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DeepRProgramming is a comprehensive course ononeof themost popular languages
in data science (statistical computing, graphics, machine learning, data wrangling
and analytics). It introduces the base language in-depth and is aimed at ambitious
students, practitioners, and researcherswhowould like to become independentusers
of this powerful environment.

Although available online, this is a whole course, and should be read from the begin-
ning to the end. In particular, refer to the Preface for general introductory remarks.

This early draft is distributed in the hope that it will be useful.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF1 and HTML2 forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it ismyhope that this publicationwill proveuseful to thosewho seekknow-
ledge for knowledge’s sake.

Please spread the news about it by sharing the above URLs with yourmates, peers, or
students.Thank you.

Also, check out my other book,Minimalist data wrangling with Python3 [25].

Any bug/typo reports/fixes are appreciated: please submit them via this project’s Git-
Hub repository4.

Consider citing this book as: GagolewskiM. (2023),DeepRProgramming, Zenodo,Mel-
bourne,DOI: 10.5281/zenodo.74904645, ISBN: 978-0-6455719-2-9, URL: https://deepr.
gagolewski.com/.

1 https://deepr.gagolewski.com/deepr.pdf
2 https://deepr.gagolewski.com/
3 https://datawranglingpy.gagolewski.com/
4 https://github.com/gagolews/deepr/issues
5 https://dx.doi.org/10.5281/zenodo.7490464
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0
Preface

0.1 To R, or not to R
R [64] has been named the eleventhmost dreaded programming language in the 2022
StackOverflow Developer Survey6.

Also, it is a free app, so there must be something wrong with it, right?

But whatever, R is deprecated anyway; the “modern” way is to use tidyverse.

Or we should all just switch to Python7.

Well, not really8.

0.2 R (GNUS) as a language and an environment
Let us get one thing straight: R is not just a statistical package. It is a general-purpose,
high-level programming language, that happens to be very powerful for any kind of
numerical, data-intense computing. It offers extensive support for statistical, ma-
chine learning, data analysis, datawrangling, and data visualisation applications, but
there is muchmore.

Initially, R9 waswritten for statisticians, by statisticians.Therefore, itmay be thought
of as a free, yet more capable (and without any strings attached), alternative to
Stata, SAS, SPSS, Statistica, Minitab, Weka, etc. Unlike in some of them, however, a
spreadsheet-like GUI is not the main gateway for performing computations on data.
In R, a user must write code to get things actually done. Despite the learning curve’s
being a little steeper for non-programmers, in the long run, it empowers their users
because they arenot limited only to themost commonscenarios. If some functionality
is missing or does not suit their needs, they can easily implement everything them-
selves.

6 https://survey.stackoverflow.co/2022/
7 https://datawranglingpy.gagolewski.com/
8 Or, as Aussies would say, yeah, nah.
9 Or we should rather say: S, whose open-source reimplementation/dialect R is; see below for historical

notes. Credit must be given where credit is due.

https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://datawranglingpy.gagolewski.com/
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It is thus very convenient for rapid prototyping. It helps turn our ideas into opera-
tional code that can be tested, extended, polished, run in production, and otherwise
enjoyed overall. As an interpreted language, it can not only be executed in an inter-
active read-eval-print loop (command–result, question–answer, …), but also in batch
mode (running whole, standalone scripts).

Thus, we would rather position R amongst such tools/languages for numerical or sci-
entific computing as Python with the NumPy ecosystem, Julia, GNU Octave, Scilab,
MATLAB, etc. However, it is more specialised in data science applications than any of
them. Hence, it provides a much smoother experience. This is why, over the years, R
has become the de facto standard in statistics andmany other related fields.

Important R is a whole ecosystem (environment). It not only consists of the R lan-
guage interpreter, but also features advanced:

• graphical capabilities (see Chapter 13),

• a consistent, well-integrated help system (Section 1.4),

• ways for convenient interfacing with compiled code (Chapter 14),

• a package systemandcentralisedpackage repositories (suchasCRANandBiocon-
ductor; Section 7.3.1),

• a lively community of users and developers – curious and passionate people, just
like you andme.

Note R is a free, open-source (licensed under the GNU General Public License v2)
variation upon/dialect of the very popular S systemdesigned in themid-1970s by Rick
A. Becker, John M. Chambers, and Allan R. Wilks at Bell Labs; see [3, 4, 5, 6] and its
later revisions [7, 9, 13, 52].

Quoting [4]:

The design goal for S is, most broadly stated, to enable and encourage good data
analysis, that is, to provide users with specific facilities and a general environ-
ment that helps themquickly and conveniently look atmanydisplays, summar-
ies, andmodels for their data, and to follow thekindof iterative, exploratorypath
thatmost often leads to a thorough analysis.The system is designed for interact-
ive use with simple but general expressions for the user to type, and immediate,
informative feedback from the system including graphic output on any of a vari-
ety of graphical devices.
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S became popular because it offeredmuch greater flexibility than the standalone stat-
istical packages. It was praised for its high interactivity and array orientation thatwas
known from APL, the familiar syntax of the C language that involves the use of {curly
braces}, the ability to treat code as data known from Lisp (Chapter 15), the notion of
lazy arguments (Chapter 17), and the ease of calling external C andFORTRANroutines
(Chapter 14). Its newer versions were also somewhat object-oriented (Chapter 10).

However, Swas a commercial system. To address this, R (GNUS)was developed in the
mid-1990s10by Robert Gentleman and Ross Ihaka of the Statistics Department, Uni-
versity of Auckland, and many contributors; see [12, 36] for some historical notes. In
essence, Rwas supposed to be backwards-compatiblewith S, but some design choices
led to their evaluationmodels’ being slightly different: its design was heavily inspired
by Scheme (with its environmentmodel of evaluation; see [1] and Chapter 16 formore
details)

0.3 Aims, scope, and design philosophy
Many users were introduced to R by means of some very advanced operations in-
volving data frames, formulae, and functions that rely on nonstandard evaluation
(metaprogramming), like:

lm(

Ozone~Solar.R+Temp,

data=subset(airquality, Temp>60, select=-(Month:Day))

) |> summary()

This is horrible.

Another groupwas isolated from the base R through a thick layer of third-party pack-
ages that feature an overwhelming number of functions (every operation, regardless
of its complexity, has a different name), often duplicating the core functionality, and
sometimes being quite incompatible with our traditional system.

Both families should be fine — as long as they limit themselves to solving only the
simplest andmost common data processing problems.

But we yearn for more. We do not want hundreds of prefabricated recipes for popular
dishes that we canmindlessly apply without much understanding.

Our aim is to learn base R, which is supposed to be the common language (lingua franca)
for all R users. We want to be able to write code that everybody should be able to un-

10 R version 0.49 released in April 1997 (the first forwhich source code? is available onCRAN), was already
quite feature-rich (e.g., implementedS3methods, formulae, anddata frames introduced in the 1991 version
of S [13]).

10 https://cloud.r-project.org/src/base/R-0/

https://cloud.r-project.org/src/base/R-0/
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derstand, and which will be likely to work without modifications ten years from now
(no slang!).

We want to be able to tackle any data-intense problem. Furthermore, we want to de-
velop skills that are transferable, so that learning new tools such as PythonwithNumPy
and Pandas (e.g., [25]) or Julia will bemuch easier later (because R is not the only not-
able environment out there).

Anyway, enough preaching.This graduate11-level textbook is for independent readers
who:

• do not mind a slightly steeper learning curve at the beginning,

• are able to appreciate a more cohesively and comprehensively12 organisedmater-
ial,

• would like to experience the joy of solving problems by programming,

• do not want to be made obsolete by Artificial “Intelligence” in the future.

Some will benefit from it as a first introduction to R (but without all the pampering).
For others13, this will be a good course from intermediate to advanced (do not skip the
first chapters, though).

Either way, do not forget to solve all the prescribed exercises.

Good luck.

0.4 Classification of R data types and book structure
Themost commonly used R data types can be classified as follows; see also Figure 1.

1. Basic types – which we discuss in the first part of this book – internal or built-in
types, upon which more complex ones are hinged:

• atomic vectors – represent whole sequences of values, where every element is
of the same type:

11The author taught similar courses for his wonderfully ambitious undergraduate data/computer sci-
ence andmaths students atWarsaw University of Technology, where such an approach has proven not dif-
ficult at all. It requires a more independent, curious, and motivated mindset, though. And that’s the way
to go, in the long run.

12 Yours truly is neither a historian, a stenographer, nor a grammarian.We allow ourselves tomake a few
noninvasive idealisations for didactic purposes. Languages evolve over time, R is now different from what
it used to be, and we can shape it (slowly, because we value its stable API) to become something even better
in the future.

13 It might also happen that for some, this will not be a good course at all, either at this stage of their
career (come back later) or in general (no dramas).This is a non-profit, open-access project, but it does not
mean it is ideal for everyone – in such a case, give other sources a try, e.g., [8, 10, 15, 42, 53, 55, 56, 63], etc.
Some of them are freely available.
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NULL

logical

numeric

character
list

function

...

factor

matrix

array

data.frame

formula

Date

kmeans

...

Figure 1: An overview of the most prevalent R data types (see Figure 17.2 for a more
comprehensive list)

– logical (Chapter 3) – includes items that are TRUE (“yes”, “present”),
FALSE (“no”, “absent”), or NA (“not available”, “missing”);

– numeric (Chapter2)– features realnumbers, suchas1,3.14,-0.0000001,
etc.;

– character (Chapter 6) – contains strings of characters, e.g., "groß",
"123", or “Добрий день”;

• function (Chapter 7) – used to group a series of expressions (code lines) so
that they can be applied on different kinds of input data to generate the
(hopefully) desired outcomes, for instance, cat, print, plot, sample, and sum;

• list (generic vector; Chapter 4) – can store elements of mixed types;

The above will be complemented with a discussion on vector indexing (Chapter 5)
and ways to control the program flow (Chapter 8).

2. Compound types – discussed in the second part – wrappers around objects of basic
types that might behave differently from the underlying primitives thanks to the
dedicated operations overloaded for them.They are:

• factor (Section 10.3.2) – a vector-like object that represents qualitative data
(on a nominal or an ordered scale);

• matrix (Chapter 11) – stores tabular data, i.e., arranged into rows and
columns, where each cell is usually of the same type;

• data.frame (Chapter 12) – also used for depositing tabular data, but this time
such that each column can be of a different type;
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• and many more, which we or third parties can define arbitrarily using,
amongst others, the principles of S3-style object orientated-programming
(Chapter 10).

In this part of the book, we also discuss the principles of sustainable coding
(Chapter 9) as well as introduce the basic ways to prepare publication-quality
graphics (Chapter 13).

3. Somemore advancedmaterial is discussed in the third part. Inmost cases,we can
(and often should) easily do without it, but it is still essential to gain a full under-
standing of and control over our environment.This includes, amongst others, the
following data types:

• externalptr (sec:xptr) – provides ability to store/pass any C/C++ objects
between function calls;

• symbol (name), call, expression (Chapter 15) – objects representing unevalu-
ated R expressions that can be freely manipulated and executed if needed;

• environment (Chapter 16) – hashmaps that where can store named objects
and which form the basis of the environment model of evaluation;

• formula (Section 17.6) – used by some functions to specify supervised learn-
ing models or define operations to be performed within data subgroups,
amongst others.

We should not be surprised that we did not list any of the data types defined by a
few very popular14 third-party packages. We will later see that we can most often do
without them. If that is not the case, wewill become skilled enough to learn them eas-
ily ourselves.

0.5 About the author
I,MarekGagolewski15 (pronounced likeMa’rekGong-olive-ski), am currently a Senior
Lecturer in Data Science/Applied AI at Deakin University in Melbourne, VIC, Aus-
tralia, and an Associate Professor at the Systems Research Institute of the Polish
Academy of Sciences.

My research interests are related to data science, in particular: modelling complex
phenomena, developing usable, general-purpose algorithms, studying their analyt-
ical properties, and finding out how people use, misuse, understand, and misunder-
stand methods of data analysis in research, commercial, and decision-making set-
tings. I’m an author of 90+ publications, including journal papers in outlets such as
Proceedings of the National Academy of Sciences (PNAS), Journal of Statistical Software,TheR

14Which does not automatically mean good. For instance, sugar, salt, and some drugs are very popular,
but it does not make them healthy.

15 https://www.gagolewski.com

https://www.gagolewski.com
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Journal, Information Fusion, International Journal of Forecasting, StatisticalModelling, Phys-
ica A: Statistical Mechanics and its Applications, Information Sciences, Knowledge-Based Sys-
tems, IEEE Transactions on Fuzzy Systems, and Journal of Informetrics.

In my “spare” time, I write books for my students (also check out myMinimalist data
wrangling with Python16 [25]) and develop open-source (libre) data analysis software,
such as stringi17 (one of themost often downloaded R packages), genieclust18 (a fast
and robust clustering algorithm in both Python and R), andmany others19.

0.6 Acknowledgements
R, and its predecessor S, is the result of a collaborative effort of many program-
mers20.Without their generous intellectual contributions, the landscape of data ana-
lysiswould not be as beautiful as it is now.R is distributed under the terms of theGNU
General Public license version 2, and we occasionally display fragments of its source
code for didactic purposes.

We describe and use R version 4.3.0 (2023-04-21). However, we expect 99.9% of the
material covered here to be valid in future releases (consider filing a bug report if you
discover that this is not the case).

Deep R Programming is based on the author’s experience as an R user (since ~2003),
developer of open-source packages (mentioned above), tutor/lecturer (since ~2008),
and an author of a quite successful Polish textbook Programowanie w języku R (see [24])
which was published by PWN (1st ed. 2014, 2nd ed. 2016). Even though the current
book is an entirely different work, its predecessor served as an excellent testbed for
many ideas conveyed here.

In particular, the teaching style exercised in this book has proven successful in many
similar courses that yours truly has been responsible for, including atWarsawUniver-
sity of Technology, Data Science Retreat (Berlin), and Deakin University (Melbourne).
I thankallmy students andcolleagues for the feedbackgivenover the last 15-oddyears.

However, this book received no funding, administrative, technical, or editorial sup-
port from Deakin University, Warsaw University of Technology, Polish Academy of
Sciences, or any other source.

This book was prepared in a Markdown superset called MyST21, Sphinx22, and TeX
(XeLaTeX). Code chunks were processed with the R package knitr [58]. All fig-
ures were plotted with the low-level graphics package using the author’s own style

16 https://datawranglingpy.gagolewski.com/
17 https://stringi.gagolewski.com
18 https://genieclust.gagolewski.com
19 https://github.com/gagolews
20 https://www.r-project.org/contributors.html
21 https://myst-parser.readthedocs.io/en/latest/index.html
22 https://www.sphinx-doc.org/

https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://stringi.gagolewski.com
https://genieclust.gagolewski.com
https://github.com/gagolews
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html
https://myst-parser.readthedocs.io/en/latest/index.html
https://www.sphinx-doc.org/
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template. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex23, sphinxcontrib-proof24) dotted the j’s and crossed the f ’s.
The Ubuntu Mono25 font is used for the display of code. Typesetting of the main text
relies upon the Alegreya26 and Lato27 typefaces.

0.7 You canmake this book better
Open,non-profitprojects suchas this one,have to relyon thegenerosityof the readers’
community when it comes to quality assurance.

If youfinda typo, a bug, or somepassage that couldbe rewrittenor extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/deepr/issues/.This way, we canmake it better together.

Please consider “starring” the book’s GitHub repository28. Some people (weirdly) use
the number of “stars” as a proxy for quality.

Also, please spread the news about this book by sharing https://deepr.gagolewski.
com/with yourmates, peers, or students. Youmay also generously cite it in your pub-
lications.Thank you.

23 https://pypi.org/project/sphinxcontrib-bibtex/
24 https://pypi.org/project/sphinxcontrib-proof/
25 https://design.ubuntu.com/font/
26 https://www.huertatipografica.com/en
27 https://www.latofonts.com/
28 https://github.com/gagolews/deepr/
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https://design.ubuntu.com/font/
https://www.huertatipografica.com/en
https://www.latofonts.com/
https://github.com/gagolews/deepr/issues/
https://github.com/gagolews/deepr/issues/
https://github.com/gagolews/deepr/
https://deepr.gagolewski.com/
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Part I

Deep





1
Introduction

1.1 Hello, world!
Traditionally, every programming journey startswith the printing of a “Hello,World”-
like greeting. Let’s then get it over with asap:

cat("My hovercraft is full of eels.\n") # `\n` == newline

## My hovercraft is full of eels.

By calling (invoking) the cat function, we printed out a given character string that we
enclosed in double quote characters.

Documenting code is a good development practice. It is thus worth knowing that any
text followed by a hash sign (that is not part of a string) is a comment, ignored by the
interpreter.

# This is a comment.

# This is another comment.

cat("I cannot wait", "till lunchtime.\n") # two arguments (another comment)

## I cannot wait till lunchtime.

cat("# I will not buy this record.\n# It is scratched.\n")

## # I will not buy this record.

## # It is scratched.

By convention, in this book, the textual outputs generated by R itself are always pre-
ceded by two hashes.Thismakes copy-pasting all code chunks easier in the casewhere
the kind reader would like to experiment with them by themself (which is always
highly encouraged).

Whenever a call to some function is to be made, the round brackets are oblig-
atory. All objects within the parentheses (they are separated by commas) con-
stitute the input data to be consumed by the operation. Thus, the syntax is:
some_function_to_be_called(argument1, argument2, etc.).
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1.2 Setting up the development environment
1.2.1 Installing R
It is quitenatural topine for the ability to execute the above codeourselves–wecannot
learn programming without getting our hands dirty.

The official precompiled binary distributions of R can be downloaded from https://
cran.r-project.org/.

For serious programming work1, we recommend, sooner rather than later, switching
to2 one of the Unix-like operating systems. This includes the free, open-source (==
good) variants of GNU/Linux, amongst others, or the proprietary (== very far from
good) m**OS.The users thereof might employ their favourite packagemanager (e.g.,
apt, dnf, pacman, or Homebrew) to install R.

Users of other operating systems (such as Wi***ws) might consider installing
Anaconda or Miniconda if they require some level of interoperability with the Py-
thon environment, e.g., they would like to work with the Jupyter environment (Sec-
tion 1.2.5).

Below we review several ways in which we can write and execute R code. It is up to
the benign reader to research, setup, and learn the development environment that
suits their needs. As usual in real life, there is no single universal approach that always
works best in all the scenarios.

1.2.2 Interactivemode
R’s read-eval-print loop (REPL) can give us instant gratification whenever we would like
to compute something quickly, e.g., determine basic aggregates of a few numbers
entered by hand or evaluate a mathematical expression like “2+2”.

How to start the R console varies from system to system, e.g., users of Unix-like boxes
can simply execute R from the terminal (shell).Wi***ws folks canfire up the RGui from
the Startmenu.

Important When working interactively, the default3 command prompt, “>”, means:
I am awaiting orders. Moreover, “+” denotes: Please continue. In such a case, we should
either complete the unfinished expression, or cancel the operation by pressing ESC or
CTRL+C (depends on the operating system).

> cat("And now

(continues on next page)

1 For instance, when an easy interoperability with other programming languages/environments is re-
quired or when we think about scheduling jobs on Linux-based computing/container clusters.

2 Or at least trying out – by installing a copy of GNU/Linux on a virtual machine (VM).
3 It can be changed; see help("options").

https://cran.r-project.org/
https://cran.r-project.org/
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(continued from previous page)

+ for something

+ completely different

+

+

+ it is an unfinished expression...

+ awaiting another double quote character and then the closing bracket...

+

+ press ESC or CTRL+C to abort input

>

For readability, we never print out the command prompt characters in this book.

1.2.3 Batchmode:Workingwith R scripts (**)
The interactive mode of operation is unsuitable for more complicated tasks, though.

The users of Unix-like operating systems will be interested in another extreme, which
involves writing standalone R scripts that can be executed one by line, without any
user intervention.

To do so, in the terminal (command line, shell), we can invoke:

Rscript file.R

where file.R is the path to some source file.

Exercise 1.1 (**) In your favourite text editor (e.g., Notepad++, Kate, vi, Emacs, RStudio, or
VSCodium), create a file named test.R. Write a few calls to the cat function. Then, execute this
script from the terminal by invoking the Rscript program.

1.2.4 Weaving: Automatic report generation (**)
Reproducibledata analysis4 requiresus to keep the results (text, tables, plots, auxiliary
files) synchronised with their generating code and data.

utils::Sweave (the Sweave function from the utils package) and knitr [58] are two
example template processors that evaluate R code chunks within documents written
in LaTeX, HTML, or other markup languages.The chunks are replaced by the outputs
they yield.

This book is a showcase of such an approach – all the results, including Figure 2.3 and
the above “Hello,World”, were generated programmatically.Thanks to its being writ-
ten in thehighlyuniversalMarkdown5 language, it couldbe easily converted to a single

4The idea dates back to Knuth’s literate programming concept; see [37].
5 https://daringfireball.net/projects/markdown/

https://daringfireball.net/projects/markdown/
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PDF document6 aswell as thewholewebsite7. Tools like pandoc and docutils facilitate
such operations.

Exercise 1.2 (**) Install the knitr package by calling install.packages("knitr") from
within an R session.Then, create a text file named test.Rmdwith the following content:

# Hello, Markdown!

This is my first automatically generated report,

where I print messages and stuff.

```{r}

print("G'day!")

print(2+2)

plot((1:10)^2)

```

Thank you for your attention.

