change the ordering direction is to use the unary minus operator on the
column(s) to be sorted decreasingly.

282 Il DEEPER

mtcarsé6[order(mtcars6[["gear"]], -mtcars6[["cyl"1]), 1]

#H mpg cyl disp hp drat wt qgsec vs am gear carb model
3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro 728
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360
6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

For factor and character columns, xtfrm can be used to convert them to sort keys first.

mtcarsé6[order(mtcars6[["cyl"]], -xtfrm(mtcars6[["model"]])), 1]

mpg cyl disp hp drat wt qgsec vs am gear carb model
6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360
3 13.3 8 350 245 3.73 3.84 15.41 0O 0 3 4 Camaro 728

Both of the above behave like decreasing=c(FALSE, TRUE).

Exercise 12.13 Write a method sort.data. frame that orders a data frame with respect to a
given set of columns.

sort.data. frame <- function(x, decreasing=FALSE, cols) ...to.do..
sort(mtcars6, cols=c("cyl", "model"))

#H mpg cyl disp hp drat wt qgsec vs am gear carb model
4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino
6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4
3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28
5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360
1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L
2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

Unfortunately, that decreasing must be of length one and be placed as the second method argu-
ment is imposed by the sort S3 generic.

12.3.2 Handling duplicated rows

duplicated, anyDuplicated, and unique have methods overloaded for the data.frame
class. They can be used to indicate, get rid of, or replace the repeating rows.

sum(duplicated(iris)) # how many duplicated rows are there?
[1] 1

(continues on next page)

12 DATA FRAMES 283

(continued from previous page)
iris[duplicated(iris),] # show the duplicated rows
#H Sepal.Length Sepal.Width Petal.Length Petal.Width Species
143 5.8 2.7 5.1 1.9 virginica

12.3.3 Joining (merging) data frames

The merge function can perform the JOIN operation that some readers might know
from SQL’. It matches the items in the columns that two given data frames somewhat
share, and then returns their combination.

Example12.14 Two calls to merge could be used to match data on programmers (each identified
by developer_id and giving such details as their name, location, main skill, etc.) with the in-
formation about the open-source projects (each identified by project_idand informing us about
its title, scope, web site, and so forth) they are engaged in (based on a third data frame featuring
developer_idand project_idpairs).

As an simple illustration, consider the two following objects:

A <- data.frame(
u=c("bo", "b1", "b2", "b3"),
v=c("a0", "a1", "a2", "a3")

B <- data.frame(
v=c("a@", "a2", "a2", "a4"),
w=c("c@", "c1", "c2", "c3")

The two common columns, i.e., storing data of similar nature (a-something strings),
are both named v.

First, the inner (natural) join, where we list only the matching pairs:

merge(A, B) # x=A, y=B, by="v", all.x=FALSE, all.y=FALSE
vV u w
1 a0 bO coO
2 a2 b2 c1
3 a2 b2 c2

Note that the common column (or, more generally, columns) is included only once in
the result.

7 JOIN is the reverse operation to data normalisation known from theory of relational databases, which
itself reduces data redundancy and increases their integrity. What data scientists need for succeeding with
their daily activities (analysis, visualisation, processing) is thus the opposite of what the art of data man-
agement focuses on (efficient collection and storage). Readers are encouraged to learn about various nor-
malisation forms from, e.g., [16] or any other course covering this topic.

284 Il DEEPER

The left join guarantees that all elements in the first data frame will be included in the
result:

merge(A, B, all.x=TRUE) # by="v", all.y=FALSE
vV u w
1 a0 bO cO
2 al b1 <NA>
#4# 3 a2 b2 c1
4 a2 b2 c2
5 a3 b3 <NA>

The right join includes all records in the second argument:

merge(A, B, all.y=TRUE) # by="v", all.x=FALSE
v u w
1 a0 bO cO
#4# 2 a2 b2 c1
3 a2 b2 c2
4 a4 <NA> c3

And the full outer join is their set-theoretic union:

merge(A, B, all.x=TRUE, all.y=TRUE) # by="v"
v u w

1 a0 bO cO
2 al b1 <NA>
3 a2 b2 c1
4 a2 b2 c2
5 a3 b3 <NA>
6 a4 <NA> c3

Exercise 12.15 Show how match (Section 5.4.1) can be used to implement a very basic version
of merge.

12.3.4 Aggregating and transforming columns

Let us discuss how to perform data aggregation or engineer features. Despite the fact
that we already know how to access individual columns with “[* and process them
using the many vectorised functions, we still have something interesting to add about
the said matter.

It would be tempting to try implementing such operations with apply. Unfortunately,
currently this function coerces its argument to a matrix. Hence, we should refrain
from applying it on data frames whose columns are of mixed types®.

However, taking into account that data frames are special lists, we can always call Map
and its relatives.

8 Due to this, storing data as matrix columns inside data frames is not such a bad idea.

12 DATA FRAMES

Example 12.16 Given an example data frame:

(iris_sample <- iris[sample(NROW(iris), 6),])

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
28 5.2 3.5 1.5 0.2 setosa
80 5.7 2.6 3.5 1.0 versicolor
101 6.3 3.3 6.0 2.5 virginica
111 6.5 3.2 5.1 2.0 virginica
137 6.3 3.4 5.6 2.4 virginica
#4# 133 6.4 2.8 5.6 2.2 virginica

To get the class of each column, we can call:

sapply(iris_sample, class) # or unlist(Map(class, iris))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
"numeric"” "numeric” "numeric" "numeric" "factor"”

Next, here is a way to compute some aggregates of the numeric columns:

unlist(Map(mean, Filter(is.numeric, iris_sample)))
Sepal.Length Sepal.Width Petal.Length Petal.Width
6.0667 3.1333 4.5500 1.7167

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width
6.0667 3.1333 4.5500 1.7167

We can also fetch more than a single summary of each column:

as.data. frame(Map(
function(x) c(Min=min(x), Max=max(x)),
Filter(is.numeric, iris_sample)

))
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min 5.2 2.6 1.5 0.2
Max 6.5 3.5 6.0 2.5
or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], quantile, c(0, 1))

Sepal.Length Sepal.Width Petal.Length Petal.Width
0% 5.2 2.6 1.5 0.2
100% 6.5 3.5 6.0 2.5

Note that the latter called simplify2array automatically, thus the result is a matrix.

285

On the other hand, standardisation of all the numeric features can be performed, e.g., via a call:

286 Il DEEPER

iris_sample[] <- Map(function(x) {

if (!is.numeric(x)) x else (x-mean(x))/sd(x)

}, iris_sample)
print(iris_sample)

Sepal.Length Sepal.Width Petal.Length Petal
28 -1.70405 1.03024 -1.76004 -1.
80 -0.72094 -1.49854 -0.60591 -0.
101 0.45878 0.46829 0.83674 [¢]
111 0.85202 0.18732 0.31738 [¢]
137 0.45878 0.74927 0.60591 [¢]
133 0.65540 -0.93659 0.60591 [¢]

12.3.5 Handling missing values

.Width Species

65318 setosa
78117 versicolor

.85384 virginica
.30884 virginica
.74484 virginica
.52684 virginica

The is.na method for objects of class data. frame returns a logical matrix of the same
dimensionality? indicating whether the corresponding items are missing or not. Of
course, this function can still be called on individual columns as well.

Further, na.omit can be used to get rid of rows with missing values.

Exercise 12.17 Given a data frame, use is.naand other functions such as apply, approx, etc.,

to:
1. remove all rows that feature at least one missing value,

2. remove all rows that only consist of missing values,

3. remove all columns that feature at least one missing value,

AT

. for each column, replace all missing values with the column averages,

for each column, veplace all missing values with values that linearly interpolate between the

preceding and succeeding well-defined observations (Which is useful on time series), e.g., the
blanks in c(0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be filled so as to obtain

c(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

12.3.6 Reshaping data frames

Consider an example matrix:

A <- matrix(round(runif(6), 2), nrow=3,
dimnames=11ist(
c("X", "Y', "z"), # row labels
c("u", "v") # column labels
)

names(dimnames(A)) <- c("Row", "Col")

9 Provided that a data frame does not feature a matrix column.

(continues on next page)

12 DATA FRAMES 287

(continued from previous page)
print(A)
Col
Row u v
X 0.29 0.88
Y 0.79 0.94
Z 0.41 0.05

The as.data.frame method for the table class can be called directly on any array:

as.data.frame.table(A, responseName="Val")
Row Col Val

1 X u0.29
2 Y u0.79
3 Z u 0.41
4 X v 0.88
#5 Y v 0.94
6 Z v 0.05

This is an instance of reshaping an array, and more precisely, stacking: converting from
a wide (okay, in this example, not so wide, as we have only two columns) to a long
format.

This can be also achieved by means of the reshape function which is more flexible and
operates directly on data frames (but is harder to use):

(df <- “names<-"(
data.frame(row.names(A), A, row.names=NULL),
c("Row", "Col.u", "Col.v")))

Row Col.u Col.v

1 X 0.29 0.88

2 Y 0.79 0.94

3 Z 0.41 0.05

(stacked <- reshape(df, varying=2:3, direction="long"))

Row time Col id
1.u X u0.29 1
2.u Y uo.79 2
3.u 7 u0.41 3
1.v X v 0.88 1
2.v Y v 0.94 2
3.v 7 v 0.05 3

Maybe the default column names are not superb, but we can always adjust them
manually afterwards.

The reverse operation is called unstacking:

288 Il DEEPER

reshape(stacked, idvar="Row", timevar="time", drop="1d", direction="wide")
Row Col.u Col.v
1.u X 0.29 0.88
2.u Y 0.79 0.94
3.u Z 0.41 0.05

Exercise 12.18 Given a named numeric vector, convert it to a data frame with two columns, for
instance:

convert <- function(x) ...to.do...
x <- c(spam=42, eggs=7, bacon=3)
convert(x)

key value

1 spam 42

2 eggs 7

3 bacon 3

Exercise 12.19 Reshape (stack) the built-in Wor ldPhones dataset. Then, reshape (unstack) the
stacked WorldPhones dataset. Further, unstack the stacked set but first remove™® five random
rows from it, and then randomly permute all the remaining rows. Fill the missing entries with
NAs.

Exercise 12.20 Implement a basic version of as.data.frame. table manually (using rep
etc.). Also, write a function as. table. data. frame that implements its reverse. Make sure both
functions are compatible with each other.

Exercise12.21 The buili-in Titanic is a four-dimensional array. Convert it to a long data

frame.

Exercise 12.22 Perform what follows on the data frame defined below:
1. convert the second column from character to a list of character vectors (splitat ", ");
2. extract first elements from each of the vectors;
3. extract last elements;
4. (*) unstack the data frame;
5. (%) stack it back to a data frame featuring a list;

6. convert the list back to a character column (concatenate with ", " as separator).

(x <- data. frame(
name=c("Kat", "Ron", "Jo", "Mary"),
food=c("buckwheat", "spam,bacon,spam"”, "", "eggs,spam,spam,lollipops")
))
name food
(continues on next page)

10 The original dataset can be thought of as representing a fully crossed design experiment (all combina-
tions of two grouping variables are present). Its truncated version is like an incomplete cross design.

12 DATA FRAMES 289

(continued from previous page)

1 Kat buckwheat
2 Ron spam, bacon, spam
3 Jo

4 Mary eggs, spam, spam, lollipops

Exercise 12.23 Write a function that converts all matrix-based columns in a given data frame
to separate, atomic columns. Also, write a function to that does the opposite: one that groups all
columns with similar prefixes and turns them into matrices.

12.3.7 Aggregating data in groups

We can straightforwardly apply various transforms on data groups determined by a
factor-like variable or a combination thereof thanks to the split.data.frame method,
which returns a list of data frames.

For example:

x <- data.frame(

a=c(10, 20, 30, 40, 50),

u=c("spam", "spam", "eggs", "spam", "eggs"),

v=c(1, 2, 1, 1, 1)
)
split(x, x["u"]) # i.e., split.data.frame(x, x["u"]) or x[["u"]]
Seggs

a u
3 30 eggs 1
5 50 eggs 1
##

Sspam

a u
1 10 spam
2 20 spam
4 40 spam

<

NN R <

This split x with respect to the u column serving as the grouping variable. On the other
hand:

split(x, x[c("u", "v")]) # sep="."
Seggs.1

a uv

3 30 eggs 1

5 50 eggs 1

##
Sspam. 1
a uv

(continues on next page)

290 Il DEEPER

(continued from previous page)
1 10 spam 1
4 40 spam 1
##
Seggs.2
#4 [1] au v
<0 rows> (or O-length row.names)
##
Sspam.2
a uv
2 20 spam 2

partitioned with respect to a combination of two factor-like sequences. Note that a
non-existing level pair (eggs, 2) results in an empty data frame.

Exercise 12.24 split.data.frame (When called explicitly) can also be used to break a matrix
into a list of matrices (rowwisely). Given a matrix, perform its train-test split: allocate, say, 70%
of the rows at random into one matrix and the remaining 30% into another one.

Ifthe aggregation of grouped data in numeric columns is needed, sapply is quite con-
venient. To recall, it is a combination of lapply (one-vector version of Map) and sim-
plify2array (Section 11.1.3).

sapply(split(iris[1:2], iris[5]), sapply, mean)

setosa versicolor virginica
Sepal.Length 5.006 5.936 6.588
Sepal.Width 3.428 2.770 2.974

If the function being to apply returns more than a single value, sapply will not return
a too-informative result by default: the list of matrices converted to a matrix will not
have the row.names argument set. As a workaround, we either call simplify2array ex-
plicitly or pass simplify="array" to sapply:

(res <- sapply(
split(iris[1:2], iris[5]),
sapply,
function(x) c(Min=min(x), Max=max(x)),
simplify="array"
)) # or simplify2array(lapply or Map etc.)
, , setosa

##

#H Sepal.Length Sepal.Width
Min 4.3 2.3
Max 5.8 4.4
##

, , versicolor

##

(continues on next page)

##

Min
Max

##

Sepal.Length Sepal.Width

4.9
7.0

, , virginica

##
##

Min
Max

2.0
3.4

Sepal.Length Sepal.Width

4.9
7.9

2.2
3.8

12 DATA FRAMES 291

(continued from previous page)

This yields a three-dimensional array which is particularly handy if we now would like
to access specific results by name:

res[, "Sepal.Length", "setosa"]
Min Max
4.3 5.8

Also, the previously mentioned as.data. frame.table method works like a charm on it

(up to the column names):

as.data.frame.table(res)

##
##
##
##
##
##
##
##
##
##
##
##
##

O ®©® N L AW N R

N R RN
N R O

Var1
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max

Var2
Sepal.Length
Sepal.Length

Sepal.Width
Sepal.wWidth
Sepal.Length
Sepal.lLength
Sepal.Width
Sepal.Width
Sepal.Length
Sepal.Length
Sepal.Width
Sepal.wWidth

Var3 Freq

setosa
setosa
setosa
setosa
versicolor
versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica

4.

W N N AN WN NN DN WG

@ NV VA DODDODLVL AN WO®W

Note Ifthe grouping (by) variable is a list of two or more factors, the combined levels

will be concatenated to a single string:

as.data.frame.table(as.array(sapply(

)
##

split(ToothGrowth["len"], ToothGrowth[c("supp", "dose")]),

sapply,

mean

Varl Freq

(continues on next page)

292 Il DEEPER

(continued from previous page)
1 03.0.5.len 13.23
2 VC.0.5.len 7.98
3 0J.1.len 22.70
4 VC.1.len 16.77
5 0J.2.len 26.06
6 VC.2.len 26.14

Also, the name of the aggregated column (len) has been included. This behaviour yields
a result that may be deemed convenient in some contexts, but not necessarily so in
other ones.

Exercise 12.25 Many aggregation functions arve idempotent, which means that when they are
fed with a vector with all the elements being identical, the result is exactly that unique element:
min, mean, median, and max behave exactly this way.

Overload the mean and median methods for character vectors and factors so that they return NA
when they are fed with a sequence of not all elements being the same and the unique value other-
wise.

mean.character <- function(x, na.rm=FALSE, ...) ...to.do...
mean. factor <- function(x, na.rm=FALSE, ...) ...to.do...

This way, we can also aggregate the grouping variables conveniently:

do.call(rbind.data. frame,
lapply(split(ToothGrowth, ToothGrowth[c("supp", "dose")]), lapply, mean))
#H len supp dose
0J.0.5 13.23 0J 0.5
VC.0.5 7.98 vc 0.5
0J.1 22.70 0J 1.0
VC.1 16.77 VC 1.0
0J.2 26.06 0J 2.0
VC.2 26.14 vc 2.0

The built-in aggregate method can assist us in a situation where a single function is to
be applied on all columns in a data frame.

aggregate(iris[-5], iris[5], mean) # not: ...[[5]]

Species Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean)
supp dose len

(continues on next page)

12 DATA FRAMES 293

(continued from previous page)
1 0J 0.5 13.23
2 VC 0.5 7.98
3 0] 1.0 22.70
4 VC 1.0 16.77
##5 0J 2.0 26.06
6 vc 2.0 26.14

Note that the second argument, by, must be list-like (therefore also a data frame is
accepted), not a factor nor an atomic vector. Also, if the function being applied returns
many values, they will be wrapped into a matrix column:

(x <- aggregate(iris[2], iris[5], function(x) c(Min=min(x), Max=max(x))))

Species Sepal.Width.Min Sepal.Width.Max
1 setosa 2.3 4.4
2 versicolor 2.0 3.4
3 virginica 2.2 3.8

class(x[["Sepal.Width"]])

#4 [1] "matrix" "array"

x[["Sepal.Width"]] # not: Sepal.Width.Max, etc.
Min Max

[1,] 2.3 4.4

[2,] 2.0 3.4

#4 [3,] 2.2 3.8

It is actually handy, because by referring to x[["Sepal.Width"]] we have access to all
the stats for this column. Further, if many columns are being aggregated at the same
time, we can process all the summaries in the same way.

Exercise12.26 Check out the built-in by function which supports some basic split-apply-bind
use cases. Note the particularly peculiar behaviour of the print method for the by class.

The most flexible scenario involves applying a custom function returning any set of
aggregates in the form of alist and then row-binding the results to obtain a data frame.

Example12.27 The following implements an R version of what we would express in SQL as:

SELECT supp, dose, AVG(len) AS ave_len, COUNT(*) AS count
FROM ToothGrowth
GROUP BY supp, dose

Ad rem:

do.call(rbind.data. frame, lapply(
split(ToothGrowth, ToothGrowth[c("supp", "dose")]),
function(df) list(
supp=df[1, "supp"],
(continues on next page)

294 Il DEEPER

(continued from previous page)
dose=df[1, "dose"],
ave_len=mean(df[["len"]]),
count=NROW(df)

)

))

#H supp dose ave_len count
0J.0.5 0J 0.5 13.23 10
VC.0.5 vc 0.5 7.98 10
0J.1 0J 1.0 22.70 10
VC. 1 Vvc 1.0 16.77 10
0J.2 0J 2.0 26.06 10
VC.2 vc 2.0 26.14 10

Example 12.28 As an exercise, let us study a function that takes a named list x (can be a data
frame) and a sequence of col=f pairs and applies the function f (or each function from a list of
functions f) on the named element colin x:

napply <- function(x, ...)

{
fs <- list(...)
stopifnot(is.list(x), !is.null(names(x)))
stopifnot(all(names(fs) %in% names(x)))
do.call(
c, # concatenates lists
lapply(
structure(seq_along(fs), names=names(fs)),
function(1i)
{ # always returns a list
y <= x[[names(fs)[1]]]
if (is.function(fs[[1]]))
list(fs[[1]1(y))
else
lapply(fs[[i]], function(f) f(y))
}
)
)
}
For example:
first <- function(x, ...) head(x, n=1L, ...) # we use it below
napply(ToothGrowth,
supp=first, dose=first, len=list(ave=mean, count=length)
)
Ssupp

(continues on next page)

12 DATA FRAMES 295

(continued from previous page)
[1] VC
Levels: 0J VC
##
Sdose
[1] 0.5
##
Slen.ave
[1] 18.813
##
Slen.count
#4 [1] 60

applies first on both ToothGrowth[["supp"]] and ToothGrowth[["dose"]] as well as mean
and lengthon ToothGrowth[["len"]]. List names ave there for a more dramatic effect.

And now:
do.call(
rbind.data. frame,
lapply(
split(ToothGrowth, ToothGrowth[c("supp", "dose")]),
napply,
supp=first, dose=first, len=list(ave=mean, count=length)
)
)
#H supp dose len.ave len.count
0J3.0.5 0J 0.5 13.23 10
VC.0.5 vc 0.5 7.98 10
0J.1 0J 1.0 22.70 10
VC. 1 Vvc 1.0 16.77 10
0J.2 0J 2.0 26.06 10
VC.2 vc 2.0 26.14 10
or even:

aaaggg <- function(x, by, ...)
do.call(rbind.data. frame, lapply(split(x, x[by]), napply, ...))

so that:

aaaggg(iris, "Species", Species=first, Sepal.Length=mean)

#H Species Sepal.lLength
setosa setosa 5.006
versicolor versicolor 5.936

virginica virginica 6.588

296 Il DEEPER

This brings fun back to R programming in the sad times when many things are given to us on a
plate.

By the way, the above has not been tested thoroughly, it is a proof of concept; as usual, testing,
debugging, and extending is left as an exercise to the reader.

Example 12.29 In Section 10.5, we have considered an example where we have used our own
group_by function and an aggregation method overloaded for the object’s class it returns.

Hereisthe function that splits a data frame into a list of data frames with respect to a combination
of levels in given named columns:

group_by <- function(df, by)
{
stopifnot(is.character(by), is.data.frame(df))
df <- droplevels(df) # in case there are factors with empty levels
structure(
split(df, df[names(df) %in% by]),
class="list_dfs",
by=by

}

The next function applies a set of aggregates on every column of each data frame in a given list
(two nested lapplys plus some cosmetic additions):

aggregate. list_dfs <- function(x, FUN, ...)
{
aggregates <- lapply(x, function(df) {
is_by <- names(df) %in% attr(x, "by")
res <- lapply(df[!is_by], FUN, ...)
res_mat <- do.call(rbind, res)
if (is.null(dimnames(res_mat)[[2]]))
dimnames(res_mat)[[2]] <- paste@("f", seq_len(NCOL(res_mat)))
cbind(
‘row.names<-"(df[1, is_by, drop=FALSE], NULL),
x=row.names(res_mat),
‘row.names<-"(res_mat, NULL)

P

combined_aggregates <- do.call(rbind.data. frame, aggregates)

‘row.names<- " (combined_aggregates, NULL)
}
aggregate(group_by(ToothGrowth, c("supp”, "dose")), range)
supp dose x f1 f2
1 0J 0.5 len 8.2 21.5
##H 2 VC 0.5 len 4.2 11.5
3 0J 1.0 len 14.5 27.3

(continues on next page)

12 DATA FRAMES 297

(continued from previous page)
4 VC 1.0 len 13.6 22.5
5 03 2.0 len 22.4 30.9
6 VC 2.0 len 18.5 33.9

We really want our API be bloated, hence let us introduce a convenience function being a spe-
cialised version of the above:

mean. list_dfs <- function(x, ...)
aggregate. list_dfs(x, function(y) c(Mean=mean(y, ...)))
mean(group_by(iris[51:150, c(2, 3, 5)], "Species"))
Species X Mean
1 versicolor Sepal.Width 2.770
2 versicolor Petal.Length 4.260
3 virginica Sepal.Width 2.974
4 virginica Petal.Length 5.552

12.3.8 Transforming data in groups

Some variables will sometimes need to be transformed relative to whatis happening in
subsets of a dataset. This is the case, e.g., where we decide that missing values should
be replaced by the corresponding within-group averages, or want to compute the rel-
ative ranks or z-scores.

If the losing of the original ordering of rows is not an issue, the standard split-apply-
bind will suffice.

An example data frame:

(x <- data.frame(
a=c(10, 1, NA, NA, NA, 4),
b=c(-1, 10, 40, 30, 1, 20),
c=runif(6),
d=c("v", "u", "u", "u", "v", "u")

)

a b cd

1 10 -1 0.52811

2 1 10 0.89242

3 NA 40 0.55144

4 NA 30 0.45661

5 NA 1 0.95683

6 4 20 0.45333

< € © € <

Some operations:

fill_na <- function(x) ‘[<-'(x, is.na(x), value=mean(x[!is.na(x)]))
standardise <- function(x) (x-mean(x))/sd(x)

298 Il DEEPER

And now:

do.call(rbind.data.frame, lapply(
split(x, x["d"]),
function(df) {
df[["a"]] <- fill_na(df[["a"]1])
df[["b"]] <- rank(df[["b"]])
df[["c"]] <- standardise(df[["c"]])

df
}

)

ab cd
u.2 1.0 1 1.46357 u
u.3 2.54 -0.17823 u
u.4 2.5 3 -0.63478 u
u.6 4.0 2 -0.65057 u
v.1 10.0 1 -0.70711 v
v.5 10.0 2 0.70711 v

Note that only the relative ordering of rows within groups has been retained. Overall,
the rows are in a different order.

If this is an issue, we can use the unsplit function:

unsplit(
lapply(

split(x, x["d"]),

function(df) {
df[["a"]] <- fill_na(df[["a"]1])
df[["b"]1] <- rank(df[["b"1])
df[["c"]] <- standardise(df[["c"]1])
df

),

x["d"]
)
ab c
1 10.0 1 -0.70711
2 1.0 1 1.46357
#4 3 2.54 -0.17823
#4t 4 2.5 3 -0.63478
5 10.0 2 0.70711
6 4.0 2 -0.65057

o< © © © < Q

Exercise 12.30 Show how we can do the above also via the replacement version of split.

Example 12.31 Reverting to the previous ordering can be done manually too. It is because the

12 DATA FRAMES 299

split operation behaves as if we first ordered the data frame with respect to the grouping vari-
able(s) (using a stable sorting algorithm).

Here is some transformation of a sample data frame split by a combination of two factors:

(x <- ‘row.names<-"(ToothGrowth[sample(NROW(ToothGrowth), 10),], NULL))

len supp dose
1 23.0 03 2.0
2 23.3 0J 1.0
3 29.4 0J 2.0
4 14.5 0J 1.0
5 11.2 vc 0.5
6 20.0 0J 1.0
#H 7 24.5 0J 2.0
8 10.0 0J 0.5
9 9.4 0J 0.5
10 7.0 vc 0.5

(y <- do.call(rbind.data. frame, lapply(
split(x, x[c("dose", "supp")]), # two grouping variables
function(df) {
dff["len"]] <- df[["len"]] * 1007df[["dose"]] * # whatever

ifelse(df[["supp"]] == "0J", -1, 1) # do not overthink it
df
}

)))

len supp dose
0.5.07.8 -100 0J 0.5
0.5.07.9 -94 0J 0.5
1.0J.2 -2330 07 1.0
1.07.4 -1450 0J 1.0
1.0J.6 -2000 0J 1.0
2.07.1 -230000 0J 2.0
2.0J.3 -294000 0J 2.0
2.0J1.7 -245000 0J 2.0
0.5.VC.5 112 vc 0.5
0.5.VC.10 70 vc 0.5

In Section 5.4.4, we have mentioned that by calling order, we ca determine the inverse of a given
permutation. Hence, we can call:

yl[order(order(x[["supp"]], x[["dose"]])),] # not: dose, supp

#H len supp dose
2.0J.1 -230000 0J 2.0
1.07.2 -2330 0J 1.0
2.07.3 -294000 0J 2.0
1.07.4 -1450 0J 1.0
0.5.VC.5 112 vc 0.5

(continues on next page)

300 Il DEEPER

(continued from previous page)

1.0J.6 -2000 0J 1.0
2.0J.7 -245000 0J 2.0
0.5.0J.8 -100 0J 0.5
0.5.07.9 -94 0J 0.5
0.5.VC. 10 706 VC 0.5

Additionally, we can manually vestore the oviginal row. names, et voild.