Assuming that the file is located in the current working directory (compare Section 7.3.3), call
knitr::knit("test.Rmd") from the R console or run the following in the terminal:

Rscript -e 'knitr::knit("test.Rmd")'

Then, inspect the generatedMarkdown file, test.md.

Furthermore, if you have the pandoc tool installed, to generate a standalone HTML file, execute
in the terminal:

pandoc test.md --standalone -o test.html

Alternatively, for ways to call external programs fromR, see Section 7.3.3.

1.2.5 Semi-interactivemodes (JupyterNotebooks, sending code to an asso-
ciated R console, etc.)

The nature of the most frequent use cases of R encourages a semi-interactive work-
flow, where we progress with prototyping fast by trial-and-error.

In this mode, we write a series of short code fragments inside a standalone R script.

Each fragment implements a simple, well-defined task, such as the loading of data
files, data cleansing, feature visualisation, computations of some information ag-
gregates, etc.

Importantly, any code chunk can be sent to the associated R console and executed

6 https://deepr.gagolewski.com/deepr.pdf
7 https://deepr.gagolewski.com

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com
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therein. This way, we can inspect the results it generates at any time. If we are not
happy with the outcome, we can apply any corrections that are necessary.

There are quite a few integrated development environments (IDEs; sometimes re-
quiring additional plugins) that enable such a workflow, including JupyterLab, Emacs,
RStudio, and VSCodium.

Executing an individual code line or a whole text selection is usually done by pressing
a (configurable) keyboard shortcut such as Ctrl+Enter or Shift+Enter.

Exercise 1.3 (*) JupyterLab8 is a development environment that runs in aweb browser. It was
programmed in Python, but supports many programming languages.Thanks to IRkernel9, we
can use it with R.

1. Install JupyterLab and IRkernel (for instance, if you use Anaconda, run conda install

-c r r-essentials).

2. From the Filemenu, select Create a new R source file and save it as, e.g., test.R.

3. From the Filemenu, select Create a new console for editor running the R kernel.

4. Type some print “Hello,World”-like calls.

5. Press Shift+Enter (whilst working in the editor) to send different code fragments onto the
console and execute them. Inspect the results.

See Figure 1.1 for an illustration.

Figure 1.1: JupyterLab: A source file editor and the associated R console, where we can
run arbitrary code fragments

8 https://jupyterlab.readthedocs.io/en/stable/
9 https://irkernel.github.io/

https://jupyterlab.readthedocs.io/en/stable/
https://irkernel.github.io/
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Example 1.4 (*) The Jupyter project, whose JupyterLab is part of, also supports the handling
of dedicatedNotebooks.There, editable and executable code chunks and results they generate can
be kept together in a single .ipynb (JSON) file; see Figure 1.2 for an illustration andChapter 1 of
[25] for a quick introduction (from the Python language kernel perspective).

This environment is quite convenient for live coding (e.g., for teachers) or performing explorat-
ory data analyses. However, for more serious programming work, the code can get quite messy
(luckily, there is always an option to export a notebook to an executable, plain text R script).

Figure 1.2: An example Jupyter Notebook, where we can keep the code and the results
together

1.3 Atomic vectors at a glance
After the printing of the “Hello,World”message, a typical programming coursewould
normally proceed with the discussion on basic data types for storing individual nu-
meric or logical values. Next, wewould be introduced to arithmetic and relational op-
erations on such scalars, followed by the definition of whole arrays or other collections
of such values, complemented by themethods to iterate over them, one element after
another.

In R, no separate types representing individual values have been defined. Instead,
what seems to be a single datum, is already a vector (sequence, array) of length 1.

2.71828 # input a number (here: the same as print(2.71828))

## [1] 2.7183

(continues on next page)
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(continued from previous page)

length(2.71828) # it is a vector featuring one element

## [1] 1

To create a vector of any length, we can call the c function, which combines given ar-
guments into a single sequence:

c(1, 2, 3) # three vectors of length 1 -> one vector of length 3

## [1] 1 2 3

length(c(1, 2, 3))

## [1] 3

In Chapter 2, Chapter 3, and Chapter 6, we will discuss the most prevalent types of
atomic vectors: numeric, logical, and character ones, respectively.

c(0, 1, -3.14159, 12345.6) # four numbers

## [1] 0.0000 1.0000 -3.1416 12345.6000

c(TRUE, FALSE) # two logical values

## [1] TRUE FALSE

c("spam", "spam", "bacon and spam") # three character strings

## [1] "spam" "spam" "bacon and spam"

We call them atomic, because they can only group together values of the same type.
Lists, which we will discuss in Chapter 4, are, on the other hand, referred to as generic
vectors – they can be used for storing items of mixed types – other lists as well.

Note Not having separate scalar types greatly simplifies the programming of numer-
ical computing tasks. Vectors are prevalent in our main areas of interest – statistics,
simulations, data science, machine learning, and all other data-oriented computing.
For example, columns and rows in tables (values of different features describing cli-
ents, ratingsof itemsgivenbyusers) or timeseries (stockmarketprices, readings from
temperature sensors) are all best represented by means of such sequences.

Moreover, the fact that vectors are the core part of the R language makes their use
very natural – as opposed to the languages that require special add-ons for vector
processing, e.g., numpy for Python [33]. By learning different ways to process them as
a whole, instead of one element at a time, we will assure that our ideas can quickly be
turned intoworkingcode (rapidprototyping). For instance, computing summary stat-
istics such as, say, themeanabsolute deviationof some sequence x,will be as effortless
as writing mean(abs(x-mean(x))). Such a code is not only easy to read and maintain,
but it is also fast to run.
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1.4 Getting help
Our aim is to become independent, advanced R programmers.

Independent, however, does not mean omniscient. The R help system is the authorit-
ative source of knowledge about specific functions or more general topics. To open a
help page, we call:

help("topic") # equivalently: ?"topic"

Exercise 1.5 Sight (without going into detail) the manual on the length function by calling
help("length"). Note that most help pages are structured as follows:

1. Header: “package:base” means that the function is a base one (see Section 7.3.1 for more
details on the R package system);

2. Title;

3. Description: a short description of what the function does;

4. Usage: the list of formal arguments (parameters) to the function;

5. Arguments: the meaning of each formal argument explained;

6. Details: technical information;

7. Value: return value explained;

8. References: further reading;

9. See Also: links to other help pages;

10. Examples: R code that is worth to run and study by yourself.

We can also search within all the installed help pages by calling:

help.search("vague topic") # equivalently: ??"vague topic"

Oftentimes, this way we will be able to find answers to our questions more reliably
than when asking DuckDuckGo or G**gle, which commonly feature many low qual-
ity/irrelevant/distracting results from splogs (they can make us lose the sacred code
writer’s flow).

Important All code chunks, including code comments and textual outputs, form an
integral part of this book’s text.They should not be skipped by the reader. On the con-
trary, they should become objects of our intense reflection and thorough investiga-
tion.

For instance, whenever we introduce a few function, it may be a good idea to look it
up in the help system. Moreover, playing with the presented code (running, modify-
ing, experimenting, etc.) is also very beneficial.We should develop the habit of asking
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ourselves questions like “what would happen if…”, and then finding the answers on
our own.

We are now ready to discuss the most significant operations on numeric vectors,
which constitute the main theme of the next chapter. See you there.

1.5 Exercises
Exercise 1.6 What are the three most important types of atomic vectors?

Exercise 1.7 According to the classification of the R data types we introduced in the previous
chapter, are atomic vectors basic or compound types?





2
Numeric vectors

In this chapter, we discuss the uttermost common operations on numeric vectors.
They are so fundamental that we will also find them in other scientific computing en-
vironments, including Pythonwith NumPy or TensorFlow, Julia,MATLAB, GNUOctave,
or Scilab.

At first blush, the number of functions we are going to explore may seem quite large.
Still, the reader is kindly asked to place some trust (a rare thing these days) in yours
truly. It is because our selection is comprised only of themost representative and edu-
cational amongst the plethora of possible choices. More complex building blocks can
either be reduced to a creative combination of the former or be easily found – should
the need arise – in a number additional packages or libraries (e.g., theGNUGSL [27]).

A solid understanding of base R programming is necessary for the effective dealing
with the popular packages (such as data.table, dplyr, or caret). Most importantly,
base R’s API is stable, hence the codewewrite todaywillmost likely work the sameway
in 10 years.This is often not the case when we rely on third-party add-ons.

In the sequel,wewill be advocatingaminimalist, keep-it-simple approach to the art of
programming of data processing pipelines, one that is a good balance between “doing
it all by oneself”, “minimising the information overload”, “being lazy”, and “standing
on the shoulders of giants”.

Note The exercises that we suggest below are all self-contained, unless explicitly
stated otherwise. The use of language constructs that are yet to be formally intro-
duced (in particular, if, for, and whilewhich we will explain in Chapter 8) is not only
unnecessary, but discouraged. Moreover, we recommend against taking shortcuts by
looking up partial solutions on the internet. Rather, to get themost out of this course,
the reader should be seeking relevant information within the current and preceding
chapters as well as the R help system.

2.1 Creating numeric vectors
2.1.1 Numeric constants
The simplest numeric vectors are those of length one:
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-3.14

## [1] -3.14

1.23e-4

## [1] 0.000123

The latter is inwhatwe call the scientific notationwhich is convenientmeans of entering
numbers of very large or small order of magnitude. Here, “e” stands for “… times 10 to
the power of…”.Therefore, 1.23e-4 is equal to 1.23×10−4 = 0.000123. In otherwords,
given 1.23, we move the decimal separator by 4 digits towards the left.
In real life, some information items may be inherently or temporarily missing, un-
known, or Not Available. R is data processing-oriented, hence it is equipped with a
special indicator:

NA_real_ # numeric NA (missing value)

## [1] NA

This is similar to theNullmarker in database query languages such as SQL. Note that
NA_real_ is displayed simply as “NA”, chiefly for readability.

Moreover, Inf denotes the infinity (∞; a value that is larger than the largest represent-
able double precision–64bit– floatingpoint number) and NaN stands fornot-a-number
(it is returned as the result of some illegal operations, e.g., 0/0 or∞ − ∞).

2.1.2 Concatenating vectorswith c
Let usprovide someways to createnumeric vectorswithpossiblymore than 1 element.

First, the c function thatwe introduced in theprevious chapter canbeused to combine
(concatenate) many numeric vectors, each of any length, so as to form a single object:

c(1, 2, 3) # 3 vectors of length 1 -> 1 vector of length 3

## [1] 1 2 3

c(1, c(2, NA_real_, 4), 5, c(6, c(7, Inf)))

## [1] 1 2 NA 4 5 6 7 Inf

Note Running help("c"), we will see that its usage is like “c(...)”. In the current
context, this means that the c function takes an arbitrary number of arguments. In
Section 9.5.6, we will study the dot-dot-dot (ellipsis) parameter in more detail.

2.1.3 Repeating entries with rep
Second, rep replicates the elements in a given vector a given number of times.
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rep(1, 5)

## [1] 1 1 1 1 1

rep(c(1, 2, 3), 4)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3

In the second case, the whole vector (1, 2, 3) has been recycled (tiled) four times. Inter-
estingly, if the second argument was a vector of the same length as the first one, the
behaviour would be quite different:

rep(c(1, 2, 3), c(2, 1, 4))

## [1] 1 1 2 3 3 3 3

rep(c(1, 2, 3), c(4, 4, 4))

## [1] 1 1 1 1 2 2 2 2 3 3 3 3

Here, each element is repeated the corresponding number of times.

If we call help("rep"), we will come across the notion like “rep(x, ...)” in the Usage
section. Unfortunately, it is rather peculiar, but reading further we discover the dot-
dot-dot stands for one of the following further parameters (see theArguments section):

• times,

• length.out,

• each.

So far, we have been playing with times, which is listed second in the parameter list
(after x – the vector whose elements are to be repeated).

Important It turns out that the following function calls are all equivalent:

rep(c(1, 2, 3), 4) # positional matching of arguments: `x`, then `times`

rep(c(1, 2, 3), times=4) # `times` is the second argument

rep(x=c(1, 2, 3), times=4) # keyword arguments of the form name=value

rep(times=4, x=c(1, 2, 3)) # keyword arguments can be given in any order

rep(times=4, c(1, 2, 3)) # mixed positional and keyword arguments

Wecanalsopasseachorlength.out (adothasnospecialmeaning inR; seeSection2.2),
but their names should be mentioned explicitly:

rep(c(1, 2, 3), length.out=7)

## [1] 1 2 3 1 2 3 1

rep(c(1, 2, 3), each=3)

## [1] 1 1 1 2 2 2 3 3 3

rep(c(1, 2, 3), length.out=7, each=3)

## [1] 1 1 1 2 2 2 3
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Note Whether it was a good programming practice to actually implement a range of
variedbehaviours inside a single function is amatter of taste.On theonehand, in all of
the examples above, we do repeat the input elements somehow, so remembering just
one function name is really convenient. Nevertheless, a drastic change in the repeti-
tion pattern depending, e.g., on the length of the times argument can be bug-prone.
Anyway, we have been warned1.

Zero-length vectors are possible too:

rep(c(1, 2, 3), 0)

## numeric(0)

Even though their handling might be a little tricky (compare Chapter 9), we will see
later that they are useful in contexts like “create an empty data frame with a specific
column structure”.

Also note that R often allows for partial matching of named arguments, but its use is
a bad programming practice; see Section 15.4.4 for more details.

rep(c(1, 2, 3), len=7) # not recommended (see later)

## Warning in rep(c(1, 2, 3), len = 7): partial argument match of 'len' to

## 'length.out'

## [1] 1 2 3 1 2 3 1

The only reason we see the warning message is because we have manually set op-
tions(warnPartialMatchArgs=TRUE) in our environment. It is not set by default.

2.1.4 Generating arithmetic progressionswith seq and `:`
Third, we can call the seq function to create a sequence of equally-spaced numbers (on
a linear scale, i.e., an arithmetic progression).

seq(1, 15, 2)

## [1] 1 3 5 7 9 11 13 15

Reading the function’s help page, we note that it has the following parameters: from,
to, by, length.out, amongst others.

Thus, the above call is equivalent to:

1 Some “caring” R users might be tempted to introduce two new functions now, one for generating (1,
2, 3, 1, 2, 3, …) only and the other outputting patterns like (1, 1, 1, 2, 2, 2, …). They would most likely wrap
them in a new package and announce that on Twitter. But this is nothing else than a multiplication of en-
tities without actual necessity; wewould end upwith three functions: the original one, rep, which everyone
should know anyway because it is so basic and has been andwill be used everywhere by almost everybody so
far, and the two redundant ones, whose user-friendliness is only illusory. See also Chapter 9 for discussion
on the design of functions.
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seq(from=1, to=15, by=2)

## [1] 1 3 5 7 9 11 13 15

Note that to actually means “up to”:

seq(from=1, to=16, by=2)

## [1] 1 3 5 7 9 11 13 15

We can also pass length.out instead of by. In such a case, the increments or decre-
ments will be computed via the formula ((to - from)/(length.out - 1)); this default
value is reported in the Usage section in help("seq").

seq(1, 0, length.out=5)

## [1] 1.00 0.75 0.50 0.25 0.00

Also, this:

seq(length.out=5) # default `from` is 1

## [1] 1 2 3 4 5

Arithmetic progressions with step equal to 1 or -1 can also be generated via the `:`
operator.

1:10 # seq(1, 10) or seq(1, 10, 1)

## [1] 1 2 3 4 5 6 7 8 9 10

-1:10 # seq(-1, 10) or seq(-1, 10, 1)

## [1] -1 0 1 2 3 4 5 6 7 8 9 10

-1:-10 # seq(-1, -10) or seq(-1, -10, -1)

## [1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Note the order of precedence of this operator: “-1:10” means “(-1):10” and not
“-(1:10)”; compare Section 2.4.3.

Exercise 2.1 Takea lookat themanualpageofseq_alongandseq_lenanddeterminewhether
they can easily be done without, having seq2 at hand.

2.1.5 Generating pseudorandomnumbers
Wecanalsogenerate sequencesdrawn independently fromarangeofunivariateprob-
ability distributions.

runif(7) # uniform U(0, 1)

## [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556 0.528105

rnorm(7) # normal N(0, 1)

## [1] 1.23950 -0.10897 -0.11724 0.18308 1.28055 -1.72727 1.69018

2 Also note that certain configurations of seq and its variants might return vectors of type integer in-
stead of double, some of them in a compact (ALTREP) form; see Section 6.4.1.
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These correspond to seven pseudorandom deviates following the uniform distribu-
tion on the unit interval (i.e., (0, 1)) and the standard normal distribution (i.e., with
expectation 0 and standard deviation 1), respectively; compare Figure 2.3.

For more named distribution classes (frequently occurring in various real-world stat-
istical modelling exercises), see Section 2.3.4.

Another useful function samples a number of values from a given vector, either with
or without replacement:

sample(1:10, 20, replace=TRUE) # 20 with replacement (allow repetitions)

## [1] 3 3 10 2 6 5 4 6 9 10 5 3 9 9 9 3 8 10 7 10

sample(1:10, 5, replace=FALSE) # 5 without replacement (do not repeat)

## [1] 9 3 4 6 1

Thedistributionof the sampled values doesnot need to beuniform; the prob argument
may be fed with a vector of the corresponding probabilities. For example, here are 20
independent realisations of the random variable 𝑋 such that Pr(𝑋 = 0) = 0.9 (the
probability that we obtain 0 is equal to 90%) and Pr(𝑋 = 1) = 0.1:

sample(0:1, 20, replace=TRUE, prob=c(0.9, 0.1))

## [1] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Note If n is a single number (a numeric vector of length 1), then sample(n, ...) is
equivalent to sample(1:n, ...). Similarly, seq(n) is a synonym for seq(1, n) or seq(1,
length(n)), depending on the length of n. This is a dangerous behaviour which can
occasionally backfire and lead to bugs (check what happens when n is, e.g., 0). Non-
etheless, we have been warned and from now on are going to be extra careful (but are
we really?). Readmore at help("sample") and help("seq").

Let us stress that the numbers we obtain are merely pseudorandom, because they are
generated algorithmically. R uses the Mersenne-Twister MT19937 method [43] by de-
fault; see help("RNG") and [21, 28, 39]. By setting the seedof the randomnumber gener-
ator, i.e., re-setting its state to a given one, we can obtain results that are reproducible.

set.seed(12345) # seeds are specified with integers

sample(1:10, 5, replace=TRUE) # a,b,c,d,e

## [1] 3 10 8 10 8

sample(1:10, 5, replace=TRUE) # f,g,h,i,j

## [1] 2 6 6 7 10

Setting the seed to the one used previously gives:

set.seed(12345)

sample(1:10, 5, replace=TRUE) # a,b,c,d,e

## [1] 3 10 8 10 8
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We did not(?) expect that! And now for something completely different:

set.seed(12345)

sample(1:10, 10, replace=TRUE) # a,b,c,d,e,f,g,h,i,j

## [1] 3 10 8 10 8 2 6 6 7 10

Reproducibility is a crucial feature of each truly scientific experiment.The same initial
condition (here: the same seed), leads to exactly the same outcomes.

Note Some claim that the only unsuspicious seed is 42, but each programmer can
have their own picks. Yours truly, for example, uses 123, 1234, and 12345 as well.When
performingmany runs of Monte Carlo experiments, it may be a good idea to call set.
seed(i) in the i-th iteration of a simulation we are trying to program.

Anyhow,we shouldmake sure that our seed settings are applied consistently across all
our scripts.Otherwise,wemight be accusedof tamperingwith evidence. For instance,
here is the ultimate proof that we are very lucky today:

set.seed(1679619) # totally unsuspicious, right?

sample(0:1, 20, replace=TRUE) # so random

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This is exactly why reproducible scripts and auxiliary data should be published along-
side all research reports or papers. Only open, transparent science can be fully trust-
worthy.

If set.seed is not called explicitly, and the randomstate is not restored from the previ-
ously saved R session (see Chapter 16), then the random generator is initialised based
on the current wall time and the identifier of the running R instance (PID). This may
give the impression that the numbers we generate are surprising.

In order to understand the “pseudo” part of the said randomness better, in Section 8.3,
we will build a very simple random generator ourselves.

2.1.6 Reading datawith scan
The example text file named euraud-20200101-20200630.csv3 gives the EUR to AUD
exchange rates (how many Australian Dollars can one buy for 1 Euro) from 1 January
to 30 June 2020 (remember COVID-19?). Let us preview the first couple of lines:

# EUR/AUD Exchange Rates

# Source: Statistical Data Warehouse of the European Central Bank System

# https://www.ecb.europa.eu/stats/policy_and_exchange_rates/

# (provided free of charge)

NA
(continues on next page)

3 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv
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(continued from previous page)

1.6006

1.6031

NA

The four first lines that begin with “#” merely serve as comments for us, humans; they
should be ignored by the interpreter. The first “real” value, NA, corresponds to the 1st
of January (Wednesday; New Years Day; Forex markets were closed, hence a missing
observation).

The scan function can be used to read all the inputs and convert them to a single nu-
meric vector:

scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

## [1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132

## [11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA NA 1.6154

## [21] 1.6177 1.6184 1.6149 1.6127 NA NA 1.6291 1.6290 1.6299 1.6412

## [31] 1.6494 NA NA 1.6521 1.6439 1.6299 1.6282 1.6417 NA NA

## [41] 1.6373 1.6260 1.6175 1.6138 1.6151 NA NA 1.6129 1.6195 1.6142

## [51] 1.6294 1.6363 NA NA 1.6384 1.6442 1.6565 1.6672 1.6875 NA

## [61] NA 1.6998 1.6911 1.6794 1.6917 1.7103 NA NA 1.7330 1.7377

## [71] 1.7389 1.7674 1.7684 NA NA 1.8198 1.8287 1.8568 1.8635 1.8226

## [81] NA NA 1.8586 1.8315 1.7993 1.8162 1.8209 NA NA 1.8021

## [91] 1.7967 1.8053 1.7970 1.8004 NA NA 1.7790 1.7578 1.7596

## [ reached getOption("max.print") -- omitted 83 entries ]

We used the paste0 function to concatenate two long (too long to fit a single line of
code) strings to form a single URL; see Section 6.1.3.

We can also read the files located on our computer, for example:

scan("~/Projects/teaching-data/marek/euraud-20200101-20200630.csv",

comment.char="#")

uses an absolute file path that starts at the user’s home directory, denoted “~”: yours
truly’s case is /home/gagolews/.

Note For portability reasons, we should use slashes, “/”, as path separators (but see
help("file.path") and help(".Platform")).These are not only recognised by all Unix-
like boxes but also other popular operating systems. Note that URLs (such as https:
//www.r-project.org/) feature slashes too.

Paths can also be relative to the current working directory, denoted “.”. It can be read
via a call to getwd.Usually, it is thedirectory fromwhere theRsessionhasbeen started.

For instance, if the working directory was /home/gagolews/Projects/teaching-data/

https://www.r-project.org/
https://www.r-project.org/
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marek,wecouldhavewritten thefilepathequivalently as./euraud-20200101-20200630.
csv or even euraud-20200101-20200630.csv.

On as side note, ../ would denote the parent directory of the current working dir-
ectory. For instance, ../r/iris.csvwould be equivalent to /home/gagolews/Projects/
teaching-data/r/iris.csv.

Exercise 2.2 Read the help page about scan. Take note of the following formal arguments and
their meaning: dec, sep, what, comment.char, and na.strings.

Later we will discuss the read.table and read.csv, which are wrappers around scan

that can be used to read tabular data. Note that write can be used to export an atomic
vector’s contents to a text file.

Example 2.3 Figure 2.1 shows the graph of the aforementioned exchange rates, whichwas gen-
erated by calling:

plot(scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#"),

xlab="Day", ylab="EUR/AUD")
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Figure 2.1: EUR/AUD exchange rates from 2020-01-01 (day 1) to 2020-06-30 (day 182)

Somewhat misleadingly (and for the reasons that will become apparent later), the document-
ation of plot can be accessed by calling help("plot.default"). Read about, and experiment
with, different values of themain,xlab,ylab,type,col,pch,cex,lty, andlwdarguments.More
plotting routines will be discussed in Chapter 13.
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2.2 Creating named objects
Often, theobjectswebring forthwill need tobememorised so that they canbe referred
to in further computations. The assignment operator, `<-`, can be used for this very
purpose:

x <- 1:3 # creates a numeric vector and binds the name `x` to it

The now-named object can be recalled4 and dealt with as we please:

print(x) # or just `x` in the R console

## [1] 1 2 3

sum(x) # example operation: compute the sum of all elements in `x`

## [1] 6

Important In R, all names are case-sensitive. Hence, x and X can coexist peacefully:
when set, they refer to two different objects. Also, if we tried to call Print(x) above, we
would get an error.

Typically, we will be using what we refer to as syntactic names (see Section 9.4.1
for an exception though). In the R help system (see help("make.names") and also
help("Quotes")), we read: A syntactically valid name consists of letters, numbers and the
dot or underline characters and starts with a letter or the dot not followed by a number. Names
such as .2way are not valid, and neither are the reserved words. For the list of the latter, see
help("Reserved").

A good name is self-explanatory and thus reader-friendly: patients, mean, and aver-

age_scores arewaybetter (if they really arewhat they claim they are) than xyz123, crap,
or spam. Also, it might not be such a bad idea to get used to denoting:

• vectors with x, y, z,

• matrices (andmatrix-like objects) with A, B, …, X, Y, Z,

• integer indexes with letters i, j, k, l,

• object sizes with n, m, d, p or nx, ny, etc.,

especially when they are only of temporary nature (for storing some auxiliary results,
iterating over collections of objects, etc.).

There are numerous naming conventions that we can adopt, but most often they are
a matter of taste; snake_case, lowerCamelCase, UpperCamelCase, flatcase, or dot.case
are equally good as long as they are used coherently (for instance, someuse snake_case
for vectors and UpperCamelCase for functions). It may even be the case that we have

4 Names are bound in environment frames; see Chapter 16.
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little choice but to adhere to the naming conventions agreed upon in the project we
are about to contribute to.

Note Let us stress that a dot, “.”, has no special meaning (however, see Chapter 10
and Chapter 16 for some asterisks); na.omit is as good a name as na_omit, naOmit, NA-
OMIT, naomit, and NaOmit. Users coming from some other (C, C++, Java, Python, etc.)
programming languages will need to habituate themselves to this convention.

R, as a dynamic language, allows for introducing new variables at any time.Moreover,
existing names can be re-bound to new values. For instance:

(y <- c(1, 10, 100)) # bracketed expression - printing not suppressed

## [1] 1 10 100

x <- y

print(x)

## [1] 1 10 100

Now x refers to a verbatim copy of y.

Note Objects are automatically destroyedwhen there are nomore names boundwith
them. Inparticular, bynow the garbage collector shouldhave got rid of the 1:3 vector be-
gotten above (to which the name xwas bound previously). See sec:memory-management
for more details on memory management.

2.3 Vectorisedmathematical functions
Mathematically, we will be denoting a given vector 𝒙 of length n as (𝑥1, 𝑥2, … , 𝑥𝑛). In
other words, its i-th element is equal to 𝑥𝑖.

Let us review some ubiquitous operations in numerical computing.

2.3.1 abs and sqrt
R implements vectorised versions of the most popular mathematical functions, e.g.,
abs (absolute value, |𝑥|) and sqrt (square root,√𝑥).

abs(c(2, -1, 0, -3, NA_real_))

## [1] 2 1 0 3 NA

Here, vectorisedmeans that instead of being defined to act on a single numeric value,
the function of interest is applied on each element in a vector.The i-th resulting item
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is a transformed version of the i-th input. If an input is a missing value, the corres-
ponding output will be marked as “don’t know” as well.

Another example:

x <- c(4, 2, -1)

(y <- sqrt(x))

## Warning in sqrt(x): NaNs produced

## [1] 2.0000 1.4142 NaN

To attract our attention to the fact that computing the square root of a negative value
yields a not-a-number, R generated an informativewarning. Awarning is not an error
though: the result is being reckoned as usual.

Also the fact that the irrational√2 is displayed5 as 1.4142does notmean that it is such a
crude approximation to 1.414213562373095048801688724209698 …; it is only roun-
ded when printing, for aesthetic reasons. In fact, in Section 3.2.3, we will point out
that the computer’s floating-point arithmetic allows for roughly 16 decimal digits pre-
cision (but we shall see that the devil is in the detail).

print(y, digits=16) # display more significant figures

## [1] 2.000000000000000 1.414213562373095 NaN

2.3.2 Rounding
The following functions get rid of all or portions of fractional parts of numbers:

• floor(x) (rounds down to the nearest integer, denoted ⌊𝑥⌋),
• ceiling(x) (rounds up, denoted ⌈𝑥⌉),
• trunc(x) (rounds towards zero), and

• round(x, digits=0) (rounds to the nearest number with digits decimal digits).

For instance:

x <- c(7.0001, 6.9999, -4.3149, -5.19999, 123.4567, -765.4321, 0.5, 1.5, 2.5)

floor(x)

## [1] 7 6 -5 -6 123 -766 0 1 2

ceiling(x)

## [1] 8 7 -4 -5 124 -765 1 2 3

trunc(x)

## [1] 7 6 -4 -5 123 -765 0 1 2

Note If we call help("round"), we will read that its usage is like round(x, digits=0),

5Thereare a coupleof settings inplace that control thedefault behaviourof the print function; see width,
digits, max.print, OutDec, scipen, etc. in help("options").
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whichmeans that the digitsparameter is equippedwith the default value of 0. In other
words, if rounding to 0 decimal digits is what we need, the second argument can be
omitted.

round(x) # the same as round(x, 0)

## [1] 7 7 -4 -5 123 -765 0 2 2

round(x, 1)

## [1] 7.0 7.0 -4.3 -5.2 123.5 -765.4 0.5 1.5 2.5

round(x, -2)

## [1] 0 0 0 0 100 -800 0 0 0

2.3.3 Natural exponential function and logarithm
Moreover:

• exp(x)outputs thenatural exponential function, 𝑒𝑥,where theEuler’s number 𝑒 ≃
2.718,

• log(x, base=exp(1)) computes, by default, the natural logarithm of 𝑥, log𝑒 𝑥
(which is most often denoted simply as log 𝑥).

Recall that if 𝑥 = 𝑒𝑦, then log𝑒 𝑥 = 𝑦, i.e., one is the inverse of the other.

log(c(0, 1, 2.7183, 7.3891, 20.0855)) # grows slowly

## [1] -Inf 0 1 2 3

exp(c(0, 1, 2, 3)) # grows fast

## [1] 1.0000 2.7183 7.3891 20.0855

Note These functions enjoy a number of very useful identities and inequalities, in-
cluding:

• log(𝑥 ⋅ 𝑦) = log 𝑥 + log 𝑦,
• log(𝑥𝑦) = 𝑦 log 𝑥,
• 𝑒𝑥+𝑦 = 𝑒𝑥 ⋅ 𝑒𝑦.

For more properties like these, take a glance at Chapter 4 of the freely available hand-
book [47].

For the logarithm to a different base, say, log10 𝑥, we can call:

log(c(0, 1, 10, 100, 1000, 1e10), 10) # or log(..., base=10)

## [1] -Inf 0 1 2 3 10

Note that if log𝑏 𝑥 = 𝑦, then 𝑥 = 𝑏𝑦, for any 1 ≠ 𝑏 > 0.
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Note Commonly, a logarithmic scale is used for variables that grow rapidly when
expressed as functions of each other; see Figure 2.2.

x <- seq(0, 10, length.out=1001)

par(mfrow=c(1, 2)) # two plots in one figure (1 row, 2 columns)

plot(x, exp(x), type="l")

plot(x, exp(x), type="l", log="y") # log-scale on the y-axis
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Figure 2.2: Linear- vs log-scale on the y-axis

Note that 𝑒𝑥 on the log-scale is just a straight line. Also, keep inmind that such a trans-
formation of the axes can only be applied in the case of values strictly greater than 0.

2.3.4 Probability distributions (*)
It should come as no surprise that R offers an extensive support for many univariate
probability distribution families, including:

• continuousdistributions,which takevaluesbeingarbitrary real numbers (over the
whole possible range or in some interval):

– *unif (uniform),

– *norm (normal),

– *exp (exponential),

– *gamma (gamma, Γ),
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– *beta (beta, B),

– *lnorm (log-normal),

– *t (Student),

– *cauchy (Cauchy–Lorentz),

– *chisq (chi-squared, 𝜒2),

– *f (Snedecor–Fisher),

– *weibull (Weibull);

with the prefix “*” being one of:

– “d” (probability density function, PDF),

– “p” (cumulative distribution function, CDF; or survival function, SF),

– “q” (quantile function, being the inverse of the CDF),

– “r” (generation of random deviates; already mentioned);

• discrete distributions, i.e., those whose possible outcomes can be easily enumer-
ated (e.g., some integers).

– *binom (binomial),

– *geom (geometric),

– *pois (Poisson),

– *hyper (hypergeometric),

– *nbinom (negative binomial);

here, prefixes “p” and “r” have the samemeaning as above, however:

– “d” now gives the probabilitymass function (PMF),

– “q” yields thequantile function, but one that is definedas a generalised inverse
of the CDF.

Each distribution is characterised by a set of underlying parameters. For instance, a
normal distribution N(𝜇, 𝜎) can be pinpointed by setting its expected value 𝜇 ∈ ℝ
and standard deviation 𝜎 > 0. In R, these two have been named mean and sd, respect-
ively; see help("dnorm").

Note The parametrisations assumed in R can be subtly different fromwhat we know
from statistical textbooks or probability courses. For example, the normal distribu-
tion can be parameterised based on either standard deviation or variance, and the ex-
ponential distribution can be defined via its expected value or the reciprocal thereof.
We thus advise the reader to study carefully the documentation of help("dnorm"),
help("dunif"), help("dexp"), help("dbinom"), and the like.

It is also worth to know the typical use cases of each of the distribution listed, e.g.,
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a Poisson distribution can describe the probability of observing the number of in-
dependent events in a fixed time interval (e.g., the number of users downloading a
copy of R from CRAN per hour), and an exponential distribution can model the time
between such events; compare [22].

Exercise 2.4 Acall tohist(x)drawsahistogram,which canserveasanestimatorof theunder-
lying continuousprobability density function of a given sample; see Figure 2.3 for an illustration.

par(mfrow=c(1, 2)) # 2 plots in 1 figure

# Uniform U(0, 1)

hist(runif(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(0, 1, length.out=101)

lines(x, dunif(x, 0, 1), lwd=2) # draw the true density function (PDF)

# Normal N(0, 1)

hist(rnorm(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(-4, 4, length.out=101)

lines(x, dnorm(x, 0, 1), lwd=2) # draw the PDF

runif(10000, 0, 1)
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Figure 2.3: Example histograms of some pseudorandom samples and the true under-
lying probability density functions: the uniform distribution on the unit interval (left)
and the standard normal distribution (right)

Draw a histogram of some random samples of different sizes n from the following distributions:

• rnorm(n, µ, σ)—normalN(𝜇, 𝜎) with expected values 𝜇 ∈ {−1, 0, 5} (i.e., 𝜇 being
equal to either−1, 0, or 5; read “∈” as “belongs to the given set” or “in”) and standard devi-
ations𝜎 ∈ {0.5, 1, 5};
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• runif(n, a, b)—uniformU(𝑎, 𝑏) on the interval (𝑎, 𝑏)with 𝑎 = 0 and 𝑏 = 1 as well
as 𝑎 = −1 and 𝑏 = 1;

• rbeta(n, α, β)—betaB(𝛼, 𝛽)with 𝛼, 𝛽 ∈ {0.5, 1, 2};
• rexp(n, λ)—exponentialE(𝜆)with rates𝜆 ∈ {0.5, 1, 10};

Moreover, read about and playwith the breaks, main, xlab, ylab, xlim, ylim, and colparamet-
ers; see help("hist").

Example 2.5 We roll a six-sided dice twelve times. Let 𝐶 be a random variable denoting the
number of cases where the “1” face is thrown.𝐶 follows a binomial distribution Bin(𝑛, 𝑝)with
parameters 𝑛 = 12 (the number of Bernoulli trials) and 𝑝 = 1/6 (the probability of success
in a single roll).

Theprobabilities that the number of “1”s rolledwill be equal to 0, 1, …, 4 , i.e.,𝑃(𝐶 = 0),𝑃(𝐶 =
1),…,𝑃(𝐶 = 4), respectively, canbe computedbasedon theprobabilitymass function (dbinom):

dbinom(0:4, 12, 1/6) # probability mass function at 5 different points

## [1] 0.112157 0.269176 0.296094 0.197396 0.088828

On the other hand, the probability that we throw more than three “1”s, 𝑃(𝐶 > 3) = 1 −
𝑃(𝐶 ≤ 3), can be determined by means of the cumulative distribution function (pbinom) or
survival function (pbinom(..., lower.tail=FALSE)):

1-pbinom(3, 12, 1/6) # pbinom(3, 12, 1/6, lower.tail=FALSE)

## [1] 0.12518

The smallest 𝑐 such that𝑃(𝐶 ≤ 𝑐) ≥ 0.95 can be computed based on the quantile function:

qbinom(0.5, 12, 1/6)

## [1] 2

pbinom(3:4, 12, 1/6) # for comparison: 0.95 is in-between

## [1] 0.87482 0.96365

In other words, at least 95% of the time we will be observing nomore than four successes.

Also here are some pseudorandom realisations of𝐶 – the number of “1”s in 30 simulations of 12
independent dice rolls each:

rbinom(30, 12, 1/6)

## [1] 1 3 2 4 4 0 2 4 2 2 4 2 3 2 0 4 1 0 1 4 4 3 2 6 2 3 2 2 1 1

2.3.5 Special functions (*)
Within mathematical formulae and across assorted application areas, certain func-
tions appear more frequently than others. Hence, for the sake of notational brevity
and computational precision, many of them have been assigned special names. For
instance, the following may be mentioned in the definitions related to some of the
probability distributions listed above:
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• gamma(x) for 𝑥 > 0 computes Γ(𝑥) = ∫∞
0 𝑡𝑥−1𝑒−𝑡 𝑑𝑡,

• beta(a, b) for 𝑎, 𝑏 > 0 yields 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏) = ∫1

0 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡.

Whydowehave beta if it ismerely amix of gammas? A specific, tailored function should
be faster and more precise than its DIY version; its underlying implementation does
not have to involve any calls to gamma at all.

beta(0.25, 250) # okay

## [1] 0.91213

gamma(0.25)*gamma(250)/gamma(250.25) # not okay

## [1] NaN

The Γ function grows so rapidly that already gamma(172) yields Inf. It is due to the fact
that a computer’s arithmetic is not infinitely precise; compare Section 3.2.3.

Special functions are plentiful; see the open-access [47] for one of the most definitive
references (and also [2] for its predecessor). R package gsl [32] provides a vectorised
interface to the GNUGSL [27] library, which implements many of such routines.

Exercise 2.6 ThePochhammer symbol, (𝑎)𝑥 = Γ(𝑎 + 𝑥)/Γ(𝑎), can be computed via a call to
gsl::poch(a, x) (i.e., the poch function from the gsl package; see Section 7.3.1):

# call install.packages("gsl") first

library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf_poch() from GNU GSL

## [1] 1320 17160 240240 3603600

Read the documentation of the corresponding gsl_sf_poch function in the GNU GSL manual
available here6.

And since you are there, do not hesitate to go through the list of all the other functions, including
those related to statistics, permutations, combinations, and so forth.

Many functions alsohave their logarithm-of versions; see, e.g., lgamma and lbeta. Also,
for instance, dnorm and dbeta has the log parameter. Its classical use case is the (nu-
merical) maximum likelihood estimation, which involves the sums of the logarithms
of densities.

2.4 Arithmetic operations
2.4.1 Vectorised arithmetic operators
R features the following arithmetic operators:

• `+` (addition) and `-` (subtraction),

6 https://www.gnu.org/software/gsl/doc/html/

https://www.gnu.org/software/gsl/doc/html/
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• `*` (multiplication) and `/` (division),

• `%/%` (integer division) and `%%` (modulo, division remainder),

• `^` (exponentiation; synonym: `**`).

They are all vectorised: they take two vectors on input and yield another vector in result.

c(1, 2, 3) * c(10, 100, 1000)

## [1] 10 200 3000

We note that the multiplication was performed in an elementwise fashion: the 1st ele-
ment in the left vector was multiplied by the corresponding element in the right vector
and the result has been stored in the 1st element of the output, then the 2nd element
in the left… all right, we get the point.

Other operators are vectorised in the samemanner:

0:10 + seq(0, 1, 0.1)

## [1] 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

0:7 / rep(3, length.out=8) # division by 3

## [1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333

0:7 %/% rep(3, length.out=8) # integer division

## [1] 0 0 0 1 1 1 2 2

0:7 %% rep(3, length.out=8) # division remainder

## [1] 0 1 2 0 1 2 0 1

Note that operations involving missing values also yield NAs:

c(1, NA_real_, 3, NA_real_) + c(NA_real_, 2, 3, NA_real_)

## [1] NA NA 6 NA

2.4.2 Recycling rule
Some of the above statements can be written more concisely. When the operands are
of different lengths, the shorter one is recycled (think: rep(y, length.out=length(x)))
as many times as necessary.

0:7 / 3

## [1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333

1:10 * c(-1, 1)

## [1] -1 2 -3 4 -5 6 -7 8 -9 10

2 ^ (0:10)

## [1] 1 2 4 8 16 32 64 128 256 512 1024

We call this the recycling rule.
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If anoperandcannotbe recycled in its entirety, awarning7 is generated, but theoutput
is still available.

c(1, 10, 100) * 1:8

## Warning in c(1, 10, 100) * 1:8: longer object length is not a multiple of

## shorter object length

## [1] 1 20 300 4 50 600 7 80

Note Some functions are also deeply vectorised, i.e., with respect to multiple argu-
ments. For example,

runif(3, c(10, 20, 30), c(11, 22, 33))

## [1] 10.288 21.577 31.227

generates three random numbers uniformly distributed over the intervals (10, 11),
(20, 22), and (30, 33), respectively.
Also, pmin and pmax return the parallelminimum andmaximum of the corresponding
elements of the input vectors:

pmin(c(1, 2, 3, 4), c(4, 2, 3, 1))

## [1] 1 2 3 1

pmin(3, 1:5)

## [1] 1 2 3 3 3

pmax(0, pmin(1, c(0.25, -2, 5, -0.5, 0, 1.3, 0.99))) # clipping to [0, 1]

## [1] 0.25 0.00 1.00 0.00 0.00 1.00 0.99

Note Vectorisation and the recycling rule are perhapsmost usefulwhen applying bin-
ary operators on sequences of identical lengths orwhenperforming vector-scalar (i.e.,
a sequence vs a single value) operations. However, there is much more: schemes like
“every k-th element” appear in Taylor series expansions (multiply by c(-1, 1)), k-fold
cross validation, etc.; see also Section 11.3.4 for use cases inmatrix/tensor processing.