12.3.9 Metaprogramming-based techniques (*)

In Section 9.5.7, we have mentioned that due to R’s being equipped with the ability to
write programs that manipulate unevaluated expressions, some functions can provide
us with convenient™ interfaces to a few common operations. These include transform,
fcommandsubset, with, and basically every procedure accepting a formula. Also, the
popular data.table and dplyr packages that we briefly mention in Section 12.3.10 fall
into this class.

However, we have already noted that each such method must be studied separately.
This is because they can arbitrarily interpret the form of the arguments passed thereto,
without taking into account their real meaning. This is why we try to avoid™ them in
this course: we can do perfectly without them. Withal, they are not only interesting on
their own, but also quite popular in other users’ code, hence the honourable mention.
Learning them in more detail is left to the kind reader as an optional exercise.

Example 12.32 For instance, let us consider an example call to the subset function:

subset(iris, Sepal.Length>7.5, -(Sepal.Width:Petal.Width))
#H Sepal.Length Species

106 7.6 virginica
118 7.7 virginica
119 7.7 virginica
123 7.7 virginica
132 7.9 virginica
136 7.7 virginica

Neither Sepal.Length>7.5nor - (Sepal.Width:Petal.Width) make sense as standalone R ex-
pressions, because we have not defined the named variables used therein:

" Furthermore, in some third-party packages, they can sometimes be faster and more memory efficient
(on larger datasets), as it is usually the case with more specialised tools. However, in many daily program-
ming contexts, the speed of the data wrangling operations is not that often an issue. Remember that we
always have SQL-supporting relational databases at our disposal too.

2We are not alone in our calling to refrain from using them. help("subset") warns (and
help("transform") quite similarly): This is a convenience function intended for use interactively. For programming,
it is better to use the standard subsetting functions like *[*, and in particular the non-standard evaluation of argument
subset can have unanticipated consequences. The same in help("with"): For interactive use, this is very effective
and nice to read. For programming however, i.e., in one’s functions, more care is needed, and typically one should refrain
from using with, as, e.g., variables in data may accidentally override local variables.

12 DATA FRAMES 301

Sepal.Length>7.5 # utter nonsense

Error in eval(expr, envir, enclos): object 'Sepal.Length' not found
-(Sepal.Width:Petal.Width) # gibberish

Error in eval(expr, envir, enclos): object 'Sepal.Width' not found

Only from help("subset"), we can learn that this tool generously decides that the second ex-
pression plays the vole of a row selector and the third one removes all the columns between the two
given ones.

In our course, we pay attention to developing transferable skills. Assuming that R is not the only
language we are going to learn during of our long and happy lives, it is much more likely that in
the next environment, we will rather be writing something more of the more basic form:

between <- function(x, from, to) (which(from == x):which(to == x))
iris[iris[["Sepal.Length"]]>7.5,
-between(names(iris), "Sepal.Width", "Petal.Width")]

Sepal.Length Species
106 7.6 virginica
118 7.7 virginica
#4119 7.7 virginica
123 7.7 virginica
132 7.9 virginica
136 7.7 virginica

Let us stress again that this is a book on how to become a great chefwho proudly uses produce from
sustainable sources, and not how to order ultra-processed food from DeliverNoodlesQuickly.com.

Example12.33 transform can be used to add, modify, and remove columns in a data frame
with the possibility of referring to existing features as if they were ordinary variables:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL))

#H mpg cyl disp drat wt gsec vs am gear carb log_hp
Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005
Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005
Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326
Hornet 4 Drive 21.4 6 258 3.08 3.215 19.44 1 -1 3 1 4.7005
Hornet Sportabout 18.7 8 360 3.15 3.440 17.02 0 -1 3 2 5.1648
Valiant 18.1 6 225 2.76 3.460 20.22 1 -1 3 1 4.6540

Similarly, attach adds any named list to the search path (see Section 16.2.6) so that the columns
can be accessed by name. Nevertheless, we cannot alter their contents. As an alternative, withand
withinmay be referred to ifwriting df[[". .. "]] each time is so difficult to us (it should not be):

within(head(mtcars), {
log_hp <- log(hp)
fuel_economy <- 235/mpg
am <- factor(am, levels=c(0, 1), labels=c("no", "yes"))
(continues on next page)

302 Il DEEPER

(continued from previous page)
rm(list=c("mpg", "hp", "vs", "gsec"))

P

cyl disp drat wt am gear carb fuel_economy log_hp
Mazda RX4 160 3.90 2.620 yes 4 4 11.190 4.7005
Mazda RX4 Wag 160 3.90 2.875 yes 11.190 4.7005
Datsun 710 108 3.85 2.320 yes 10.307 4.5326
Hornet 4 Drive 258 3.08 3.215 no 10.981 4.7005
Hornet Sportabout 360 3.15 3.440 no 12.567 5.1648
Valiant 225 2.76 3.460 no 12.983 4.6540

A o O A O O
wWw W W AN N
N N R R

Example 12.34 Asmentioned in Section 10.3.4 (see Section 17.6 for move details), formulae are
special objects that consist of two unevaluated expressions separated by a tilde (" ~").

Functions can support formulae and do what they please with them, but a popular approach is to
allow them to express “something grouped by something else” or “one thing as a function of other
things”.

do.call(rbind.data. frame, lapply(split(ToothGrowth, ~supp+dose), head, 1))
len supp dose

0J.0.5 15.2 0J 0.5

VC.0.5 4.2 vc 0.5

0J.1 19.7 0J 1.0

VC.1 16.5 vc 1.0

0J.2 25.5 0J 2.0

VC.2 23.6 VC 2.0

aggregate(cbind(mpg, log_hp=log(hp))~am:cyl, mtcars, mean)
am cyl mpg log_hp

[¢] 22.900 4.4186

28.075 4.3709

19.125 4.7447

20.567 4.8552

15.050 5.2553

6 1 15.400 5.6950

head(model. frame(mpg+hp~log(hp)+I(1/qsec), mtcars))
mpg + hp log(hp) I(1/gsec)
Mazda RX4 131.0 4.7005 0.060753....
Mazda RX4 Wag 131.0 4.7005 0.058754....
Datsun 710 115.8 4.5326 0.053734....
Hornet 4 Drive 131.4 4.7005 0.051440....
Hornet Sportabout 193.7 5.1648 0.058754....
Valiant 123.1 4.6540 0.049455. ...

L A W N R
D RO
© o O & A A

If these seem esoteric, it is because that is exactly the case. We need to consult the corresponding
functions’ manuals to be able to understand what they do. And, as we do not recommend their use
by beginner programmers, we are not going to explain them here.

12 DATA FRAMES 303

Exercise 12.35 In the last example, the peculiar printing of the last column is due to which
method’s being overloaded?

In the third part of this book, we will return to these functions as they will serve as
a very interesting illustration of how to implement our own procedures that rely on
metaprogramming techniques.

12.3.10 Anote onthe dplyr (tidyverse) and data.table packages ()

The popular third-party packages data. table and dplyr implement the most common
data frame wrangling procedures. Moreover, some of the operations may be much
faster for larger data sets.

They both introduce a completely new API for the operations we already know well how
to perform. Furthermore, they are heavily based on metaprogramming (nonstandard
evaluation). A good way to learn them is by solving some of the exercises listed below.

Note that dplyr is part of a huge system of interdependent packages called tidyverse
which tend to do things their own way and which became quite invasive over the last
years. Nevertheless, R programmers should remember that they are not only able to do
without them; they also need to when the processing of other prominent data struc-
tures is required, e.g., of fancy lists and matrices. Base R always comes first as the
more fundamental layer.

Important Some functions we may find useful will (annoyingly to base R users) re-
turn objects of class tibble (tbl_df) (e.g., haven::read.xpt that reads SAS data files).
However, those are in fact data. frame subclasses and we can always use as.data.frame
to get our favourite objects back.

Also, we cannot stress enough that it is SQL that we recommend to learn as perhaps
the most powerful interface to more considerable amounts of data, and also one that
gives skills which can be used at a later time in other programming environments.

We should remember that base R has already proven long time ago to be a versatile
tool for rapid prototyping, calling specialised procedures written in C or Java, and
wrangling data that fit into memory. For larger problems, techniques for working with
batches of data, sampling methods, or aggregating data stored elsewhere is often the
way to go, especially when building machine learning models or visualisation® is re-
quired. Usually, the most recent data will be stored in normalised databases and you
will need to join a few tables in order to fetch something of interest in the current
analysis context.

13 For example, drawing a scatter plot of one billion points barely makes sense and may result in unread-
able images of large file sizes. They need to be sampled or summarised (e.g., binned) somehow first.

304 Il DEEPER

12.4 Exercises
Exercise 12.36 Answer the following questions:
« What attributes a data frame must be equipped with?

« If row. names is an integer vector, how to access rows labelled 1, 7, and 42?

Howto create a data frame that features a column that is a list of character vectors of different
lengths?

How to create a data frame that includes a matrix column?

« How to convert all numeric columns in a data frame to a numeric matrix?

Assuming that xis an atomic vector, what is the difference between “as.data. frame(x)” vs
“as.data.frame(as.list(x))”vs “as.data.frame(list(a=x))”vs “data.frame(a=x)"?

Exercise 12.37 Assuming that xis a data frame, what is the meaning of/difference between the
following:

o “X["u"]"vs “x[["u"]]"Vvs “x[, "u"]"?

o “X["u"J[1]"vs “x[["u"]][1]"vs “x[1, "u"]”Vvs“x[1, "u", drop=FALSE]”?
o “x[which(x[[1]] > 0),]"vs“x[x[[1]] > 0,]"?

o “x[grep("~foo", names(x))]”?

Exercise 12.38 Assume we have a data frame with columns named like: ID (character),
checked (logical, possibly with missing values), category (factor), x, ... x9 (ten separate nu-
meric columns), yo, ... y9 (ten separate numeric columns), coords (numeric matrix with two
columns named lat and long), and features (list of character vectors of different lengths).

« How to extract the rows where checked is TRUE?
« How to extract a subset comprised only of ID and x-something columns?
« How to extract the rows for which IDis like 3 letters and then 5 digits (e.g., XYZ12345)?

« How to select all the numeric columns in one go?

Assuming that the IDs are like three letters and then five digits, how to add two columns: ID3
(the letters) and ID5 (the five digits).

How to get rid of all the columns between x3 and y7?

« How to check where both lat and longin coords are positive?

How to add the row indicating the number of features?
« How to extract the rows where "spam" is amongst the features?

« How to convert it to a long data frame with two columns: ID and feature (individual
strings)?

12 DATA FRAMES 305

« How to change the name of the ID column to id?

« How to make the y-foo columns appear before the x-bar ones?

« How to order the rows with respect to checked (FALSE first, then TRUE) and IDs (decreas-
ingly)?

« How to remove rows with duplicate IDs?

« How to determine how many entries correspond to each category?

« How to compute the average lat and longin each category?

« How to compute the average lat and long for each category and checked combined?

Exercise12.39 Consider the flights™ dataset. Give some ways to select all rows between
March and October (regardless of the year).

Exercise 12.40 In this task, you will be working with a version of a dataset on 70k+ Melbourne
trees (urban_forest').

1. Load the downloaded dataset by calling the read. csv function.

2. Fetchthe IDs (CoM. ID) and trunk diameters (Diameter . Breast. Height) of five horse chest-
nuts with the smallest diameters at breast height. The output data frame must be sorted with
respect to Diameter.Breast.Height, decreasingly.

3. Create a new data frame that gives the number of trees planted in each year.

4. Compute the average age (in years, based on Year . Planted; using aggregate) of the trees of
genera (each genus separately): Eucalyptus, Platanus, Ficus, Acer, and Quercus. Depict the
sorted data with barplot.

Exercise12.41 (*) Consider the historic data dumps of https://travel.stackexchange.com/
available here'®. Export the CSV files located therein to an SQLite database. Then, write some
R code that correspond to the following SQL queries (use dbGetQuery to verify your results):

- 1)
SELECT

Users.DisplayName,

Users.Age,

Users.Location,

SUM(Posts.FavoriteCount) AS FavoriteTotal,

Posts.Title AS MostFavoriteQuestion,

MAX(Posts.FavoriteCount) AS MostFavoriteQuestionLikes
FROM Posts
JOIN Users ON Users.Id=Posts.OwnerUserId
WHERE Posts.PostTypeld=1
GROUP BY OwnerUserId

(continues on next page)

4 https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
'5 https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
16 https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
https://travel.stackexchange.com/
https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

306 Il DEEPER

(continued from previous page)

ORDER BY FavoriteTotal DESC
LIMIT 10
--- 2)
SELECT
Posts.ID,
Posts.Title,
Posts2.PositiveAnswerCount
FROM Posts
JOIN (
SELECT
Posts.ParentID,
COUNT(*) AS PositiveAnswerCount
FROM Posts
WHERE Posts.PostTypeID=2 AND Posts.Score>0
GROUP BY Posts.ParentID
) AS Posts2
ON Posts.ID=Posts2.ParentID
ORDER BY Posts2.PositiveAnswerCount DESC
LIMIT 10
--- 3)
SELECT
Posts.Title,
UpVotesPerYear. Year,
MAX(UpVotesPerYear.Count) AS Count
FROM (
SELECT
PostId,
COUNT(*) AS Count,
STRFTIME('%Y', Votes.CreationDate) AS Year
FROM Votes
WHERE VoteTypeId=2
GROUP BY PostId, Year
) AS UpVotesPerYear
JOIN Posts ON Posts.Id=UpVotesPerYear.PostId
WHERE Posts.PostTypeld=1
GROUP BY Year
--- 4)
SELECT
Questions.Id,
Questions.Title,
BestAnswers.MaxScore,
Posts.Score AS AcceptedScore,
BestAnswers.MaxScore-Posts.Score AS Difference
FROM (

(continues on next page)

12 DATA FRAMES 307

(continued from previous page)
SELECT Id, ParentId, MAX(Score) AS MaxScore
FROM Posts
WHERE PostTypeld==2
GROUP BY ParentId
) AS BestAnswers
JOIN (
SELECT * FROM Posts
WHERE PostTypelId==1
) AS Questions
ON Questions.Id-BestAnswers.ParentId
JOIN Posts ON Questions.AcceptedAnswerId=Posts.Id
WHERE Difference>50
ORDER BY Difference DESC
- 5)
SELECT
Posts.Title,
CmtTotScr.CommentsTotalScore
FROM (
SELECT
PostID,
UserlID,
SUM(Score) AS CommentsTotalScore
FROM Comments
GROUP BY PostID, UserID
) AS CmtTotScr
JOIN Posts ON Posts.ID=CmtTotScr.PostID
AND Posts.OwnerUserId=CmtTotScr.UserID
WHERE Posts.PostTypelId=1
ORDER BY CmtTotScr.CommentsTotalScore DESC
LIMIT 10
--- 6)
SELECT DISTINCT
Users.Id,
Users.DisplayName,
Users.Reputation,
Users.Age,
Users.Location
FROM (
SELECT
Name, UserID
FROM Badges
WHERE Name IN (
SELECT
Name

(continues on next page)

308 Il DEEPER

(continued from previous page)

FROM Badges
WHERE Class=1
GROUP BY Name
HAVING COUNT(*) BETWEEN 2 AND 10
)
AND Class=1
) AS ValuableBadges
JOIN Users ON ValuableBadges.UserId=Users.Id
- 7)
SELECT
Posts.Title,
VotesByAge2.0ldVotes
FROM Posts
JOIN (
SELECT
PostId,
MAX(CASE WHEN VoteDate = 'new' THEN Total ELSE O END) NewlVotes,
MAX(CASE WHEN VoteDate = 'old' THEN Total ELSE 0 END) OldVotes,
SUM(Total) AS Votes
FROM (
SELECT
PostId,
CASE STRFTIME('%Y', CreationDate)
WHEN '2017' THEN 'new'
WHEN '2016' THEN 'new'
ELSE 'old’
END VoteDate,
COUNT(*) AS Total
FROM Votes
WHERE VoteTypeId=2
GROUP BY PostId, VoteDate
) AS VotesByAge
GROUP BY VotesByAge.PostId
HAVING NewVotes=0
) AS VotesByAge2 ON VotesByAge2.PostId=Posts.ID
WHERE Posts.PostTypeld=1
ORDER BY VotesByAge2.0ldVotes DESC
LIMIT 10

Exercise 12.42 (*) Generate a CSV file featuring some random data arranged in a few columns
of the size at least two times larger than your available RAM. Then, export the CSV file to an
SQLite database. Use file connections (Section 8.3.5) and the nrow argument to read. table to
be able to process it on a chunk-by-chunk basis.

Determine whether setting colClasses in read. table speeds up the reading of large CSV files
significantly or not.

12 DATA FRAMES 309

Exercise12.43 (*) Export the whole XML data dump of StackOverflow'” published at https:
//archive.org/details/stackexchange (see also https://data.stackexchange.com/) to an SQLite
database.

17 https://stackoverflow.com

https://stackoverflow.com
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://data.stackexchange.com/

13
Graphics

The R Project homepage advertises our free software as an environment for statistical
computing and graphics. Hence, had we not dealt with the latter use case, our course
would have been incomplete.

R is nowadays equipped with the two following independent (incompatible, yet coex-
isting) systems for graphics generation; see Figure 13.1.

1. The (historically) newer one, grid (e.g., [44]), is very flexible but might seem quite
complicated. Some readers might have come across the lattice [49] and ggplot2
[54, 57] packages before: they are built on top of grid.

2. Onthe other hand, its traditional (S-style) counterpart, base graphics (e.g., [7]), is
much easier to master. It still gives their users full control over drawing processes.
Its being simple, fast, and minimalist makes it very attractive from the perspective
of this course’s philosophy.

This is why we only cover the second system here.

Note Allfigures in this book were generated using graphics and its dependants. They
are sufficiently aesthetic, aren't they?

13.1 Graphics primitives

In graphics, we do not choose from a superfluity of virtual objects to be placed on an
abstract canvas, letting some algorithm decide how and when to delineate them. We
just draw. To do so, we call functions that plot the following graphics primitives (see, e.g.,
(35, 41]):

. plotting symbols (e.g., pixels, circles stars) of different shapes and colours,
« line segments of different styles (e.g., solid, dashed, dotted),

- polygons (optionally filled),

- text (using available fonts),

. raster images (bitmaps; if the output device supports it).

312 Il DEEPER

@ stats

qqplot

plot.ecdf
plot.hclust

\

higher-level functions (graphics)

@graphics

plot.default
boxplot

hist

barplot
image

/

higher-level

functions (grid)

@ ggplot2

@ lattice

|

/

[

\g:aphics subsystems

@graphics

plot.new
plotwindow
plot.xy
polygon
text.default
rasterlmage

@grid

N
N\

graphics devices
(abstraction layer)

@ grDevices

par

dev.new
dev.off

N

particular devices

/

N

@ tikzDevice::tikz

@ grDevices::png

@ grDevices::svg|

@ grDevices::x11

@ grDevices::cairo_pdf

Figure 13.1: Relation between the graphics subsystems

13 GRAPHICS 313

That's it. It will turn out that all other shapes (smooth curves, circles) might be easily
approximated using the above.

Example13.1 Figure 13.2 depicts some graphics primitives which we plotted using the follow-
ing program. We will detail the meaning of all the functions in the next sections.

par(mar=rep(0.5, 4)) # small plot margins (bottom, left, top, right)
plot.new() # start a new plot
plot.window(c(0, 6), c(0, 2), asp=1) # x range: 0-6, y: 0-2; proportional
X <- c(0, 0, NA, 1, 2, 3, 4, 4, 5, 6)
y <- c(0, 2, NA, 2, 1, 2, 2, 1, 0.25, 0)
points(x[-(1:6)], y[-(1:6)]) # symbols
lines(x, y) # line segments
text(c(0, 6), c(0, 2), c("(0, 0)", "(6, 2)"), col="red") # two text labels
rasterImage(
matrix(c(1, 0, # 2x3 pixel "image"; O=black, 1=red
0, 1,
0, 0), byrow=TRUE, ncol=2),
5, 0.5 6, 2, # position: xleft, ybottom, xright, ytop
interpolate=FALSE

)
polygon(
c(4, 5, 5.5, 4), # x coordinates of the vertices
c(o, o, 1, 0.75), # y coordinates
lty="dotted", # border style
col="#ffffo044" # fill colour: semi-transparent yellow
)

(0J0)

Figure 13.2: Graphical primitives: plotting symbols, line segments, polygons, text la-
bels, and bitmaps; note that objects are added one after another, with newer ones
drawn over the already existing shapes

Important In graphics, most of the function calls have immediate effects. Objects
are drawn on the active plot one by one, and their state cannot be modified later.

Of course, in practice, we do not have to be so low-level all the time. There are many
built-in functions that implement (using exactly the above building blocks) the most

314 Il DEEPER

popular chart types: histograms, bar plots, dendrograms, etc. They should suit our
basic needs. We will review them in Section 13.3.

The more basic routines that we discuss next will still be useful for fine-tuning our
figures and adding further details. But, if the prefabricated components are not what
we are after, we will be able to create any drawing from scratch.

13.1.1 Symbols (points)

The points function can be used a draw a series of plotting symbols (by default, circles)
on the two-dimensional plot region relative to the user coordinate system.

We specify the points’ coordinates using the x and y arguments (two vectors of equal
lengths; no recycling). Alternatively, we may give a matrix or a data frame with two
columns: its first column (regardless how and if it is named) defines the abscissae,
and the second column determines the ordinates.

This function allows each point to be plotted differently, if this is what we desire. Thus,
it is ideal for drawing scatter plots, possibly for grouped data (see Figure 13.17 below).
Itisvectorised with respect to, amongst others, the col (colour; see Section 13.2.1), cex
(scale, defaults to 1), and pch (plotting character or symbol, defaults to 1, i.e., a circle)
arguments.

Example13.2 Figure 13.3 gives an overview of the plotting symbols available. Most often used
ones are:

« NA_integer_—mno symbol,
e 0,.., 14and 15, ..., 18— unfilled and filled symbols, respectively;

o 19, ..., 25— filled symbols with a border of width 1wd; for codes 21-25, the fill colour is con-
trolled separately by the bg parameter,

", "—atiny point (a “pixel”),

. "a", "1", etc. — a single character (not all Unicode characters are available); strings longer
than one will be truncated.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0.9, 9.1), c(0.9, 4.1))

points(
cbind(1:9, 1), # or x=1:9, y=rep(1, 9)
col="red",

pch=c("A", "B", "a", "b", "Spanish Inquisition", "*", "I", ".", "9")
)
xy <- expand.grid(1:9, 4:2)
text(xy, labels=0:(nrow(xy)-1), pos=1, cex=0.89, offset=0.75, col="darkgray")
points(xy, pch=0:(nrow(xy)-1), bg="yellow")
Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch
value '26'

13 GRAPHICS 315

o) A + X o v X *
o ® 44 | ®] (] ° A
. () ° o) o o A v

A B a b S ! 9

Figure 13.3: Plotting characters and symbols (pch)

13.1.2 Line segments

lines can be used to draw connected line segments whose mid- and endpoints are
given in a similar manner as in the points function. A series of segments can be in-
terrupted by defining an endpoint whose coordinate is a missing value; compare Fig-
ure 13.2.

Actually, points and lines are wrappers around the same function, plot.xy (which
we usually do not call directly). Their type arguments determine the object to draw;
the only difference between them is that the former uses type="p" whilst the latter re-
lies on type="1" by default. Changing these to type="b" (both) or type="o0" (overplot)
will give their combination. Moreover, type="s" and type="S" results in step functions
(with post- and pre-increments, respectively), and type="h" draws bar plot-like ver-
tical lines. See Figure 13.4 for an illustration (implement something similar yourself
as an exercise).

type="S"
type="s"
type="0"
type="b"
type="I"
type="p"
type="h"

Figure 13.4: Different type argument settings in lines or points

The col argument controls the line colour (see Section 13.2.1) and lwd determines
the line width (1 by default). Six named line types (lty) are available, which can also
be specified via their respective numeric identifiers, lty=1, ..., lty=6; see Figure 13.5
(implementing a similar plot is left as an exercise). Additionally, custom dashes can
be defined using strings of up to 8 (hexadecimal) digits. Consecutive digits give the
lengths of the dashes and blanks. For instance, 1ty="1343" yields a dash of length 1,

316 Il DEEPER

followed by a space of length 3, then a segment of length 4, followed by a blank of length
3. The whole sequence will be recycled for as long as necessary.

"solid"or{ —M8 — "dashed"” "44" or2 ——————————
"dotted”,"13",0r3 -----eoeiiiiiannnn "dotdash’, "1343", 0r4 -—-—-—-—umem- -
‘longdash’,"73", 0or5 ———————— "twodash’, "2262" Or 6 -—-—-—-—c—u—-.
"5515" — - — - — - — - — "9515" — - — - — - — -

B "'4484C4" - — — - — — -

Figure 13.5: Line types (lty)

Example13.3 lines can be used for plotting empirical cumulative distribution functions (we
will suggest it as an exercise later), regression models (e.g., lines, splines of different degrees), time
series, and any other mathematical functions, even when they are smooth and curvy. A naked eye
cannot tell the difference between a densely sampled piecewise linear approximation of an object
and its oviginal version.

The code below illustrates this (sad for the high-hearted idealists) truth using the sine function;
see Figure13.6.

ns <- c(seq(3, 25, by=2), 50, 100)
par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, length(ns)*pi), c(-1, 1))
for (i in seq_along(ns)) {

x <- seq((i-1)*pi, i*pi, length.out=ns[1])

lines(x, sin(x))

text((i1-0.5)*pi, 0, ns[i], cex=0.89)

Figure 13.6: Sampling more densely gives the illusion of smoothness

Exercise 13.4 Implement your own version of the segments function, using a call to lines.

Exercise13.5 (*) Implement a simplified version of the arrows function, where the length
of edges of the arrow head is given in user coordinates (and not inches; you will be equipped
with skills to achieve this later; see Section 13.2.5). Use the 1join and lend arguments (see
help("par") for admissible values) to change the line end and join styles (from the default roun-
ded caps).

13 GRAPHICS 317

13.1.3 Polygons

polygon draws a possibly filled (if the col argument is not missing) polygon with a bor-
der of specified colour and line type (border, 1ty, lwd). Optionally, instead of filling
with a single colour, the polygon can be hatched (via the density and angle argu-
ments).

Example13.6 Todemo the above function, let us draw a few regular (equilateral and equiangu-
lar) polygons; see Figure13.7. By increasing the number of sides, we can obtain an approximation
to a circle.

regular_poly <- function(x0, y@, r, n=101, ...)
{
theta <- seq(0, 2*pi, length.out=n+1)[-1]
polygon(x0+r*cos(theta), yO+r*sin(theta), ...)
}

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9.5), c(-1, 1), asp=1)
regular_poly(1, 0, 1, n=3)

regular_poly(3.5, 0, 1, n=7, density=15, angle=45, col="tan", border="red")
regular_poly(6, 0, 1, n=10, density=8, angle=-60, lty=3, lwd=2)
regular_poly(8.5, 0, 1, n=100, border="brown", col="lightyellow")

Figure 13.7: Regular polygons drawn using polygon

Note the asp=1 argument to the plot.window function (which we detail below) that guarantees
the same scaling of the x- and y-axes. This way, the circle looks like one, and not an oval.

Note that the last vertex adjoins the first one. Also, if we are absent-minded (or par-
ticularly creative), we can produce self-intersecting or otherwise degenerate shapes.

Exercise 13.7 Implement your own version of the rect function, using a call to polygon.

13.1.4 Text

A call to text, draws arbitrary strings (newlines and tabs are allowed) centred at the
specified points. Moreover, by setting the pos argument, the labels may be placed be-
low, to the left of, etc. the pivots. Some further position adjustments are also possible
(adj, offset); see Figure 13.8.

col specifies the colour, cex affects the size, and srt changes the rotation of the text.

On many default graphical devices, we have little control over the font face used: font

318 Il DEEPER

C)
default pos=2 pos=4 & A0
pos=3 D) L}\. 8{’0
ed
pos=1
pos=1
offset=1.5

Figure 13.8: The positioning of text with text (the plotting symbols were added for ref-
erence)

family can be selected using family ("sans", "serif", "mono"), and font can be used to
select the normal variant (1), bold (2), italic (3), or bold italic (4). See, however, Sec-
tion 13.2.7 for some workarounds.

Note (*) There is some limited support for basic mathematical symbols and for-
mulae. It relies on some quirky syntax that we enter using unevaluated R expres-
sions (Chapter 15). Still, it should be enough to meet our most basic needs. For in-
stance, passing “quote(beta[1]4j)” as the labels argument to text, will output ,B]l
See help("plotmath") for more details.

For more sophisticated mathematical typesetting, see tikzDevice that we mention in
Section 13.2.7. This graphics device outputs plot specifications that can be rendered
by the LaTeX typesetting system.

13.1.5 Raster images (bitmaps) (*)

Most of the output devices also support the drawing of raster images encoded in the
form of bitmaps, i.e., matrices whose elements represent pixels (see Figure 13.2 for an
example).

Raster images are useful for drawing heat maps or backgrounds of contour plots; see
Section 13.3.4.

Example13.8 Optionally, bilinear interpolation can be applied if the drawing area is lar-
ger than the bitmap size and we would like to smoothen the colour transitions out. Figure 13.9
presents a very stretched 4-by-3 pixel image, with and without interpolation.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9), c(0, 1))
I <- matrix(nrow=4, byrow=TRUE,
c("red", "yellow", '"white",
"vellow", "yellow", "orange",
"vellow", "orange", "orange",
"white", "orange", "red")

(continues on next page)

13 GRAPHICS 319

(continued from previous page)
rasterImage(I, 0, 0, 4, 1) # interpolate=TRUE
rasterImage(I, 5, 0, 9, 1, interpolate=FALSE)

Figure 13.9: Example bitmaps drawn with rasterImage; with (left) and without (right)
colour interpolation

13.2 Graphics settings

par can be used to query and modify (as long as they are not read-only) a number of
graphics settings.

For instance, we have several parameters related to the current page or device settings,
e.g., the plot’s margins (see Section 13.2.2) or user coordinates (see Section 13.2.3).

Moreover, values of some of the parameters set via par may be taken by a few functions®
as settings to use by default. This is the case of, e.g., col, pch, lty in the points and
lines function.

Exercise 13.9 Study the following (pseudo)code.

lines(x, y) # use the default ‘lty", i.e., par("lty") == "solid"
old_settings <- par(lty="dashed") # change setting, save old for reference
lines(x, y) # use the default ‘lty', i.e., par("lty") == "dashed"

lines(x, y, lty=3) # use the given ‘lty’
lines(x, y) # lty="dashed"

par(old_settings) # restore previous settings
lines(x, y) # lty="solid"

The reference list of available parameters is given in help("par"). Below we discuss the
most noteworthy ones.

13.2.1 Colours

Many functions allow specifying colours of the plotted objects or their parts; compare,
e.g., col and border arguments to polygon, or col and bg to points.

! Unfortunately, it is not as straightforward as that. For instance, polygon is not affected by the col set-
ting, axis uses col.axis instead, etc. We should always consult the documentation.

320 Il DEEPER

There are a few ways to specify colours (see the Colour Specification section in
help("par") for more details):

« A"colour name" string, being one of the 657 predefined tags known to the colours
function:

sample(colours(), 8) # this is just a sample
[1] "grey23" "darksalmon" "tan3" "violetred4"
[5] "lightbluel” "darkorchid3" "darkseagreenl" "slategray3"

An "#rrggbb" string, specifying a position in the RGB* colour space; three series of
hexadecimal numbers of two digits each, i.e., between ooy, = 0 (off) and FFy., =
255 (full on), giving the intensity of the red, green, and blue channels?;

In practice, the col2rgb and rgb functions can be used to convert between the
decimal and hexadecimal representations:

C <- c("black", "red", "green", "blue", "cyan", "magenta",
"yellow", "grey", "lightgrey", "pink") # example colours
(Cmat <- structure(col2rgb(C), dimnames=1list(c("R", "G", "B"), C)))
black red green blue cyan magenta yellow grey lightgrey pink

R 0 255 [¢] 0] (0] 255 255 190 211 255

G 0 0 255 0 255 (0] 255 190 211 192

B [¢] [¢] 0 255 255 255 0 190 211 203
structure(rgb(Cmat[1,], Cmat[2,], Cmat[3,], maxColorValue=255),

names=C)

#H black red green blue cyan magenta yellow
"#O00000" "#FFOOOO" "#OOFFOO" "#OOOOFF" "#OOFFFF" "#FFOOFF" "#FFFFOO"
grey lightgrey pink

"#BEBEBE" "#D3D3D3" "#FFCOCB"

« An "#rrggbbaa" string, like above, but with the added alpha channel (two addi-
tional hexadecimal digits): from ooy, = 0 denoting fully transparent, to FFp., =
255 indicating fully visible (“lit”) colour; see Figure 13.2 for an example.

Note that semi-transparency (translucency) can significantly enhance the ex-
pressivity of our data visualisations; see Figure 13.18 and Figure 13.19.

« Aninteger index, selecting an item from the current palette (with recycling), which
we can get or set by a call to palette. Moreover, 0 identifies the background colour,
par("bg").

Integer colour specifiers are particularly useful when plotting data in groups, as

% https://en.wikipedia.org/wiki/RGB_color_model

3 From school, we probably know the subtractive CMY (cyan, magenta, yellow) model, where we obtain,
e.g., green colour by using blue-ish and yellow crayons (subtracting certain wavelengths from white light).
The RGB model, on the other hand, corresponds to the three photoreceptor/cone cells in the retinas of the
human eyes. Nonetheless, it is additive, and therefore less intuitive: total darkness emerges when we do not
emit any light; yellow emerges when mixing red and green beams, etc.

https://en.wikipedia.org/wiki/RGB_color_model

13 GRAPHICS 321

defined by factors. The underlying integer level codes can be mapped to consecut-
ive colours from any palette; see Figure 13.17 below for an example.

Example 13.10 It is worth to memorise the colours in the default palette:

palette() # default palette
[1] "#0OOOOOFO" "#DF536BFO" "#61DO4FFO" "#2297E6FQ" "#28E2E5F0"
[6] "#CDOBBCFO" "#F5C710F0" "#999999F0"

These are*, in order: black, red, green, blue, cyan, magenta, yellow, grey; see® Figure 13.10 for an
illustration.

k <- length(palette())

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, k+1), c(0, 1))
points(1:k, rep(0.5, k), col=1:k, pch=16, cex=3)

text(1:k, 0.5, palette(), pos=rep(c(1, 3), length.out=k), col=1:k, offset=1)
text(1:k, 0.5, 1:k, pos=rep(c(3, 1), length.out=k), col=1:k, offset=1)

1 #DFs536BFo #2297E6F0 #CDoBBCFo
#000000F0 2 4 6

Figure 13.10: The default colour palette

As choosing usable colours requires some talents that most programmers lack, we will
find ourselves relying on some built-in, good-enough colour sets. palette.pals and
hcl.pals return the names of the available discrete (qualitative) palettes. Then, palette.
colors and hcl.colors (note the American spelling) can generate a given number of
colours from particular named set.

Continuous (quantitative) palettes are also available, see rainbow, heat.colors, terrain.
colors, topo.colors, cm.colors, and gray.colors. They transition smoothly between
some predefined pivot colours, e.g., from blue through green to brown (like in a topo-
graphic map with elevation colouring). They may be useful, e.g., when drawing con-
tour plots; compare Figure 13.27.

Exercise 13.11 Createa demo of the aforementioned built-in palettes, in a similar (or nicer) style
to that in Figure 13.11.

4 Actually, red-ish, green-ish, etc. The choice is not only more aesthetic than when pure red, green, etc.
was used (before R 4.0.0), but also should be more friendly to people who have some colour vision defi-
ciencies (ca. every 1 in 12 men (8%) and 1 in 200 women (0.5%), especially in the red-green or blue-yellow
spectrum; see [46] for more details).

5 The readers of the printed version of this book should note that its online version displays this figure
(and all other ones) in full colour. See you there.

322 Il DEEPER

R3
R4
ggplot2
Okabe-Ito ‘
Y

Accent
Dark 2
Paired ‘
Pastel1
o

Pastel 2
Set1 : .
Set2
Set3 :

Tableau1o '

Classic Tableau
Polychrome 36
Alphabet

Figure 13.11: Qualitative colour palettes in palette.pals; Note that R4 is the default
one, as seen in Figure 13.10

13.2.2 Plot margins and clipping regions

A device (page) region represents a single plot window, one raster image file, or a page
in a PDF document (see Section 13.2.7 for more information on graphics devices). As
we will learn from Section 13.2.6, it is capable of holding many figures.

Usually, however, we draw one figure per page. In such a case, the device region is divided
into the following parts:

1) outer margins, which can be set using, e.g., the oma graphics parameter (in text
lines, based on the height of the default font); by default, they equal to o;

2) figure region:

a) inner (plot) margins, by default mar=c(5.1, 4.1, 4.1, 2.1) text lines (bottom,
left, top, right, respectively); this is where we usually emplace the figure title, axes
labels, etc.

b) plot region, where we draw graphical primitives positioned relative to the user
coordinates.

Note Typically, all drawings are clipped to the plot region, but this can be changed
with the xpd parameter; see also the clip function that allows clipping to an arbitrary
rectangle.

13 GRAPHICS 323

Example 13.12 Figure 13.12 shows the default page layout. In the code chunk below, note the
use of mtext to print a text line in the inner margins, box to draw a rectangle around the plot or
figureregion, axisto add the two axes (labels and tick marks), and titleto add some descriptive
labels.

plot.new(); plot.window(c(-2, 2), c(-1, 1)) # whatever
for (i in 1:4) { # Some text lines on the inner margins
for (j in seq_len(par("mar")[1]))
mtext(sprintf("Text line %d", j), side=i, line=j-1, col="lightgray")
}

title(main="Main", sub="sub", xlab="xlab", ylab="ylab")
box("figure", lty="dashed") # a box around the figure region
box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

rect(-10, -10, 10, 10, col="lightgray") # rectangle (clipped to plot region)
text(0, 0, "Plot region")

lines(c(-3, 0, 3), c(-2, 2, -2)) # standard clipping (plot region)
lines(c(-3, 0, 3), c(-2, 1.25, -2), xpd=TRUE, lty=3) # clip to figure region

|
|
| |
| A
| Main |
|
| |
| o |
- I
I I
| v | |
| o }
I o 0 |
I o _| & i
| _; P Plot region ;
| - |
I I
| _
| |
o ‘
\ T | | | | }
| i |
| -2 -1 o) 1 2 i
|
1
} xlab |
|
! sub

Figure 13.12: Figure layout with default inner (mar=c(5.1, 4.1, 4.1, 2.1) text lines)
and outer (oma=c(0, 0, 0, 0)) margins: we see that a lot of space is wasted and hence
some tweaking might be necessary to better suit our needs; note the clipping of the
solid line to the plot region

324 Il DEEPER

13.2.3 User coordinates

plot.window can be used to set the user coordinates. It accepts the following paramet-
ers:

« x1lim, ylim — vectors of length two giving the minimal and maximal ranges on the
respective axes; by default, they are extended by 4% in each direction (for aesthetic
reasons; see, e.g., Figure 13.12), but see the xaxs and yaxs graphics parameters;

« asp —aspect ratio (/x);defaults toNa, i.e., no adjustment; use asp=1 for circles to
look like ones, and not ovals;

« log - switches logarithmic scaling on particular axes: "" (none; default), "x", "y",
or "xy".

Example 13.13 Thegraphics parameter usr can be used to read (and set) the extremes of the user
coordinates in the form (xq, X5, Y1,Y2)-

plot.new()

plot.window(c(-1, 1), c(1, 1000), log="y", yaxs="1")
par("usr"

[1] -1.08 1.08 0.00 3.00

Note that indeed the x-axis range was extended by 4% in each divection. We have turned this
behaviour off for the y-axis, which uses the base-10 logarithmic scale. In this case, its actual range
is 10%par("usr")[3:4], becauselog,;, 1 = 0 andlog,, 1000 = 3.

Exercise 13.14 Implement your own version of the abline function.

13.2.4 Axes

Even though axes (labels and tick marks) can be drawn manually using the aforemen-
tioned graphics primitives, it is usually too tedious a work.

This is why we tend to rely on the axis function, which draws the object on one of the
plot sides (as usual, 1=bottom, ..., 4=right).

Once plot.window is called, axTicks can be called to guesstimate some tasteful (round)
locations for the tick marks based on the current plot size. By default, they are based
on the xaxp and yaxp graphics parameters, which give the axis ranges and the number
of intervals between the tick marks.

plot.new(); plot.window(c(-0.9, 1.05), c(1, 11))
par("usr") # (x1, x2, yi1, y2)

[1] -0.978 1.128 0.600 11.400

par("yaxp") # (y1, y2, n)

[1] 2 10 4

axTicks(2) # left y-axis

[1] 2 4 6 8 10

par("xaxp") # (x1, x2, n)

(continues on next page)

13 GRAPHICS 325

(continued from previous page)
#4 [1] -0.5 1.0 3.0
axTicks(1) # bottom x-axis
[1] -0.5 0.0 0.5 1.0
par(xaxp=c(-0.9, 1.0, 5)) # change
axTicks(1)
[1] -0.90 -0.52 -0.14 0.24 0.62 1.00

axis relies on the same algorithm as axTicks. Alternatively, we can provide our own
tick locations and labels.

Example 13.15 Most of the plots in this book use the following graphics settings (except las=1
to axis(2)); see Figure 13.13. Check out help("par"), help("axis"), efc. and tune them up to
suit your needs.

par(mar=c(2.2, 2.2, 1.2, 0.6))

par(tcl=0.25) # the length of the tick marks (fraction of text line height)

par(mgp=c(1.1, 0.2, 0)) # axis title, axis labels, and axis line location

par(cex.main=1, font.main=2) # bold, normal size - main in title

par(cex.axis=0.8889)

par(cex.lab=1, font.lab=3) # bold italic, normal size

plot.new(); plot.window(c(0, 1), c(0, 1))

a "grid":

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
col="#00000010")

abline(v=axTicks(2), col="white", lwd=1.5, lty=1)

abline(h=seq(0, 1, length.out=4), col="white", lwd=1.5, lty=1)

set up axes:

axis(2, at=seq(0®, 1, length.out=4), c("0", "1/3", "2/3", "1"), las=1)

axis(1)

title(xlab="xlab", ylab="ylab")

box()

13.2.5 Plot dimensions (*)

There are certain sizes that can be read or specified in inches (1 inch (1”) is exactly 25.4
mm):

« pin - plot dimensions (width, height),
. fin - figure region dimensions,

« din — page (device) dimensions,

. mai - plot (inner) margin size,

« omi — outer margins,

« cin - size of the “default” character (width, height).

326 Il DEEPER

2/3F

ylab

13

0.0 0.2 0.4 0.6 0.8 1.0
xlab

Figure 13.13: Custom axes and other settings

Note that if the figure is scaled, the virtual inch (the one reported by R) will not match
the physical one (e.g., the actual size in the printed version of this book or on the com-
puter screen).

Important The positions of most of the objects is specified in virfual user coordinates,
as specified by usr. They are automatically mapped to the physical device region, taking
into account the page size, outer and inner margins, etc.

Knowing the above, some basic scaling can be used to convert between user
and physical sizes (in inches), based on the ratios (usr[2]-usr[1])/pin[1] and
(usr[4]-usr[3])/pin[2]; compare the xinch and yinch functions.

Example13.16 (*) Figure 13.14 shows how we can pinpoint the edges of the figure and device
region in user coordinates.

Exercise 13.17 (*) Note that we cannot use mtext to print text on the right inner margin rotated
by 180 degrees as compared to what we see in Figure 13.12. Implement your own version of this
function that will allow you to do so. Hint: use text, the cin graphics parameter, and what you
can read from Figure 13.14.

13.2.6 Many figures on one page (subplots)

It is possible to create many figures on one page. In such a case, each of them has its
own inner margins and a plot region.

A call to par (nfrow=c(nr, nc)) or par(mfcol=c(nr, nc)) splits the page into a regular
grid with nr rows and nc columns. Each invocation of plot.new starts a new figure.

13 GRAPHICS 327

(usr[2]+(mai[4]+omi[4])*xinch, usr[4]+(mai[3]+omi[3])*yinch)=(2.36, 1.35)

T (aselzJmailalxinch, ustalmaia]'yinch)=(2.20,1.20) ——— - 20

! |
| |
| |
| '
! (usr[2], usr[4])=(2.00,1.00) © o
| o [
l 'SR 0!
I o A 13
| usr=(-2,2,-1,1) =TI T R
! ~ = 2w
! mai=(0.25, 0.25, 0.25, 0.25) s 5 PIg
) o rSESH
! omi=(0.2,0.2,0.2,0.2) = m| oo
! e)
! . e . - g 3Ll
: (usr[1]-(mai[2]+omi[2])*xinch, usr[3]-(mai[1]+omi[1])*yinch)=(-2.36, -1.35) # = .%O,fi}
.. . = = 1y
: (usr[1]-maif2]*xinch, usr[3]-mai[1]*yinch)=(-2.20, -1.20) 2 3 '; r% :
= < 3]
: (usr[1], usr[3])=(-2.00, -1.00) % g:%}
| 3 . [®} [} oo,
| xinch = (usr[2]-usr[1])/pin[1] = 0.79 §‘ = : 8!
I o :
plot width, usr[2]-usr[1]=4, pin[1]=5.04" al |

|

|

figure width, fin[1]=5.54"

Figure 13.14: User vs device coordinates

Consecutive figures are either placed in a rowwise manner (nfrow) or the columnwise
one (mfcol). Alternatively, the mfg parameter can be used to enforce a custom order.

Example 13.18 Figure 13.15 depicts an example page with four figures aligned on a 2-by-2 grid.

par(oma=rep(1.2, 4)) # outer margins (default 0)
par(mfrow=c(2, 2)) # a 2x2 plot grid

for (i in 1:4) {
plot.new()
par(mar=c(3, 3, 2, 2)) # each plot can have different inner margins
plot.window(c(i-1, i+1), c(-1, 1)) # separate user coordinates for each

text(i, 0, sprintf("Plot region (plot %d)\n(%d, %d)", 1,
par("mfg")[1], par("mfg")[2]))

box("figure", lty="dashed") # a box around the figure region
box("plot") # a box around the plot region
axis(1) # horizontal axis (bottom)
axis(2) # vertical axis (left)
}

box("outer", lty="dotdash") # a box around the whole page
for (1 in 1:4)

mtext(sprintf("Outer margin %d", 1), side=1, outer=TRUE)

Thanks to mfrow and mfcol, we can create a scatter plot matrix or different trellis plots.

328 Il DEEPER

|- - -"-"-"-"-"-""-"-"-"-"-"-"-"-"-"-"-"-~"-~""-""-/"q°-""~“*"-"-"~"¥°~"~"~*"¥°~*~*"¥*"¥°*"¥°”¥°¥7¥°"°¥°¥=/=¥7=/=¥7=/=¥‘7/=¥"=-"7==" |
[
l L
(IS O : |

: =] -] !
: o _| Plot region (plot1) o | Plot region (plot 2) : :
1 © (1,1) ° (1,2) o
| — - |
[
I o ° Lo
T | | | | T | | | | ! <!
S £
g 0.0 0.5 1.0 1.5 2.0 1.0 1.5 2.0 2.5 3.0 : Bol
& £
" ‘
2 Hl
{ \
5 o o B |
o - - Te)
| - _ 1
: o _| Plot region (plot 3) o _| Plot region (plot 4) : l
i @1 © 2,2) .

| p— -

I o | o | |
| v I I I I I v I I I I [[
I [
1 2.0 2.5 3.0 3.5 4.0 3.0 3.5 4.0 4.5 5.0 : i
] '
o bl (I
|

Figure 13.15: A page with four figures created using par(mfrow=c(2, 2))

If a non-regular grid is required, we can call the slightly more sophisticated layout
function (which is incompatible with mfrow and mfcol). Examples will follow later; see
Figure 13.26 and Figure 13.24.

Note that certain grid sizes might affect the mex and cex parameters, and hence the
default font sizes (amongst others). Refer to the documentation of par for more de-
tails.

13.2.7 Graphics devices

Where our plots are displayed depends on our development environment (Section 1.2).
Users of JupyterLab should see a plot embedded into the current notebook, consumers
of Rstudio display them in a dedicated Plots pane, working from the console opens a
new graphics window (unless we work in a text-only environment), whereas compil-
ing utils::Sweave or knitr markup files results in an image included in the output
document.

In practice, we might be interested in exercises our creative endeavours on different
devices. For instance:

cairo_pdf("figure.pdf", width=6, heilght=3.5) # open "device"
... calls to plotting functions...
dev.off() # save file, close device

draws whatever is to be plotted in a PDF file. Similarly, a call to png or svg would cre-

13 GRAPHICS 329

ate a PNG or a SVG file. In both cases, as we rely on the Cairo library, we are able to
customise the font family by calling Cairo: :CairoFonts.

Note Typically, web browsers can display JPEG, PNG, and SVG files. However, JPEG
uses a lossy compression method. Therefore, it is not a particularly fortunate file
format for data visualisations. It does not support transparency either.

PDF is a popular choice in printed publications (e.g., articles or books).

It is worth knowing that PNG and JPEG are raster graphics formats, i.e., they store
figures as bitmaps (pixel matrices). They are fast to render, but the file sizes might be
large if we want decent image quality (high resolution). Most importantly, they should
not be scaled: it is best to display them at their original widths and heights.

On the other hand, SVG and PDF files store vector graphics, i.e., all primitives are
described geometrically. This way, the image can be redrawn at any size and should
always be aesthetic. Unfortunately, scatter plots featuring millions of points will result
in large files sizes and relatively slow rendition times (but there are tricks to remedy
this).

Users of TeX might be interested in tikzDevice: :tikz, which creates TikZ files that
can be compiled to standalone PDF files or embedded in LaTeX documents (and its
variants). This allows typesetting beautiful equations using the standard "$...$" syn-
tax from within any R string.

A list of many built-in devices is available in help("Devices").

Note (*) The opened graphics devices form a stack; calling dev.off will return to the
last opened device (if any). See dev.list and other functions listed in its help page for
more information.

Note that each device has its own graphics parameters. When opening a new device,
we start with default parameters in place.

Also, dev.hold and dev.flush can be used to suppress the immediate display of the
plotted objects, which might increase the drawing speed on certain devices.

The current plot can be copied to another device (e.g., a PDF file) using dev.print.

Exercise13.19 (¥) Create an animated PNG displaying a large point sliding along the sine
curve. Generate a series of video frames like in Figure 13.16. Store each frame in a separate PNG
file. Then, use ImageMagick® (compare Section 7.3.3; or rely on some other tool) to combine these
files in the form of a single animated PNG.

6 https://imagemagick.org/

https://imagemagick.org/

330 Il DEEPER

. . o
.] .
.o .o .
. . [} '
‘ ‘ l
K v

‘\' D ‘-' tl' ‘\' l" v
frame1 ~* i framen ~* v frame21 ~* i frame31 ~*

Figure 13.16: Selected frames of an example animation: they can be stored in separate
files and then be combined to a single animated PNG

13.3 Higher-level functions

Higher-level plotting commands call plot.new, plot.window, axis, box, title, etc., as
well as draw many graphical primitives on behalf of the user. They provide ready-
to-use implementations of the most common data visualisation tools, e.g., box-and-
whisker plots, histograms, pairs plots, etc.

Below we review some of them. We also show how they can be customised, or even
rewritten from scratch, if we are not completely happy with them. They will inspire us
to practice some lower-level graphics programming.

Exercise 13.20 Check out the meaning of the ask, new, xaxt, yaxt, and ann graphics paramet-
ers and how they affect plot. new, axis, title, and so forth.

13.3.1 Scatter- and function plots with plot.default and matplot

The default method for the plot S3 generic is a convenient wrapper around points and
lines.

Example 13.21 plot can be used to draw a scatter plot of two numeric variables, possibly
grouped by another categorical variable. Recalling from Section 10.3.2 that a factor is in fact vep-
resented as a vector of small natural numbers, its underlying level codes can be used directly as
color pch specifiers; see Figure 13.17 for a demonstration. Take note of a call to the legend func-
tion.

plot(
jitter(iris[["Sepal.Length"]]), # x (it is a numeric vector)
jitter(iris[["Petal.Width"]]), # y (it is a numeric vector)
col=as.numeric(iris[["Species"]]), # colours (integer codes)
pch=as.numeric(iris[["Species"]]), # plotting symbols (integer codes)
xlab="Sepal length",
ylab="Petal width",
asp=1 # y/x aspect ratio

)

legend(
"bottomright"”,

(continues on next page)

13 GRAPHICS 331

(continued from previous page)
legend=levels(iris[["Species"]]),
col=seq_along(levels(iris[["Species"]])),
pch=seq_along(levels(iris[["Species"]])),

bg="white"
)
wl
o
of
o~
Py
%: 2F A A AﬁAA%AA X
2 A DA A
I A =
S of A AAAA
ol O O setosa
© O i
O&) S A v.ersllcglor
OO co © virginica
Q 1 1 1 1
o
4 5 6 7 8

Sepal length

Figure 13.17: as.numeric on factors can be used to define different plotting styles for
each factor level

Exercise 13.22 Puss ann=FALSE and axes=FALSE to plot to suppress the addition of axes and
labels. Then, draw them manually using the functions discusses in the previous section.

Exercise 13.23 Draw a plot of the y = sin x function using a call to plot. Then, call lines to
depicty = cos x. Add alegend. Latey, do the same using a single call to matplot.

Example13.24 Semi-transparency may convey additional information. In Figure 13.18, we
draw two scatter plots of weight vs height of adult females. If the points ave fully opaque, we can-
not judge what is the density around them. On the other hand, translucent symbols somewhat
imitate two-dimensional histograms that we depict later in Figure 13.29.

nhanes <- read.csv(# see https://github.com/gagolews/teaching-data
file="~/Projects/teaching-data/marek/nhanes_adult_female_bmx_2020.csv",
comment.char="#", col.names=c("weight", "height", "armlen", "leglen",
"armcirc", "hipcirc", "waistcirc"))
par(mfrow=c(1, 2))
for (col in c("black", "#00000010"))
plot(nhanes[["height"]], nhanes[["weight"]], col=col,
pch=16, xlab="Height", ylab="Weight")

332 Il DEEPER

o (o]
2 2r
- -
= =
> D
=9 = o
o oL
wn wn
1 1 1 1 1 1 1
130 140 150 160 170 180 190 130 140 150 160 170 180 190
Height Height

Figure 13.18: Semi-transparent symbols can give the idea of the points’ distribution

density

Example13.25 Figure 13.19 depicts the average monthly temperatures in Warsaw, Poland (a
time series). Note that the translucent ribbon representing the low-high average temperature in-
tervals was added using a call to polygon.