2.4.3 Operator precedence
Apart from the seven binary arithmetic operators, other noteworthy, already men-
tioned ones include: the unary `-` (change of sign), `:` (sequence generation), and
`<-` (assignment).

Expressions involving multiple operations need a set of rules governing the order
of computations (unless we enforce it using round brackets). We have said that

7 A few built-in functions do not warn at all when incomplete recycling is performed (e.g., paste) or can
even give an error (e.g., as.data.frame.list). Consider this inconsistency an annoying bug and hope it will
be fixed in the next decade or so.
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“-1:10” means “(-1):10” rather than “-(1:10)”. But what about, say, “1+1+1+1+1*0” or
“3*2^0:5+10”?

Let us list the aforementioned operators in their order of precedence, from the least
to the most binding (see also help("Syntax")):

1. `<-` (right-to-left),

2. `+` and `-`,

3. `*` and `/`,

4. `%%` and `%/%`,

5. `:`,

6. `+` and `-` (unary),

7. `^` (right-to-left).

Hence, “-2^2/3+3*4” means “((-(2^2))/3)+(3*4)” and not, for example, -((2^(2/
(3+3)))*4).

Note that `+` and `-`, `*` and `/`, as well as `%%` and `%/%` have the same priority.
Expressions involving a series of operations in the same group, are evaluated left-to-
right, with the exception of `^` and `<-`, which are performed from right to left.

Therefore:

• “2*3/4*5” is equivalent to “((2*3)/4)*5”,

• “2^3^4” is the same as “2^(3^4)” (which, mathematically, we would write as 234 =
281),

• “x <- y <- 4*3%%8/2” binds both y and xwith 6 and not xwith the previous value
of y.

And let us remember: when in doubt, we can always bracket a subexpression to make
sure it is executed in the intended order (which can also increase readability of the
code).

2.4.4 Accumulating
The `+` and `*` operators as well as the pmin and pmax functions implement element-
wise operations that are applied on the corresponding elements taken from two given
vectors:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1 + 𝑦1
𝑥2 + 𝑦2
𝑥3 + 𝑦3

⋮
𝑥𝑛 + 𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

However, we can also scan through all the values in a single vector and combine the
successive elements that we inspect using the corresponding operation:
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• cumsum(x) gives the cumulative sum of the elements in a vector,

• cumprod(x) computes the cumulative product,

• cummin(x) yields the cumulative minimum,

• cummax(x) generates the cumulative maximum.

The i-th element in the output vector will consist of the sum/product/min/max of the
first i inputs:

cumsum

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥1 + 𝑥2
𝑥1 + 𝑥2 + 𝑥3
⋮ ⋱
𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

For example:

cumsum(1:8)

## [1] 1 3 6 10 15 21 28 36

cumprod(1:8)

## [1] 1 2 6 24 120 720 5040 40320

cummin(c(3, 2, 4, 5, 1, 6, 0))

## [1] 3 2 2 2 1 1 0

cummax(c(3, 2, 4, 5, 1, 6, 0))

## [1] 3 3 4 5 5 6 6

If we are interested only in the last cumulant, summarising all the inputs, we have the
following functions at our disposal:

• sum(x) computes the sum of elements in a vector,∑𝑛
𝑖=1 𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛,

• prod(x) outputs the product of all elements,∏𝑛
𝑖=1 𝑥𝑖 = 𝑥1𝑥2 ⋯ 𝑥𝑛,

• min(x) computes the minimum,

• max(x) reckons the greatest value.

For example:

sum(1:8)

## [1] 36

prod(1:8)

## [1] 40320

min(c(3, 2, 4, 5, 1, 6, 0))

## [1] 0

max(c(3, 2, 4, 5, 1, 6, 0))

## [1] 6
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Note In Chapter 7, we will discuss the Reduce function, which generalises the above
by allowing any binary operation to be propagated over a given vector.

Example 2.7 diff can be considered an inverse to cumsum: it computes the iterated difference.
Namely, it subtracts the first two elements, then the 2nd from the 3rd one, the 3rd from the 4th,
and so on. In other words, diff(x) gives 𝒚 such that 𝑦𝑖 = 𝑥𝑖+1 − 𝑥𝑖.

x <- c(-2, 3, 6, 2, 15)

diff(x)

## [1] 5 3 -4 13

cumsum(diff(x))

## [1] 5 8 4 17

cumsum(c(-2, diff(x))) # recreates x

## [1] -2 3 6 2 15

Thanks to diff, we can compute the daily changes to the EUR/AUD forex rates; see Figure 2.4.

aud <- scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

aud_all <- na.omit(aud) # remove all missing values

plot(diff(aud_all), type="s", ylab="Daily change [EUR/AUD]") # "steps"

abline(h=0, lty="dotted") # draw a horizontal line at y=0
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Figure 2.4: Iterated differences of the exchange rates (non-missing values only)
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2.4.5 Aggregating
The above functions form the basis for some popular summary statistics8 (sample ag-
gregates), such as:

• mean(x) gives the arithmetic mean, sum(x)/length(x),

• var(x) yields the (unbiased) sample variance, sum((x-mean(x))^2)/(length(x)-1),

• sd(x) is the standard deviation, sqrt(var(x)),

• median(x) computes the sample median, i.e., the middle value in the sorted ver-
sion of x.

For instance9:

x <- runif(1000)

c(min(x), mean(x), median(x), max(x), sd(x))

## [1] 0.00046535 0.49727780 0.48995025 0.99940453 0.28748391

Exercise 2.8 Let 𝒙 be any vector of length𝑛with positive elements. Compute its geometric and
harmonic mean, which are given by, respectively,

𝑛

√
√√
⎷

𝑛
∏
𝑖=1

𝑥𝑖 = 𝑒
1
𝑛 ∑𝑛

𝑖=1 log𝑥𝑖 and
𝑛

∑𝑛
𝑖=1

1
𝑥𝑖

.

When solving exercises like this one, it does not reallymatterwhat data you apply these functions
on (see, however, Section 9.3.3 for discussion). We are being abstract in the sense that the 𝒙 vec-
tor can be anything: from the one that features very accurate financial predictions that will help
minimise inequity andmake thisworld lessmiserable, through the data you have been collecting
for the last the years in relation to your definitely-super-important PhD research, whatever your
company asked you to crunch today, to something related to your hobby project that you enjoy
doing after hours.Therefore, just test the above on something like “x <- runif(10)”, and move
on.

All the aforementioned functions return a missing value if any of the input elements
is unavailable. Luckily, they are equippedwith the na.rm parameter on behalf of which
we can request the removal of NAs.

aud <- scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

c(min(aud), mean(aud), max(aud))

## [1] NA NA NA

c(min(aud, na.rm=TRUE), mean(aud, na.rm=TRUE), max(aud, na.rm=TRUE))

## [1] 1.6006 1.6775 1.8635

8 Actually, var and median, amongst others, are defined by the stats package, but this one is automatic-
ally loaded by default, so let us not make a fuss about it now.

9 Note that min, median, and max is a special caseof quantile,whichwewill discussmuch further, namely,
in Section 4.4.3.This is because it returns a named vector.
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Note In the documentation, we read that the usage of some of the aforementioned
functions is like sum(..., na.rm=FALSE). prod, min, and max are defined similarly.They
accept anynumber of input vectors, eachof themcanbeof arbitrary length.Therefore,
min(1, 2, 3), min(c(1, 2, 3)) as well as min(c(1, 2), 3) all return the same result.

However, we can also read that we have mean(x, trim=0, na.rm=FALSE, ...). This
time, only one vector can be aggregated and any further arguments (except trim and
na.rm) are ignored.

The extra flexibility (which we do not have to rely upon, ever) of the former group is
due their being associative operations: it holds, e.g., (2+3)+4 = 2+(3+4). Hence,
the operations can be performed in any order, in any groups.

Also note that they are more primitive operations: it is mean that is based on sum, not
vice versa.

2.5 Exercises
Exercise 2.9 Answer the following questions:

• What is the meaning of the dot-dot-dot parameter in the definition of the c function?

• We say that the round function is vectorised; what does that mean?

• What is wrong with a call to c(sqrt(1), sqrt(2), sqrt(3))?

• What do wemean by saying that multiplication operates element-by-element?

• How does the recycling rule work when applying `+`?

• How to (and why) set the seed of the pseudorandom number generator?

• What is the difference between NA_real_ and NaN?

• How are default arguments specified in the manual of, e.g., the round function?

• Is a call to rep(times=4, x=1:5)” equivalent to rep(4, 1:5)?

• List a fewways to generate a sequence like (-1, -0.75, -0.5, …, 0.75, 1).

• Is “-3:5” the same as "-(3:5)"?What about the precedence of operators in expressions such
as “2^3/4*5^6”, “5*6+4/17%%8”, and “1+-2^3:4-1”?

• If x is a numeric vector of length 𝑛 (for some 𝑛 ≥ 0), how many values will sample(x)
output?

• Does scan support reading directly from compressed archives, e.g., .csv.gz files?

When in doubt, refer back to the material discussed in this chapter and/or the Rmanual.
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Exercise 2.10 The following code generates an example graph of arcsine and arccosine, whose
preparation – thanks to vectorisation – is quite straightforward.

x <- seq(-1, 1, length.out=11) # increase length.out for a smoother curve

plot(x, asin(x), # asin() computed for 11 points

type="l", # lines

ylim=c(-pi/2, pi), # y axis limits like c(y_min, y_max)

ylab="asin(x), acos(x)") # y axis label

lines(x, acos(x), col="red", lty="dashed") # adds to the current plot

legend("topright", c("asin(x)", "acos(x)"),

lty=c("solid", "dashed"), col=c("black", "red"), bg="white")

Inspired by the above, plot the following functions: | sin 𝑥2|, |sin |𝑥||,√⌊𝑥⌋, and 1/(1 + 𝑒−𝑥).
Recall that the documentation of plot can be viewed by calling help("plot.default").

Exercise 2.11 It can be shown that:

4
𝑛

∑
𝑖=1

(−1)𝑖+1

2𝑖 − 1 = 4 (1
1 − 1

3 + 1
5 − 1

7 + ⋯)

slowly converges to 𝜋 as 𝑛 approaches ∞. Compute the above for 𝑛 = 1,000,000 and 𝑛 =
1,000,000,000 using the vectorised functions and operators discussed in this chapter, making
use of the recycling rule as much as possible.

Exercise 2.12 Let x and y be two vectors of identical lengths 𝑛, say:

x <- rnorm(100)

y <- 2*x+10+rnorm(100, 0, 0.5)

Compute the Pearson linear correlation coefficient given by:

𝑟 =
∑𝑛

𝑖=1 (𝑥𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑥𝑗) (𝑦𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑦𝑗)

√∑𝑛
𝑖=1 (𝑥𝑖 − 1

𝑛 ∑𝑛
𝑗=1 𝑥𝑗)

2 √∑𝑛
𝑖=1 (𝑦𝑖 − 1

𝑛 ∑𝑛
𝑗=1 𝑦𝑗)

2
.

To make sure you have come up with a correct implementation, compare your result to a call to
the built-in cor(x, y).

Exercise 2.13 (*) Look up on the internet an R package that features functions to compute the
5-daymoving (rolling) average andmedian of a given vector. Apply them on the EUR/AUD cur-
rency exchange data and plot thus obtained smoothened versions of the time series.

Exercise 2.14 (**)Compute the𝑘-movingaverageusingacall toconvolve(..., type="filter").

In the next chapter we will study operations that involve logical values.



3
Logical vectors

There are three logical constants in R.Wait… howmany?

3.1 Creating logical vectors
R defines three logical constants: TRUE, FALSE, and NA –meant to represent “yes”, “no”,
and “???”, respectively. Each of them, when instantiated, is an atomic vector of length
one.

Some of the functions we introduced in the previous chapter can be used to generate
logical vectors as well:

c(TRUE, FALSE, FALSE, NA, TRUE, FALSE)

## [1] TRUE FALSE FALSE NA TRUE FALSE

rep(c(TRUE, FALSE, NA), each=2)

## [1] TRUE TRUE FALSE FALSE NA NA

sample(c(TRUE, FALSE), 10, replace=TRUE, prob=c(0.8, 0.2))

## [1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE

Note Bydefault, “T” is a synonym for TRUE and “F” stands for FALSE.However, these are
not reserved keywords and can be re-assigned any other values. Therefore, we advise
against relying on them and hence we will never use them throughout the course of
this course.

Also note that the logicalmissing value is spelled simply as “NA” and not “NA_logical_”.
The fact that both the logical “NA” and the numeric “NA_real_” are, for the sake of
our mental well-being, both printed as “NA” on the R console, does not mean they are
identical; see Section 4.1 for discussion.
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3.2 Comparing elements
3.2.1 Vectorised relational operators
Logical vectors frequently come into being as results of various testing activities.

In particular, the binary operators:

• `<` (less than),

• `<=` (less than or equal),

• `>` (greater than),

• `>=` (greater than or equal)

• `==` (equal),

• `!=` (not equal),

compare the corresponding elements of twonumeric vectors andoutput a logical vector.

1 < 3

## [1] TRUE

c(1, 2, 3, 4) == c(2, 2, 3, 8)

## [1] FALSE TRUE TRUE FALSE

1:10 <= 10:1

## [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Thus, they operate in an elementwise manner. Moreover, the recycling rule is applied
if necessary:

3 < 1:5 # c(3, 3, 3, 3, 3) < c(1, 2, 3, 4, 5)

## [1] FALSE FALSE FALSE TRUE TRUE

c(1, 4) == 1:4 # c(1, 4, 1, 4) == c(1, 2, 3, 4)

## [1] TRUE FALSE FALSE TRUE

Therefore, we can say that they are vectorised in the same manner as the arithmetic
operators `+`, `*`, etc.; compare Section 2.4.1.

3.2.2 Testing for NA, NaN, and Inf
Comparisons against missing values and not-numbers yield NAs. Therefore, instead
of the incorrect x == NA_reals_ or x == NaN, testing for missingness should rather be
performed via a call to the vectorised is.na function.

is.na(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

## [1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE

is.nan(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

(continues on next page)



3 LOGICAL VECTORS 41

(continued from previous page)

## [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE

is.na(c(TRUE, FALSE, NA, TRUE)) # works for logical vectors too

## [1] FALSE FALSE TRUE FALSE

Moreover, is.finite is noteworthy, because it returns FALSE on Infs, NA_real_s and
NaNs.

is.finite(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE

See also the more specific is.nan and is.infinite.

3.2.3 Dealingwith round-off errors (*)
In mathematics, real numbers are merely an idealisation. In practice, however, it is
impossible to store themwith infiniteprecision (think𝜋 = 3.1415926535897932384626433...):
computer memory is limited and our time is precious.

Therefore, a widely agreed upon consensus had to be reached. In R, we rely on the so-
called double-precision floating point format. Floating point means that the numbers can
be both small (close to zero) and large: ±2.23 × 10−308 and ±1.79 × 10308 are both
acceptable.

Note

2.23e-308 == 0.00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000223

1.79e308 == 17900000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

These two are quite distant from each other.

Everynumeric value takes8bytes (or equivalently 64bits) ofmemory.Weare, however,
able to store only about 15-17 decimal digits:
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print(0.12345678901234567890123456789012345678901234, digits=22) # 22 is max

## [1] 0.1234567890123456773699

which limits theprecisionofour computations.Theabout part is–unfortunately–due
to the numbers’ being written in the computer-friendly binary, not human-aligned
decimal, base.This can lead to some unexpected outcomes.

In particular:

• 0.1 cannot be represented exactly, because it cannot bewritten as a finite series of
reciprocals of powers of 2 (it holds 0.1 = 2−4 + 2−5 + 2−8 + 2−9 + …).This leads
to surprising results such as:

0.1 + 0.1 + 0.1 == 0.3

## [1] FALSE

Despite the fact that what follows does not show anything suspicious:

c(0.1, 0.1 + 0.1 + 0.1, 0.3)

## [1] 0.1 0.3 0.3

Printing involves rounding, hence, in the above context, is misleading. Above, we
have something more like:

print(c(0.1, 0.1 + 0.1 + 0.1, 0.3), digits=22)

## [1] 0.1000000000000000055511 0.3000000000000000444089

## [3] 0.2999999999999999888978

• All integers between−253 and 253 all stored exactly – this is good news.However,
the next integer is beyond the representable range:

2^53 + 1 == 2^53

## [1] TRUE

• The above suggests that, more generally, the order of operations may matter, in
particular, the associativity propertymay be violated when dealing with numbers
of different orders of magnitude:

2^53 + 2^-53 - 2^53 - 2^-53 # should be == 0.0

## [1] -1.1102e-16

• Some numbers may just be just too large, too small, or too close to zero to be rep-
resented exactly:

c(sum(2^((1023-52):1023)), sum(2^((1023-53):1023)))

## [1] 1.7977e+308 Inf

c(2^(-1022-52), 2^(-1022-53))

## [1] 4.9407e-324 0.0000e+00
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Important Thedouble-precision floating point format (IEEE 754) is not specific to R:
it is used by most other computing environments, including Python and C++.

For discussion, see [31, 34, 39] ([30] can be of particular interest to the general statist-
ical/data analysis audience).

Can we do anything about these issues?

First, when dealing with integers of reasonable order of magnitude (a frequent case
wherewearedealing various resourceor case IDs inourdatasets), rest assured thatwe
are safe: their comparison, addition, subtraction, andmultiplication is alwaysprecise.

In all other cases (including applying other operations on integers, e.g., division or
sqrt), we need to be very careful with comparisons, especially involving testing for
equality, `==`.

The sole fact that sin𝜋 = 0, mathematically speaking, does not mean that we should
expect that:

sin(pi) == 0

## [1] FALSE

Instead, they are so close to each other that we can treat the difference between them as
negligible. Thus, in practice, instead of testing if 𝑥 = 𝑦, we will be considering:
• |𝑥 − 𝑦| (absolute error) or

• |𝑥−𝑦|
|𝑦| (relative error; which takes the order of magnitude of the numbers into ac-
count but obviously cannot be applied if 𝑦 is very close of 0),

and determining if these are less than some assumed error margin, 𝜀 > 0, say, 10−8

or 2−26.

For example:

abs(sin(pi) - 0) < 2^-26

## [1] TRUE

Note Note that rounding can sometimes have a similar effect as testing for almost-
equality in terms of the absolute error.

round(sin(pi), 8) == 0

## [1] TRUE

Important Our recommendations are valid for the most popular applications of R,
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i.e., statistical and, more generally, scientific computing1. The datasets we handle on
a daily basis do not represent accurate measurements themselves, bah, the World it-
self is far from ideal, therefore we do not have to lose sleep over our not being able to
precisely pinpoint the exact solution.

3.3 Logical operations
3.3.1 Vectorised logical operators
Therelational operators suchas `==` and`>` acceptonly twoarguments.Their chaining
is forbidden; a test which we wouldmathematically write as 0 ≤ 𝑥 ≤ 1 (or 𝑥 ∈ [0, 1])
cannot be expressed as “0<=x<=1” in R.

Therefore, we need a way to combine two logical conditions so as to be able to state
that “𝑥 ≥ 0 and, at the same time, 𝑥 ≤ 1”.
In such situations, the following logical operators and functions come in handy:

• `!` (not, negation; unary),

• `&` (and, conjunction; are both predicates true?),

• `|` (or, alternation; is at least one true?),

• xor (exclusive-or, exclusive disjunction, either-or; is one and only one of the pre-
dicates true?).

They again act elementwisely and implement the recycling rule if necessary (and ap-
plicable).

x <- c(-10, -1, -0.25, 0, 0.5, 1, 5, 100)

(x >= 0) & (x <= 1)

## [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

(x < 0) | (x > 1)

## [1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE

!((x < 0) | (x > 1))

## [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

xor(x >= -1, x <= 1)

## [1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

1 However, infinancial applications,we should rather rely onbase-10numbers (compare the0.1 problem
above). Also note that there exist some libraries implementing higher precision floating-point numbers or
even interval arithmetic that keeps track of error propagation operation chains.
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Important The vectorised `&` and `|` operators should not be confused with their
scalar, short-circuit counterparts, `&&` and `||`, which we discuss in Section 8.1.4.

3.3.2 Operator precedence revisited
The operators introduced in this chapter have lower precedence than the arithmetic
ones. In particular, the binary `+` and `-`. Calling help("Syntax") reveals that we can
extend our listing from Section 2.4.3 as follows:

1. `<-` (right-to-left; least binding),

2. `|`,

3. `&`,

4. `!` (unary),

5. `<`, `>`, `<=`, `>=`, `==`, and `!=`,

6. `+` and `-`,

7. `*` and `/`,

8. …

3.3.3 Dealingwithmissingness
Operations involving missing values follow the principles of the Łukasiewicz’s three-
valued logic, which is based on common sense. For instance, “NA | TRUE” is TRUE, be-
cause or needs at least one argument to be TRUE to generate such a result. On the other
hand, “NA | FALSE” is NA, because the result would be different depending on what we
substituted NA for.