Warsaw monthly temperatures, source: https://en.wikipedia.org/wiki/Warsaw
high <- ¢(0.6, 1.9, 6.6, 13.6, 19.5, 21.9,
24.4, 23.9, 18.4, 12.7, 5.9, 1.6)
mean <- c(-1.8, -0.6, 2.8, 8.7, 14.2, 17.0,
19.2, 18.3, 13.5, 8.5, 3.3, -0.7)
low <- c(-4.2, -3.6, -0.6, 3.9, 8.9, 11.8,
13.9, 13.1, 9.1, 4.8, 0.6, -3.0)
matplot(1:12, cbind(high, mean, low), type="o", col=c(2, 1, 4), lty=1,
xlab="month", ylab="temperature [°C]", xaxt="n", pch=16, cex=0.5)
axis(1, at=1:12, labels=month.abb, line=-0.25, lwd=0, lwd.ticks=1)
polygon(c(1:12, rev(1:12)), c(high, rev(low)), border=NA, col="#ffff0011")
legend("bottom", c("average high", "mean", "average low"),
lty=1, col=c(1, 2, 4), bg="white")

Example 13.26 Figure 13.20 depicts a scatter plot similar to Figure 13.18, but now with the
points’ hue being a function of a third variable.

midpoints <- function(x) 0.5%(x[-1]+x[-length(x)])
layout(matrix(c(1, 2), nrow=1), # 2 plots in 1 page

widths=c(1, lcm(3))) # the 2nd one of fixed width "3cm" (scaled)
z <- nhanes[["waistcirc"]]

(continues on next page)

13 GRAPHICS 333

25

20
T

temperature [°C]
10
1

o —— average high
—— mean
—— average low
np | | | | | | |

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
month

Figure 13.19: A semi-transparent ribbon was added by calling polygon to highlight the
area between the low-high ranges (intervals)

(continued from previous page)

breaks <- seq(min(z), max(z), length.out=10)
zf <- cut(z, breaks, include.lowest=TRUE)
col <- hcl.colors(nlevels(zf), "Viridis", alpha=0.5)
plot(nhanes[["height"]], nhanes[["weight"]], col=col[as.numeric(zf)],

pch=16, xlab="Height", ylab="Weight")
par(mar=c(2.2, 0.6, 2.2, 0.6))
plot.new(); plot.window(c(0, 1), c(0, nlevels(zf)))
rasterImage(as.matrix(rev(col)), 0, 0, 1, nlevels(zf), interpolate=FALSE)
text(0.5, 1:nlevels(zf)-0.5, sprintf("%3.0f", midpoints(breaks)))
mtext("Waist 9", side=3)

Exercise 13.27 Implement your version of the function to draw a scatter plot matrix (a pairs
plot), pairs.

Exercise 13.28 ecdf returns an object of S3 classes c("ecdf", "stepfun"). There are plot
methods overloaded for these classes. Inspect their source code. Then, inspired by this, create your
own function to compute and display the empirical cumulative distribution function correspond-
ing to a given numeric vector.

Exercise13.29 spline performs cubic spline interpolation, whereas smooth.spline de-
termines a smoothing spline of a given two-dimensional dataset. Plot different splines for
cars[["dist"]] as a function of cars[["speed"]]. Which of these two functions is more ap-
propriate for depicting this dataset?

334 Il DEEPER

Waist @
7
ol @
v ® 158
144
= 131
>,
= of
®
®
oL
wy
1 1
130 140 150 160 170 180 190

Height

Figure 13.20: A 2D scatter plot with a third variable represented by colour

13.3.2 Bar plots and histograms

Abar plotis drawn using a series of rectangles (i.e., some polygons) of different heights
(or widths, if we request horizontal alignment).

Example13.30 Let us visualise the dataset” listing the most frequent causes of medication er-
rors (data ave fabricated):

cat_med = c(
"Unauthorised drug", "Wrong IV rate"”, "Wrong patient", "Dose missed”,
"Underdose”, "Wrong calculation”, "Wrong route", "Wrong drug",
"Wrong time", "Technique error", "Duplicated drugs", "Overdose"

)
counts_med = c(1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59)

A Pareto chart combines a bar plot with bars of decreasing heights with a cumulative percentage
curve; see Figure 13.21. Note that barplot returns the midpoints of the bars and that the function
sets the xaxs graphical parameter and thus does not extend the x-axis range by 4% on both sides
(which does not make us happy here).

0 <- order(counts_med)

cato_med <- cat_med[o]

pcto_med <- counts_med[o]/sum(counts_med)*100
cumpcto_med <- rev(cumsum(rev(pcto_med)))

bar plot of %s

(continues on next page)

7 https://www.cec.health.nsw.gov.au/CEC- Academy/quality-improvement-tools/pareto- charts

https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

13 GRAPHICS 335

(continued from previous page)

par(mar=c(2.2, 0.6, 2.2, 6.6)) # wide left margin
midp <- barplot(pcto_med, horiz=TRUE, xlab="%",
col="white", xlim=c(0, 25), xaxs="r", yaxs="r", yaxt="n",
width=3/4, space=1/3)
text(pcto_med, midp, sprintf("%.1f%%", pcto_med), pos=4, cex=0.89)
axis(4, at=midp, labels=cato_med, las=1)
box()
cumulative % curve in a new coordinate system
par(usr=c(-4, 104, par("usr")[3], par("usr")[4])) # 0-100 with 4% addition
lines(cumpcto_med, midp, type="o0", col=4, pch=18)
axis(3, col=4)
mtext("cumulative %", side=3, line=1.2, col=4)
text(cumpcto_med, midp, sprintf("%.1f%%", cumpcto_med), cex=0.89, col=4,
pos=c(4, 2)[(cumpcto_med>80)+1], offset=0.5)

cumulative %

o) 20 40 60 80 100

T T T T T T

[*21.4% | 21.4% {Dose missed

[——40.7% | 19.3% - Wrong time

| —+.58.4%] 17.7% 4 Wrong drug

[- Overdose

[| 123%] - Wrong patient
[63% - Wrong route
[37% - Wrong calculation
(] 2% - Duplicated drugs
[]16% 4 Underdose

[] 0.9% 4 Wrong IV rate

[] 07% - Technique error

[[0.2% - Unauthorised drug
1 1 1 1 1 1

0 5 10 15 20 25

%

Figure 13.21: An example Pareto chart (a fancy bar plot); double axes have a general
tendency to confuse the reader

Exercise 13.31 Drawa barplot summarising the number of adults for each passenger Class and
Sex in the built-in Titanic dataset, who did not survive the sinking of the deadliest 1912 cruise;
see Figure13.22.

Exercise 13.32 Implement your own version of barplot, but where the bars are placed exactly
at the positions specified by the user, e.g., allowing the bar midpoints to be consecutive integers.

We are definitely not going to cover the (in)famous pie charts in our book. The hu-
man brain is not very skilled at judging the relative differences between the areas of
geometric objects.

336 Il DEEPER

Class
SL
I} O st
. O 2nd
ar O 3rd
2 o O Crew
S ofF
L
s Sk
= ™
(=}
Z 0
St
o~
o
et
o =
Male Female
Sex

Figure 13.22: An example bar plot representing a two-way contingency table

Moving on: a histogram is a simple density estimator for continuous data. It can be
thought of as a bar plot with bars of heights proportional to the number of observa-
tions falling into the corresponding disjoint intervals. Most often, there is no space
between the bars to emphasise that the said intervals cover the whole data range.

A histogram can be computed and drawn using the high-level function hist; see Fig-
ure 13.23.

par(mfrow=c(1, 2))
for (breaks in list("Sturges", 25)) {
Sturges (a heuristic) is the default; any value is merely a suggestion
hist(iris[["Sepal.Length"]], probability=TRUE, xlab="Sepal length",
main=NA, breaks=breaks, col="white")
box() # weirdly we need to add it manually

Exercise 13.33 Study the source code of hist.default. Note the (invisibly returned) list (of
S3 class histogram). Then, study graphics: : :plot. histogram. Implement similar functions
yourself.

Exercise 13.34 Modify your function to draw a scatter plot matrix in such a way that it gives
the histograms of the marginal distributions on its diagonal.

Example 13.35 Using layout that we mentioned in Section 13.2.6, we can draw a scatter plot
with marginal histograms; see Figure 13.24. Note that we split the page into four plots of unequal
sizes, but the upper right part of the grid is unused. We use hist for binning only (plot=FALSE),
and then barplot for drawing, because it gives greater control over the process (e.g., allows ver-
tical layout).

13 GRAPHICS 337

< — — —
ol e _
o
. <l T
of o _
= — > ol |
<) <
v O D | | | |
a a ~
31
ol -
S
o o
o[1 1 1 1 o[1 1 1 1
4 5 6 7 8 5 6 7 8
Sepal length Sepal length

Figure 13.23: Example histograms: the same dataset, but different bin numbers

layout(matrix(
c(1, 1, 1, 0, # first row: plot no. 1 of width 3 and nothing

3, 3, 3, 2, # three rows: square plot no. 3 and a thin but long no. 2

3, 3, 3, 2,

3, 3, 3, 2), nrow=4, byrow=TRUE))
par(mex=1, cex=1) # the layout function changed this!
x <- jitter(iris[["Sepal.Length"]])
y <- jitter(iris[["Sepal.Width"]])
subplot 1
par(mar=c(0.2, 2.2, 0.6, 0.2), ann=FALSE)
hx <- hist(x, plot=FALSE, breaks=seq(min(x), max(x), length.out=20))
barplot(hx[["density"]], space=0, axes=FALSE, col="#00000011")
subplot 2
par(mar=c(2.2, 0.2, 0.2, 0.6), ann=FALSE)
hy <- hist(y, plot=FALSE, breaks=seq(min(y), max(y), length.out=20))
barplot(hy[["density"]], space=0, axes=FALSE, horiz=TRUE, col="#00000011")
subplot 3
par(mar=c(2.2, 2.2, 0.2, 0.2), ann=TRUE)
plot(x, y, xlab="Sepal length", ylab="Sepal width",

xlim=range(x), ylim=range(y)) # default xlim, ylim

Example13.36 (%) Kernel density estimators (KDEs) are another way to guesstimate the data
distribution. The density function, for a given numeric vector, returns a list that features,
amongst others, the x and y coordinates of the points that we can pass directly to the lines func-
tion. Below we depict the KDEs of data split into three groups; see Figure 13.25.

338 Il DEEPER

o
o
o o)
<[o o
® o (oo}
o 00
O oo (@]
iy &0 o
= 00 g o O 00
= oo [0 (o)
= O o o ©60 0 O
S o ® o ©6
K IR 00 0 P OP GO 00
fe) o0 OOm o (0]
oo ©O ¢} o o
oOOOOOO
o)
wt 0O 000 Oo o ©
o (o)
o) o} e} ¢}
e 0
g_ (I) 1 1 1
5 6 7 8

Sepal length

Figure 13.24: Three (four) plots on one page, but on a nonuniform grid created using
layout: a scatter plot with marginal histograms

adjust_transparency <- function(col, alpha)
rgb(t(col2rgb(col)/255), alpha=alpha) # alpha in [0, 1]

pal <- adjust_transparency(palette(), 0.2)
kdes <- lapply(split(iris[["Sepal.Length"]], iris[["Species"]]), density)
matplot(sapply(kdes, ‘[[, "x"), sapply(kdes, ‘[[", "v"),
type="1", xlab="Sepal length", ylab="density", lwd=1.5)
for (i in seq_along(kdes))
polygon(kdes[[i1]][["x"]], kdes[[1]][["y"]], col=pal[i], border=NA)
legend("topright", legend=levels(iris[["Species"]]), bg="white", lwd=1.5,
col=seq_along(levels(iris[["Species"]])),
lty=seq_along(levels(iris[["Species"]])))

13 GRAPHICS 339

o~
g o —— setosa
-==versicolor
ot virginica
|
(o]
2
3 o
S of
=
<L
(o]
o[
(o]
oL -_—
o 1
4 5 6 7 8

Sepal length

Figure 13.25: Kernel density estimators of sepal length split by species in the Iris data-
set; note the semi-transparent polygons (again)

Exercise 13.37 (*) Implement a function grid_kde, which draws kernel density estimators for
a given numeric variable split by a combination of three factor levels; see Figure 13.26 for an ex-
ample.

grid_kde <- function(data, values, x, y, hue) ...to.do...

tips <- read.csv("~/Projects/teaching-data/other/tips.csv”, comment.char="#",
stringsAsFactors=TRUE) # see https://github.com/gagolews/teaching-data
head(tips, 3) # preview an example dataset

total_bill tip sex smoker day time size
1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.50 Male No Sun Dinner 3

grid_kde(tips, values="tip", x="smoker", y="time", hue="sex"

13.3.3 Box-and-whisker plots

We have already seen a chart generated by boxplot in Figure 5.1. Tinkering with it will
give us some good practice, which in turn shall make us perfect.

Exercise 13.38 Modify the code generating Figure 5.1 so that:

1. same doses are grouped together (move space between different doses; also, on the x-axis,
only unique doses are printed),

2. different supps have different colours (add a legend explaining them).

340 Il DEEPER

<L
B (o]
c
£ B
a
o NL
o O
E L
5
ol -~ sex
o
— Female
--- Male
<L
- ©O
(9]
C -
3
—
N
L O
E
= B
(o]
d_ 1
o 2 4 6 8 10 12 o 2 4 6 8 10 12
smoker=No smoker = Yes

Figure 13.26: An example grid plot (also known as trellis, panel, conditioning, or lattice
plot), featuring kernel density estimators for a numeric variable (amount of tipina US
restaurant) split by a combination of three factor levels (smoker, time, sex)

Exercise 13.39 Write a function for drawing box plots using graphics primitives.

Exercise 13.40 () Write a function for drawing violin plots (which are similar to box plots, but
use kernel density estimators).

Exercise 13.41 (¥) Implement a bag plot, being a two-dimensional version of a box plot (use
chull to compute the convex hull of a point set).

13.3.4 Contour plots and heat maps

When plotting a function of two variables like z = f(x,y), the magnitude of the z
component can be expressed using colour brightness or hue.

image is a convenient wrapper around rasterImage which can be used to draw contour
plots, two-dimensional histograms, heatmaps, etc.

Example 13.42 Figure13.27 presents a filled contour plot of Himmelblaw's function, f (x,y) =
(2 +y—11)2+ (x +y* = 7)? forx € [-5,5] andy € [—4,4]. A call to contour adds
labelled contour lines (which is actually a nontrivial operation).

x <- seq(-5, 5, length.out=250)

y <- seq(-4, 4, length.out=200)

z <- outer(x, y, function(xg, yg) (xg”2 + yg - 11)"2 + (xg + yg"2 - 7)"2)
image(x, y, z, col=grey(seq(1, 0, length.out=16)))

contour(x, y, z, nlevels=16, add=TRUE)

13 GRAPHICS 341

Figure 13.27: A filled contour plot of Himmelblau’s function with labelled contour lines

Note thatin image, the number of rows in z matches the length of x, whereas the num-
ber of columns therein is equal to the size of y. This might be counterintuitive; if z is
printed, the image is its 90-degree rotated version.

Example 13.43 Figure 13.28 presents an example heatmap, depicting Pearson’s correlations
between all pairs of variables in the nhanes dataset which we loaded some time ago.

o<-c(6, 5 1, 7, 4, 2, 3) # order of rows/cols (by similarity)
R <- cor(nhanes[o, o])
par(mar=c(2.8, 7.6, 1.2, 7.6), ann=FALSE)
image(1:nrow(R), 1:ncol(R), R,
ylim=c(nrow(R)+0.5, 0.5),
zlim=c(-1, 1),
col=hcl.colors(20, "BluGrn", rev=TRUE),
xlab=NA, ylab=NA, asp=1, axes=FALSE)
axis(1, at=1:nrow(R), labels=dimnames(R)[[1]], las=2, line=FALSE, tick=FALSE)
axis(2, at=1:ncol(R), labels=dimnames(R)[[2]], las=1, line=FALSE, tick=FALSE)
text(arrayInd(seq_along(R), dim(R)),
labels=sprintf("%.2f", R),
col=c("white", "black")[abs(R<0.8)+1],
cex=0.89)

Exercise 13.44 Check out the heatmap function which uses image together with hierarchical
clustering to find an aesthetic reordering of the matrix’s items.

Example13.45 Figure 13.29 depicts a two-dimensional histogram. It approaches the idea of
reflecting the points’ density quite differently to the semi-transparent symbols in Figure 13.18.

342 |l DEEPER

hipcirc
armcirc
weight
waistcirc
leglen
height 1.00 0.80

armlen o 0.80 1.00

hipcirc
armcirc
weight
waistcirc
leglen
height
armlen

Figure 13.28: A correlation heatmap drawn using image

histogram_2d <- function(x, y, k=25, ...)

{
breaksx <- seq(min(x), max(x), length.out=k)
fx <- cut(x, breaksx, include.lowest=TRUE)
breaksy <- seq(min(y), max(y), length.out=k)
fy <- cut(y, breaksy, include.lowest=TRUE)
C <- table(fx, fy)
image(midpoints(breaksx), midpoints(breaksy), C,
xaxs="r", yaxs="r", ...)
}

par(mfrow=c(1, 2))
for (k in c(25, 50))
histogram_2d(nhanes[["height"]], nhanes[["weight"]], k=k,
xlab="Height", ylab="Weight",
col=c("#ffffffo0", hcl.colors(25, "Viridis", rev=TRUE))

Exercise 13.46 (*) Implement some two-dimensional kernel density estimator and plotitusing
contour.

13 GRAPHICS 343
o o
2r 2r
- -
= = .
> D4 "
= or = or '
n
| -
ol ol
wn ("2}
1 1 1 1 1 1 1 1 1 1 1 1 1 1
130 140 150 160 170 180 190 130 140 150 160 170 180 190
Height Height

Figure 13.29: Two-dimensional histograms with different numbers of bins, where the
bin count is reflected by the colour

13.4 Exercises

Exercise 13.47 Answer the following questions:

Can functions from the graphics package be used to adjust the plots generated by lattice
and ggplot2?

List the most common graphics primitives.

Can all high-level functions be implemented using low-level ones? As an example, discuss the
key ingredients used in barplot.

Some high-level functions discussed in this chapter feature the add parameter. What is its
purpose?

What are the admissible values of pch and Lty? Also, in the default palette, what is the mean-
ing of colours 1, 2, ..., 16? Can their meaning be changed?

Can all graphics parameters be changed?

What is the difference between passing xaxt="n"to plot.default vs setting it with par,
and then calling plot. default?

Which graphics parameters are set by plot.window?

What is the meaning of the usr parameter when using the logarithmic scale on the x-axis?

344 Il DEEPER

(*) How to place a plotting symbol exactly 1 centimetre from the top-left corner of the current
page (following the page’s diagonal)?

Semi-transparent polygons are nice, right?

Can an ellipse be drawn using polygon?

« What happens when we set the graphics parameter mfrow=c(2, 2)?
« How to export the current plot to a PDF file?

Exercise 13.48 Draw the 2022 BTC-to-USD close rates® time series. Then, add the 7- and 30-
day moving average.

(*) Also, fit a local polynomial (moving) regression model using the Savitzky-Golay filter (see
loess).

Exercise 13.49 (¥) Draw (from scratch) a candlestick plot for the 2022 BTC-to-USD rates®.

Exercise 13.50 (*) Create a function to draw a normal quantile-quantile (Q-Q) plot, i.e., for
inspecting whether a numeric sample might come from some normal distribution.

Exercise 13.51 (*) Draw a map of the world, where each country is filled with a colour whose
brightness or hue is linked to its Gini index of income inequality. You can easily find the data
on Wikipedia. Try to find an open dataset that gives the borders of each country as vertices of a
polygon (e.g., in the form of a (ge0)]SON file).

Exercise 13.52 Next time you see a nice data visualisation somewhere, try to reproduce it using
base graphics.

For further information on graphics generation in R, see, e.g., Chapter 12 in [53], [44],
and [48]. Note that in this chapter, we were only interested in static graphics, e.g., for
use in printed publications or plain websites. Interactive plots that a user might tinker
with in a web browser are a different story.

And so the second part of our course is ended.

8 hteps://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
° https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

Part II1

Deepest

14
XX Interfacing compiled code (*)

< This chapter is under construction. Please come back later.

Ris anice glue language: it is perfect for implementing data wrangling pipelines, visu-
alisation, and developing prototypes of data analysis algorithms. In other words, it
makes connecting larger building blocks very easy. Still, for performance reasons’, we
recommend moving the more computing-intensive tasks to the C, C++, or Fortran
level. R works very well as a user-friendly interface to compiled code.

Note that the definitive reference on this topic is Chapter 5 in [59].

X This chapter is under construction. Please come back later.

! A well-written, portable function library relying only on simple data structures (e.g., arrays of type
double and int) can be used in other environments, such as Python (e.g., via Cython) of Julia. Let us re-
member about other programmers yearning for the possibility to enjoy our cultivated algorithms.

15

Unevaluated expressions ()

In this and the remaining chapters, we will learn some hocus-pocus that should only
be of interest to the advanced-to-be* and open-minded R programmers who would
really like to understand what is going on under our language’s hood. In particular,
we will inspect the mechanisms behind why certain functions do something very dif-
ferent from what we would expect them to do, if a standard evaluation scheme was
followed (compare subset and transform mentioned in Section 12.3.9).

Namely, in normal programming languages, when we write something like:

plot(x, exp(x))

the expression exp(x), is evaluated first and its value? (in this case: probably a numeric
vector) is only then passed to the plot function as the actual parameter. Thus, if “x" was
set to be seq(®, 10, length.out=1001), the above never means anything else than:

plot(c(0.00, 0.01, 0.602, 0.03, ...), c(1.0000, 1.0101, 1.0202, 1.0305, ...))

But R was heavily inspired by the S language from whom it has taken the notion of lazy
arguments (Chapter 17). Being equipped with the ability to apply a set of techniques
referred to as metaprogramming (computing on the language, reflection), we can define
functions that can peek outside their small world, and clearly see the code fragment
that was used to generate the arguments passed thereto. Having access to such une-
valuated expressions, we can do to them whatever we please: print, modify, evaluate on
different data, or ignore whatsoever.

In theory, this enables the implementing of many potentially helpful® beginner-friendly
features, which allow us to express certain requests in a more concise manner. For
instance, that the y-axis labels in Figure 2.2 could be generated automatically is exactly
due to the fact that plot was able to see not only a vector like ¢(1.0000, 1.0101, 1.
0202, 1.0305, ...), butalso the expression that generated it, exp(x).

! Remember that this book is supposed to be read from the beginning to the end. Also, if you have not
tested yourself against all the 300-odd exercises suggested so far, please do it before proceeding with the
material presented here. Only practice makes perfect, and nothing is built in a day. Give yourself time: you
can always come back later.

% Or a reference/pointer to an object that stores the said value.

3 The original authors of R (R. Thaka and R. Gentleman), in [36], mention: ‘A policy of lazy arguments is
very useful because it means that, in addition to the value of an argument, its symbolic form can be made
available in the function being called. This can be very useful for specifying functions or models in symbolic
form.”

350 Il DEEPEST

But, as a form of untamed freedom of expression*, metaprogramming has the potential to
result in chaos, confusion, and division in the user community. In particular, we can
introduce a microlanguage within our language that people outside our circle will not
be able to understand.

Therefore, cursed be us, for we are about to start eating from tree of the knowledge of
good and evil. But remember: with great power comes great responsibility.

15.1 Expressions ata glance

At the most general level, expressions (statements) in a language like R can be classi-
fied into two groups:

« simple expressions:

— constants (e.g., 3.14, 21, 42L, NA_real_, TRUE, "character string", NULL, -1.
3e-16, Ox123abc),

- names (symbols, identifiers),

« compound expressions — combinations of n + 1 expressions (simple or compound)
of the form:

(f,eq,ez,...,,).

Aswe will soon see, compound expressions are used to representa call to f (an operator)
on a sequence of arguments ey, €,, ..., €, (operands). This is why, equivalently, we will
also be denoting them with f (eq, ey, ..., €,,).

On the other hand, names such as “x*, "iris’, “sum’, and “spam’, have no meaning
without an explicitly stated context, which will be a topic that we explore in Chapter
16. Prior to that, we treat them as meaning-less.

Hence, for the time being, in this chapter we are only interested in the syn-
tax or grammar of our language, not the semantics. We are abstract in the sense
that, in the expression “mean(rates)+2”%, neither “mean, "x", nor even “+' have the
“usual” sense. We should therefore treat them as equivalent to, say, f(g(x), 2) or
spam(bacon(spanish_inquisition), 2).

4 Inthe current author’s opinion, R (as awhole, in the sense of R (GNU S) as a language and an environment)
would be better-off if an ordinary programmer was not exposed so much to functions heavily relying on
metaprogramming. A healthy user can perfectly do without (and thus refrain from using) them. The fact
that we call them advanced will not make us cool if we start horsing around with nonstandard evaluation.
Perverse is perhaps a better label.

5 Which we know that we can equivalently express as “'+" (mean(rates), 2)”;see Section 9.4.5.

15 UNEVALUATED EXPRESSIONS (¥) 351

15.2 Language objects
There are three types of language objects in R:

- name (symbol) — stores object names in the sense of simple expressions: names in Sec-
tion 15.1;

« call — represents unevaluated function calls in the sense of compound expressions
above;

« expression — quite confusingly, represents a sequence of simple or compound ex-
pressions (constants, names, or calls).

One way to create a simple or compound expression is by quoting, where we ask the
interpreter to refrain itself from evaluating a given command:

quote(spam) # name (symbol)
spam

quote(f(x)) # call

f(x)

quote(1+2+3*pl) # another call
1+ 2+ 3 *pi

Note that none of the above was executed.

Single strings can be converted to names by calling:

as.name("spam")
spam

And calls can be built programmatically by invoking:

call("sin", pi/2)
sin(1.5707963267949)

Sometimes we had rather quote the arguments passed:

call("sin", quote(pi/2))

sin(pi/2)

call("c", 1, exp(1), quote(exp(1)), pi, quote(pi))

c(1, 2.71828182845905, exp(1), 3.14159265358979, pi)

Objects of type expression can be thought of as list-like objects that consist of simple
or compound expressions.

(exprs <- expression(1l, spam, mean(x)+2))
expression(1, spam, mean(x) + 2)

352 Il DEEPEST

Note that all arguments were quoted.

We can select or subset the individual statements using the extraction or index oper-
ators:

exprs[-1]
expression(spam, mean(x) + 2)

exprs[[3]]
mean(x) + 2

Exercise15.1 Check the type of the object returned by a call to “c(1, "two", sd, list(3,
4:5), expression(3+3))”.
There is also an option to parse a given text fragment or a whole source file:

parse(text="mean(x)+2")
expression(mean(x) + 2)

parse(text=" # two code lines (a comment to be ignored by the parser)
x <- runif(5, -1, 1)
print(mean(x)+2)

ll)

expression(x <- runif(5, -1, 1), print(mean(x) + 2))
parse(text="2+") # syntax error - unfinished business
Error in parse(text = "2+"): <text>:2:0: unexpected end of input 1: 2+ *

Important The deparse function can be used to convert language objects to character
vectors. For instance:

deparse(quote(mean(x+2)))
#4 [1] "mean(x + 2)"

This function has the nice side effect of tidying up the code formatting:

exprs <- parse(text=
"+ (x, 2)->y; if(y>0) print(y**10|>log()) else { y<--y; print(y)}")

Let us print them out:

for (e in exprs)
cat(deparse(e), sep="\n")
#y <- x + 2
if (y > 0) print(log(y”?10)) else {
y <- -y
print(y)
)

15 UNEVALUATED EXPRESSIONS (¥) 353

Note Calling class on objects of the three aforementioned types yields name, call, and
expression, whereas typeof returns symbol, language, and expression, respectively.

15.3 Calls as combinations of expressions

We have mentioned that calls (compound expressions) are combinations of simple or
compound expressions of the form (f, eq, ..., €,,).

Thatthe first expression on the list, denoted above with f, plays a special role, is exactly
seen in the following examples:

as.call(expression(f, x))

f(x)

as.call(expression('+°, 1, x))

1+ x

as.call(expression(while’, 1 < 10, 1 <- 1 + 1))

while (1 < 10) 1 <- 1 + 1

as.call(expression(function(x) x**2, log(exp(1))))

(function(x) x*2)(log(exp(1)))

as.call(expression(1l, x, y, z)) # utter nonsense, but syntactically valid
1(x, y, z)

Recall from Section 9.4 that operators and language constructs such as if and while
are ordinary functions.

Furthermore:

expr <- quote(f(1+2, a=1, b=2))

length(expr)

#4 [1] 4

names(expr) # NULL if no arguments are named
[1] """ """ "a" "b"

15.3.1 Browsing parse trees

We can access the individual expressions constituting an object of type call using
square brackets. For example:

expr <- quote(1+x)
expr[[1]]
#H C+

(continues on next page)

354 Il DEEPEST

(continued from previous page)
expr[2:3]
1(x)

A compound expression was defined recursively: it can consist of other compound ex-
pressions.

For instance, the following expression:

expr <- quote(
while (1 < 10) {
cat("t =", i, "\n")
i <- 1+1

can be rewritten using the f (...) notation like:
‘while ' ("<'(1, 10), "{"(cat("i =", 1, "\n"), "<-"(1, "+ (1, 1))

Equivalently, in the Polish (prefix; (f, ...); traditionally used in Lisp) notation it will
look like:

(
‘while’,
(<", 1, 10),
(
r,
(cat, "t =", i, "\n"),
(
i,
C+, 1, 1)
)
)
)

Thus, for example, we can dig into the sub-expressions using a series of extractions:

expr[[2]1[[1]] # or expr[[c(2, 1)]]

<
expr[[311[[211[[41]1 # or expr[[c(3, 2, 4)]]
[1] "\n"

Example 15.2 We can even write a recursive function to traverse the whole parse tree:

recapply <- function(expr)

(continues on next page)

{
if (is.call(expr)) lapply(expr, recapply)
else expr
}
str(recapply(expr))
List of 3
S : symbol while
S :List of 3
#4 ..S : symbol <
..S : symbol 1
.S num 10
#4 S :List of 3
..S : symbol {
#4 ..S :List of 4
#H ..S ! symbol cat
.S o chr "1 ="
#H ..S : symbol 1
.. ..S : chr "\n"
#4 ..S :List of 3
..S : symbol <-
#H ..S ! symbol 1
..S :List of 3
#H ..S : symbol +
..S : symbol 1
.S :onum 1

15.3.2 Manipulating calls

15 UNEVALUATED EXPRESSIONS (*) 355

(continued from previous page)

The R language is homoiconic: it can treat code as data. This includes the ability to ar-
bitrarily manipulate it on the fly. This is because, just like on lists, we can freely use
the replacement versions of "[* and “[[" on objects of type call.

expr[[2]1[[1]] <- as.name("<=")
expr[[3]] <- quote(i <- i * 2)
print(expr)

while (1 <= 10) 1 <- 1 * 2

We are only limited by our imagination.

356 Il DEEPEST

15.4 Inspecting function definitions and arguments thereto
15.4.1 Getting the body and formal arguments

Consider the following definition:

test <- function(x, y=1)
x+y # whatever

We know from the first part of this book that calling print on a function will reveal its
source code.

Itturns out that we can easily get access to the list of parameters in the form of anamed
list®:

formals(test)
Sx

##

##

Sy

[1] 1

Note that the expressions generating the values of the default arguments are stored
as ordinary list elements (for more details, see Section 17.2).

Furthermore, we can get access to the function’s body:

body(test)
X+ Yy

Itis an object of the now-well-known class call. Thus, we can customise it as we please:

body(test)[[1]] <- as.name("*") # change from '+ to “*°

body(test) <- as.call(list(as.name("{"), quote(cat("spam")), body(test)))
test

function (x, y = 1)

{

#H cat("spam")
frecd X *y
}

6 Actually, a special internal datatype called pairlist which is rarely seen in R; see [62] and [59] for in-
formation how to deal with them at the C level. From this course’s perspective, seeing pairlists as named
lists is perfectly fine.

15 UNEVALUATED EXPRESSIONS (*) 357

15.4.2 Getting the expression passed as an actual argument

A call to substitute allows us to reveal the expression used to generate a function's
argument.

test <- function(x) substitute(x)

Some examples:

test(1)

[1] 1

test(2+spam)

2 + spam
test(test(test(!!7)))

test(test(!!7))

test() # it is not an error

In Chapter 17, we note that arguments are evaluated only on demand (lazily): substi-
tute triggers no computations. This opens the possibility to implement functions that
interpret their input in whichever way they like; see Section 9.5.7, Section 12.3.9, and
Section 17.5 for examples.

Example15.3 library (see Section 7.3.1) allows to specify the name of the package to be loaded
both in the form of a character string and a name:

library("gsl") # preferred
library(gsl) # discouraged - via as.character(substitute(package))

A user saves two keystrokes at the cost of not being able to prepare the package name program-
matically before the call:

which_package <- "gsl"

library(which_package) # library("which_package")

Error in library(which_package): there is no package called
'which_package'

In order to make the above possible, we need to alter the character.only argument (which de-
faults to FALSE):

library(which_package, character.only=TRUE)

Exercise 15.4 It is quite common to see a call like deparse(substitute(arg)) or as.
character(substitute(arg)) in many built-in functions. Study the source code of plot.
default, hist.default, prop. test, wilcox. test.default and the aforementioned library.
Explain why they do that. Propose a solution to achieve the same functionality without the use
of reflection techniques.

358 Il DEEPEST

15.4.3 Checking if an argument is missing

There is an easy way to check whether an argument was provided at all:

test <- function(x) missing(x)

test(1)
[1] FALSE
test()
[1] TRUE

Exercise 15.5 Study the source code of sample, seq.default, plot.default, matplot, and t.
test.default. Determine the role of a call to missing. Would introducing a default argument
NULL and testing its value with is.null constitute a reasonable alternative?

15.4.4 Determining how a function was called

Even though this somewhat touches the topics discussed in the next chapters, it is
worth knowing that sys.call can take a look at the call stack and determine how the
current function was invoked.

Moreover, match.call takes us a step further: it returns a call with argument names
matched to the list of a function’s formal parameters.

For instance:

test <- function(x, y, ..., a="yes", b="no")

{
print(sys.call()) # sys.call(0)
print(match.call())
}
X <- "maybe"
test("spam", "bacon", "eggs", u = "ham"<"jam", b=x)
test("spam", "bacon", "eggs", u = "ham" < "jam", b = x)
test(x = "spam", y = "bacon", "eggs", u = "ham" < "jam", b = x)

Another example, where we see that we can access the call stack much more deeply:

f <- function(x)

{

g <- function(y)

{
cat("g:\n")
print(sys.call(0))
print(sys.call(-1)) # go back one frame
y

}

(continues on next page)

15 UNEVALUATED EXPRESSIONS (¥) 359

(continued from previous page)

cat("f:\n")
print(sys.call(0))
g(x+1)

f(1)

f:

(1)
g:

g(x+1)
(1)
[1] 2

Note It will be educative to formalise the order of matching function parameters to
the passed arguments. As described in Section 4.3 in [63], it proceeds as follows:

1. keyword arguments with names matched exactly, each name matched at most
once,

2. remaining keyword arguments, but with the partial matching of names listed be-
fore the ellipsis, .. .", each match must be unambiguous,

3. positional matching to the remaining parameters,

4. all remaining arguments (named or not) will be consumed by the ellipsis (if
present).

For instance:

test <- function(spam, jasmine, jam, ..., option=NULL)
print(match.call())

Example calls:

test(1, 2, 3, 4, option="yes")
test(spam = 1, jasmine = 2, jam = 3, 4, option = "yes")
test(1, 2, jasmine="no", sp=4, ham=7)

Warning in test(1, 2, jasmine = "no", sp = 4, ham = 7): partial argument
#H match of 'sp' to 'spam'

Warning in match.call(definition, call, expand.dots, envir): partial

#H argument match of 'sp' to 'spam'

test(spam = 4, jasmine = "no", jam = 1, 2, ham = 7)

test(1, 2, ja=7) # ambiguous match
Warning in test(1, 2, ja = 7): partial argument match of 'ja' to 'jasmine'
Error in test(1, 2, ja = 7): argument 3 matches multiple formal arguments

(continues on next page)

360 Il DEEPEST

(continued from previous page)
test(o=7) # partial matching of ‘option' failed - ‘option" is after °
test(o = 7)

Note again that our environment uses options(warnPartialMatchArgs=TRUE).

Exercise15.6 A function can’ see how it has been defined by its maker. Call sys. functionin-
side its body to reveal that.

Exercise15.7 Execute “match.call(sys.function(-1), sys.call(-1))”inthe gfunction
above.

15.5 Exercises

Exercise 15.8 Answer the following questions:
o What is a simple expression? What is a compound expression? Give a few examples.
« What is the difference between an object of type call and that of type expression?
« What does formals and body return when called on a function object?

« How to test if an argument to a function was given at all? Provide a use case for such a veri-
fication.

- Give a few ways to create an unevaluated call.

« Whatis the purpose of deparse(substitute(. ..))? Give a few examples of functions that
use this technique.

o What is the difference between sys.call and match. call?

Exercise15.9 Write a function that takes the dot-dot-dot argument (Section 9.5.6). Using
match. call (amongst others), determine the list of all the expressions passed via *...". Note
that some of them might be named (just like in one of the above examples). The solution is given
in Section 17.3.

Exercise 15.10 Write a function check_if_calls(f, fun_list) thattakes another function
{command}fon input. Then, it verifies iff calls any of the functions (vefers to by their
names) from a charvacter vector fun_list.

7 Therefore, it is possible to write a function that returns a modified version of itself.

16

Environments and evaluation (¥)

In the first part of our book, we discussed the most essential basic object types: nu-
meric, logical, and character vectors, lists (generic vectors), and functions.

In this chapter, we introduce another basic type: environments. Like lists, they can be
classified as recursive data structures; compare the diagram in Figure 17.2..

Important Each object of type environment consists of:

« aframe* (Section 16.1), which stores a set of bindings that associate variable names
with their corresponding values; it can be thought of as a container of named R
objects of any type;

- a reference to an enclosing environment* (Section 16.2.2), which might be inspec-
ted (recursively!) in the case where a requested named variable is not found in the
current frame.

Even though we rarely interact with them directly (unless we need a hash table-like
data structure with a quick by-name element look-up), they are crucial for the R in-
terpreter itself. Namely, we shall soon see that they form the basis of the environment
model of evaluation, which governs how expressions are computed (Section 16.2).

16.1 Frames: Environments as object containers

To create a new, empty environment, we can call the new.env function:

el <- new.env()
typeof(el)
[1] "environment"

In this section, we treat environments merely as containers for named objects of any
kind, i.e., we deal with the frame part thereof.

! Not to be confused with a data frame, i.e., an object (list) of S3 class data. frame; see Chapter 12.

2 Some also call it a parent environment, but we will not. We will try following the nomenclature estab-
lished in Section 3.2 in [1]. Note that there is a bit of a mess in the R documentation regarding the way
enclosing environments are referred to as.

362 Il DEEPEST

Let us insert some elements into e1:

el[[nxu]] <- "X in el"
el[["y"]] <- 1:3
el[["z"]] <- NULL # unlike in the case of lists, creates a new element

The “[[* operator provides us with a named list-like look-and-feel also in the case of
element extraction:

e1[["x"]]

[1] "x in el”

el[["spam"]] # does not exist

NULL

(e1[["y"]] <- el[["y"]1]*10) # replace with new content
#4 [1] 160 20 30

16.1.1 Printing

Let us note that the printing of an environment is quite awkward.:

print(el) # same with str(el)

<environment: 0x56315c17c280>

This is the address where e1 is stored in computer’s memory. It can serve as the envir-
onment’s unique identifier.

As we have said, these objects are rather of internal interest. Thus, such esoteric mes-
sage was perhaps a good design choice to ward off novices. However, we can easily get
the list of objects stored inside the container by calling names:

names(el) # but attr(el, "names") is not set
[1] "X "y" g
Moreover, length gives the number bindings in the frame:

length(el)
[1] 3

16.1.2 Environments vs named lists

Environment frames, in some sense, can be thought of as named lists, but the set
of admissible operations is severely restricted. In particular, we cannot extract more
than one element at the same time using the index operator:

el[c("x", "y")] # but see the ‘mget" function
Error in elfc("x", "y")]: object of type 'environment' is not subsettable

nor can we refer to the elements by position:

16 ENVIRONMENTS AND EVALUATION (*) 363

el[[1]] <- "bad key"
Error in el[[1]] <- "bad key": wrong args for environment subassignment

Exercise 16.1 Check if lapply and Map can be applied directly on environments. Also, can we
iterate over their elements using a for loop?

Still, named lists can be converted to environments and vice versa using as.list and
as.environment.

as.list(el)

#H# Sx

[1] "x 1n el"

##

Sy

#4 [1] 160 20 30

##

Sz

NULL

as.environment(list(u=42, whatever="it's not going to be printed anyway"))
<environment: 0x56315bd38520>

as.list(as.environment(list(x=1, y=2, x=3))) # no duplicates allowed
#H Sy

[1] 2

##

Sx

[1] 3

16.1.3 Hash maps: Fast element look-up by name

Environment frames are internally implemented using hash tables (hash maps; see,
e.g., [14, 38]) with character string keys.

Important A hash table is a data structure that allows for a very quick® lookup and
insertion of individual elements by name.

This comes at a price, including what we have already observed above:

« the elements are not ordered in any particular way: they cannot be referred to via
a numeric index;

. all element names must be unique.

Note Alist may be considered a sequence, but an environment frame is only in fact a set
(a bag) of key-value pairs. In most numerical computing applications, we would rather

3 Element lookup, insertion, and deletion in hash tables takes amortised O(1) time.

364 Il DEEPEST

store, iterate over, and process all the elements in order, hence the greater prevalence of
the former. Lists still allow for an element look-up by name, even though this is slightly
slower*. Overall, they are much more universal.

Example16.2 A naturaluse case of manually-created environment frames deals with grouping
a series of objects identified by character string keys.

Consider a simple pseudocode for counting the number of occurrences of objects in a given con-
tainer:

for (key in some_container) {

if (!is.null(counter[["key"]]))
counter[["key"]] <- counter[["key"]]+1
else
counter[["key"]] <- 1

}

Let us assume that some_container is large, say, of size n, e.g., it is generated on the fly by read-
ing some data stream. Then, the run-time of the above algorithm will depend on the data struc-
tureused. If counteris a list, then, theoretically, the worst-case performance will be O (n?) (ifall
keys are unique). On the other hand, for envivonments, it will be faster by an order of magnitude:
down to amortised O (n).

Exercise16.3 Implement a test function according to the above pseudocode and benchmark the
two data structures using proc. time on some example data.

Exercise16.4 (*) Determine the number of unique text lines in a very large file (assuming that
the set of unique text lines fits into memory, but the file itself does not). Also, determine the five
most frequently occurring text lines.

16.1.4 Pass-by-value, copy on demand: Not for environments

Given any object, say, x, when we issue:

y < X

its copy® is made so that y and x are independent of each other. In other words, any
change to the state of x (or y) is not reflected in the state of y (or x).

For instance:

x <- list(a=1)
y <- X
y[["a"]1] <- y[["a"]1]+1

(continues on next page)

4 Accessing elements by position (numeric index) in lists takes O (1) time. Worst-case scenario for the
element look-up by name (non-existence) is linear with respect to the container size. Also, inserting new
elements at the end takes amortised O(1) time.

5 Delayed (on demand); see below.

16 ENVIRONMENTS AND EVALUATION (*) 365

(continued from previous page)
print(y)
Sa
[1] 2
print(x) # not affected: ‘x* and 'y’ are independent
Sa
[1] 1

The same happens with arguments that we feed to the functions:

mod <- function(y, key) # it is like: local_y <- passed_argument
{

y[[key]] <- y[[key]]+1

y

mod(x, "a") # returns a modified copy of ‘x°
Sa

[1] 2

print(x) # not affected

Sa

[1] 1

We can thus say that R applies the pass-by-value strategy here.

Important Environments are the only® objects that follow the an assign- and pass-
by-reference strategies.

In other words, if we perform:

X <- as.environment(x)
y <= X

then the names x and y are bound with exactly the same object in computer’s memory:

print(x)
<environment: 0x56315af65210>

print(y)
<environment: 0x56315af65210>

Therefore:

¢ We do not count all the tricks that we can do at the C language level (Chapter 14). Also, the distinction
between pass-by-value and pass-by-reference is slightly more complicated in R because of the lazy evalu-
ation of arguments (Chapter 17). We make an idealisation for didactic purposes here.

366 Il DEEPEST

y[["a"]] <- y[["a"]1]+1

print(y[["a"1])

[1] 2

print(x[["a"]]) # 'x is 'y, 'y is ‘x°
[1] 2

The same happens when we pass an environment to a function:

mod(y, "a") # pass-by-reference ('y' i1s ‘x°, remember?)
<environment: 0x56315af65210>

x[["a"]] # 'x' has changed

[1] 3

Thus, any changes we make to an environment passed as an argument to a function
will be visible outside the call. This minimises time and memory use in certain situ-
ations.

Note (*) For efficiency reasons, when we write “y <- x”, a copy of "x" (unless it is an
environment) is created only if it is absolutely necessary.

Here is some benchmarking of the copy-on-demand mechanism.

n <- 100000000 # like, a lot

Creation of a new large numeric vector:

t0 <- proc.time(); x <- numeric(n); proc.time() - tO
user system elapsed
0.853 1.993 2.852

Creation of a (delayed) copy:

t0 <- proc.time(); vy <- Xx; proc.time() - tO
#H user system elapsed
(0] (0] [¢]

This was instant. Thus, we definitely did not duplicate the n data cells.

Copy-on-demand is implemented using some quite simple reference counting; com-
pare sec:memory-management. That, temporarily, x and y point to the same address in
memory can be inspected by calling:

.Internal(inspect(x)) # internal function - do not use it

@7efba1134010 14 REALSXP gOc7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...
.Internal(inspect(y))

@7efbal134010 14 REALSXP gOc7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...

16 ENVIRONMENTS AND EVALUATION (*) 367

The real copying is only triggered when we try to modify x or y. This is when they need
to be separated.

t0 <- proc.time(); y[1] <- 1; proc.time() - tO
#H user system elapsed
1.227 1.910 3.142

Now x and y are different objects.

.Internal(inspect(x))
@7efbal1134010 14 REALSXP gOc7 [MARK,REF(1)] (len=1000000000, tl=0) 0,0,...
.Internal(inspect(y))
@7ef9c43ce010 14 REALSXP gOc7 [MARK,REF(1)] (len=1000000000, tl=0) 1,0,...

Note that the elapsed time is similar to that needed to create x from scratch.

Further modifications will already be quick:

t0 <- proc.time(); vy[2] <- 2; proc.time() - tO
user system elapsed
0.000 0.001 0.000

16.1.5 A note on reference classes (**)
In Section 11.5, we briefly mentioned the S4 system for object-oriented programming.

It turns out that we also have access to its variant, called reference classes”. It was first
introduced in R version 2.12.0.

Reference classes are implemented using S4 classes with the data part being of type
environment. Thanks to this, we get a more typical object-oriented experience, where
methods can modify the data they act on in-place.

They are a theoretically interesting concept on its own, and quite appealing to package
developers with C++ or Java background. Nevertheless, in the current author’s opin-
ion, such classes are alien citizens of our environment, violating its functional nature.
Therefore, we will not be discussing them here.

A curious reader is referred to help("ReferenceClasses") and Chapters 9 and 11 of [11]
for more details.

7 Some call them Rs, but we will not.

368 Il DEEPEST

16.2 'The environment model of evaluation

Recall that in Chapter 15, we said that there are three types of expressions: constants
(e.g., 1and "spam"), names (e.g., x" and “spam’), and calls (like f(x, 1)).

Important Names (symbols) have no meaning by themselves. The meaning of a name
always depends on the context, which is specified by an environment.

Consider a simple expression merely consisting of a name, “x':

expr_x <- quote(x)

Let us define two environments that bind the name “x" with two different constants.

el <- as.environment(list(x=1))
e2 <- as.environment(list(x="spam"))

An expression is evaluated within a specific environment. We can do that by calling
eval:

eval(expr_x, envir=el) # evaluate 'x' within environment el

[1] 1

eval(expr_x, envir=e2) # evaluate the same 'x' within environment eZ2
[1] "spam"”

Note that the very same expression has two different meanings, depending on the
context. This is quite like in the so-called real life: “I'm good” can mean “I don't need
anything” but also “My virtues are plentiful”. It all depends who and when is asking,
i.e., in which environment we evaluate the said sentence.

We call this the environment model of evaluation, a notion that R authors have borrowed
from a Lisp-like language called Scheme? (see Section 3.2 in [1] and Section 6 in [63]).

16.2.1 Getting the current environment (here: the global one)

By default, expressions are evaluated in the current environment. We can fetch it by
calling:

sys.frame(sys.nframe()) # get the current environment
<environment: R_GlobalEnv>

We are working on the R console, hence the current one is the global environment (user

8 Thatis why everyone serious about R programming should add the Structure and Interpretation of Computer
Programs [1] to their reading list. Also note that R is not the only known marriage between statistics and
Lisp-like languages; see also LISP-STAT [50].

16 ENVIRONMENTS AND EVALUATION (*) 369

workspace). We can access it from anywhere by calling globalenv or referring to the
*.GlobalEnv' object.

Example16.5 Calling any operation, for instance’:

X <- "spammity spam"

means evaluating it within the current environment:

eval(quote(x <- "spammity spam"), envir=sys.frame(sys.nframe()))

Here, we bound the string "spammity spam"with name "x" in the current environment’s frame:

sys.frame(sys.nframe())[["x"]] # yes, ‘x' is in the current environment now
[1] "spammity spam"
globalenv()[["x"]] # because the global environment is the current one here
#4 [1] "spammity spam"

Therefore, when we now referto “x" (from within the current environment):
x # eval(quote(x), envir=sys.frame(sys.nframe()))
[1] "spammity spam"

exactly the above named object is fetched.

Exercise16.6 save.image can be used to save the current workspace, i.e., the global environ-
ment, by default, to the file named . Rdata in the current working dirvectory. Test this function in
combination with load.

Note Names starting with a dot are hidden. 1s, a function to fetch all names registered
within a given environment, does not list them by default.

.test <- "spam"
1s() # list all names in the current environment, i.e., the global one
[1] ”el” Ne2II IIeXpI__XN Nmodﬂ HXH Ilyll

Compare the above with:

1s(all.names=TRUE)
[1] ".Random.seed" ".test" "e1" "e2"
[5] "expr x" "mod" e nym

On aside note, " .Random.seed" stores the current pseudorandom number generator’s
seed; compare Section 2.1.5.

9 Let us for now take for granted that “<-" is accessible from the current context and denotes assignment.

370 Il DEEPEST

16.2.2 Enclosures, enclosures thereof, etc.

To show that there is much more to the environment model of evaluation than what
we mentioned above, let us try to evaluate an expression featuring two names:

e2 <- as.environment(list(x="spam")) # once again (a reminder)
expr_comp <- quote(x < "eggs")

eval(expr_comp, envir=e2)

Error in x < "eggs": could not find function "<"

The meaning of any constant (here, "span") is context-independent, "x" is specified
by the environment provided, but the name <" is not mentioned therein. Hence the
error.

Nonetheless, we feel that we know the meaning of *<'; it is a relational operator, obvi-
ously, isn't it? To add to confusion, let us note that our experience-grounded intuition
is true in the following context:

e3 <- new.env()
e3[["x"]] <- "bacon"
eval(expr_comp, envir=e3)
[1] TRUE

So where does the name “<* come from? It is neither included in e2 nor in e3:

e2[["<"]]
NULL

e3[["<"]]
NULL

Is “<" hardcoded somewhere? Or is it also dependent on the context? Why is it visible
when evaluating an expression within e3 but not in e2?

Studying'® help("[[") (see the Environments section therein), we discover that
e3[["<"]] is equivalent to a call to get("<", envir=e3, inherits=FALSE).

In help("get"), we read that if the inherits argument is set to TRUE (which is the de-
fault in get), then the enclosing frames of the given environment are searched as well.

Continuing the example from the previous subsection:

get("<", envir=e2) # inherits=TRUE
Error in get("<", envir = e2): object '<' not found
get("<", envir=e3) # inherits=TRUE

function (el, e2) .Primitive("<")

And indeed, we see that "< is reachable from within e3 but not e2. It means that e3

10 Which we should have done already long time ago, but most likely we did not.

16 ENVIRONMENTS AND EVALUATION (¥) 371

points to another environment where further information should be sought if we were
to leave the current container empty-handed.

Important The reference (pointer) to the enclosing environment is an integral part of
each environment (alongside a frame of objects). It can be fetched and set using the
parent.env function.

16.2.3 Missing names are sought in enclosing environments

To understand the idea of enclosing environments better, let us create two new envir-
onments whose enclosures are set explicitly as follows:

(e4 <- new.env(parent=e3))
<environment: 0x56315b7a23d0>
(e5 <- new.env(parent=e4))
<environment: 0x56315b67fd68>

To verify that everything is in order, let us inspect the following:

print(e3) # this is the address of e3 by the way

<environment: 0x56315bd849d06>

parent.env(ed4) # e3 is the enclosing environment of e4
<environment: 0x56315bd849d6>

parent.env(e5) # e4 is the enclosing environment of e5
<environment: 0x56315b7a23d0>

Also, let us bind two different objects with the name "y" in e5 and e3.

es[[uyu]] <- "Spam"
e3[["y"]] <- function() "a function "y in e3"

The current state of matters is depicted in Figure 16.1.

® ®«

O x="bacon"
O y = function...

E— S

Figure 16.1: Example environments and their enclosures (original setting)

Now, let us consider a simple expression featuring the “y* name only and evaluate it
in the above environments:

372 Il DEEPEST

expr_y <- quote(y)

eval(expr_y, envir=e3)

function() "a function ‘y' in e3"
eval(expr_y, envir=e5)

[1] "spam"

No surprises yet. However, evaluating it in e4, which does not feature “y", yields:
eval(expr_y, envir=e4)

function() "a function "y in e3"

This returned "y from e4’s enclosure, e3.