Let us take a moment to contemplate the operations’ truth tables for all the possible
combinations of inputs:

u <- c(TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA)

v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)

!u

## [1] FALSE TRUE NA FALSE TRUE NA FALSE TRUE NA

u & v

## [1] TRUE FALSE NA FALSE FALSE FALSE NA FALSE NA

u | v

## [1] TRUE TRUE TRUE TRUE FALSE NA TRUE NA NA

xor(u, v)

## [1] FALSE TRUE NA TRUE FALSE NA NA NA NA
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3.3.4 Aggregatingwith all, any, and sum
Just like in the case of numeric vectors, we can summarise the contents of logical se-
quences.

all tests whether every element in a logical vector is equal to TRUE and any determines
if there exists an element that is TRUE.

x <- runif(10000)

all(x <= 0.2) # are all values in x <= 0.2?

## [1] FALSE

any(x <= 0.2) # is there at least one element in x that is <= 0.2?

## [1] TRUE

Note The all functionwill frequently beused in conjunctionwith `==`.This is because
the latter, as we have said above, is itself vectorised: it does not test whether a vector
as a whole is equal to another one.

z <- c(1, 2, 3)

z == 1:3 # elementwise equal

## [1] TRUE TRUE TRUE

all(z == 1:3) # elementwise equal summarised

## [1] TRUE

However, let us keep in mind the warning about the testing for exact equality of
floating-point numbers stated in Section 3.2.3. Sometimes, considering absolute or
relative errors might be more appropriate.

z <- sin((0:10)*pi) # sin(0), sin(pi), sin(2*pi), ..., sin(10*pi)

all(z == 0.0) # danger zone! please don't...

## [1] FALSE

all(abs(z - 0.0) < 1e-9) # are the absolute errors negligible?

## [1] TRUE

We can also call sum on a logical vector. Taken into account that it interprets TRUE as
numeric 1 and FALSE as 0 (more on this in Section 4.1), it will give us the number of
elements equal to TRUE.

sum(x <= 0.2) # how many elements in x are <= 0.2?

## [1] 1998

Also, by computing sum(x)/length(x), we can obtain the proportion (fraction) of val-
ues equal to TRUE in x. Equivalently:

mean(x <= 0.2) # proportion of elements <= 0.2

## [1] 0.1998
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Naturally, we expect mean(runif(n) <= 0.2)” to be equal to 0.2 (20%), but with ran-
domness we can never be sure.

3.3.5 Simplifying predicates
Each aspiring programmerneeds to become fluentwith the rules governing the trans-
formations of logical conditions, for example, that the negation of “(x >= 0) & (x <

1)” is equivalent to “(x < 0) | (x >= 1)”.

Each such rule is called a tautology. Here are some of them:

• !(!p) is equivalent to p (double negation),

• !(p & q) holds if and only if !p | !q (De Morgan’s law),

• !(p | q) is !p & !q (another DeMorgan’s law),

• all(p) is equivalent to !any(!p).

Various combinations thereof are of course possible. Some further simplifications are
enabled by other properties of the binary operations:

• commutativity (symmetry), e.g., 𝑎 + 𝑏 = 𝑏 + 𝑎, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎,
• associativity, e.g., (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐), max(max(𝑎, 𝑏), 𝑐) =
max(𝑎,max(𝑏, 𝑐)),

• distributivity, e.g., 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐 = 𝑎 ∗ (𝑏 + 𝑐), min(max(𝑎, 𝑏),max(𝑎, 𝑐)) =
max(𝑎,min(𝑏, 𝑐)),

and relations, including:

• transitivity, e.g., if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 then surely 𝑎 ≤ 𝑐.
Exercise 3.1 Assuming that a, b, and c are numeric vectors, simplify the following expressions:

• !(b>a & b<c),

• !(a>=b & b>=c & a>=c),

• a>b & a<c | a<c & a>d,

• a>b | a<=b,

• a<=b & a>c | a>b & a<=c,

• a<=b & (a>c | a>b) & a<=c,

• !all(a > b & b < c).
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3.4 Choosing elementswith ifelse
The ifelse function is a vectorised versionof the scalar if…else conditional statement
which we will do without for as long as until Chapter 8.

It allows us to select an element from either one or another vector based on some lo-
gical condition.

A call to ifelse(l, t, f), where l is a logical vector, returns a vector y such that:

𝑦𝑖 = { 𝑡𝑖 if 𝑙𝑖 is TRUE ,
𝑓𝑖 if 𝑙𝑖 is FALSE .

In other words, the 𝑖-th element of the result vector is equal to 𝑡𝑖 if 𝑙𝑖 is TRUE and to 𝑓𝑖
otherwise.

For example:

(z <- rnorm(6)) # example vector

## [1] -0.560476 -0.230177 1.558708 0.070508 0.129288 1.715065

ifelse(z >= 0, z, -z) # like abs(z)

## [1] 0.560476 0.230177 1.558708 0.070508 0.129288 1.715065

or:

(x <- rnorm(6)) # example vector

## [1] 0.46092 -1.26506 -0.68685 -0.44566 1.22408 0.35981

(y <- rnorm(6)) # example vector

## [1] 0.40077 0.11068 -0.55584 1.78691 0.49785 -1.96662

ifelse(x >= y, x, y) # like pmax(x, y)

## [1] 0.46092 0.11068 -0.55584 1.78691 1.22408 0.35981

By now, we should not be surprised that the recycling rule is fired up if necessary:

ifelse(x > 0, x^2, 0) # squares of positive xs and 0 otherwise

## [1] 0.21244 0.00000 0.00000 0.00000 1.49838 0.12947

Note Keep in mind that all arguments are evaluated in their entirety before decid-
ing on which element should be selected. Therefore, the following call will generate a
warning:

ifelse(z >= 0, log(z), NA_real_)

## Warning in log(z): NaNs produced

## [1] NA NA 0.44386 -2.65202 -2.04571 0.53945

This is because with log(z), we are computing the logarithms of negative values any-
way. To fix this, we can write:
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log(ifelse(z >= 0, z, NA_real_))

## [1] NA NA 0.44386 -2.65202 -2.04571 0.53945

The calls to ifelse can naturally be nested in the case where we yearn for an if…else
if…else-type expression.

Example 3.2 A version of pmax(pmax(x, y), z) can be written as:

ifelse(x >= y,

ifelse(z >= x, z, x),

ifelse(z >= y, z, y)

)

## [1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

However, determining the three intermediate logical vectors is not necessary; we can save one call
to `>=` by introducing an auxiliary variable:

xy <- ifelse(x >= y, x, y)

ifelse(z >= xy, z, xy)

## [1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

Exercise 3.3 Figure 3.1 depicts a realisation of the mixture𝑍 = 0.2𝑋 + 0.8𝑌 of two normal
distributions𝑋 ∼ N(−2, 0.5) and𝑌 ∼ N(3, 1).

n <- 100000

z <- ifelse(runif(n) <= 0.2, rnorm(n, -2, 0.5), rnorm(n, 3, 1))

hist(z, breaks=101, probability=TRUE, main="", col="white")

In other words, we generated a variate from the normal distribution that has expected value of -2
with probability 20% and from the one with expectation of 3 otherwise.

Inspired by the above, generate the following Gaussianmixtures:

• 2
3𝑋 + 1

3𝑌, where𝑋 ∼ N(100, 16) and𝑌 ∼ N(116, 8),
• 0.3𝑋 + 0.4𝑌 + 0.3𝑍, where𝑋 ∼ N(−10, 2),𝑌 ∼ N(0, 2), and𝑍 ∼ N(10, 2).

(*) On a side note, knowing that if𝑋 followsN(0, 1), then the scaled-shifted𝜎𝑋 + 𝜇 is distrib-
utedN(𝜇, 𝜎), the above can be equivalently written as:

w <- (runif(n) <= 0.2)

z <- rnorm(n, 0, 1)*ifelse(w, 0.5, 1) + ifelse(w, -2, 3)
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Figure 3.1: A mixture of two Gaussians generated with ifelse

3.5 Exercises
Exercise 3.4 Answer the following questions:

• Why the statement “Earth is flat or the smallpoxvaccine is proven effective” is obviously true?

• What is the difference between NA and NA_real_?

• Why is “FALSE & NA” equal to FALSE, but “TRUE & NA” is NA?

• Why has “ifelse(x>=0, sqrt(x), NA_real_)” a tendency to generate warnings and how
to rewrite it so as to prevent that from happening?

• What is the interpretation of “mean(x >= 0 & x <= 1)”?

• For some integer 𝑥 and 𝑦, how to verify whether 0 < 𝑥 < 100, 0 < 𝑦 < 100, and 𝑥 < 𝑦,
all at the same time?

• Mathematically, for all real 𝑥, 𝑦 > 0, it holds log 𝑥𝑦 = log 𝑥 + log 𝑦. Why then
“all(log(x*y) == log(x)+log(y))” can sometimes return FALSE? How to fix this?

• Is “x/y/z” always equal to “x/(y/z)”? How to fix this?

• What is the purpose of very specific functions such as log1p and expm1 (see their help page)
and many other ones listed in, e.g., the GNU GSL library [27]? Is our referring to them a
violation of the beloved “let us be minimalist” approach?

• If we know that 𝑥may be subject to error, how to test whether 𝑥 > 0 in a robust manner?
• Is “y<-5” the same as “y <- 5” or rather “y < -5”?
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Exercise 3.5 What is the difference between all and isTRUE? What about `==`, identical,
and all.equal? Is the last one properly vectorised?

Exercise 3.6 Compute the cross-entropy loss between a numeric vector 𝒑with values in the in-
terval (0, 1) and a logical vector 𝒚, both of length 𝑛 (you can generate them randomly or manu-
ally, it does not matter, it is just an exercise):

ℒ(𝒑, 𝒚) = 1
𝑛

𝑛
∑
𝑖=1

ℓ𝑖,

where

ℓ𝑖 = { − log 𝑝𝑖 if 𝑦𝑖 is TRUE ,
− log(1 − 𝑝𝑖) if 𝑦𝑖 is FALSE .

Interpretation: in classification problems, 𝑦𝑖 ∈ {FALSE, TRUE} denotes the true class of the
𝑖-th object (say, whether the 𝑖-th hospital patient is symptomatic) and 𝑝𝑖 ∈ (0, 1) a machine
learningalgorithm’s confidence that 𝑖 belongs to classTRUE (e.g., how sure adecision treemodel
is that the corresponding person is unwell). Ideally, if 𝑦𝑖 is TRUE, 𝑝𝑖 should be close to 1 and to 0
otherwise.The cross-entropy loss quantifies by howmuch a classifier differs from the omniscient
one.The use of the logarithm penalises strong beliefs in the wrong answer.

By the way, if we have solved any of the exercises encountered so far by referring to
if statements, for loops, vector indexing like x[...], or any external R package, we
should go back and re-write our code. Let us keep it simple (effective, readable) by
using the base R’s vectorised operations that we have introduced.





4
Lists and attributes

After two brain-teasing chapters, it is time to cool it down a little. In this more tech-
nical part, we will introduce lists, which serve as universal containers for R objects
of any size and type. Moreover, we will also show that each R object can be equipped
with a number of optional attributes, thanks to which we will not only be able to label
elements in any vector, but also – later – introduce new complex data types such as
matrices and data frames.

4.1 Type hierarchy and conversion
So far, we were dealing with three types of atomic vectors:

1. logical (Chapter 3),

2. numeric (Chapter 2),

3. character (which we have barely touched upon yet, but rest assured that they will
be covered in detail very soon; see Chapter 6).

To determine the type of an object programmatically, we can call the typeof function.

typeof(c(1, 2, 3))

## [1] "double"

typeof(c(TRUE, FALSE, TRUE, NA))

## [1] "logical"

typeof(c("spam", "spam", "bacon", "gluten-free spam"))

## [1] "character"

It turns out that we can easily convert between these types, either on our explicit de-
mand (type casting), or on-the-fly (coercion, whenwe perform an operation that expects
something different from the kind of input it was fed with).

Note (*)Numeric vectors are reportedasbeingeitherof type double (double-precision
floating-point numbers) or integer (32-bit; it is a subset of double); see Section 6.4.1.
In most practical cases, this is a technical detail which we can safely ignore; compare
also the mode function.
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4.1.1 Explicit type casting
We can use functions such as as.logical, as.numeric, and as.character to coerce (con-
vert) given objects to the corresponding types.

as.numeric(c(TRUE, FALSE, NA, TRUE, NA, FALSE))

## [1] 1 0 NA 1 NA 0

as.logical(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))

## [1] TRUE TRUE FALSE TRUE TRUE TRUE NA TRUE NA

Important It is easily seen that the rules are:

• TRUE → 1,

• FALSE → 0,

• NA → NA_real_,

and:

• 0 → FALSE,

• NA_real_ and NaN → NA,

• anything else → TRUE.

The distinction between zero and non-zero is commonly applied in other program-
ming languages as well.

Moreover, in the case of the conversion involving character strings, we have:

as.character(c(TRUE, FALSE, NA, TRUE, NA, FALSE))

## [1] "TRUE" "FALSE" NA "TRUE" NA "FALSE"

as.character(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))

## [1] "-2" "-1" "0" "1" "2" "3" NA "-Inf" "NaN"

as.logical(c("TRUE", "True", "true", "T",

"FALSE", "False", "false", "F",

"anything other than these", NA_character_))

## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE NA NA

as.numeric(c("0", "-1.23e4", "pi", "2+2", "NaN", "-Inf", NA_character_))

## Warning: NAs introduced by coercion

## [1] 0 -12300 NA NA NaN -Inf NA

4.1.2 Implicit conversion (coercion)
Recall that we referred to the three vector types as atomic ones: they can only be used
to store elements of the same type.

Ifwemake an attempt at composing anobject ofmixed typeswith c, the common type
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will be determined in such a way that storing the data is done without information
loss:

c(-1, FALSE, TRUE, 2, "three", NA)

## [1] "-1" "FALSE" "TRUE" "2" "three" NA

c("zero", TRUE, NA)

## [1] "zero" "TRUE" NA

c(-1, FALSE, TRUE, 2, NA)

## [1] -1 0 1 2 NA

Hence, we see that logical is the least, whereas character – the most general of the
three.

Note The logical NA is converted to NA_real_ and NA_character_ in the above examples.
Rusers tend to rely on implicit type conversionwhen theywrite c(1, 2, NA, 4) instead
of the more explicit c(1, 2, NA_real_, 4). In most cases, this is fine.

However, occasionally, it will be wiser to be more unequivocal. For instance,
rep(NA_real_, 1e9) pre-allocates a long numeric vector, instead of a logical one.

Some functions that expect vectors of specific types can apply coercion by themselves
(or act as if they do so):

c(NA, FALSE, TRUE) + 10 # implicit conversion logical -> numeric

## [1] NA 10 11

c(-1, 0, 1) & TRUE # implicit conversion numeric -> logical

## [1] TRUE FALSE TRUE

sum(c(TRUE, TRUE, FALSE, TRUE, FALSE)) # same as sum(as.numeric(...))

## [1] 3

cumsum(c(TRUE, TRUE, FALSE, TRUE, FALSE))

## [1] 1 2 2 3 3

cummin(c(TRUE, TRUE, FALSE, TRUE, FALSE))

## [1] 1 1 0 0 0

Exercise 4.1 In one of the previous exercises,wehave computed the cross-entropy loss betweena
logical vector 𝒚 ∈ {0, 1}𝑛 and a numeric vector 𝒑 ∈ (0, 1)𝑛.This measure can be equivalently
defined as:

ℒ(𝒑, 𝒚) = − 1
𝑛

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)⎞⎟
⎠

.

Implement the above formula (using vectorised operations, but not relying on ifelse this time)
and compute the cross-entropy loss between, say, “y <- sample(c(FALSE, TRUE), n)” and “p
<- runif(n)” for somen.Note howseamlesslyweare translatingbetweenFALSE/TRUEs and0/1s
in the above equation (in particular, where we let 1 − 𝑦𝑖 mean the logical negation of 𝑦𝑖).
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4.2 Lists
Lists are generalised vectors.They can be comprised of R objects of any kind, also other
lists. This is why we classify them as recursive (and not atomic) objects. They are espe-
cially useful wherever there is a need to handle somemultitude as a single entity.

4.2.1 Creating lists
Themost straightforward way to create a list is by means of the list function:

list(1, 2, 3)

## [[1]]

## [1] 1

##

## [[2]]

## [1] 2

##

## [[3]]

## [1] 3

Notice that the above is not the same as “c(1, 2, 3)”. We got a sequence that wraps
threenumeric vectors, eachof lengthone.Also, howoverly talkativeR iswhenprinting
out lists!

list(c(1, 2, 3), 4, c(TRUE, FALSE, FALSE, NA, TRUE), "and so forth")

## [[1]]

## [1] 1 2 3

##

## [[2]]

## [1] 4

##

## [[3]]

## [1] TRUE FALSE FALSE NA TRUE

##

## [[4]]

## [1] "and so forth"

list(list(c(TRUE, FALSE, NA, TRUE), letters), runif(5)) # a list of lists

## [[1]]

## [[1]][[1]]

## [1] TRUE FALSE NA TRUE

##

## [[1]][[2]]

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

(continues on next page)
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(continued from previous page)

##

##

## [[2]]

## [1] 0.28758 0.78831 0.40898 0.88302 0.94047

However, the str function can be used to print R objects in a more concise fashion:

str(list(list(c(TRUE, FALSE, NA, TRUE), letters), runif(5)))

## List of 2

## $ :List of 2

## ..$ : logi [1:4] TRUE FALSE NA TRUE

## ..$ : chr [1:26] "a" "b" "c" "d" ...

## $ : num [1:5] 0.288 0.788 0.409 0.883 0.94

Note In Section 4.1, we said that the c function, when fed with arguments of mixed
types, tries to determine the common type that retains the sense of data. If a coercion
to an atomic vector is not possible, the result will be a list.

c(1, "two", identity) # `identity` is an object of type "function"

## [[1]]

## [1] 1

##

## [[2]]

## [1] "two"

##

## [[3]]

## function (x)

## x

## <environment: namespace:base>

Thus, the c function can also be used to concatenate lists:

c(list(1), list(2), list(3)) # 3 lists -> 1 list

## [[1]]

## [1] 1

##

## [[2]]

## [1] 2

##

## [[3]]

## [1] 3

Lists can be repeated using rep:
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rep(list(1:11, LETTERS), 2)

## [[1]]

## [1] 1 2 3 4 5 6 7 8 9 10 11

##

## [[2]]

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"

## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

##

## [[3]]

## [1] 1 2 3 4 5 6 7 8 9 10 11

##

## [[4]]

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"

## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

4.2.2 Coercing to and from lists
The conversion of an atomic vector to a list of length-1 vectors can be done via a call to
as.list:

as.list(c(1, 2, 3)) # vector of length 3 -> list of 3 length-1 vectors

## [[1]]

## [1] 1

##

## [[2]]

## [1] 2

##

## [[3]]

## [1] 3

Unfortunately, calling, say, as.numeric on a list (even if it a list comprised of numeric
vectors only) will result in an error. However, we can try to flatten a list to an atomic
vector, provided that it is possible, by calling unlist.

unlist(list(list(1, 2), list(3, list(4:8)), 9))

## [1] 1 2 3 4 5 6 7 8 9

unlist(list(list(1, 2), list(3, list(4:8)), "spam"))

## [1] "1" "2" "3" "4" "5" "6" "7" "8" "spam"

Note (*) InChapter 11,wewillmention the simplify2array functionwhichgeneralises
unlist in a way that can sometimes result in a matrix.
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4.3 NULL

The NULL object (the one and only object of type “NULL”) can be used as a placeholder for
any other R object or designate the absence of such.

list(NULL, NULL, month.name)

## [[1]]

## NULL

##

## [[2]]

## NULL

##

## [[3]]

## [1] "January" "February" "March" "April" "May"

## [6] "June" "July" "August" "September" "October"

## [11] "November" "December"

NULL is different from a vector of length zero, because the latter has a type.

However, NULL sometimes behaves as a 0-length vector. In particular, length(NULL) re-
turns 0. Also, c called with no arguments returns NULL.

Testing for NULL-ness can be done with a call to is.null.

Important NULL is not alike NA (or it is other-typedvariants); the latter canbe emplaced
in an atomic vector.

c(1, NA, 3, NULL, 5) # NULL behaves as a 0-length vector here

## [1] 1 NA 3 5

They both have very distinct semantics (no value vs a missing value).

Later wewill see that some functions return NULL, invisibly, because they actually have
nothing interesting to yield.This is the case of print or plot, which are called because
of their side effects (printing and plotting).

Also, in some contexts, replacing content with NULL (e.g., when subsetting a list) will
actually result in its removal.

4.4 Object attributes
Lists can be used to wrapmany objects and form a single, ordered collection thereof.
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Attributes, on the other hand, give means to inject some extra data into an object of
any type (except NULL).

Attributes are (unordered) key=value pairs, where key in an arbitrary single charac-
ter string and value is any R object except NULL. They can be introduced by calling,
amongst others1, the structure function:

x_simple <- 1:10

x <- structure(

x_simple, # the object to be equipped with attributes

attribute1="value1",

attribute2=c(6, 100, 324)

)

4.4.1 Developing perceptual indifference tomost attributes
Let us see how the above x is reported on the console:

print(x)

## [1] 1 2 3 4 5 6 7 8 9 10

## attr(,"attribute1")

## [1] "value1"

## attr(,"attribute2")

## [1] 6 100 324

Note that the object of concern, “1:10”, was displayed first. We need to get used to
that; most of the time, we should treat the “attr…” parts of the display as if they were
printed in tiny font.