Let us horse around with the enclosures of e5 and e4 so that we obtain the setting
depicted in Figure 16.2:

parent.env(e5) <- e3
parent.env(ed4) <- e5

®s @
O y="spam" @ -

____________> N Y Y

O x="bacon"

O y=function...

Figure 16.2: Example environments and their enclosures (after the change made)

Now evaluating "y" again in the same e4 yields of course a very different result:

eval(expr_y, envir=e4)
[1] "spam”

Important Names referred to in an expression to be evaluated but missing in the
current environment, will be sought in its enclosure(s).

Note There are some functions related to searching within and modifying environ-
ments which optionally (see their inherits argument) allow for continuing explora-
tions in the enclosures, until successful:

« inherits=TRUE by default:
— exists,

- get,

16 ENVIRONMENTS AND EVALUATION (*) 373
« inherits=FALSE by default:
— assign,

- rm(remove).

16.2.4 Looking for functions

Interestingly, if a name is used in place of a function to be called, the object sought is
always™ of mode function.

Consider a similar expression to the above, but this time including name “y" playing
a different role:

expr_y2 <- quote(y()) # a call to something named 'y°
eval(expr_y2, envir=e4)
[1] "a function 'y in e3"

In other words, what we used here was not:

get("y", envir=e4)
[1] "spam"

but:

get("y", envir=e4, mode="function")
function() "a function 'y in e3"

«™

Note “name()”, “"name"()”, and “"name” ()” are synonymous. However, the first expres-
sion is valid only if name is a syntactically valid name.

16.2.5 Inspecting the search path

Going back to our expression involving a comparison operator:

expr_comp
x < "eggs"

Why does the following work as expected?

eval(expr_comp, envir=e3)
[1] TRUE

Well, we gathered all the bits to understand it now. Namely, ‘<" is a function that is
looked up in the following way:

1 This is why we can write “c <- ¢(1, 2)”and then still be able to call c to create another vector.

374 Il DEEPEST

get("<", envir=e3, inherits=TRUE, mode="function")
function (el1, e2) .Primitive("<")

It was reachable from e3, which means that e3 also has an enclosing environment.

parent.env(e3)
<environment: R_GlobalEnv>

This is our global namespace, which was the current environment at the time e3 was
created. Still, we have definitely not defined "< there. It means that the global envir-
onment also has an enclosure.

We can explore the whole search path easily, by starting at the global environment, and
then following the enclosures recursively.

ecur <- globalenv() # starting point
repeat {
cat(pasted(format(ecur), " (", attr(ecur, "name"), ")")) # pretty-print

if (exists("<", envir=ecur, inherits=FALSE))
cat(strrep(" ", 20), "'<° found here!")
Cat(n\nu)

ecur <- parent.env(ecur) # advance to its enclosure
}
<environment: R_GlobalEnv> ()
<environment: 0x56315bfbbe70> (.marekstuff)
<environment: package:stats> (package:stats)
<environment: package:graphics> (package:graphics)
<environment: package:grDevices> (package:grDevices)
<environment: package:utils> (package:utils)
<environment: package:datasets> (package:datasets)
<environment: package:methods> (package:methods)
<environment: 0x56315a051b80> (Autoloads)
<environment: base> () ‘<’ found here!
<environment: R_EmptyEnv> ()
Error in parent.env(ecur): the empty environment has no parent

Underneath the global environment, there is a whole list of attached packages:

1. packages attached by the user (.marekstuff is used internally in the process of
evaluating code in this book),

2. default packages (Section 7.3.1),

3. (**) Autoloads (for the promises-to load R packages; compare help("autoload");it
is a technicality we may safely ignore here),

16 ENVIRONMENTS AND EVALUATION (*) 375

4. the base package, where most of the fundamental functions described in the previ-
ous chapters reside.

The "< operator was found exactly in the base package; we can access it directly by
calling baseenv.

The base environment’s enclosure is the empty environment (emptyenv), which is the
only one followed by nothing (note that the loop might have turn out endless other-
wise).

Note On a side note, the reason why this operation failed:

e2 <- as.environment(list(x="spam")) # to recall
eval(expr_comp, envir=e2)
Error in x < "eggs": could not find function "<"

is because as.environment sets the enclosing environment to:

parent.env(e2)
<environment: R_EmptyEnv>

See also list2env which gives greater control over this (cf. its parent argument).

16.2.6 Attaching to and detaching from the search path

In Section 7.3.1, we mentioned that we can access the objects exported by a package
without attaching them to the search path by using the pkg: :object syntax (this loads
the package if necessary).

For instance:

tools::toTitleCase(" tools’ not attached to the search path")
[1] "“tools’ not Attached to the Search Path”

However:

toTitleCase("nope")
Error in toTitleCase("nope"): could not find function "toTitleCase"

This does not work, because toTitleCase is not reachable from the current environ-
ment.

Let us inspect the current search path (yes, there is a built-in function for that):

search()
[1] ".GlobalEnv" ".marekstuff" "package:stats"
[4] "package:graphics" '"package:grDevices" "package:utils"

(continues on next page)

376 Il DEEPEST

(continued from previous page)
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

Aswriting “pkg: :” might be inconvenient in the long run (for some), we can call library
to attach the package to the search path, immediately below the global environment.

library("tools")

The search path becomes (see Figure 16.3 for an illustration):

search()

[1] ".GlobalEnv" "package:tools" ".marekstuff"

[4] "package:stats" "package:graphics”" "package:grDevices"
[7] "package:utils" "package:datasets” "package:methods"
[10] "Autoloads"” "package:base"

Therefore, what follows, now works as expected.:

toTitleCase("Nobody expects the Spanish Inquisition")
[1] "Nobody Expects the Spanish Inquisition"

To remove an item from the search path, we can use detach’.

detach("package:tools")
"package:tools" %in% search() # not there anymore
[1] FALSE

We use the “package:” prefix for the reasons that we shall describe in Section 16.3.5.

Note It turns out that we can also plug into the search path arbitrary environments™
and, by similarity thereto, named lists. Recalling that data frames are in fact built upon
the latter (Section 12.1.6), some users rely on this technique to free themselves from
the onerous burden of typing the object name each time its column is to be referred
to:

attach(iris)
head(Sepal.Length) # iris/["Sepal.Length"]]
[1] 5.1 4.9 4.7 4.6 5.0 5.4

Here, the iris list was converted to an environment, and the necessary enclosures
were set accordingly:

2 Which does not unload the package from memory, though; see unload (possibly combined with
library.dynam.unload).

3 Or we should rather say, environment frames. When an environment is attached to the search path,
it is duplicated (so that the changes made to the original environment are not reflected in the copy) and its
previous enclosure is discarded. After all, we want a series of recursive calls to parent.env to form the whole
search path.

16 ENVIRONMENTS AND EVALUATION (*) 377

‘ global default packages \
I

. package:stats
packages attached|by the userk
Y
\/

‘ package:tools
’ package:graphics

Y

\ 2
. _marekstuff ‘ package:grDevices

[2
‘ package:utils

‘ package:datasets

7

‘ package:methods

Figure 16.3: The search path after attaching the tools package

str(parent.env(globalenv()))

<environment: 0x56315c0535e8>

- attr(*, "name")= chr "iris"
str(parent.env(parent.env(globalenv())))
<environment: 0x56315bfbbe70>

- attr(*, "name")= chr ".marekstuff"

Overall, attaching data frames is discouraged, especially outside the interactive-
mode. Let us not be too lazy.

detach(iris) # such a relief

378 Il DEEPEST

16.2.7 Masking (shadowing) objects from down under

Note that assignment via “<-" (and assign, by default) creates a binding in the current
environment.

Therefore, even if the name to-bind exists somewhere on the search path, it will not
be modified. Instead, a new name will be created.

expr_comp <- quote("spam" < "eggs")
eval(expr_comp)
[1] FALSE

Here, we rely on "< from the base environment. Withal, we can create an object of the
same name in the current (global) context:

‘<’ <- function(el, e2) { warning("This is not the base '<', mate."); NA }

And now we have two different functions of the same name. When we evaluate an
expression within the current environment or any of its “descendants”, the new name
will shadow the base one:

eval(expr_comp)

Warning in "spam" < "eggs": This is not the base ‘<, mate.

[1] NA

eval(expr_comp, envir=e5) # e5's enclosure's enclosure is the global env
Warning in "spam" < "eggs": This is not the base ‘<, mate.

[1] NA

But we can still call the original function directly:

base:: <" (1, 2)
[1] TRUE

o K

It is also reachable from within the current environment’s “ancestors”:

eval(expr_comp, envir=as.environment("package:utils"))
[1] FALSE

Before proceeding any further, let us clean up after ourselves, otherwise we will be
asking for trouble.

rm("<") # removes ‘< from the global environment

An attached package may introduce some object names that are also available else-
where. For instance:

library("stringx")
Attaching package: 'stringx'

(continues on next page)

16 ENVIRONMENTS AND EVALUATION (¥) 379

(continued from previous page)

The following objects are masked from 'package:base': casefold, chartr,

#H endsWith, gregexec, gregexpr, grep, grepl, gsub, ISOdate, ISOdatetime,
#H nchar, nzchar, paste, paste@, regexec, regexpr, sprintf, startsWith,
#H strftime, strptime, strrep, strsplit, strtrim, strwrap, sub, substr,
substr<-, substring, substring<-, Sys.time, tolower, toupper, trimws,

xtfrm, xtfrm.default

Therefore, in the current context, we have what follows:

toupper("GroR") # stringx::toupper
[1] "GROSS"

base: : toupper("GroR")

[1] "GROR"

Sometimes™, we can use assign(. .., inherits=TRUE) orits synonym, "<<-", to modify
the existing binding (without creating a new one if not necessary).

Note Letus attach the iris data frame (named list) to the search path again:

attach(iris)
Sepal.Length[1] <- @

This of course does not modify the original iris nor its converted-to-an-environment
copy that we can find in the search path. Instead, a new vector named Sepal.Length
has been created in the current environment:

exists("Sepal.Length", envir=globalenv(), inherits=FALSE)
[1] TRUE

We can verify the above statement as follows:

rm("Sepal.Length") # removes the one in the global environment
Sepal.Length[1] # ‘iris' from the search path

[1] 5.1

iris[["Sepal.Length"]][1] # the original ‘iris"’

[1] 5.1

However, by writing:

Sepal.Length[1] <<- 0 # uses assign(..., inherits=TRUE)

We changed the state of the environment on the search path.

14 We normally cannot modify package namespaces. As we will mention in Section 16.3.5, they are auto-
matically locked.

380 Il DEEPEST

exists("Sepal.Length", envir=globalenv(), inherits=FALSE)
[1] FALSE

Sepal.Length[1] # ‘iris" from the search path

[1] 0

Yet, still, the original iris object s still left untouched, because there is no mechanism
in place that would synchronise the original data frame and the object in the search
path.

iris[["Sepal.Length"]][1] # the original ‘iris’
[1] 5.1

16.3 Closures

So far we have only covered the rules behind the evaluation of standalone R expressions.
In this section, we take a look at what happens inside the invoked functions.

16.3.1 Local environment

When we call a function, a new temporary environment is created. This is where all
arguments® and local variables are emplaced. During the function evaluation, this
environment becomes the current one. After the call, the environment ceases to exist
and we go back to the previous environment from the call stack.

Consider the following function

test <- function(x)

{
print(ls()) # list object names in the current environment
y <- X"2 # creates a new variable
print(sys.frame(sys.nframe())) # get the ID of the current environment
str(as.list(sys.frame(sys.nframe()))) # display its contents

}

First call:

test(2)

[1] "x"

<environment: 0x56315c0373d8>

List of 2

(continues on next page)

!5 Function arguments are initially unevaluated; see Chapter 17.

16 ENVIRONMENTS AND EVALUATION (*) 381

(continued from previous page)

#4 S y: num 4
#4 S x: num 2

Second call:

test(3)

[1] "x"

<environment: 0x56315c3e7d48>
##4# List of 2

#4 S y: num 9

S x: num 3

We note that each time, the current environment is different. This is why we do not
see the "y’ variable at the start of the second call. This is a brilliantly simple imple-
mentation of the storage for local variables.

16.3.2 Lexical scope and function closures

The fact that we were able to access the print function (amongst others) in the above
example should make us wonder what is the enclosing environment of that local en-
vironment.

print_enclosure <- function()
print(parent.env(sys.frame(sys.nframe())))

print_enclosure()
<environment: R_GlobalEnv>

It is the global environment. Let us evaluate the same function from within another
one:

call_print_enclosure <- function()
print_enclosure()

call_print_enclosure()
<environment: R_GlobalEnv>

It is the global environment again. If R used the so-called dynamic scoping, we would
see the local environment of the function invoking the one above. If this was true, we
would have access to the local variables of the caller from within the callee.

382 Il DEEPEST

Important Objects of type closure, i.e., user-defined'® functions, consist of three
components:

« alist of formal arguments (compare formals and Section 15.4.1);
- an expression (compare body and Section 15.4.1 again);

- areference to the associated environment where the function might store data for
further use (see environment).

By default, the associated environment is set to the current environment where the
function was created.

Alocal environment created during a function’s call has this associated environment
as its closure.

Due to this, we say that R has lexical (static) scope.

Thence, in the above example, we have:

environment(print_enclosure) # print the associated environment
<environment: R_GlobalEnv>

Example16.7 Consider the following function that prints out “x" defined outside of its scope:

test <- function() print(x)

Now:

x <- "x in global"
test()
[1] "x in global”

printed out *x" from the user workspace, because this is exactly the environment associated with
the function.

However, setting the associated environment to a different one that also happens to define *x°,
will give a different result:

e <- new.env()
e[["x"]] <- "x in e"
environment(test) <- e
test()

[1] "x in e"

Example16.8 Consider the following example:

16 There are two other types of functions: a special is an internal function that does not necessarily eval-
uate its arguments (e.g., switch, if, or quote; compare also Chapter 17), whereas a builtin always evaluates
its actual parameters, e.g., sum.

16 ENVIRONMENTS AND EVALUATION (*) 383

test <- function()

{
cat(sprintf("test: current env: %s\n", format(sys.frame(sys.nframe()))))
subtest <- function()
{
e <- sys.frame(sys.nframe())
cat(sprintf("subtest: enclosing env: %s\n", format(parent.env(e))))
cat(sprintf("x = %s\n", x))
}
x <- "spam"
subtest()
environment(subtest) <- globalenv()
subtest()
}

x <- "bacon"

test()

test: current env: <environment: 0x56315bdd3c48>

subtest: enclosing env: <environment: 0x56315bdd3c48>
x = spam

subtest: enclosing env: <environment: R_GlobalEnv>
x = bacon

Here is what happened.

1. A call to test creates a local function subtest, whose associated environment is set to the
local environment of the current call. This is exactly the current environment where subtest
was created.

2. Thisis why subtest can access the local variable " x" inside its maker.
3. Then we change the environment associated with subtest to the global environment.

4. Inthenext call to subtest, unsurprisingly, we gain access to *x" in the user workspace.

Note In theory, in lexical (static) scoping, which variables a function is referring to
can be deduced by reading the function’s body only, and not how it is called in other
contexts. Yet, the fact that we can freely modify the associated environment anywhere
can complicate the program analysis greatly.

If we find the rules of lexical scoping confusing, we should refrain from referring to
objects outside of the current scope (“global” or “nonlocal” variables”), unless they are
functions defined as top-level ones or coming from the external packages (which is
mostly what we have been doing so far).

384 Il DEEPEST

16.3.3 Application: Function factories

As closures are functions with associated environments, and the role of environments
is to store information, we can consider closures = functions + data.

We have seen that already in Section 9.5.3, where we described the approxfun function.
To recall:

x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x"2)

print(f1)

function (v)

.approxfun(x, y, v, method, yleft, yright, f, na.rm)
<environment: 0x56315c2b3898>

Thevariables *x", “y", etc. that f1’s source code refers to are stored inside its dedicated,
associated environment:

1s(envir=environment(f1))
[1] "F" smethod” "na.rm” "x" iy "left" "yright"

We are used to referring to the routines such as approxfun as function factories. They re-
turn functions whose non-local variables are stored in their associated environments.

Example16.9 Consider the following function factory:

gen_power <- function(p)
function(x) x"p # p references a non-local variable

A call to gen_power creates a local environment which defines one variable, *p°, where the value
of the argument is stored. Then, we create a function whose associated environment (remember
that R uses lexical scoping) is that local one. Therefore, the reference to the non-local *p* inits body
will be resolved therein. This new function is returned by gen_power to the caller. Normally, the
local environment would be destroyed, but it is still used after the call, so it will not be garbage-
collected.

Example calls:

(square <- gen_power(2))

function(x) x”p

<environment: 0x56315a5f3ae8>
(cube <- gen_power(3))

function(x) x”p

<environment: 0x56315ab6b390>
cube(2)

[1] 8

square(2)

[1] 4

16 ENVIRONMENTS AND EVALUATION (¥) 385

The underlying environment can of course be modified:

"

assign("p", 7, envir=environment(cube))
cube(2) # so much for the cube
[1] 128

Example16.10 Negate is another example of a built-in function factory. Study its source code:

print(Negate)

function (f)

oA

f <- match. fun(f)

#H function(...) !f(...)

)

<environment: namespace:base>

Example16.11 In [36], the following example is given:

account <- function(total)
list(
balance = function() total,
deposit = function(amount) total <<- total+amount,
withdraw = function(amount) total <<- total-amount

Robert <- account(1000)
Ross <- account(500)
RobertSdeposit(100)
Rossswithdraw(150)
Roberts$halance()

[1] 1100
RossSbalance()

[1] 350

We are now able to fully understand why the above code does what it does. This somewhat re-
sembles a class with three methods and one data field. No wonder why reference classes (Sec-
tion 16.1.5) were introduced at some point: they are based on the same concept.

Exercise 16.12 Write a function factory named gen_counter which implements a simple
counter that is increased by one upon each call thereto.

gen_counter <- function() ...to.do..
c1 <- gen_counter()

c2 <- gen_counter()

c(c1(), c1(), c2(), c1(), c2())

[1] 12132

Moreover, write a function that resets a given counter to zero.

386 Il DEEPEST

reset_counter <- function(counter_fun) ...to.do...
reset_counter(c1)

c1()
[1] 1

16.3.4 Accessing the calling environment

We know that the environment associated with a function is not necessarily the same
as the environment from which the function was called, sometimes quite confusingly
referred to as the parent frame.

R maintains a whole frame stack. The global environment is assigned number o. Each
call to a function increases the stack by one frame, whereas returning from a call de-
creases the counter.

To get the current frame number, we call sys.nframe. This is why sys.frame(sys.
nframe()) returns the current environment.

We can fetch the calling environment by referring to parent.frame() or sys.
frame(sys.parent()), amongst others".

Thanks to parent.frame, we may easily evaluate arbitrary expressions in (on behalf of)
the calling environment. Normally, we should not be doing that, but some built-in
functions rely on this feature, hence our avid interest in it here. In the subsections
below, we will discuss a few of its use cases.

16.3.5 Package namespaces (*)
Any R package, say, pkg, defines two environments:

- namespace: pkg — where all objects are defined (functions, vectors, etc.); this is the
enclosing environment of all closures in the package;

« package:pkg — can be attached to the search path; contains selected'® objects from
namespace: pkg that can be accessed by the user.

We will use our example package discussed Section 7.3.1, which is available for down-
load from https://github.com/gagolews/rpackagedemo/.

library("rpackagedemo") # https://github.com/gagolews/rpackagedemo/
Loading required package: tools

Here is its DESCRIPTION file:

7 In help("sys.parent"), we read that the parent frame number, as returned by sys.parent(), is not
necessarily equal to sys.nframe()-1. This is certainly true if we are at the top (global) level.

18 Exported using the export or exportPattern directive of the package’s NAMESPACE file; see Section 1 in
[59].

https://github.com/gagolews/rpackagedemo/

16 ENVIRONMENTS AND EVALUATION (*) 387

Package: rpackagedemo

Type: Package

Title: Just a Demo R Package

Version: 1.0.2

Date: 1970-01-01

Author: Anonymous Llama

Maintainer: Unnamed Kangaroo <roo@inthebush.au>
Description: Provides a function named bamboo(), just give it a shot.
License: GPL (>= 2)

Imports: stringx

Depends: tools

The Import and Depends fields specify which packages (apart from base) ours depends
on. All items in the latter list are attached to the search path on a call to library, as we
can see above.

The NAMESPACE file specifies the names imported from other packages as well as those
that should be visible to the user:

importFrom(stringx, sprintf)

importFrom(tools, toTitleCase)

S3method(print, koala)

S3method(print, kangaroo, .a_hidden_method_to_print_a_roo)
export(bamboo)

Thus, our package exports one object, a function named bamboo (we will discuss the
S3 methods in the next section). It is included in the “package: rpackagedemo” environ-
ment attached to the search path:

1s(envir=as.environment("package:rpackagedemo")) # ls("package:rpackagedemo")
[1] "bamboo"

Let us give it a shot:

bamboo("spanish inquisition") # rpackagedemo::bamboo
G'day, Spanish Inquisition!

We did not expect that at all.

Let us inspect its source code:
print(bamboo)
function (x = "world")

cat(prepare_message(toTitleCase(x)))
<environment: namespace:rpackagedemo>

We see a call to toTitleCase (most likely from tools, and thisisindeed the case), as well

388 Il DEEPEST

as prepare_message which is not listed in the package’s imports. We definitely cannot
access it directly:

prepare_message
Error in eval(expr, envir, enclos): object 'prepare_message' not found

It turns out that it is the package’s internal function. It is thus included in the
“namespace: rpackagedemo” environment

(e <- environment(rpackagedemo: :bamboo)) # or getNamespace("rpackagedemo")
<environment: namespace:rpackagedemo>
1s(envir=e)

[1] "bamboo" "prepare_message

"on

print.koala”

We can get it via the “:::" operator:

print(rpackagedemo:: :prepare_message)

function (x)

sprintf("G'day, %s!\n", x)

<environment: namespace:rpackagedemo>

All functions defined in a package have the corresponding package namespace as their
associated environment. As a consequence, bamboo can refer to prepare_message dir-
ectly.

Now, it will be educative to inspect the enclosure of “namespace: rpackagedemo”:

(e <- parent.env(e))

<environment: 0Ox56315bb4ec38>
attr(, "name"”

[1] "imports:rpackagedemo"
ls(envir=e)

[1] "sprintf" "toTitleCase"

This is the environment featuring the bindings to all the imported objects. This is why
our package can also refer to stringx: :sprintf and tools: : toTitleCase.

Its enclosure is the namespace of the base package (not to be confused with
“package:base”):

(e <- parent.env(e))
<environment: namespace:base>

The next enclosure is, interestingly, the global environment:

(e <- parent.env(e))
<environment: R_GlobalEnv>

16 ENVIRONMENTS AND EVALUATION (¥) 389

And then, of course, the whole search path follows (Section 16.2..5); see Figure 16.4 for
an illustration.

Note (**) All environments related to packages are locked, which means that we can-
not change any bindings within their frames; compare help("lockEnvironment").

In the extremely rare event of our needing to patch an existing function within an
already loaded package, we can call unlockBinding followed by assign to change its
definition.

new_message <- function (x) sprintf("Nobody expects %s!\n", x)

e <- getNamespace('"rpackagedemo")

environment(new_message) <- e # set enclosing environment (very important!)
unlockBinding("prepare_message", e)

assign("prepare_message", new_message, e)

rm("new_message")

bamboo("the spanish inquisition")

Nobody expects The Spanish Inquisition!

Risindeed a quite hackable language (except in the cases where it is not).

Exercise 16.13 (**) A function ora package mightregister certain functions (hooks) to be called
upon various events, e.g., attaching a package to the search patch; see help("setHook") and
help(".onAttach").

1. Inspect the source code of plot.new and note a reference to a hook named "before.plot.
new". Try setting such a hook yourself (e.g., one that changes some graphical parameters)
and see what happens upon each call to a graphical function.

2. Definethe .onLoad, .onAttach, .onUnload, and .onDetach functions in your own R pack-
age and make note of when they are invoked.

Exercise 16.14 (**) For the purpose of this book, we have registered a custom "before.plot.
new " hook that sets our favourite graphical parameters. Moreover, we replaced plot. windowwith
our custom implementations (note the white grid on a grey background, e.g., in Figure 13.13).

Apply similar hacks to the graphics package so that its outputs suit your taste better.

16.3.6 S3 method lookup by UseMethod (*)

Let us go back to the rpackagedemo example. Looking at its NAMESPACE file, we see that
it defines two print methods: for printing S3 objects of classes koala and kangaroo.

The package is attached to the search path. Therefore, we can access these methods via
a call to the corresponding generic:

print(structure("Tiny Teddy", class="koala"))
This 1s a cute koala, Tiny Teddy

(continues on next page)

390 Il DEEPEST

(user's) search path\

@global (—\

@ package:rpackagedemo

O bamboo

S

| ...and many more ...

\

@ namespace_rpackagedemo /

/ @ package:base
O bamboo >~ @
O prepare_message

o ..
A
@ namespace:stringx @ imports:rpackagedemo @ namespace:tools
O sprintf <>— — - O sprintf P —~<A O toTitleCase
O toTitleCase k-
A A

@ imports:stringx @ imports:tools

@ namespace:base

O cat

Figure 16.4: Search path for an example package; dashed lines represent environments
associated with closures, whereas solid lines denote enclosing environments; refer-
ences to objects within each package are resolved inside their respective namespaces

16 ENVIRONMENTS AND EVALUATION (¥) 391

(continued from previous page)
print(structure("Moike", class="kangaroo"))
This 1s a very naughty kangaroo, Moike

However, the package does not make the definitions of these S3 methods available to
the user, at least not directly. It is not the first time when we experience such an ob-
scuration.

In the first case, the method is simply hidden in the package namespace. It is still
available under the expected name:

rpackagedemo: : :print.koala

function (x, ...)

cat(sprintf("This is a cute koala, %s\n", x))
<environment: namespace:rpackagedemo>

In the second case, it appears under a very different identifier:

rpackagedemo: : :.a_hidden_method_to_print_a_roo

function (x, ...)

cat(sprintf("This i1s a very naughty kangaroo, %s\n", x))
<environment: namespace:rpackagedemo>

Due to the fact that the base UseMethod is still able to find them, we suspect that there
probably is a global register of all S3 methods. And this is indeed the case.

We can use getS3method to get access to what is available via UseMethod:

getS3method("print", "kangaroo")

function (x, ...)

cat(sprintf("This is a very naughty kangaroo, %s\n", x))
<environment: namespace:rpackagedemo>

Important Overall, the search for methods is performed in two places:
1. In the environment where the generic is called (the current environment).

This is why defining print.kangaroo in the current scope will use this method in-
stead of the one from the package:

print.kangaroo <- function(x, ...) cat("Nobody expects", x, "\n")
print(structure("the Spanish Inquisition", class="kangaroo"))
Nobody expects the Spanish Inquisition

2. Inthe internal S3 methods table (registration database).

See help("UseMethod") for more details. Also recall that in Section 10.2.3, we
said that UseMethod is not the only way to perform method dispatching: there

392 Il DEEPEST

are also internal generics (help("InternalMethods")) and group generic functions
(help("groupGeneric")).

Exercise 16.15 (*) Study the source code of getS3method. Note the reference to the base: :.
__S3MethodsTable__. object (this is for R’s internal use, we should not be tinkering with it dir-
ectly). Also, study the registerS3method function with which we can define new S3 methods not
necessarily following the generic. classname convention.

16.4 Exercises

Exercise 16.16 Asking too many questions is not very charismatic, but challenge yourself by
trying to find the answer to the following.

« What is the role of a frame in an environment?

« What is the role of an enclosing environment? How to read it or set it?

o What is the difference between a named list and an environment?

« What functions and operators work on named lists but cannot be applied on environments?
« What do we mean by saying that environments are not passed by value to R functions?

« What do we mean by saying that objects are sometimes copied on demand?

o What happens if a name listed in an expression to be evaluated is not found in the current
environment?

« How and what kind of objects can we attach to the search path?

« What happens if we have two identical object names on the search path?

« What do we mean by saying that package namespaces are locked when loaded?

« What is the current environment when we evaluate an expression “on the console”?
« Whatis the difference between “<-" and “<<-"?

« Do packages have their own search paths?

« Whatis a function closure?

« What is the difference between the dynamic and the lexical scope?

« When evaluating a function, how the enclosure of the current (local) environment is determ-
ined? Is it the same as the calling environment? How to get it/them programmatically?

« How and why function factories work?

« (*) What s the difference between the “package : pkg” and “namespace: pkg” environments?

16 ENVIRONMENTS AND EVALUATION (*) 393

« How to fetch the definition of an S3 method which does not seem to be available directly via
the standard accessor generic.classname?

 (*) base: :print.data. frame calls base: : format.data. frame (directly). Will the intro-
duction of print.data. frame in the current environment affect how data frames are prin-
ted?

« (*) On the other hand, base: : format.data. frame calls the generic base: : format on all
the input data frame’s columns. Will the overloading of the particular methods affect how
data frames are printed?

Exercise 16.17 Calling:

pkg <- available.packages()
pkg[, "Package"] # a list of the names of available packages
pkg[, "Depends"] # dependencies

gives the list of available packages and their dependencies. Convert the dependency lists to a list
of character vectors (preferably using reqular expressions; see Section 6.2.4).
Then, generate a list of reverse dependencies: what packages depend on each given package.

Use an object of type environment (a hash table) to map the package names to numeric IDs (in-
dexes). This will greatly speed up the processing (compare it to a named list-based implementa-
tion).

Exercise 16.18 According to [63], compare also Section 9.4.6, a call to:

add(x, f(x)) <<- v

translates to:

“*tmp*' <- get(x, envir=parent.env(), inherits=TRUE)
X <<- ‘add<-'(*tmp*°, f(x), v) # note: not f(*tmp*')
rm(" *tmp*")

Given:

‘add<-' <- function(x, where=TRUE, value)

{

x[where] <- x[where] + value

x # the modified object that will replace the original one
}
y <- 1:5

f <- function() { y <- -(1:5); add(y, y==-3) <<- 1000; y }

Explain why the following calls yield the results they give:

394 Il DEEPEST

fO

[1] -1 -2 -3 -4 -5
print(y)

[1] 1 2 1003 4

17

Lazy evaluation (**)

The ability to create, store, and manipulate unevaluated expressions so that they can
be computed later is not particularly special. Many languages enjoy such metapro-
gramming (computing on the language, reflection) capabilities, e.g., Lisp, Scheme,
Wolfram, Julia, amongst many others.

However, R inherited from its predecessor, the S language, a variation of lazy’ (non-
strict, noneager, delayed) evaluation of function arguments. They are only computed
when their values are first needed. As we can take the expressions used to generate
them (via substitute; see Section 15.4.2), we shall see that we can ignore their mean-
ing in the original (caller’s) context, and compute them in a very different one.

17.1 Evaluation of function arguments

We know that calls such as “if (test, ifyes, ifno), ‘|| (mustbe, maybe), or
*8&" (mustbe, maybe) do not have to evaluate all their arguments.

{cat(" first "); FALSE} && {cat(" second "); FALSE}

first

[1] FALSE

{cat(" first "); TRUE } && {cat(" Spanish Inquisition "); FALSE}
first Spanish Inquisition

[1] FALSE

We can write such functions ourselves. For instance:

test <- function(a, b, ¢) a + ¢ # b 1s unused
test({cat("spam\n"); 1}, {cat("eggs\n"); 10}, {cat("salt\n"); 100})
spam

salt

[1] 1601

The second argument was not referred to in the function’s body. Therefore, it was not
evaluated.

! But without the memoisation of results generated by expressions, which is available, e.g., in Haskell.
In other words, in an expression like c(f(x), f(x)), the call f(x) will still be performed twice.

396

Il DEEPEST

Example17.1 Study the following very carefully.

test <- function(a, b, c)

{

}

cat("Arguments passed to test (expressions): |n")
cat("a = ", deparse(substitute(a)), "\n")
cat("b = ", deparse(substitute(b)), "\n")
cat("c = ", deparse(substitute(c)), "\n")

subtest <- function(x, y, z)

{
cat("Arguments passed to subtest (expressions): \n")
cat("x = ", deparse(substitute(x)), "|n")
cat("y = ", deparse(substitute(y)), "\n")
cat("z = ", deparse(substitute(z)), "\n")
cat("Using x and z... ")
retval <- x + z # does not refer to 'y’
cat("Cheers!\n")
retval

}

cat("Using c... ")

¢ # force evaluation; we do not even have to be particularly creative

subtest(a, ~!~b*2 := headache ->> ha@xSy, c*10) # no evaluation yet!

environment(test) <- new.env() # to spice things up

test(

{testx <- "goulash"; cat("spam\n"); 1},
{testy <- "kabanos"; cat("eggs\n"); MeAn(egGs+whateveré&!!weird[stuff])},
{testx <- "kransky"; cat("salt\n"); 100}

)

Arguments passed to test (expressions):

##a= { testx <- "goulash" cat("spam\n") 11}

b= { testy <- "kabanos" cat("eggs\n") MeAn(egGs + whatever ..
#tc= { testx <- "kransky" cat("salt\n") 100 }

Using c... salt
Arguments passed to subtest (expressions):
X = a

#y

‘:="(~I~b * 2, ha@xSy <<- headache)

#z = c * 10

Using x and z... spam
Cheers!

[1] 1001

(continues on next page)

17 LAZY EVALUATION (*¥) 397

(continued from previous page)
print(testx)
[1] "goulash"
print(testy)
Error in eval(expr, envir, enclos): object 'testy' not found
On a side note, the *~" (formula) operator will be discussed in Section 17.6. Furthermore, the " :="
operatorwas used in an ancient version of R for assignments, but it is still recognised by the parser,
yet now it has no associated meaning.

Important We note what follows.

« Either the evaluation of an argument does not happen or it is triggered only once
(in which case the result is cached).

Evaluation is delayed until the very first request for the underlying value (we call it
lazy evaluation).

Evaluation takes place in the calling environment (parent frame).

Fetching the expression passed as an argument using substitute (Section 15.4.2)
or checking if an argument was provided with missing (Section 15.4.3) does not
trigger the evaluation.

« Merely passing arguments further to another function usually does not trigger the
evaluation.

We wrote usually, because builtin functions (e.g., ¢, list, sum, "+", "&, and ":")
always evaluate the arguments. There is no lazy evaluation in case of the argu-
ments passed to group generics; see help("groupGeneric") and Section 10.2.6.
Furthermore, replacement functions’ values arguments (Section 9.4.6) are com-
puted eagerly.

Exercise17.2 Study the source code of system. time and note the use of delayed evaluation to
measure the duration of the execution of a given expression. Also note the use of on. exit (Sec-
tion 17.4) to react to possible exceptions.

Example 17.3 It turns out that the role of substitute is broader than just getting the expres-
sion passed as an argument. We can actually replace each occurrence of every name from a given
dictionary (a named list or an environment).

Forinstance:

test <- function(x)
{
subtest <- function(y)
{
ex <- substitute(x, env=parent.frame()) # substitute(x) is just 'x°

ey <- substitute(y)
(continues on next page)

398 Il DEEPEST

(continued from previous page)
cat("ex =", deparse(ex), "\n")
cat("ey =", deparse(ey), "|n")

eval(as.call(list(substitute, ey, list(x=ex))))

"

}

subtest(spam(!xx))
}

test(eels@hovercraft)

ex = eels@hovercraft

ey = spam(!xx)

spam(!eels@hovercrafteels@hovercraft)

This way, we were not only able to fetch the expression passed as the *x" argument to the calling
function, but also replace every occurrence of " x" in the expression “ey".

Note that substitute does not evaluate its first argument. Hence, if we called substitute(ey,
...), wewould treat “ey" as a quoted name.

Exercise 17.4 Study the source code of replicate:

print(replicate)

function (n, expr, simplify = "array")

sapply(integer(n), eval.parent(substitute(function(...) expr)),
simplify = simplify)

<environment: namespace:base>

Exercise 17.5 (*) Implement your own version of the bquote function.

Note (*) Internally, lazy evaluation of arguments is implemented using the so-called
promises (compare [63]). As such, they consist of:

- an expression (which we can access by calling substitute);

- an environment where the expression is to be evaluated (once this happens, it is
set to NULL);

« acached value (computed on demand, once).

This interface is not really visible from within R, but see help("delayedAssign").

Exercise17.6 Inspectthedefinition of match. fun. Whyisitused by, e.g., apply, Map, or outer?

Note that it uses eval.parent(substitute(substitute(FUN))) to fetch the expression repres-
enting the argument passed by the calling function (but it is probably very rarely needed there).
Compare:

17 LAZY EVALUATION (*¥) 399

test <- function(x)

{
subtest <- function(y)
{
NOT: substitute(y)
NOT: eval.parent(substitute(y))
eval.parent(substitute(substitute(y)))
}
subtest(x*3)
}
test(1+2)

(1 +2) %3

17.2 Evaluation of default arguments

Aswe know from Section 9.5.4, default arguments are special expressions specified in
a function’s parameter list. When a function’s body requires the value of an argument
that was not provided by the caller, the default expression will be evaluated in the cur-
rent (local) environment of the function. This is thus different from the case of normally
passed arguments, which are interpreted in the context of the calling environment.

X <- "banana"

test <- function(y={cat("spam\n"); x})

{
cat(deparse(substitute(y)), "\n")
cat("bacon\n")
X <- "rotten potatoes”
cat(y, y, "\n")

}

test(x)

X

bacon

banana banana

test()

##t A cat("spam\n") x }

bacon

spam

rotten potatoes rotten potatoes

(continues on next page)

400 Il DEEPEST

(continued from previous page)
test({cat("spam\n"); x})
#i A cat("spam\n") x }
bacon
spam
banana banana

As usual, the evaluation is triggered only once, where it is explicitly requested, and
only when needed.

Example 17.7 Consider the following example from [36]:

sumsq <- function(y, about=mean(y), na.rm=FALSE)

{
if (na.rm)
y <- y[lis.na(y)]
sum((y - about)”2)
}

sumsq(c(1, NA_real_, NA_real_), na.rm=TRUE)
[1] 0

The nice side effect is that the computation of the mean may take into account the removal of the
missing values, if requested.

However, as the idea of lazy evaluation of arguments is alien to most programmers (especially
coming from different languages), it might be better to rewrite the above using a call to missing
(Section 15.4.3):

sumsq <- function(y, about, na.rm=FALSE)

{
if (na.rm)
y <- yl[!is.na(y)]
if (missing(about))
about <- mean(y)
sum((y - about)”2)
}
sumsq(c(1, NA_real_, NA_real_), na.rm=TRUE)
[1] 0
or better even:

sumsq <- function(y, about=NULL, na.rm=FALSE)
{
if (na.rm)
y <- yl[!is.na(y)]
(continues on next page)

17 LAZY EVALUATION (**) 401
(continued from previous page)
if (is.null(about))
about <- mean(y)
sum((y - about)”2)
}

sumsq(c(1, NA_real_, NA_real_), na.rm=TRUE)
[1] 0

Exercise 17.8 Note that the default arguments to do.call, list2env, and new.env are set to
parent. frame. What does that mean?

Exercise17.9 Study the source code of the local function:

print(local)

function (expr, envir = new.env())

eval.parent(substitute(eval(quote(expr), envir)))
<environment: namespace:base>

17.3 Ellipsis, *...", revisited

If our function features the dot-dot-dot parameter, *...", whatever we pass through
it is packed into a pairlist of promise expressions. Thus, we can enjoy the benefits of
lazy evaluation. In particular, we can redirect all *.. . -fed arguments to another call,
as-is.

test <- function(...)

{
subtest <- function(x, ...)
{
cat("x = "); str(x)
cat("... = "); str(list(...))
}
subtest(...)
}

test({cat("eggs! "); 1}, {cat("spam! "); 2}, z={cat("rice! "); 3})
x = eggs! num 1

... = spam! rice! List of 2

S : num 2

#4 S z: num 3

Exercise 17.10 In the documentation of lapply, we read that this function is called like “lap-

402 Il DEEPEST

ply(X, FUN, ...)”, where" ... areoptional arguments to FUN. Verify that whatever is
passed via the ellipsis is evaluated only once, and not on each application of FUN on the elements

of X.

Example 17.11 We know from Chapter 13 that many high-level graphical functions rely on mul-
tiple calls to more primitive functions that allow for setting a variety of parameters (e.g., via par).
A quite common scenario is for a high-level function to submit all the passed arguments to the un-
derlying basic routines that then can decide by themselves which items they are interested in.

test <- function(...)

{
subtest1 <- function(..., a=1) c(a=a)
subtest2 <- function(..., b=2) c(b=b)
subtest3 <- function(..., c=3) c(c=c)
c(subtesti(...), subtest2(...), subtest3(...))
}

test(a=”/4”, bzﬂBNJ d=HDII)
a b c
A" B n3n

Here, for instance, subtest1 only consumes the value of a” and ignores all the other arguments
whatsoever. plot.default (amongst others) relies on such a design pattern.

...length() fetches the number of items passed via the ellipsis, ...names() retrieves
their names (in the case they are given as keyword arguments), and . . .elt(1) gives the
value of the i-th element. Furthermore, . .1, ..2, ... are synonymous with ...elt(1),
...elt(2), etc.

test <- function(...)

{
cat("length:", ...length(), "\n")
cat("names: ", paste(...names(), collapse=", "), "\n")
for (i in seq_len(...length()))
cat(i, ":", ...elt(1), "\n")
print(substitute(...elt(i)))
}

test(u={cat("honey! "); "a"}, {cat("gravy! "); "b"}, w={cat("bacon! "); "c"})
length: 3

names: u, ,
honey! 1 : a
gravy! 2 : b
bacon! 3 : c
...elt(3L)

Note that ...elt(i) triggers the evaluation of the respective argument. Unfortu-

17 LAZY EVALUATION (*¥) 403

nately, we cannot use substitute to fetch the underlying expression. Instead, we can
rely on match.call discussed in Section 15.4.4:

test <- function(a, b, ..., z=1)
{
e <- match.call()[-1]
as.list(e[!(names(e) %in% names(formals(sys.function())))])

str(test(1+1, 2+2, 3+3, 4+4, a=2, z=8, w=4))
List of 4

#4 S : language 2 + 2

S : language 3 + 3

S : language 4 + 4

##* S w: num 4

Note Objects passedvia ..., even if they are specified as keyword arguments, can-
not be referred to by their name, as if they were local variables:

test <- function(...) zzz
test(zzz=3)
Error in test(zzz = 3): object 'zzz' not found

In other words, no assignment in the local environment is triggered.

Exercise 17.12 Implement your own version of the built-in switch function.

Exercise 17.13 Implement your own version of the stopifnot function.

17.4 on.exit (%)

on.exit registers an expression to be evaluated at the very end of a call, regardless
whether the function exited due to an error or not. It might be used to re-set the
temporarily modified graphical parameters (see par) and system options (options),
or clean up the allocated resources (e.g., close all open file connections).

For instance:

test <- function(reset=FALSE, error=FALSE)
{
on.exit(cat("eggs\n"))
on.exit(cat("bacon\n")) # replace
on.exit(cat("spam\n"), add=TRUE) # add

(continues on next page)

404 Il DEEPEST

(continued from previous page)
cat("rotil canai\n")

if (reset)
on.exit() # cancels all (replace by nothing)

if (error)
stop("aaarrgh!")

cat("end\n")
"return value"

test()

roti canai

end

bacon

spam

[1] "return value"
test(reset=TRUE)

roti canai

end

[1] "return value"
test(error=TRUE)

roti canai

Error in test(error = TRUE): aaarrgh!
bacon

spam

Note that we can always do without on.exit, e.g., by applying proper exception hand-
ling techniques; see Section 8.2.

Exercise 17.14 Note the call to:

on.exit(close(file))

in the definition of scan. Is its purpose to close the file on exit?

Exercise 17.15 Why does graphics: :barplot.default call the following expressions?

dev.hold()
opar <- if (horiz) par(xaxs="1", xpd=xpd) else par(yaxs="1", xpd=xpd)
on.exit({
dev. flush()
par(opar)
»

17 LAZY EVALUATION (*¥) 405

17.5 Metaprogramming and laziness in action: Examples (*)

As we mentioned at the beginning of the previous chapter and in Section 9.5.7 and
Section12.3.9, due to lazy evaluation, we can define functions that allow arbitrary gib-
berish as their arguments, as long as they are syntactically valid R expressions. Noth-
ing but basic decency stops us from interpreting them in any way we want. Each such
function can become a microverse (a microlanguage?) by itself. This might confuse?
our users, as they will have to analyse its behaviour separately.

In this section, we will take alook at a few built-in functions relying on metaprogram-
ming and laziness, mostly because that studying them is a good exercise that help ex-
tend our programming skills and deepen our understanding of the concepts discussed
in this part of the book.

By no means it is an invite to use them in practice.

Still, R’s computing on the language capabilities might be of interest to some advanced
programmers (e.g., package developers).

17.5.1 match.arg

We mentioned match.arg in Section 9.5.7. When called normally, it matches a string
against a set of possible choices, similarly to pmatch:

choices <- c("spam", "bacon", "eggs")
match.arg("spam", choices)

#4 [1] "spam"
match.arg("s", choices) # partial matching
[1] "spam”

match.arg("eggplant", choices) # no match

Error in match.arg("eggplant”, choices): 'arg' should be one of "spam",
#H "bacon", "eggs"

match.arg(choices, choices) # match first

[1] "spam"

However, skipping the second argument, this function will fetch the choices from the
default argument of the function it is enclosed in!

test <- function(x=c("spam", "bacon", "eggs"))
match.arg(x)

test("spam")
[1] "spam”

(continues on next page)

2 Novices are prone to overgeneralising when they learn new material that they are still far from com-
fortable with, so such exceptions go against this natural coping strategy of theirs.

406 Il DEEPEST

(continued from previous page)
test("s")
[1] "spam"”
test("eggplant")
Error in match.arg(x): 'arg' should be one of "spam", "bacon", "eggs"
test()
#4 [1] "spam”

Exercise 17.16 Inspect the source code and the documentation of stats: :binonm. test, which
looks like:

function(..., alternative = c("two.sided", "less", "greater"))

{
#...

alternative <- match.arg(alternative)
...

}

Note the alternative argument and its peculiar default value.

Exercise 17.17 Study the source code of match. arg. In particular, note the following fragment:

if (missing(choices)) {
formal.args <- formals(sys.function(sysP <- sys.parent()))
choices <- eval(
formal.args[[as.character(substitute(arg))]],
envir=sys. frame(sysP)

17.5.2 curve

The curve function can be called, e.g., like:

curve(sin(1/x72), 1/pi, 3, 1001, lty=2)

which results in Figure 17.1. Wait a minute... We did not define “x" to be a sequence
ranging between ca. 0.3 and 3!

Exercise 17.18 Study the source code of curve. Note the following fragment of its definition:

function(expr, from=NULL, to=NULL, n=101, xlab="x", type="1", ...)
{

...

expr <- substitute(expr)

ylab <- deparse(expr)

X <- seq.int(from, to, length.out=n)

(continues on next page)

17 LAZY EVALUATION (*¥) 407

o PR
- " 4 hES
" / ~
1" ! hEN
] ! ~
I ~
\ [~
wn| |] S~
of 1!) =1
1! | ~~o.
1 1 DR S
~ o0y 1 T TS cooa
N \ T T T ..
< 1 i 1 1 T sesesd
N
= o I]
< 1! |
B ! |
] || |
) T
or !
1
v !
\ 1
!
\I
ol U
w 1 1 1 1 1 1
0.5 1.0 1.5 2.0 2.5 3.0
X

Figure 17.1: An example plot generated by calling curve

(continued from previous page)

Il <- list(x=x)
y <- eval(expr, envir=1l1l, enclos=parent. frame())
plot(x=x, y=y, type=type, xlab=xlab, ylab=ylab, ...)

...

17.5.3 withand within

Environments and named lists (and hence data frames) are similar (Section 16.1.2).
Due to this, the envir argument to eval can be set to either.

Therefore, for instance:

eval(quote(head(Sepal.Length)), envir=iris)
[1] 5.1 4.9 4.7 4.6 5.0 5.4

evaluates the given expression in something like list2env(iris, parent=parent.

frame()). Thus, even though Sepal.Length is not a standalone variable, it is treated
as if it was one inside the iris data frame.

Note that thanks to the enclosure’s being set to the calling frame, we can successfully
refer to the head function located somewhere on the search path. This is somewhat
similar to attach (Section 16.2..6), but without modifying the search path.

The with function does exactly the above:

408 Il DEEPEST

print(with.default)

function (data, expr, ...)

eval(substitute(expr), data, enclos = parent. frame())
<environment: namespace:base>

Example use:

with(iris, {
x <- Sepal.Length # ‘Sepal.Length” is in ‘iris’
mean(x)

b
[1] 5.8433

As we evaluate the above in the local (temporary) environment, we cannot modify the
existing columns of the data frame this way. But then the within function includes a
way to detect and reflect any changes made.

within(iris, {
Sepal.Length <- Sepal.Length/1000
Spam <- "yum!"
}) -> iris2
head(iris2, 3)
Sepal.lLength Sepal.Width Petal.Length Petal.Width Species Spam

1 0.0051 3.5 1.4 0.2 setosa yum!
#H 2 0.0049 3.0 1.4 0.2 setosa yum!
3 0.0047 3.2 1.3 0.2 setosa yum!

Exercise17.19 Study the source code of within:

print(within.data. frame)
function (data, expr, ...)

{

parent <- parent. frame()

#H e <- evalq(environment(), data, parent)

#H eval(substitute(expr), e)

l <- as.list(e, all.names = TRUE)

1 <- Uf!vapply(l, is.null, NA, USE.NAMES = FALSE)]
#H nl <- names(l)

#H del <- setdiff(names(data), nl)
data[nl] <- 1

data[del] <- NULL

data

}

<environment: namespace:base>

Note that evalq(expr, ...)isequivalent to eval(quote(expr), ...), and that vapply(X,
FUN, NA, ...)islikea callto sapply, but it guarantees that the result is a logical vector.

17 LAZY EVALUATION (**) 409

17.5.4 transform

We can call transform to modify/add columns in a data frame using vectorised func-
tions, for instance:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL), 3)

#H mpg cyl disp drat wt gsec vs am gear carb log_hp
Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005
Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005
Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326

If we suspect that this function evaluates all expressions passed as *. . . within the data
frame, we are brilliantly right. Furthermore, there must be some mechanism allowing
for the detection of newly created variables so that new columns can be added.

Exercise17.20 Study the source code of transform:

print(transform.data. frame)
function (" _data*, ...)

{

#H e <- eval(substitute(list(...)), "_data", parent.frame())
tags <- names(e)

#H inx <- match(tags, names('_data"))

matched <- !is.na(inx)

if (any(matched)) {

‘*_data’[inx[matched]] <- e[matched]

‘_data’ <- data.frame('_data")

}

#H if (!all(matched))

#H do.call("data. frame", c(list('_data"), e[!matched]))
#H else '_data’

}

<environment: namespace:base>

In particular, note that “e" is a named list.

17.5.5 subset

The subset function can be used to select rows and columns of a data frame that meet
certain criteria. For instance:

subset(airquality, Temp>95 | Temp<57, -(Month:Day))

Ozone Solar.R Wind Temp
5 NA NA 14.3 56
120 76 203 9.7 97

122 84 237 6.3 96

The second argument, the row selector, must definitely be evaluated within the data

410 Il DEEPEST
frame. We expect it to reduce itself to a logical vector which then can be passed to the
index operator.

The “select all columns except those between the given ones” part can be implemented
by assigning each column a consecutive integer, and then treating them as numeric
indexes.

Exercise 17.21 Study the source code of subset:

print(subset.data. frame)
function (x, subset, select, drop = FALSE, ...)

oA

#H chkDots(...)

r <- if (missing(subset))

rep_len(TRUE, nrow(x))

else {

e <- substitute(subset)

#H r <- eval(e, x, parent.frame())

if (!is.logical(r))

#H stop("'subset' must be logical")
#H r & !is.na(r)

}

#H vars <- i1f (missing(select))

#H rep_len(TRUE, ncol(x))

else {

nl <- as.list(seq_along(x))

names(nl) <- names(x)

#H eval(substitute(select), nl, parent.frame())
}

x[r, vars, drop = drop]

)

<environment: namespace:base>

17.5.6 A forward-pipe operator

In Section 10.5, we mentioned the pipe operator, " |>". We can implement its simpli-
fied version manually:

"%>%" <- function(el, e2)

{
e2 <- as.list(substitute(e2))
e2 <- as.call(c(e2[[1]], substitute(el), e2[-1]))
eval(e2, envir=parent.frame())

}

This function imputes “e1’ as the first argument in a call “e2" and then evaluates the
new expression.

17 LAZY EVALUATION (*¥) 4m

Example calls:

x <- c(1, NA_real_, 2, 3, NA_real_, 5)

X %>% mean # mean(x)

[1] NA

X %% “-'(1) # x-1

[1] ONA 1 2 NA 4

X %>% na.omit %>% mean # mean(na.omit(x))
#H [1] 2.75

X %>% mean(na.rm=TRUE) # mean(x, na.rm=TRUE)
[1] 2.75

Moreover, at the cost of forcing the evaluation of the lefthand side argument (and thus
losing the potential benefits of lazy evaluation, including the access to the generating
expression), we can memorise the value of “e1” under the name, say, *." so thatit can
be referred to in the righthand side expression.

"%.>% <- function(el, e2)

{
env <- list2env(list(.=el), parent=parent.frame())
e2 <- as.list(substitute(e2))
e2 <- as.call(c(e2[[1]], quote(.), e2[-1]))
eval(e2, envir=env)

}

This way, we can refer to the value of the lefthand side multiple times in a single call,
for instance:

set.seed(123); runif(5) %.>% '['(.>0.5) # x[x>0.5] with x=runif(5)
[1] 0.78831 0.88302 0.94047

This is crazy, I know. I made this. Your author. One more then:

x[x >= 0.5 & x <= 0.9] <- 0.5 with x=round(runif(5), 2):
set.seed(123); runif(5) %.>% round(2) %.>% "[<-"(.>=0.5 & .<=0.9, value=NA)
[1] 0.29 NA 0.41 NA 0.94

I cannot wait for someone to put this operator into some new R package (itis a brilliant
idea, by the way, isn't it?) and then confuse thousands of users (“what is this thing?”).

17.5.7 Otherideas (*)

Why stop ourselves here? We can create a lot more invasive functions that read some
local variables in the calling functions (unless they are primitive, because this is R and
there always have to be exceptions to general rules...).