Equipping an object with attributes does not change its very nature (see, however
Chapter 10 for some exceptions). For example, the above x, despite featuring some ex-
tra data (metadata), is still treated as an ordinary sequence of numbers bymost func-
tions:

sum(x) # the same as sum(1:10), sum() does not care about any attributes

## [1] 55

typeof(x) # just a numeric vector, but with some perks

## [1] "integer"

Important Attributes are generally ignored by most functions unless they have spe-
cifically been programmed to pay attention to them.

1 Other ways include the replacement versions of the attr and attributes functions; see Section 9.4.6.
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4.4.2 But there are some use cases, after all
Some R functions add attributes to the return value to sneak extra information that
might be useful, just in case.

For instance, na.omit, whose main aim is to remove missing values from an atomic
vector, yields:

y <- c(10, 20, NA, 40, 50, NA, 70)

(y_na_free <- na.omit(y))

## [1] 10 20 40 50 70

## attr(,"na.action")

## [1] 3 6

## attr(,"class")

## [1] "omit"

We can enjoy the NA-free version of y in any further computations:

mean(y_na_free)

## [1] 38

However, the na.action attribute (we ignore the class part until Chapter 10) tells us
where the missing observations were:

attr(y_na_free, "na.action") # read the attribute value

## [1] 3 6

## attr(,"class")

## [1] "omit"

As another example, gregexpr can be used to search for a given pattern in a character
vector (for more details, see Chapter 6):

needle <- "spam|gluten" # pattern to search for: spam OR gluten

haystack <- c("spam, spam, bacon, and gluten-free spam", "spammer") # text

(pos <- gregexpr(needle, haystack))

## [[1]]

## [1] 1 7 24 36

## attr(,"match.length")

## [1] 4 4 6 4

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

##

## [[2]]

## [1] 1

## attr(,"match.length")

## [1] 4

(continues on next page)
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(continued from previous page)

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

Wesought all occurrencesof thepatternwithin twocharacter strings.As their number
may vary from string to string, to wrap the results in a list was a good design choice.
Each list element gives the starting positions where matches can be found (there are
four and onematch(es), respectively).

Each vector of positions also features its own match.length attribute (amongst others),
in case we need it.

Exercise 4.2 Create a list with EUR/AUD, EUR/GBP, and EUR/USD exchange rates read
from the euraud-*.csv, eurgbp-*.csv, and eurusd-*.csv files in our data repository2. Each
of its three elements should be a numeric vector storing the currency exchange rates. Further-
more, equip them with currency_from, currency_to, date_from, and date_to attributes, for
example:

## [1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132

## [11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA

## attr(,"currency_from")

## [1] "EUR"

## attr(,"currency_to")

## [1] "AUD"

## attr(,"date_from")

## [1] "2020-01-01"

## attr(,"date_to")

## [1] "2020-06-30"

Note that such additional information could of course be stored in a few separate variables (other
vectors), but then it would not be as convenient to use as the above representation.

4.4.3 Special attributes
Attributes have a great potential which is somewhat wasted by R users due to their
rarely knowing:

• that attributes exist (pessimistic scenario) or

• how to handle them (realistic scenario).

But we now know.

What ismore, some attributes have been predestined to play a fundamental role in R.
Namely, the most prevalent amongst the special attributes are:

2 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek
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• names, row.names, and dimnames are used to label the elements of atomic and gen-
eric vectors (see below), and also rows and columns in matrices (Chapter 11) and
data frames (Chapter 12),

• dim allows for turning flat vectors into matrices and other tensors (Chapter 11),

• levels labels the underlying integer codes in factor objects (Section 10.3.2),

• class can be used to bring forth new complex data structures based on basic types
(Chapter 10).

We call them special, because:

• they cannot be assigned arbitrary values; for instance, we will soon see that names
canonly bemapped to a character vector of the length equal to that of the sequence
it is labelling,

• they can be accessed via designated functions, e.g., names, class, dim, dimnames,
levels, etc.,

• they are widely recognised by many base and third-party R functions.

However, in spite of the above, special attributes can still be managed as any other
(ordinary) ones.

Exercise 4.3 comment is perhaps the most rarely used special attribute. Create an object
(whatever) equipped with the comment attribute. Verify that assigning to it anything other than
a character vector leads to an error. Read its value by calling the comment function. Display the
object equippedwithcomment.Note that theprint function ignores its existencewhatsoever: this
is how special it is.

Important (*)The accessor functions such as names or classmight returnmeaningful
values event if the corresponding attribute is not set explicitly; see, e.g., Section 11.1.5
for an example.

4.4.4 Labelling vector elementswith the names attribute
A special attribute called names can be used to label the elements of atomic vectors and
lists.

(x <- structure(c(13, 2, 6), names=c("spam", "sausage", "celery")))

## spam sausage celery

## 13 2 6

The labels may improve the expressivity and readability of our code and data.

Exercise 4.4 Verify that the above x is still an ordinary numeric vector by calling typeof and
sum on it.

Note that we can ignore the names attribute whatsoever. If we apply any operation dis-
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cussed inChapter 2,wewill still garner the same result nomatter if such extra inform-
ation is present or not.

It is just the print function that changed its behaviour slightly (it is a special attribute
after all). Instead of reporting:

## [1] 13 2 6

## attr(,"names ")

## [1] "spam" "sausage" "celery"

we got a nicely formatted table-like display. Non-special attributes are still printed in
a standard way.

## spam sausage celery

## 13 2 6

## attr(,"additional_attribute")

## [1] 1 2 3 4 5 6 7 8 9 10

Note In Chapter 5, we will also see that some operations (such as indexing) can gain
extra features in the presence of the names attribute.

This attribute can be read by calling:

attr(x, "names") # just like any other attribute

## [1] "spam" "sausage" "celery"

names(x) # because it is so special

## [1] "spam" "sausage" "celery"

Named vectors can be easily created with the c and list functions as well:

c(a=1, b=2)

## a b

## 1 2

list(a=1, b=2)

## $a

## [1] 1

##

## $b

## [1] 2

c(a=c(x=1, y=2), b=3, c=c(z=4)) # this is smart

## a.x a.y b c.z

## 1 2 3 4

Let us contemplate for awhile howanamed list looks likewhenprintedon the console.
Again, it is still a list, but with some extras.
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Exercise 4.5 Awhole lot of functions return named vectors. Evaluate the following expressions
and read the corresponding pages in the documentation:

• quantile(runif(100)) (note that it generalises min, median, and max),

• hist(runif(100), plot=FALSE),

• options (on a side note, take note of the digits, scipen, max.print, and width options),

• capabilities.

Note (*) Most of the time, lists are used merely as containers for other R objects. This
is a boring yet essential role. However, let us justmention here that each data frame is
in fact a generic vector (see Chapter 12): each column thereof corresponds to a named
list element:

(df <- head(iris)) # some data frame

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 4.9 3.0 1.4 0.2 setosa

## 3 4.7 3.2 1.3 0.2 setosa

## 4 4.6 3.1 1.5 0.2 setosa

## 5 5.0 3.6 1.4 0.2 setosa

## 6 5.4 3.9 1.7 0.4 setosa

typeof(df) # it is just a list (with extras that'll be discussed later)

## [1] "list"

unclass(df) # how it is represented exactly (without the extras)

## $Sepal.Length

## [1] 5.1 4.9 4.7 4.6 5.0 5.4

##

## $Sepal.Width

## [1] 3.5 3.0 3.2 3.1 3.6 3.9

##

## $Petal.Length

## [1] 1.4 1.4 1.3 1.5 1.4 1.7

##

## $Petal.Width

## [1] 0.2 0.2 0.2 0.2 0.2 0.4

##

## $Species

## [1] setosa setosa setosa setosa setosa setosa

## Levels: setosa versicolor virginica

##

## attr(,"row.names")

## [1] 1 2 3 4 5 6
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Therefore, the functionswe discuss in this chapter are of use in the processing of such
structured data as well.

4.4.5 Altering and removing attributes
Weknowthat a single attribute canbe readbycallingattr.Theirwhole list is generated
with a call to attributes.

(x <- structure(c("some", "object"), names=c("X", "Y"),

attribute1="value1", attribute2="value2", attribute3="value3"))

## X Y

## "some" "object"

## attr(,"attribute1")

## [1] "value1"

## attr(,"attribute2")

## [1] "value2"

## attr(,"attribute3")

## [1] "value3"

attr(x, "attribute1") # reads a single attribute, returns NULL if unset

## [1] "value1"

attributes(x) # returns a named list with all attributes of an object

## $names

## [1] "X" "Y"

##

## $attribute1

## [1] "value1"

##

## $attribute2

## [1] "value2"

##

## $attribute3

## [1] "value3"

We can alter an attribute’s value or add further attributes, by referring to the struc-
ture function once again. Moreover setting an attribute’s value to NULL gets rid of it
completely.

structure(x, attribute1=NULL, attribute4="added", attribute3="modified")

## X Y

## "some" "object"

## attr(,"attribute2")

## [1] "value2"

## attr(,"attribute3")

## [1] "modified"

(continues on next page)
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## attr(,"attribute4")

## [1] "added"

As far as the names attribute is concerned, wemay generated an un-named copy of an
object by calling:

unname(x)

## [1] "some" "object"

## attr(,"attribute1")

## [1] "value1"

## attr(,"attribute2")

## [1] "value2"

## attr(,"attribute3")

## [1] "value3"

In Section 9.4.6, we will discuss the so-called replacement functions which will also
enable us to modify or remove an object’s attribute in-place, by calling “attr(x,
"some_attribute") <- new_value”.

Moreover, in Section 5.5, we note that certain operations (such as vector indexing,
elementwise arithmetic operations, coercion) might not preserve all attributes of the
objects that were given as their inputs.

4.5 Exercises
Exercise 4.6 Answer the following.

• That is the meaning of “c(TRUE, FALSE) * 1:10”?

• What does “sum(as.logical(x))” compute when x is a numeric vector?

• We said that atomic vectors of type character are the most general ones. Therefore, is “as.
numeric(as.character(x))” the same as “as.numeric(x)”, regardless of the type of x?

• What is themeaning of “as.logical(x+y)” if x and y are logical vectors?What about “as.
logical(x*y)”, “as.logical(1-x)”, and “as.logical(x!=y)”?

• Let x be a named numeric vector, e.g., “x <- quantile(runif(100))”.What is the result
of “2*x”, “mean(x)”, and round(x, 2)?

• What is the meaning of x == NULL?

• Give two ways to create a named character vector.

• Give twoways (discussedabove; there aremore) to remove thenamesattribute fromanobject.
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Exercise 4.7 There are a few peculiarities when joining or coercing lists. Compare the results
generated by the following pairs of expressions:

# 1)

as.character(list(list(1, 2), list(3, list(4)), 5))

as.character(unlist(list(list(1, 2), list(3, list(4)), 5)))

# 2)

as.numeric(list(list(1, 2), list(3, list(4)), 5))

as.numeric(unlist(list(list(1, 2), list(3, list(4)), 5)))

# 3)

unlist(list(list(1, 2), sd))

list(1, 2, sd)

# 4)

c(list(c(1, 2), 3), 4, 5)

c(list(c(1, 2), 3), c(4, 5))

Exercise 4.8 Given numeric vectors x, y, z, and w, how to combine x, y, and list(z, w) so as
to obtain list(x, y, z, w)? More generally, given a set of atomic vectors and lists of atomic
vectors, how to combine them to get a single list that features all atomic vectors as its elements
(not a list of atomic vectors and lists, not atomic vectors unwound, etc.)?

Exercise 4.9 What is the meaning of the following when x is a logical vector?

• cummin(x) and cummin(!x),

• cummax(x) and cummax(!x),

• cumsum(x) and cumsum(!x),

• cumprod(x) and cumprod(!x).

Exercise 4.10 readRDS allows for serialising R objects and writing their snapshots to disk, so
that they can be later restored very quickly via a call to saveRDS. Verify whether this function
preserves object attributes.

Exercise 4.11 (*) Use jsonlite::fromJSON to read some JSONfile in the form of a named list.

In the extremely unlikely event of us finding the current chapter boring, let us rejoice:
some of the exercises and remarks that we will encounter in the next part – devoted
to vector indexing – will definitely be deliciously stimulating!



5
Vector indexing

We now know plenty of ways to process vectors in their entirety, but how to extract and
replace specific parts thereof? We will be referring to such activities collectively as in-
dexing, because they are often performed through the index operator, `[`.

5.1 head and tail
Let us beginwith somethingmore lightweight, though.The head function can be used
to fetch a few elements from the beginning of a vector.

x <- 1:10

head(x) # head(x, 6)

## [1] 1 2 3 4 5 6

head(x, 3) # get the first three

## [1] 1 2 3

head(x, -3) # skip the last three

## [1] 1 2 3 4 5 6 7

Similarly, tail extracts a few elements from the end of a sequence.

tail(x) # tail(x, 6)

## [1] 5 6 7 8 9 10

tail(x, 3) # get the last three

## [1] 8 9 10

tail(x, -3) # skip the first three

## [1] 4 5 6 7 8 9 10

Both functions work on lists too1. They are useful, e.g., when we wish to preview the
contents of a big object.

1 head and tail are actually S3 generics defined in the utils package. We will be able to call them on
matrices and data frames as well; see Chapter 10.
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5.2 Subsetting and extracting from vectors
Given a vector x, “x[i]” returns its subset comprised of elements indicated by the in-
dexer i, which can be a single vector of:

• nonnegative integers (gives the positions of elements to retrieve),

• negative integers (gives the positions to omit),

• logical values (states whether the corresponding element should be fetched or
skipped),

• character strings (locates the elements with specific names).

5.2.1 Nonnegative indexes
Consider the following example vectors:

(x <- seq(10, 100, 10))

## [1] 10 20 30 40 50 60 70 80 90 100

(y <- list(1, 11:12, 21:23))

## [[1]]

## [1] 1

##

## [[2]]

## [1] 11 12

##

## [[3]]

## [1] 21 22 23

The first element in a vector is at index 1. Hence:

x[1] # the first element

## [1] 10

x[length(x)] # the last element

## [1] 100

Important Wemight have wondered why “[1]” is being displayed each time we print
out an atomic vector on the console:

print((1:51)*10)

## [1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

## [18] 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

## [35] 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510
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It is merely a visual hint indicating which vector element we output first in each line.

Vectorisation is a universal feature of R. Hence, it comes as no surprise that the in-
dexer can be also of length greater than one.

x[c(1, length(x))] # the first and the last

## [1] 10 100

x[1:3] # the first three

## [1] 10 20 30

Take note of some boundary cases:

x[c(1, 2, 1, 0, 3, NA_real_, 1, 11)] # repeated, 0, missing, out of bound

## [1] 10 20 10 30 NA 10 NA

x[c()] # indexing by an empty vector

## numeric(0)

Important Subsetting with `[` yields an object of the same type.

When applied on lists, the index operator always returns a list as well, even if we ask
for a single element:

y[2] # a list that includes the 2nd element

## [[1]]

## [1] 11 12

y[c(1, 3)] # note that this is not the same as x[1, 3] (a different story)

## [[1]]

## [1] 1

##

## [[2]]

## [1] 21 22 23

If we wish to extract a component, i.e., to dig into what is inside a list at a specific
location, we can refer to `[[`:

y[[2]] # extract the 2nd element

## [1] 11 12

This is exactly why R displays “[[1]]”, “[[2]]”, etc. when printing out lists on the con-
sole.

Note Calling “x[[i]]” on an atomic vector, where i is a single value has almost2

2 See also Section 5.5 for the discussion on the preservation of object attributes.
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the same effect as “x[i]”. However, `[[` generates an error if the subscript is out of
bounds.

Note (*) `[[` also supports multiple indexers.

y[[c(1, 3)]]

## Error in y[[c(1, 3)]]: subscript out of bounds

Its meaning is different from y[c(1, 3)], though; we are about to extract a single
value, remember?Here, indexing is applied recursively.Namely, the above is equivalent
to y[[1]][[3]] – we got an error because y[[1]] is of length smaller than three.

More examples:

y[[c(3, 1)]] # y[[3]][[1]]

## [1] 21

list(list(7))[[c(1, 1)]] # 7, not list(7)

## [1] 7

Important Take note of the behaviour in the case of non-existing items:

c(1, 2, 3)[4]

## [1] NA

list(1, 2, 3)[4]

## [[1]]

## NULL

c(1, 2, 3)[[4]]

## Error in c(1, 2, 3)[[4]]: subscript out of bounds

list(1, 2, 3)[[4]]

## Error in list(1, 2, 3)[[4]]: subscript out of bounds

5.2.2 Negative indexes
The indexer can also be a vector of negative integers. This way, we can exclude the ele-
ments at given positions:

y[-1] # all but the first

## [[1]]

## [1] 11 12

##

## [[2]]

## [1] 21 22 23

(continues on next page)
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x[-(1:3)]

## [1] 40 50 60 70 80 90 100

x[-c(1, 0, 2, 1, 1, 8:100)] # 0, repeated, out of bound indexes

## [1] 30 40 50 60 70

Note Negative and positive indexes cannot be mixed.

x[-1:3] # recall that -1:3 == (-1):3

## Error in x[-1:3]: only 0's may be mixed with negative subscripts

Also, NA indexes are not allowed amongst negative ones.

5.2.3 Logical indexer
A vector can also be subsetted bymeans of a logical vector. If they both are of identical
lengths, the consecutive elements in the latter indicate whether the corresponding
elements of the indexed vector are supposed to be selected (TRUE) or omitted (FALSE).

# 1*** 2 3 4 5*** 6*** 7 8*** 9? 10***

x[c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, NA, TRUE)]

## [1] 10 50 60 80 NA 100

In other words, x[l], where l is a logical vector, returns all x[i]with i such that l[i]
is TRUE. Above, we extracted the elements at indexes 1, 5, 6, 8, and 10.

Important Let us be careful: if the element selector is NA, the selected element will be
set to a missing value (for atomic vectors) or NULL (for lists).

c("one", "two", "three")[c(NA, TRUE, FALSE)]

## [1] NA "two"

list("one", "two", "three")[c(NA, TRUE, FALSE)]

## [[1]]

## NULL

##

## [[2]]

## [1] "two"

This, unfortunately, comes with no warning, which might be problematic when in-
dexers are generated programmatically.

As a remedy, we sometimes pass the logical indexer to the which function first. It re-
turns the indexes of the elements equal to TRUE, ignoring the missing ones.
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which(c(NA, TRUE, FALSE))

## [1] 2

c("one", "two", "three")[which(c(NA, TRUE, FALSE))]

## [1] "two"

Recall that in Chapter 3, we have discussed ample vectorised operations that gener-
ate logical vectors. Anything that yields a logical vector of the same length as x can be
passed as an indexer.

x > 60 # yes, it is a perfect indexer candidate

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

x[x > 60] # select elements in x that are greater than 60

## [1] 70 80 90 100

x[x < 30 | 70 < x] # elements not between 30 and 70

## [1] 10 20 80 90 100

x[x < mean(x)] # elements smaller than the mean

## [1] 10 20 30 40 50

x[x^2 > 7777 | log10(x) <= 1.6] # indexing via a transformed version of x

## [1] 10 20 30 90 100

(z <- round(runif(length(x)), 2)) # ten pseudorandom numbers

## [1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46

x[z <= 0.5] # indexing based on z, not x — not a problem

## [1] 10 30 60 100

Theindexer is always evaluatedfirst and thenpassed to the subsetting operation– this
operation does not care how such a logical vector was generated.

Furthermore, recycling rule is of course applied when necessary:

x[c(FALSE, TRUE)] # every second element

## [1] 20 40 60 80 100

y[c(TRUE, FALSE)] # interestingly, there is no warning here

## [[1]]

## [1] 1

##

## [[2]]

## [1] 21 22 23

Exercise 5.1 Consider a simple database about sixpeople, theirmost favourite dishes, andbirth
years.

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")

food <- c("bacon", "spam", "spam", "eggs", "spam", "beans")

year <- c( 1941, 1939, 1942, 1943, 1943, 1940 )
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The consecutive elements in different vectors correspond to each other, e.g., Grahamwas born in
1941 and his favourite food was bacon.

• List the names of people born in 1941 or 1942.

• List the names of those who like spam.

• List the names of those who like spam andwere born after 1940.

• Compute the average birth year of the lovers of spam.

• Give the average age, in 1969, of those who didn’t find spam utmostly delicious.

The answers to the above must be provided programmatically, i.e., we do not just write "Eric"
and "Graham".The codemust be generic enough so that it works in the case of any other database
of this kind, nomatter its size.

Exercise 5.2 Removemissing values froma given vectorwithout referring to the na.omit func-
tion.

5.2.4 Character indexer
If a vector is equipped with the names attribute, such as this one:

x <- structure(x, names=letters[1:10]) # add names

print(x)

## a b c d e f g h i j

## 10 20 30 40 50 60 70 80 90 100

These labels can be referred to for the purpose of extracting the elements. To do this,
we use an indexer which is a character vector:

x[c("a", "f", "a", "g", "z")]

## a f a g <NA>

## 10 60 10 70 NA

Important We have said that special object attributes add extra functionality on top
of the existing ones. Therefore, indexing by means of positive, negative, and logical
vectors is of course still available:

x[1:3]

## a b c

## 10 20 30

x[-(1:5)]

## f g h i j

## 60 70 80 90 100

x[x > 70]

## h i j

## 80 90 100
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Lists can also be subsetted this way.

(y <- structure(y, names=c("first", "second", "third")))

## $first

## [1] 1

##

## $second

## [1] 11 12

##

## $third

## [1] 21 22 23

y[c("first", "second")]

## $first

## [1] 1

##

## $second

## [1] 11 12

y["third"] # result is a list

## $third

## [1] 21 22 23

y[["third"]] # result is the specific element unwrapped

## [1] 21 22 23

Important Labels do not have to be unique. When we have repeated names, the first
matching element is extracted:

structure(1:3, names=c("a", "b", "a"))["a"]

## a

## 1

There is no direct way to select all but given names, just like with negative integer in-
dexers. For a workaround, see Section 5.4.1.

Exercise 5.3 Rewrite the solution to the above spam-lovers exercise assuming that we have the
three features wrapped inside a list now:

(people <- list(

Name=c("Graham", "John", "Terry", "Eric", "Michael", "Terry", "Steve"),

Food=c("bacon", "spam", "spam", "eggs", "spam", "beans", "spam"),

Year=c( 1941, 1939, 1942, 1943, 1943, 1940, NA_real_)

))

## $Name

## [1] "Graham" "John" "Terry" "Eric" "Michael" "Terry" "Steve"

(continues on next page)
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##

## $Food

## [1] "bacon" "spam" "spam" "eggs" "spam" "beans" "spam"

##

## $Year

## [1] 1941 1939 1942 1943 1943 1940 NA

Do not refer to name, food, and year directly. Instead, use the full people[["Name"]] etc. ac-
cessors.There is no need to pout, it is just tiny bit of extra work. Also note that we now have Steve
amongst us.

5.3 Replacing elements
5.3.1 Modifying atomic vectors
There are also replacement versions of the above indexing schemes. They allow us to
substitute some new content for the old one.

(x <- 1:12)

## [1] 1 2 3 4 5 6 7 8 9 10 11 12

x[length(x)] <- 42 # modify the last element

print(x)

## [1] 1 2 3 4 5 6 7 8 9 10 11 42

The principles of vectorisation, recycling rule, and implicit coercion are all in place:

x[c(TRUE, FALSE)] <- c("a", "b", "c")

print(x)

## [1] "a" "2" "b" "4" "c" "6" "a" "8" "b" "10" "c" "42"

Long story long: first, tomake sure that the new content can be poured into old wine-
skin, R needed to convert the numeric vector to a character one; compare Section 4.1.
Then, every second element therein, a total of six items, was replaced by a recycled
version of the replacement sequence of length 3. Finally, the name “x” was re-bound
to such a brought-forth object and the previous one became forgotten.

Note For more details on replacement functions in general, see Section 9.4.6. Such
operations alter the state of the object they are called on (quite a rare behaviour in
functional languages).

Exercise 5.4 Replacemissingvalues inagivennumericvectorwith thearithmeticmeanofwell-
defined observations therein.
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5.3.2 Modifying lists
List contents can be altered as well. Formodifying individual elements, the safest op-
tion is to use the replacement version of the `[[` operator:

y <- list(a=1, b=1:2, c=1:3)

y[[1]] <- 100:110

y[["c"]] <- -y[["c"]]

print(y)

## $a

## [1] 100 101 102 103 104 105 106 107 108 109 110

##

## $b

## [1] 1 2

##

## $c

## [1] -1 -2 -3

The replacement version of `[` modifies a whole sub-list:

y[1:3] <- list(1, c("a", "b", "c"), c(TRUE, FALSE))

print(y)

## $a

## [1] 1

##

## $b

## [1] "a" "b" "c"

##

## $c

## [1] TRUE FALSE

Moreover:

y[1] <- list(1:10) # replace 1 element with 1 object

y[-1] <- 10:11 # replace 2 elements with 2 vectors of length 1

print(y)

## $a

## [1] 1 2 3 4 5 6 7 8 9 10

##

## $b

## [1] 10

##

## $c

## [1] 11

Note Let idxbea vector of positive indexes of elements tobemodified.Overall, calling
“y[idx] <- z” behaves as if we wrote:
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1. y[[idx[1]]] <- z[[1]],

2. y[[idx[2]]] <- z[[2]],

3. y[[idx[3]]] <- z[[3]],

and so forth.

Furthermore, z (but not idx) will be recycled if necessary, i.e., we take z[[j %%

length(z)]] for consecutive js from 1 to the length of idx.

Exercise 5.5 Reflect upon the results of the following expressions:

• y[1] <- c("a", "b", "c"),

• y[[1]] <- c("a", "b", "c"),

• y[[1]] <- list(c("a", "b", "c")),

• y[1:3] <- c("a", "b", "c"),

• y[1:3] <- list(c("a", "b", "c")),

• y[1:3] <- "a",

• y[1:3] <- list("a"),

• y[c(1, 2, 1)] <- c("a", "b", "c"),

Important Setting a list item to NULL removes it from the list completely.

y <- list(1, 2, 3, 4)

y[1] <- NULL # removes the 1st element (i.e., 1)

y[[1]] <- NULL # removes the 1st element (i.e., now 2)

y[1] <- list(NULL) # sets the 1st element (i.e., now 3) to NULL

print(y)

## [[1]]

## NULL

##

## [[2]]

## [1] 4

Thesamenotation convention is used for dropping object attributes; see Section 9.4.6.

5.3.3 Inserting new elements
New elements can be pushed at the end of the vector quite easily3.

3 And often cheaply; see Section 8.3.5 for some performance notes. Still, a warning can be generated on
each size extension if the "check.bounds" flag is set; see help("options").
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(x <- 1:5)

## [1] 1 2 3 4 5

x[length(x)+1] <- 6 # insert at the end

print(x)

## [1] 1 2 3 4 5 6

x[10] <- 10 # insert at the end but add more items

print(x)

## [1] 1 2 3 4 5 6 NA NA NA 10

The elements to be inserted can be named as well:

x["a"] <- 11 # still inserts at the end

x["z"] <- 12

x["c"] <- 13

x["z"] <- 14 # z is already there; replace

print(x)

## a z c

## 1 2 3 4 5 6 NA NA NA 10 11 14 13

Note that xwasnot equippedwith the names attribute before– theunlabelled elements
were assigned blank labels (empty strings).

Note It is not possible to insert new elements at the beginning or in the middle of a
sequence, at least not with the index operator. By writing “x[3:4] <- 1:5” we do not
replace two elements in themiddle by five other ones. However, we can always use the
c function to slice parts of the vector and intertwine themwith some new content:

x <- seq(10, 100, 10)

x <- c(x[1:2], 1:5, x[5:7])

print(x)

## [1] 10 20 1 2 3 4 5 50 60 70

5.4 Functions related to indexing
Let us review some operations which pinpoint interesting elements in a vector (or
functions based on these).

5.4.1 Matching of elements in another vector
Weknow that the `==` operator acts in an elementwisemanner. It compares each ele-
ment in a vector on the lefthand side to the corresponding element in a vector on the



5 VECTOR INDEXING 81

right side. Thus, missing values and the recycling rule aside, if z <- (x == y), then
z[i] is TRUE if and only if x[i] == y[i].

The `%in%` operator4 is vectorised differently: it checks whether each element on the
lefthand side matches one of the elements on the right. Given z <- (x %in% y), z[i]
is TRUEwhenever x[i] == y[j] for some j.

c("spam", "bacon", "spam", "eggs", "spam") %in% c("eggs", "spam", "ham")

## [1] TRUE FALSE TRUE TRUE TRUE

Example 5.6 Here is how we can remove the elements of a vector that have been assigned spe-
cified labels.

(x <- structure(1:12, names=month.abb)) # example vector

## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

## 1 2 3 4 5 6 7 8 9 10 11 12

x[!(names(x) %in% c("Jan", "May", "Sep", "Oct"))] # get rid of some elements

## Feb Mar Apr Jun Jul Aug Nov Dec

## 2 3 4 6 7 8 11 12

More generally, match(x, y) gives us the index of the element in y that matches each
x[i].

match(c("spam", "bacon", "spam", "eggs", "spam"), c("eggs", "spam", "ham"))

## [1] 2 NA 2 1 2

match(month.abb, c("Jan", "May", "Sep", "Oct")) # is the month on the list?

## [1] 1 NA NA NA 2 NA NA NA 3 4 NA NA

match(c("Jan", "May", "Sep", "Oct"), month.abb) # which month is it?

## [1] 1 5 9 10

NA_real_ denotes (by default) a no-match.

Exercise 5.7 Check out the documentation of `%in%` to see how this operator is reduced to a call
to match. Also, verify that it treats missing values as well-defined ones.

If the elements in y are not unique, the smallest index j such that x[i] == y[j] is
returned.Therefore, for example, match(TRUE, l) can be used to fetch the index of the
first occurrence of a positive value in a logical vector l.

(x <- round(runif(10), 2)) # example vector

## [1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46

match(TRUE, x>0.8) # index of the first value > 0.8 (from the left)

## [1] 4

4 A fantastic name; see Section 9.4.5.
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5.4.2 Assigning numbers into intervals
findInterval can come in handy where the assigning of numeric values into real in-
tervals is needed. Namely, z <- findInterval(x, y) for increasing y gives z[i] being
the index j such that x[i] is between y[j] (by default, inclusive) and y[j+1] (by default,
exclusive).

For example, a sequence of five knots 𝒚 = (−∞, 0.25, 0.5, 0.75, ∞) yields a division of
the real line to the following four intervals:

[−∞, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, ∞)
(1) (2) (3) (4)

Hence, for instance:

findInterval(c(0, 0.2, 0.25, 0.4, 0.66, 1), c(-Inf, 0.25, 0.5, 0.75, Inf))

## [1] 1 1 2 2 3 4

Exercise 5.8 Refer to the manual of findInterval to verify the function’s behaviour when we
do not include±∞ as end points and how tomake∞ classified as amember of the 4th interval.

Exercise 5.9 Using a call to findInterval, write a statement that generates a logical vector
whose i-th element indicates whether x[i] is in the interval [0.25, 0.5].Was this easier towrite
than an expression involving `<=` and `>=`?

5.4.3 Splitting vectors into subgroups
split(x, z) can take the output of match or findInterval (andmany other operations)
and divide the elements in a vector x into subgroups corresponding to identical zs.

For instance, we can assign people into groups determined by their favourite dish:

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")

food <- c("bacon", "spam", "spam", "eggs", "spam", "beans")

split(name, food) # group names with respect to food

## $bacon

## [1] "Graham"

##

## $beans

## [1] "Terry"

##

## $eggs

## [1] "Eric"

##

## $spam

## [1] "John" "Terry" "Michael"

The result is a named list with labels determined by the unique elements in the 2nd
vector.
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Another example: here are some numbers pigeonholed into the four previously men-
tioned intervals:

x <- c(0, 0.2, 0.25, 0.4, 0.66, 1)

split(x, findInterval(x, c(-Inf, 0.25, 0.5, 0.75, Inf)))

## $`1`

## [1] 0.0 0.2

##

## $`2`

## [1] 0.25 0.40

##

## $`3`

## [1] 0.66

##

## $`4`

## [1] 1

Missing values in the second argument will result in the corresponding values in the
first argument ignored.Also, unsurprisingly, recycling rule is appliedwhennecessary.

We can also split x into groups defined by a combination of levels of two ormore vari-
ables z1, z2, etc., by calling split(x, list(z1, z2, ...)).

Example 5.10 Thebuilt-in ToothGrowth is a named list (with some extra attributes thatmakes
us rather call it a data frame; see Chapter 12) represents the results of an experimental study in-
volving 60 guinea pigs. The experiment’s aim was to measure the effect of different vitamin C
supplement types and doses on the growth of the rodents’ teeth lengths:

ToothGrowth <- as.list(ToothGrowth) # it is a list, but with extra attribs

ToothGrowth[["supp"]] <- as.character(ToothGrowth[["supp"]]) # was: factor

print(ToothGrowth)

## $len

## [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0 16.5 16.5 15.2 17.3

## [15] 22.5 17.3 13.6 14.5 18.8 15.5 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5

## [29] 23.3 29.5 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3

## [43] 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9

## [57] 26.4 27.3 29.4 23.0

##

## $supp

## [1] "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC"

## [15] "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC"

## [29] "VC" "VC" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ"

## [43] "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ"

## [57] "OJ" "OJ" "OJ" "OJ"

##

## $dose

## [1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(continues on next page)
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(continued from previous page)

## [18] 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.5 0.5 0.5 0.5

## [35] 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

## [52] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

We can split lenwith respect to the combinations of supp and dose (also called interactions) by
calling:

split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_")

## $OJ_0.5

## [1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7

##

## $VC_0.5

## [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0

##

## $OJ_1

## [1] 19.7 23.3 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3

##

## $VC_1

## [1] 16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5

##

## $OJ_2

## [1] 25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23.0

##

## $VC_2

## [1] 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5

Other synonyms are of course possible, e.g., split(ToothGrowth[[1]], ToothGrowth[-1]),
split(ToothGrowth[[1]], list(ToothGrowth[[2]], ToothGrowth[[3]])), etc. However,
we shouldmeditate upon our conscious use of double vs single square brackets here.

Functions such as Map described in Section 7.2 will enable us to compute any summary statistics
withingroups (e.g., thewithin-groupaverages likewith “SELECT AVG(len) FROM ToothGrowth

GROUP BY supp, dose” in SQL). We are in no hurry. However, as an appetiser, let us feed the
boxplot function with a list of vectors; see Figure 5.1.

boxplot(split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_"))

Note unsplit can be used to revoke the effects of split. In particular, later wewill get
used to calling unsplit(Map(some_transformation, split(x, z)), z) to modify the
values in x independently in each group defined by z (e.g., standardise the variables
within each class separately).
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Figure 5.1: Box-and-whisker plots of len split by supp and dose (the ToothGrowth data-
set)

5.4.4 Ordering elements
The order function finds the ordering permutation of a given vector, i.e., a sequence
of indexes which leads to a sorted version thereof.

x <- c(1024, 7, 42, 666, 0, 32787)

(o <- order(x)) # the ordering permutation of x

## [1] 5 2 3 4 1 6

x[o] # ordered version of x

## [1] 0 7 42 666 1024 32787

Note that o[1] is the index of the smallest element in x, o[2] is the position of the 2nd
smallest, …, and o[length(o)] is the index of the greatest value. Hence, e.g., x[o[1]]
is equivalent to min(x).

Another example:

x <- c("b", "a", "abs", "bass", "aaargh", "aargh", "aaaargh")

(o <- order(x))

## [1] 2 7 5 6 3 1 4

x[o]

## [1] "a" "aaaargh" "aaargh" "aargh" "abs" "b" "bass"

Here, as x is a character vector, the ordering is lexicographical (like in a dictionary),
because this is exactly how `<=` on strings works.
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Note The ordering permutation that order returns is unique (that is why we call it the
permutation) even for inputs containing duplicated elements. Owing to the use of a
stable sorting algorithm, ties (repeated elements) will be listed in the order of occur-
rence.

order(c(10, 20, 40, 10, 10, 30, 20, 10, 10))

## [1] 1 4 5 8 9 2 7 6 3

Above we have, e.g., five 10s at positions 1, 4, 5, 6, 9.These five indexes are guaranteed
to be listed in this very order.

Ordering can also be performed in a nonincreasing manner:

x[order(x, decreasing=TRUE)]

## [1] "bass" "b" "abs" "aargh" "aaargh" "aaaargh" "a"

Note A call to sort(x) is equivalent to x[order(x)], but the former function can be
faster in some scenarios. For instance, one of its arguments can induce a partially sor-
ted vector which can be useful if we only seek a few order statistics (e.g., the seven
smallest values). Speed is rarely a bottleneck in the case of sorting (when it is, we have
a problem!), this is whywewill not bother ourselveswith such topics until the last part
of this pleasant book. Currently, we aim at expanding our repertoire of skills and abil-
ities, so that we can implement anything we can think of (rapid prototyping with the
least footprint).

Exercise 5.11 is.unsorted(x) can be used to determine if the elements in a given vector are…
not sortedwith respect to `<=`.Write anR expression that generates the same result by referring
to the order function. Also, assuming that x is numeric, do the same bymeans of a call to diff.

Note Looking at help("order"), we see that it also accepts one ormore arguments via
the dot-dot-dot parameter, “...”. This way, we can sort a vector with respect to many
criteria. If there are ties (equal observations) in the first variable, they will be resolved
by the order of elements in the second variable.This ismost useful for rearranging the
rows of a data frame, which we will exercise in Chapter 12.

x <- c( 10, 20, 30, 40, 50, 60)

y1 <- c("a", "b", "a", "a", "b", "b")

y2 <- c("w", "w", "v", "u", "u", "v")

x[order(y1)]

## [1] 10 30 40 20 50 60

x[order(y2)]

## [1] 40 50 30 60 10 20

x[order(y1, y2)]

(continues on next page)
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## [1] 40 30 10 50 60 20

x[order(y2, y1)]

## [1] 40 50 30 60 10 20

Note (*) Calling order on a permutation (a vector that is an arbitrary arrangement of
n consecutive natural numbers) determines its inverse.

x <- c(10, 30, 40, 20, 10, 10, 50, 30)

order(x)

## [1] 1 5 6 4 2 8 3 7

order(order(x)) # inverse of the above permutation

## [1] 1 5 7 4 2 3 8 6

(x[order(x)])[order(order(x))] # we get x again

## [1] 10 30 40 20 10 10 50 30

Note that order(order(x)) can be considered as away to rank all the elements in x. For
instance, the 3rd value in x, 40, is assigned rank 7: it is the 7th smallest value in this
vector. Note that this breaks the ties at a first-come-first-served basis. Butwe can also
write:

order(order(x, runif(length(x)))) # ranks with ties broken at random

## [1] 2 5 7 4 3 1 8 6

For different variations of these, see the rank function.

Exercise 5.12 Recall that sample(x) returns a pseudorandom permutation of elements of a
given vector unless x is a single positive number.Write an expression that always yields a proper
rearrangement, regardless of the size of x.

5.4.5 Identifying duplicates
Whether any element in a vector was already listed in the sequence, can be verified by
calling:

x <- c(10, 20, 30, 20, 40, 50, 50, 50, 20, 20, 60)

duplicated(x)

## [1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

This can be used to remove repeated observations; see also unique. Note that the value
that this function returns is not guaranteed to be sorted (unlike in some other lan-
guages/libraries).

Exercise 5.13 What can be the use case of a call to match(x, unique(x))?
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Exercise 5.14 Given two named lists x and ywhichwe treat as key-value pairs, determine their
set-theoretic union (with respect to the keys), for example:

x <- list(a=1, b=2)

y <- list(c=3, a=4)

z <- ...to.do... # combine x and y

str(z)

## List of 3

## $ a: num 4

## $ b: num 2

## $ c: num 3

5.4.6 Counting index occurrences
tabulate takes a vector of values from a set of small positive integers (e.g., indexes)
and determines their number of occurrences:

x <- c(2, 4, 6, 2, 2, 2, 3, 6, 6, 3)

tabulate(x)

## [1] 0 4 2 1 0 3

In other words, there are 0 ones, 4 twos, …, and 3 sixes.

Exercise 5.15 Using a call to tabulate (amongst others), return a named vector with the num-
ber of occurrences of each unique element in a character vector. For example:

y <- c("a", "b", "a", "c", "a", "d", "e", "e", "g", "g", "c", "c", "g")

result <- ...to.do...

print(result)

## a b c d e g

## 3 1 3 1 2 3

5.5 Preserving and losing attributes
As attributes are conceived as extra data, it is up to a function’s authors what they will
decide to dowith them.Generally, it is safe to assume thatmuch thought has been put
into the design of base R functions. Oftentimes, they behave quite reasonably.This is
whywe are going to spend some time now exploring their approaches to the handling
of attributes.

Namely, for functions and operators that aim at transforming vectors passed as their
inputs, the assumed strategy may be to:

• ignore the input attributes completely,
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• equip the output object with the same set of attributes, or

• take care only of some special attributes such as names, if that makes sense.

Below we explore some common patterns; see also Section 1.3 in [62].