Here is an operator, thanks to which we can select a range of columns in a data frame
between two given labels:

412 Il DEEPEST

“%:%" <- function(el, e2)
{
get the ‘x' argument in the caller (hoping its ‘[")
x <- get("x", envir=sys.frame(sys.nframe()-1))
n <- names(x)
from <- pmatch(substitute(el), n)
to <- pmatch(substitute(e2), n)

from:to

head(iris[, Sepal.W%:%Petal.W])
Sepal.Width Petal.lLength Petal.Width

1 3.5 1.4 0.2
#H 2 3.0 1.4 0.2
3 3.2 1.3 0.2
4 3.1 1.5 0.2
#H 5 3.6 1.4 0.2
6 3.9 1.7 0.4

This function operates under the assumption that it is called as an argument to a non-
primitive function which took the “x* argument being a named vector.

Exercise 17.22 Make the above more foolproof:
o if "%:% isused outside of *[" or " [<-", raise a polite error,
« allow "x" to be a matrix (is it possible?),
- prepare better for the case of less expected inputs.

Exercise 17.23 Modify the definition of the above operator so that both:
iris[, -Sepal.W’%:%Petal.W]
iris[, -(Sepal.W%:%Petal.W)]
mean “select everything except”.
Exercise17.24 Define “%:% for data frames so that:
o x[%:%3,]means “select the first three rows”,
o x[3%:%,]means “select from the third to the end”,
o x[-3%:%,]means “select from the third last to the end”,
o x[%:%-10,]means “selectall butlast9”.

The ceiling is the limit. Just please, do not use the above in production.

17 LAZY EVALUATION (**) 413

17.6 Processing formulae, "~ ()

Formulae were introduced to S in the early 1990s, see [13], originally with the purpose
of specifying statistical models; compare Section 10.3.4.

From the language perspective, they are merely unevaluated calls to the *~" (tilde) op-
erator. When creating them, we do not even have to apply quote explicitly. For in-
stance:

f<-(y~x1+x2) #or: '~ (y, x1+x2)
mode(f)

[1] "call"”

class(f)

#4 [1] "formula”

Hence, formulae are compound objects in the sense given in Chapter 10.

Usually, formulae are equipped with an additional attribute:

attr(f, ".Environment")
<environment: R_GlobalEnv>

Exercise 17.25 Create a function that generates a list of formulae of the form “y ~ x1+x2+. ..
+xk”, for all possible combinations x1, x2, ..., xk (of any cardinality) of elements in a given set of
xs. For instance:

formula_allcomb <- function(y, xs, env=parent.frame()) ...to.do...
str(formula_allcomb("len", c("supp", "dose")))
List of 3

S :Class 'formula' language len ~ supp + dose

#4- attr(*, ".Environment")=<environment: R_GlobalEnv>
S :Class 'formula' language len ~ dose

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
$:Class 'formula' language len ~ supp

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
str(formula_allcomb(

"o, n
El

C(”Xl n’ ”XZ”, ”X3”),

env=NULL
))
List of 7
#4# S :Class 'formula' language y ~ x1 + x2 + x3
S :Class 'formula' language y ~ x2 + x3
S :Class 'formula' language y ~ x1 + x3
S :Class 'formula' language y ~ x3

(continues on next page)

414

##
##
##

Il DEEPEST

(continued from previous page)
S :Class 'formula' language y ~ x1 + x2
S :Class 'formula' language y ~ x2
S :Class 'formula' language y ~ x1

As they are unevaluated expressions, functions can assign any fantastic meaning to
formulae, and we cannot really do anything about it. However, many functions, es-
pecially in the stats and graphics packages, rely on a call to model. frame and related
routines. Thanks to this, we can at least find some behavioural patters. In particular,
help("formula") lists some typical meanings of operators that can be used in a for-
mula.

Example 17.26 Here are afew examples (executing the expressions below is left as an exercise).

Draw a box-and-whisker plot for iris[["Sepal.Length"]] splitby iris[["Species"]]:

boxplot(Sepal.Length~Species, data=iris)

Draw a box plot for ToothGrowth[["len"]] split by a combination of levels in Tooth-
Growth[["supp"]] and ToothGrowth[["dose"]]:

boxplot(len~supp:dose, data=ToothGrowth)

Split the given data frame by a combination of values in two specified columns therein:

split(ToothGrowth, ~supp:dose)

Fit a linear regression model of the formy = a + bx, wherey is iris[["Sepal.Length"]]
andxis iris[["Petal.Length"]]:

Im(Sepal.Length~Petal.Length, data=iris)

Fitalinear regression model of the formz = ax +by, wherezis iris[["Sepal.Length"]],
xis iris[["Petal.Length"]], and y is iris[["Sepal.Width"]] (without the intercept
term):

Im(Sepal.Length~Petal.Length+Sepal.Width+0, data=iris)

Fitalinear regression model of the formz = a + bx + cy + dxy, wherezis iris[["Sepal.
Length"] J+e (with "e" fetched from the associated envivonment), and x and y ave like above:

e <- rnorm(length(iris[["Sepal.Length"]]), 0, 0.05)
Im(I(Sepal.Length+e)~Petal.Length*Sepal.Width, data=iris)

Draw scatter plots of warpbreaks[["breaks "]] vs their indexes for data grouped by a com-
bination of warpbreaks[["wool"]] and warpbreaks[["tension"]]:

17 LAZY EVALUATION (*¥) 415

Index <- seq_len(nrow(warpbreaks))
coplot(breaks ~ Index | wool * tension, data=warpbreaks)

From the perspective of this book, which focuses on more universal aspects of the R
language, formulae are not interesting enough to describe them in any more detail.
However, the kind reader is now equipped with all the necessary knowledge to solve
the following very educative exercises.

Exercise 17.27 Study the source code of graphics: ::boxplot.formula, stats::lm and
stats:::t.test. formula and take note of how they prepare and process the calls to model.
frame, model.matrix, model.response, model.weights, eic.

Note that their main aim is to prepare data to be passed to boxplot.default, lm. fit (it is just
a function with such a name, not an S3 method), and t. test.default

Exercise 17.28 Write a function similar to curve, but one that allows to specify the function to
plot using a formula.

17.7 Exercises
Exercise17.29 Answer the following questions.
« What is the role of promises?
« Why do we generally discourage the use of functions relying on metaprogramming?
« How are default arguments evaluated?
o Isthere anything special about formulae, from the language perspective?

o Revaluates function argumentslazily. Doesit meanthat “y[c(length(y)+1, length(y)+1,
length(y)+1)] <- list(1, 2, 3)”extendsalist y" by three elements? Or are there cases
where evaluation is eager?

Exercise 17.30 Given:

test <- function(x, y=deparse(substitute(x)), force_first=FALSE)
{

if (force_first) y # just force the evaluation of y here

X <- X**%2

print(y)
}

Why the two following calls give different results?

test(1:5)
[1] "c(1, 4, 9, 16, 25)"
(continues on next page)

416 Il DEEPEST

(continued from previous page)

test(1:5, force_first=TRUE)

[1] "1:5"

17.8 Outro

Let us recall our first approximation to the classification of R data types that we
presented in the Preface. As a summary of what we have covered in this book, let us
contemplate upon Figure 17.2, which gives a much broader picture.

R Data Types

Basic)
.- Recursive) Ch?su.r?
function primitive:

NULL
logical

raw
Atomic . integer

F o\ numeric
‘ double

complex

character
list
pairlist

special/builtin
environment

symbol (name)
Language Objects call

expression
promise
externalptr
Internal
y, S4

factor

matrix

array

) data.frame
Compound
J \ formula

Date
kmeans

Figure 17.2: R data types

17 LAZY EVALUATION (*¥) 417

If we omitted something, it was most likely on purpose - either we can now study it on
our own easily, it is not really worth our attention, or it violates our minimalist design
principles that we explained in the Preface.

Now that we have reached the end of this course, we might be interested in reading
the following materials:

« R Language Definition [63],

o R Internals [62],

« Writing R Extensions [59],

- R's source code available at https://cran.r-project.org/src/base/.

What is more, the NEWS files available at https://cran.r-project.org/doc/manuals/
r-release/ will keep us up to date with new features, bug fixes, and deprecated func-
tionality; see also the news function.

Please spread the news about this book. Also, check out the other open-access textbook
by yours truly, Minimalist data wrangling with Python® [25]. Thank you.

Good luck in your further projects!

3 https://datawranglingpy.gagolewski.com/

https://cran.r-project.org/src/base/
https://cran.r-project.org/doc/manuals/r-release/
https://cran.r-project.org/doc/manuals/r-release/
https://datawranglingpy.gagolewski.com/

Changelog

Note that the most up-to-date version of this book can be found at https://deepr.
gagolewski.com/.

Important This book is still a work in progress. The first twelve chapters are already
quite readable, but there will be more (I might be busy with other projects, though).
Stay tuned.

Any bug/typos reports/fixes* are appreciated.

Below is the list of the most noteworthy changes:
o 2023-04-27 (VO.2.1):
— Chapter on graphics drafted.
* 2023-04-09 (vO.2.0):

- New HTML theme (featuring light and dark mode).

Chapter on unevaluated expressions drafted.

Chapter on environments and evaluation drafted.

Chapter on lazy evaluation drafted.
o 2022-12-29 (VO.1.12):
- First public release at https://deepr.gagolewski.com.

- Chapters 1-12 (basic and compound types, functions, control flow, etc.)

drafted.
— Preface drafted.
— ISBN 978-0-6455719-2-9 reserved.

- Cover.

4 hteps://github.com/gagolews/deepr/issues

https://deepr.gagolewski.com/
https://deepr.gagolewski.com/
https://github.com/gagolews/deepr/issues
https://deepr.gagolewski.com

References

[1] Abelson, H., Sussman, G.J., and Sussman, J. (1996). Structure and Interpretation of
Computer Programs. MIT Press.

Abramowitz, M. and Stegun, L.A. (1972). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover. URL: http://people.math.sfu.ca/
~cbm/aands/.

[2

—

—

Becker, R.A. (1994). A brief history of S. URL: https://sas.uwaterloo.ca/~rwoldfor/
software/R-code/historyOfS.pdf.

[3

—

Becker, R.A. and Chambers,].M. (1984). Design of the S system for data analysis.
Communications of the ACM, 27(5):486—495. DOI:10.1145/358189.358078.

[4

[5] Becker, R.A. and Chambers,].M. (1984). S: An Interactive Environment for Data Ana-
lysis and Graphics. Wadsworth.

[6

—

Becker, R.A. and Chambers, .M. (1985). Extending the S System. Wadsworth.

—

Becker, R.A., Chambers,].M., and Wilks, A.R. (1988). The New S Language: A Pro-
gramming Environment for Data Analysis and Graphics. Chapman & Hall.

[7

[8] Burns, P. (2011). The R inferno. URL: https://www.burns-stat.com/pages/Tutor/
R_inferno.pdf.

[9] Chambers, J.M. (1998). Programming with Data. A Guide to the S Language. Springer-
Verlag.

[10] Chambers,].M. (2008). Software for Data Analysis. Programming with R. Springer.
[11] Chambers, J.M. (2016). Extending R. Chapman & Hall.

[12] Chambers, J.M. (2020). S, R, and data science. The R Journal, 12(1):462—476. DOI:
10.32614/R]J-2020-028.

[13] Chambers, J.M. and Hastie, T.]. (1991). Statistical Models in S. Chapman & Hall.

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Introduction to
Algorithms. MIT Press and McGraw-Hill.

[15] Crawley, M.]. (2007). The R Book. John Wiley & Sons.
[16] Date, C.]. (2003). An Introduction to Database Systems. Pearson.

[17] Davis, M. and Whistler, K. (2021). Unicode standard annex #15: Unicode normal-
ization forms. URL: http://www.unicode.org/reports/tris/.

http://people.math.sfu.ca/~cbm/aands/
http://people.math.sfu.ca/~cbm/aands/
https://sas.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
https://sas.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://www.unicode.org/reports/tr15/

422 REFERENCES

[18] Davis, M., Whistler, K., and Scherer, M. (2021). Unicode technical standard #10:
Unicode collation algorithm. URL: http://www.unicode.org/reports/trio/.

[19] Deisenroth, M.P., Faisal, A.A., and Ong, C.S. (2020). Mathematics for Machine
Learning. Cambridge University Press. URL: https://mml-book.com/.

[20] DeMichiel, L.G. and Gabriel, R.P. (1987). The Common Lisp Object System: An
overview. ECOOP. URL: https://www.dreamsongs.com/Files/ECOOP.pdf.

[21] Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. URL:
https://luc.devroye.org/rnbookindex.html.

[22] Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2010). Statistical Distribu-
tions. Wiley.

[23] Friedl,].E.F. (2006). Mastering Regular Expressions. O'Reilly.

[24] Gagolewski, M. (2016). Programowanie w jezyku R. Analiza danych, obliczenia,
symulacje (R Programming. Data Analysis, Computing, Simulations). Wydawnictwo
Naukowe PWN, 2nd edition. In Polish (1st edition published in 2014).

[25] Gagolewski, M. (2022). Minimalist Data Wrangling with Python. Zenodo, Mel-
bourne. URL: https://datawranglingpy.gagolewski.com/, DOI: 10.5281/zen-
0do.6451068.

[26] Gagolewski, M. (2022). stringi: Fast and portable character string processing in
R. Journal of Statistical Software, 103(2):1-59. URL: https://stringi.gagolewski.com,
DOI:10.18637/jss.v103.i02.

[27] Galassi, M., Theiler, J., and et al. (2021). GNU Scientific Library Reference Manual.
URL: https://www.gnu.org/software/gsl/.

[28] Gentle,].E. (2003). Random Number Generation and Monte Carlo methods. Springer.
[29] Gentle, J.E. (2007). Matrix Algebra. Springer.
[30] Gentle,].E. (2009). Computational Statistics. Springer.

[31] Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 21(1):5—48. URL: https://perso.ens-lyon.
fr/jean-michel.muller/goldberg.pdf.

[32] Hankin, R.K.S. (2006). Special functions in R: Introducing the gsl package. R
News, 6:24—26. URL: https://cran.r-project.org/web/packages/gsl/vignettes/gsl.
pdf.

[33] Harris, C.R. and et al. (2020). Array programming with NumPy. Nature,
585(7825):357—362. DOI:10.1038/541586-020-2.649-2.

[34] Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms. SIAM, Phil-
adelphia, PA. DOI:10.1137/1.978089871802.7.

[35] Hughes,]., van Dam, A., McGuire, M., Sklar, D., Foley,]., Feiner, S., and Akeley,
K. (2013). Computer Graphics: Principles and Practice. Addison-Wesley, 3rd edition.

http://www.unicode.org/reports/tr10/
https://mml-book.com/
https://www.dreamsongs.com/Files/ECOOP.pdf
https://luc.devroye.org/rnbookindex.html
https://datawranglingpy.gagolewski.com/
https://stringi.gagolewski.com
https://www.gnu.org/software/gsl/
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://cran.r-project.org/web/packages/gsl/vignettes/gsl.pdf
https://cran.r-project.org/web/packages/gsl/vignettes/gsl.pdf

REFERENCES 423

[36] Thaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299-314. URL:
https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf, DOI:
10.1080/10618600.1996.10474713.

[37]1 Knuth, D.E. (1992). Literate Programming. CSLL.

[38] Knuth, D.E. (1997). The Art of Computer Programming 111: Sorting and Searching.
Addison-Wesley.

[39] Knuth, D.E. (1997). The Art of Computer Programming II: Seminumerical Algorithms.
Addison-Wesley.

[40] Knuth, D.E. (1997). The Art of Computer Programming I: Fundamental Algorithms.
Addison-Wesley.

[41] Marschner, S. and Shirley, P. (2021). Fundamentals of Computer Graphics. AK
Peters/CRC Press, sth edition.

[42] Matloff, N.S. (2011). The Art of R Programming: A Tour of Statistical Software Design.
No Starch Press.

[43] Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation, 8:3-30.

[44] Murrell, P. (2011). R Graphics. Chapman & Hall/CRC.
[45] Nelsen, R.B. (1999). An Introduction to Copulas. Springer-Verlag.

[46] Okabe, M. and Ito, K. (2002). Color Universal Design (CUD): How to make figures
and presentations that are friendly to Colorblind people. URL: https://jfly.uni-koeln.de/
color/.

[47] Olver, EW.]. and et al. (2021). NIST Digital Library of Mathematical Functions. NIST.
URL: https://dlmf.nist.gov/.

[48] Rahlf, T. (2019). Data Visualisation with R: 111 Examples. Springer Nature, 2nd edi-
tion. URL: http://www.datavisualisation-r.com/.

[49] Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer. URL:
http://Imdvr.r-forge.r-project.org.

[50] Tierney, L. (1990). LISP-STAT: An Object-Oriented Environment for Statistical Comput-
ing and Dynamic Graphics. Wiley.

[51] Tierney, L., Becker, G., and Kalibera, T. (2018). ALTREP: Alternative Representations
for R Objects. URL: https://svn.r-project.org/R/branches/ALTREP/ALTREP.html.

[52] Venables, W.N. and Ripley, B.D. (2000). S Programming. Springer.

[53] Venables, W.N., Smith, D.M., and R Development Core Team. (2023). An In-
troduction to R. URL: https://CRAN.R-project.org/doc/manuals/r-release/R-intro.
html.

https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf
https://jfly.uni-koeln.de/color/
https://jfly.uni-koeln.de/color/
https://dlmf.nist.gov/
http://www.datavisualisation-r.com/
http://lmdvr.r-forge.r-project.org
https://svn.r-project.org/R/branches/ALTREP/ALTREP.html
https://CRAN.R-project.org/doc/manuals/r-release/R-intro.html
https://CRAN.R-project.org/doc/manuals/r-release/R-intro.html

424 REFERENCES
[54] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer, 2nd edi-
tion.

[55] Wickham, H. (2019). Advanced R. Chapman & Hall/CRC, 2nd edition. URL: https:
//adv-r.hadley.nz/.

[56] Wickham, H. and Grolemund, G. (2017). R for Data Science. O'Reilly. URL: https:
//r4ds.had.co.nz/.

[57] Wilkinson, L. (2005). The Grammar of Graphics. Springer.
[58] Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC.

[59]1 R Development Core Team. (2023). Writing R Extensions. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-exts.html.

[60] R Development Core Team. (2023). R Data Import/Export. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-data.html.

[61] R Development Core Team. (2023). R Installation and Administration. URL: https:
//CRAN.R-project.org/doc/manuals/r-release/R-admin.html.

[62] R Development Core Team. (2023). R Internals. URL: https://CRAN.R-project.
org/doc/manuals/r-release/R-ints.html.

[63] R Development Core Team. (2023). R Language Definition. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-lang.html.

[64] R Development Core Team. (2023). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https:
|/ [www.R-project.org.

https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://CRAN.R-project.org/doc/manuals/r-release/R-data.html
https://CRAN.R-project.org/doc/manuals/r-release/R-data.html
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.html
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.html
https://CRAN.R-project.org/doc/manuals/r-release/R-ints.html
https://CRAN.R-project.org/doc/manuals/r-release/R-ints.html
https://CRAN.R-project.org/doc/manuals/r-release/R-lang.html
https://CRAN.R-project.org/doc/manuals/r-release/R-lang.html
https://www.R-project.org
https://www.R-project.org

	Preface
	To R, or not to R
	R (GNU S) as a language and an environment
	Aims, scope, and design philosophy
	Classification of R data types and book structure
	About the author
	Acknowledgements
	You can make this book better

	I Deep
	Introduction
	Hello, world!
	Setting up the development environment
	Installing R
	Interactive mode
	Batch mode: Working with R scripts (**)
	Weaving: Automatic report generation (**)
	Semi-interactive modes (Jupyter Notebooks, sending code to an associated R console, etc.)

	Atomic vectors at a glance
	Getting help
	Exercises

	Numeric vectors
	Creating numeric vectors
	Numeric constants
	Concatenating vectors with c
	Repeating entries with rep
	Generating arithmetic progressions with seq and `:`
	Generating pseudorandom numbers
	Reading data with scan

	Creating named objects
	Vectorised mathematical functions
	abs and sqrt
	Rounding
	Natural exponential function and logarithm
	Probability distributions (*)
	Special functions (*)

	Arithmetic operations
	Vectorised arithmetic operators
	Recycling rule
	Operator precedence
	Accumulating
	Aggregating

	Exercises

	Logical vectors
	Creating logical vectors
	Comparing elements
	Vectorised relational operators
	Testing for NA, NaN, and Inf
	Dealing with round-off errors (*)

	Logical operations
	Vectorised logical operators
	Operator precedence revisited
	Dealing with missingness
	Aggregating with all, any, and sum
	Simplifying predicates

	Choosing elements with ifelse
	Exercises

	Lists and attributes
	Type hierarchy and conversion
	Explicit type casting
	Implicit conversion (coercion)

	Lists
	Creating lists
	Coercing to and from lists

	NULL
	Object attributes
	Developing perceptual indifference to most attributes
	But there are some use cases, after all
	Special attributes
	Labelling vector elements with the names attribute
	Altering and removing attributes

	Exercises

	Vector indexing
	head and tail
	Subsetting and extracting from vectors
	Nonnegative indexes
	Negative indexes
	Logical indexer
	Character indexer

	Replacing elements
	Modifying atomic vectors
	Modifying lists
	Inserting new elements

	Functions related to indexing
	Matching of elements in another vector
	Assigning numbers into intervals
	Splitting vectors into subgroups
	Ordering elements
	Identifying duplicates
	Counting index occurrences

	Preserving and losing attributes
	c
	as.something
	Subsetting
	Vectorised functions

	Exercises

	Character vectors
	Creating character vectors
	Inputting individual strings
	Many strings, one object
	Concatenating character vectors
	Formatting objects
	Reading text data from files

	Pattern searching
	Comparing whole strings
	Partial matching
	Matching anywhere within a string
	Using regular expressions (*)
	Locating pattern occurrences
	Replacing pattern occurrences
	Splitting strings into tokens

	Other string operations
	Extracting substrings
	Translating characters
	Ordering strings

	Other atomic vector types (*)
	Integer vectors (*)
	Raw vectors (*)
	Complex vectors (*)

	Exercises

	Functions
	Creating and invoking functions
	Anonymous functions
	Named functions
	Passing arguments to functions
	Grouping expressions with curly braces, `{`

	Functional programming
	Functions are objects
	Calling on precomputed arguments with do.call
	Common higher-order functions
	Vectorising functions with Map

	Accessing third-party functions
	Using R packages
	Default packages
	Source vs binary packages (*)

	Managing dependencies (*)
	Calling external programs
	A note on interfacing C, C++, Python, Java, etc. (*)

	Exercises

	Flow of execution
	Conditional evaluation
	Return value
	Nested ifs
	Condition: Either TRUE or FALSE
	Short-circuit evaluation

	Exception handling
	Repeated evaluation
	while
	for
	break and next
	return
	A note on time and space complexity of algorithms (*)

	Exercises

	II Deeper
	Designing functions
	Principles of sustainable design
	To write or to abstain
	To pamper or to challenge
	To build or to reuse

	Managing data flow
	Checking input data integrity and argument handling
	Putting outputs into context

	Organising and maintaining functions
	Function libraries
	Writing R packages (*)
	Package structure (*)
	Building and installing (*)
	Documenting R packages (*)

	Assuring quality code
	Managing changes and working collaboratively
	Test-driven development and continuous integration
	Debugging
	Profiling

	Special functions: Syntactic sugar
	A note on backticks
	Dollar, `$` (*)
	Curly braces, `{`
	`if`
	Operators are functions too
	Calling built-in operators as functions
	Creating own binary operators

	Replacement functions
	Creating replacement functions
	Substituting parts of vectors
	Replacing attributes
	Compositions of replacement functions

	Arguments and local variables
	Pass by “value”
	Variable scope
	Closures (*)
	Default arguments
	Lazy vs eager evaluation
	Ellipsis, `...`
	Metaprogramming (*)

	Exercises

	S3 classes
	Object type vs class
	Generics and method dispatching
	Generics, default, and custom methods
	Creating own generics
	Built-in generics
	First-argument dispatch and calling S3 methods directly
	Multi-class-ness
	Operator overloading

	Common built-in S3 classes
	Date, time, etc.
	Factors
	Ordered factors
	Formulae (*)

	Argument checking revisited
	(Over)using the forward-pipe operator, `|>` (*)
	Exercises

	Matrices and other arrays
	Creating arrays
	matrix and array
	Promoting and stacking vectors
	Simplifying lists
	Beyond numeric arrays
	Internal representation

	Array indexing
	Arrays are built upon basic vectors
	Selecting individual elements
	Selecting rows and columns
	Dropping dimensions
	Selecting submatrices
	Selecting elements based on logical vectors
	Selecting based on two-column numeric matrices
	Higher-dimensional arrays
	Replacing elements

	Common pperations
	Matrix transpose
	Vectorised mathematical functions
	Aggregating rows and columns
	Binary operators

	Numerical matrix algebra (*)
	Matrix multiplication
	Solving systems of linear equations
	Norms and metrics
	Eigenvalues and eigenvectors
	QR decomposition
	SVD decomposition

	S4 classes (*)
	Defining S4 classes
	Accessing slots
	Defining methods
	Defining constructors
	Inheritance
	A note on the Matrix package

	Exercises

	Data frames
	Creating data frames
	data.frame and as.data.frame
	cbind.data.frame and rbind.data.frame
	Reading data frames
	Interfacing relational databases and querying with SQL (*)
	Strings as factors?
	Internal representation

	Data frame subsetting
	Data frames are lists
	Data frames are matrix-like

	Common operations
	Ordering rows
	Handling duplicated rows
	Joining (merging) data frames
	Aggregating and transforming columns
	Handling missing values
	Reshaping data frames
	Aggregating data in groups
	Transforming data in groups
	Metaprogramming-based techniques (*)
	A note on the dplyr (tidyverse) and data.table packages (*)

	Exercises

	Graphics
	Graphics primitives
	Symbols (points)
	Line segments
	Polygons
	Text
	Raster images (bitmaps) (*)

	Graphics settings
	Colours
	Plot margins and clipping regions
	User coordinates
	Axes
	Plot dimensions (*)
	Many figures on one page (subplots)
	Graphics devices

	Higher-level functions
	Scatter- and function plots with plot.default and matplot
	Bar plots and histograms
	Box-and-whisker plots
	Contour plots and heat maps

	Exercises

	III Deepest
	🚧🚧 Interfacing compiled code (*)
	Unevaluated expressions (*)
	Expressions at a glance
	Language objects
	Calls as combinations of expressions
	Browsing parse trees
	Manipulating calls

	Inspecting function definitions and arguments thereto
	Getting the body and formal arguments
	Getting the expression passed as an actual argument
	Checking if an argument is missing
	Determining how a function was called

	Exercises

	Environments and evaluation (*)
	Frames: Environments as object containers
	Printing
	Environments vs named lists
	Hash maps: Fast element look-up by name
	Pass-by-value, copy on demand: Not for environments
	A note on reference classes (**)

	The environment model of evaluation
	Getting the current environment (here: the global one)
	Enclosures, enclosures thereof, etc.
	Missing names are sought in enclosing environments
	Looking for functions
	Inspecting the search path
	Attaching to and detaching from the search path
	Masking (shadowing) objects from down under

	Closures
	Local environment
	Lexical scope and function closures
	Application: Function factories
	Accessing the calling environment
	Package namespaces (*)
	S3 method lookup by UseMethod (*)

	Exercises

	Lazy evaluation (**)
	Evaluation of function arguments
	Evaluation of default arguments
	Ellipsis, `...`, revisited
	on.exit (*)
	Metaprogramming and laziness in action: Examples (*)
	match.arg
	curve
	with and within
	transform
	subset
	A forward-pipe operator
	Other ideas (**)

	Processing formulae, `~` (*)
	Exercises
	Outro

	Changelog
	References