5.5.1 c

First, c drops5 all attributes except names:

(x <- structure(1:4, names=c("a", "b", "c", "d"), attrib1="<3"))

## a b c d

## 1 2 3 4

## attr(,"attrib1")

## [1] "<3"

c(x) # only `names` are preserved

## a b c d

## 1 2 3 4

Wecan therefore endup calling this function chiefly for this nice side effect. Also recall
that unname drops the labels.

unname(x)

## [1] 1 2 3 4

## attr(,"attrib1")

## [1] "<3"

5.5.2 as.something

as.vector, as.numeric, and similar drop all attributes in the case where the output is
an atomic vector, but it might not necessarily do so in other cases (because they are S3
generics; see Chapter 10).

as.vector(x) # drops all attributes if x is atomic

## [1] 1 2 3 4

5.5.3 Subsetting
Subsetting with `[` (except where the indexer is not given) drops all attributes but
names (as well as dim and dimnames; see Chapter 11), which is adjusted accordingly:

x[1] # subset of labels

## a

## 1

(continues on next page)

5 To be precise, wemean the default S3 method of c here; compare Section 10.2.4.
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x[[1]] # this always drops the labels

## [1] 1

The replacement version of the index operator can be used to modify the values in an
existing vector whilst preserving all the attributes. In particular, skipping the indexer
will allow us to replace all the elements:

y <- x

y[] <- c("u", "v") # note that c("u", "v") has no attributes at all

print(y)

## a b c d

## "u" "v" "u" "v"

## attr(,"attrib1")

## [1] "<3"

5.5.4 Vectorised functions
Vectorised unary functions tend to copy all the attributes.

round(x)

## a b c d

## 1 2 3 4

## attr(,"attrib1")

## [1] "<3"

Binary operations should get the attributes from the longer input or both (with the
first argument preferred to the second) if they are of equal sizes.

y <- structure(c(1, 10), names=c("f", "g"), attrib1=":|", attrib2=":O")

y * x # x is longer

## a b c d

## 1 20 3 40

## attr(,"attrib1")

## [1] "<3"

y[c("h", "i")] <- c(100, 1000) # add two new elements at the end

y * x

## f g h i

## 1 20 300 4000

## attr(,"attrib1")

## [1] ":|"

## attr(,"attrib2")

## [1] ":O"

x * y

## a b c d

## 1 20 300 4000
(continues on next page)
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## attr(,"attrib1")

## [1] "<3"

## attr(,"attrib2")

## [1] ":O"

Also, refer to Section 9.4.6 for a way to copy all the attributes from one object to an-
other.

Important Even in base R the above rules are not enforced strictly.We consider them
inconsistencies that should be, for the time being, treated as features (with which we
need to learn to live as they have not been fixed for years). But there is still hope.

As far as third-party extension packages are concerned, suffice it to say that a lot of
R programmers do not know what attributes are at all! It is always best to refer to the
documentation, performsomeexperiments, and/ormanually assure thepreservation
of the data we care about.

Exercise 5.16 Check what attributes are preserved by ifelse.

5.6 Exercises
Exercise 5.17 Answer the following questions (contemplate first, then use R to find the answer):

• What is the result of “x[c()]?” Is it the same as “x[]”?

• Is “x[c(1, 1, 1)]” equivalent to “x[1]”?

• Is “x[1]” equivalent to “x["1"]”?

• Is “x[c(-1, -1, -1)]” equivalent to “x[-1]”?

• What does “x[c(0, 1, 2, NA)]” do?

• What does “x[0]” return?

• What does “x[1, 2, 3]” do?

• What about “x[c(0, -1, -2)]” and “x[c(-1, -2, NA)]”?

• Why “x[NA]” is so significantly different from “x[c(1, NA)]”?

• What is “x[c(FALSE, TRUE, 2)]”?

• What will we obtain by calling “x[x<min(x)]”?

• What about “x[length(x)+1]”?

• Why “x[min(y)]” is probably amistake?What could it mean?How can it be fixed?
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• Why cannot wemix indexes of different types and write “x[c(1, "b", "c", 4)]”? Or can
we?

• Whywould we call “as.vector(na.omit(x))” instead of just na.omit(x)?

• What is the difference between sort and order?

• What is the typeand the lengthof the object returnedbya call to “split(a, u)”?Whatabout
“split(a, c(u, v))”?

• How to get rid of the 7th element from a list of ten elements?

• How to get rid of the 7th, 8th, and 9th element from a list of ten elements?

• How to get rid of the 7th element from an atomic vector of ten elements?

• If y is a list, by how many elements “y[c(length(y)+1, length(y)+1, length(y)+1)]

<- list(1, 2, 3)” will extend it?

• What is the difference between “x[x>0]” and “x[which(x>0)]”?

Exercise 5.18 If x is an atomic vector of length n, “x[5:n]” obviously extracts everything from
the 5th element to the end.Does it though?Checkwhat happenswhen x is of length less thanfive,
including 0. List different ways to correct this expression so that itmakes (some) sense in the case
of shorter vectors.

Exercise 5.19 Similarly, “x[length(x) + 1 - 5:1]” is supposed to return the lastfive elements
in x. Propose a few alternatives that are correct also for short xs.

Exercise 5.20 Given a numeric vector, fetch its five largest elements. Make sure the code works
for vectors of length less than five.

Exercise 5.21 We can compute a trimmedmean of some x by setting the trim argument to the
mean function. Compute a similar robust estimator of location – the p-winsorised mean, 𝑝 ∈
[0, 0.5] defined as the arithmetic mean of all elements in x clipped to the [𝑄𝑝, 𝑄1−𝑝] interval,
where 𝑄𝑝 is the vector’s p-quantile; see quantile. For example, if x is (8, 5, 2, 9, 7, 4, 6, 1, 3),
we have𝑄0.25 = 3 and𝑄0.75 = 7 and hence the 0.25-winsorised mean will be equal to the
arithmetic mean of (7, 5, 3, 7, 7, 4, 6, 3, 3).

Exercise 5.22 Let x and y be two vectors of the same length,𝑛, and no ties. Compute the Spear-
man rank correlation coefficient given by:

𝜚(𝐱, 𝐲) = 1 −
6 ∑𝑛

𝑖=1 𝑑2
𝑖

𝑛(𝑛2 − 1)
,

where 𝑑𝑖 = 𝑟𝑖 − 𝑠𝑖, 𝑖 = 1, … , 𝑛, and 𝑟𝑖 and 𝑠𝑖 denote the rank of 𝑥𝑖 and 𝑦𝑖, respectively. See
also the built-in cor.

Exercise 5.23 (*) Given two vectors x and y of the same length 𝑛, a call to approx(x, y, ..

.) can be used to interpolate linearly between the points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛). We
can use it whenever we wish to generate new 𝑦s for previously unobserved 𝑥s (somewhere “in-
between” the data we already have). Moreover, spline(x, y, ...) can perform a cubic spline
interpolation, which is smoother; see Figure 5.2.



5 VECTOR INDEXING 93

x <- c(1, 3, 5, 7, 10)

y <- c(1, 15, 25, 6, 0)

x_new <- seq(1, 10, by=0.25)

y_new1 <- approx(x, y, xout=x_new)[["y"]]

y_new2 <- spline(x, y, xout=x_new)[["y"]]

plot(x, y, ylim=c(-10, 30)) # the points to interpolate between

lines(x_new, y_new1, col="darkred", lty=2) # linear interpolation

lines(x_new, y_new2, col="navy", lty=4) # cubic interpolation

legend("topright", legend=c("linear", "cubic"),

lty=c(2, 4), col=c("darkred", "navy"), bg="white")

2 4 6 8 10

-1
0
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10

20
30

x

y

linear
cubic

Figure 5.2: Piecewise linear and cubic spline interpolation.

Usingacall tooneof theabove,performthemissingdata imputation in theeuraud-20200101-20200630.
csv6, e.g., theblanks in(0.60, 0.62, NA, 0.64, NA, NA, 0.58) shouldbefilled soas to obtain
(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

Exercise 5.24 Given some 1 ≤ from ≤ to ≤ n, use findInterval to generate a logical vector of
length nwith TRUE elements only at indexes between from and to, inclusive.

Exercise 5.25 Implement expressions that yield the same results as calls to which, which.min,
which.max, and rev functions. What is the difference between x[x>y] and x[which(x>y)]?
What about which.min(x) vs which(x == min(x))?

Exercise 5.26 Given two equal-length vectors x and y, fetch the value from the former that cor-
responds to the smallest value in the latter.Write three versions of such an expression, each deal-
ing with potential ties in y differently, for example:

6 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv
https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv
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x <- c("a", "b", "c", "d", "e", "f")

y <- c( 3, 1, 2, 1, 1, 4)

should choose either the first ("b"), last ("e"), or random ("b", "d", "e"with equal probability)
element from x fulfilling the above property. Make sure your code works for x being of type char-
acter or numeric as well as an empty vector.

Exercise 5.27 Implement an expression that yields the same result as duplicated(x) for a nu-
meric vector x, but using diff and order.

Exercise 5.28 Based on match and unique, implement your own versions of union(x, y), in-
tersect(x, y), setdiff(x, y), is.element(x, y), and setequal(x, y) for x and y being
non-empty numeric vectors.



6
Character vectors

Text is a universal, portable, economic, and efficient means of interacting between
humans and computers as well as exchanging data between programs or APIs. This
book is 99%made of text. And, wow, howmuch useful knowledge is in it, innit?

6.1 Creating character vectors
6.1.1 Inputting individual strings
Specific character strings are delimited either by a pair of double quotes or a pair of
single quotes (apostrophes).

"a string"

## [1] "a string"

'another string' # and of course neither 'like this" nor "like this'

## [1] "another string"

The only difference between these two lies in the fact that we cannot directly include,
e.g., an apostrophe in a single quote-delimited string. On the other hand, "'tis good

ol' spam" and 'I "love" bacon' are both okay.

However, we may always use escape sequences to embrace characters whose inclusion
might otherwise be difficult or impossible.

R uses the backslash, “\”, as the escape character, in particular:

• \" inputs the double quote character,

• \' – single quote,

• \\ – backslash,

• \n – new line.

(x <- "I \"love\" bacon\n\\\"/")

## [1] "I \"love\" bacon\n\\\"/"

The print function (which was implicitly called to display the above object) does not
reveal the special meaning of the escape sequences. Rather, print outputs strings in
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the very way which we ourselves would follow when inputting them. The number of
characters in x is 18, and not 23:

nchar(x)

## [1] 18

To display the string as-it-really-is, we call:

cat(x)

## I "love" bacon

## \"/

Raw character constants, where the backslash character’s special meaning is dis-
abled, can be entered using the notation like r"(...)", r"{...}", r"[...]", r"----(..
.)----", etc.; see help("Quotes").These can be useful when inputting regular expres-
sions (see below).

x <- r"(spam\n\\\"maps)"

print(x)

## [1] "spam\\n\\\\\\\"maps"

cat(x)

## spam\n\\\"maps

… and of course the string version of the missing value marker is “NA_character_”.

Note (*) Some output devices may support the following codes that control the posi-
tion of the caret (text cursor):

• \b – backspace (move cursor one column to the left),

• \t – tab (advance to the next tab stop, e.g., a multiply of 8),

• \r – carriage return (move to the beginning of the current line).

cat("abc\bd\tef\rg\nhij")

## gbd ef

## hij

These can be used on unbuffered outputs (e.g., stderr; see Section 8.3.5) to display the
status of the current operation (a simple “animated” progress bar, the print-out of the
ETA, or the % completed).

Further, certain terminals can also understand the ECMA-48/ANSI-X3.64 escape se-
quences1 of the form “\u001b[...” to further control the cursor’s position, text colour,
and even style. For example, “\u001b[1;31m” outputs red bold text and “\u001b[0m” re-
sets the settings to default. Give, e.g., “cat("\u001b[1;31mspam\u001b[0m")” or “cat("\
u001b[5;36m\u001b[Abacon\u001b[Espam\u001b[0m")” a try.

1 https://en.wikipedia.org/wiki/ANSI_escape_code

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
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Note (*) The Unicode standard 15.0 (version dated September 2022) defines over
149 186 characters, i.a., letters from different scripts, mathematical symbols, and
emojis. Each of them is assigned a unique numeric identifier; see the Unicode Char-
acter Code Charts2. For example, the inverted exclamationmark (see the Latin-1 Supple-
ment section therein) has been mapped to hexadecimal code 0xA1 (or 161 decimally).
Knowing this magic number allows us to specify a Unicode code point using one of
the following escape sequences:

• \uxxxx – codes using four hexadecimal digits,

• \Uxxxxxxxx – codes using eight hexadecimal digits.

For instance:

cat("!\u00a1!\U000000a1!")

## !¡!¡!

All R installations allow for working with Unicode strings (more precisely, UTF-8)
– a super-encoding which is native to most Unix-like boxes (including GNU/Linux
and m**OS). Other operating systems may use some 8-bit encoding as the system
one (e.g., latin1 or cp1252), but they can be mixed with Unicode seamlessly. See
help("Encoding"), help("iconv"), and [26] for discussion.

Nevertheless, certain output devices (web browsers, LaTeX renderers, text terminals)
might be unable to display each and every Unicode character, e.g., due to some fonts
missing. As far as the processing of character data is concerned, though, this does not
matter: R does it with its eyes closed.

For example, in the PDF version3 of this joyful book, none of the following Unicode
glyphs are displayed properly, because yours cordially did not care about installing
appropriate fonts in his XeLaTeX distribution. However, its HTML variant4, which is
generated from exactly the same source files as the former, will likely be rendered by
the kind reader’s web browser as intended.

cat("\U0001f642\u2665\u0bb8\U0001f923\U0001f60d\u2307")

## ������

6.1.2 Many strings, one object
Less trivial character vectors (meaning, of length greater than one) can be constructed
by means of, e.g., c or rep5.

2 https://www.unicode.org/charts/
3 https://deepr.gagolewski.com/deepr.pdf
4 https://deepr.gagolewski.com
5 Internally, there is a string cache (a hash table), so thatmultiple clones of the same stringdonot occupy

more RAM than it is necessary.

https://www.unicode.org/charts/
https://www.unicode.org/charts/
https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com
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(x <- c(rep("spam", 3), "bacon", NA_character_, "spam"))

## [1] "spam" "spam" "spam" "bacon" NA "spam"

Thus, a character vector is in fact a sequenceof sequencesof characters.The total num-
ber of strings can be fetched, as usual, with the length function. However, the length
of each individual string may be read via the vectorised nchar.

length(x) # how many strings?

## [1] 6

nchar(x) # the number of code points in each string

## [1] 4 4 4 5 NA 4

6.1.3 Concatenating character vectors
paste can be used to concatenate (join) the corresponding elements of two or more
character vectors:

paste(c("a", "b", "c"), c("1", "2", "3")) # sep=" " by default

## [1] "a 1" "b 2" "c 3"

paste(c("a", "b", "c"), c("1", "2", "3"), sep="") # see also paste0

## [1] "a1" "b2" "c3"

The function is deeply vectorised:

paste(c("a", "b", "c"), 1:6, c("!", "?")) # implicit coercion of numbers

## [1] "a 1 !" "b 2 ?" "c 3 !" "a 4 ?" "b 5 !" "c 6 ?"

We can also collapse (flatten, aggregate) a sequence of strings into a single string:

paste(c("a", "b", "c", "d"), collapse=",")

## [1] "a,b,c,d"

paste(c("a", "b", "c", "d"), 1:2, sep="", collapse="")

## [1] "a1b2c1d2"

Unfortunately (perhaps for the so-called convenience), paste does not treat missing
values just like most other vectorised elementwise functions:

paste(c("A", NA_character_, "B"), "!", sep="")

## [1] "A!" "NA!" "B!"

6.1.4 Formatting objects
Strings can also come into being by turning other R objects into text. For example, the
quite customisable (seeChapter 10)format functioncanbeused for thepretty-printing
of data in dynamically generated reports.
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x <- c(123456.789, -pi, NaN)

format(x)

## [1] "123456.7890" " -3.1416" " NaN"

cat(format(x, digits=8, scientific=FALSE, drop0trailing=TRUE), sep="\n")

## 123456.789

## -3.1415927

## NaN

Moreover, sprintf is a workhorse for turning possiblymany atomic vectors to strings.
The numbers’ precision, strings’ widths and justification, etc., can be fully controlled.
Its first argument is a format string; special escape sequences starting with percent
sign, “%”, serve as placeholders for the actual values. For instance, “%s” is meant to be
replaced with a corresponding string and “%f” with a floating point value. Additional
options are available, e.g., “%10.2f” is a number that, when converted to text, will oc-
cupy ten text columns6, with two decimal digits of precision. Also, e.g., “%1$s”, “%2$s”,
… will insert the 1st, 2nd, … argument as text.

sprintf("%.5f", pi)

## [1] "3.14159"

sprintf("%s%s", "a", c("X", "Y", "Z")) # like paste(...)

## [1] "aX" "aY" "aZ"

sprintf("key=%s, value=%.1f", c("spam", "eggs"), c(100000, 0))

## [1] "key=spam, value=100000.0" "key=eggs, value=0.0"

sprintf("%.*f", 1:5, pi) # variable precision

## [1] "3.1" "3.14" "3.142" "3.1416" "3.14159"

sprintf("%1$s, %2$s, %1$s, and %1$s", "spam", "bacon") # numbered argument

## [1] "spam, bacon, spam, and spam"

See help("sprintf") for more details. I recommend. Marek Gagolewski.

6.1.5 Reading text data fromfiles
Given a raw text file, readLines can load it into memory so that it is represented as a
character vector, with each line stored in a separate string.

f <- readLines(

"https://github.com/gagolews/teaching-data/raw/master/README.md"

)

print(head(f))

## [1] "# Dr [Marek](https://www.gagolewski.com)'s Data for Teaching"

## [2] ""

## [3] "> *See the comment lines within the files themselves for"

## [4] "> a detailed description of each dataset.*"

(continues on next page)

6 Actually, this is only true for 8-bit native encodings. See also sprintf from the stringx package which
takes the text width, and not the number of bytes, into account.
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(continued from previous page)

## [5] ""

## [6] "*Good* datasets are actually hard to find!"

writeLines is its counterpart.There is also an option to read or write parts of files at a
time, whichmemention in Section 8.3.5. Also, cat(..., append=TRUE) can be used to
create a text file incrementally.

6.2 Pattern searching
6.2.1 Comparingwhole strings
Wehave already reviewed a couple ofways to compare strings as awhole. For instance,
the `==` operator implements elementwise testing:

c("spam", "spam", "bacon", "eggs") == c("spam", "eggs") # recycling rule

## [1] TRUE FALSE FALSE TRUE

Moreover, in Section 5.4.1, we have introduced the match function and its derivative,
the `%in%` operator, which are vectorised in a different way:

match(c("spam", "spam", "bacon", "eggs"), c("spam", "eggs"))

## [1] 1 1 NA 2

c("spam", "spam", "bacon", "eggs") %in% c("spam", "eggs")

## [1] TRUE TRUE FALSE TRUE

Note We should stress that these are simple, bytewise comparisons of the cor-
responding code points and as such they might not be valid in, for example, nat-
ural language processing activities; compare [18]. In particular, German word groß
is not deemed equal to gross, although we expect that should be the case, at least in a
German language setting. Moreover, in the rare situations where we read Unicode-
unnormalised data (say, not in the NFC form; see [17]), canonically equivalent strings
may be considered as different.

6.2.2 Partialmatching
When only a consideration of the initial part of each string is required, we can call:

startsWith(c("s", "spam", "spamtastic", "spontaneous", "spoon"), "spam")

## [1] FALSE TRUE TRUE FALSE FALSE
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Both the above and endsWith are applied elementwisely in case of many search pre-
fixes/suffixes, just like in `==`.

Partial matching of strings can be performed with charmatch. This is a each-vs-all ver-
sion of startsWith:

charmatch(c("s", "sp", "spam", "spams", "eggs", "bacon"), c("spam", "eggs"))

## [1] 1 1 1 NA 2 NA

charmatch(c("s", "sp", "spam", "spoo", "spoof"), c("spam", "spoon"))

## [1] 0 0 1 2 NA

Note that 0 designates that there was an ambiguity in the matching of a string to a
given table.

Note (*) In Section 9.5.7, we discuss the very-advanced match.argwhich is frequently
called from within other R functions to assist selecting an argument from a range of
possible choices. Furthermore, in Section 9.4.2 and Section 15.4.4, we mention the
(discouraged) partial matching of list labels and argument names in function calls.

6.2.3 Matching anywherewithin a string
Fixedpatterns canbe also searched for anywherewithin character strings using grepl:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")

grepl("spam", x, fixed=TRUE) # fixed patterns, as opposed to regexes below

## [1] TRUE TRUE FALSE FALSE

Important Note that the order of arguments is like grepl(needle, haystack), not
the other way around. Also, this function is not vectorised with respect to the first
argument.

Exercise 6.1 Determine how can a call to grep(y, x, value=FALSE) and grep(y, x,

value=TRUE) be implemented based on grepl and other operations that we are already famil-
iar with.

Note As a curiosity, agrepl performs approximate matching based on Levenshtein’s
edit distance.This can account for a small number of “typos”.

agrepl("spam", x)

## [1] TRUE TRUE FALSE TRUE

agrepl("ham", x, ignore.case=TRUE)

## [1] TRUE TRUE TRUE TRUE
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6.2.4 Using regular expressions (*)
Setting perl=TRUE allows for identifying occurrences of patterns specified by the
PCRE2 regular expressions (regexes).

grepl("^spam", x, perl=TRUE) # strings that begin with `spam`

## [1] TRUE FALSE FALSE FALSE

grepl("(?i)^spam|spam$", x, perl=TRUE) # begin or end; case ignored

## [1] TRUE TRUE TRUE FALSE

Note For more details on regular expressions in general, see, e.g., [23]. The ultimate
reference for PCRE2 pattern syntax is the man7 page pcre2pattern(3). R also gives ac-
cess to ERE-like TRE library (see help("regex")), which is the default one. However,
we discourage its use, because it is feature-poorer.

Exercise 6.2 The list.files function generates the list of file names in a given directory that
matchagiven regular expression.For instance, the followinggivesallCSVfiles in somedirectory.

list.files("../../Projects/teaching-data/r/", r"(\.csv$)") # or "\\.csv$"

## [1] "air_quality_1973.csv" "anscombe.csv" "iris.csv"

## [4] "titanic.csv" "tooth_growth.csv" "trees.csv"

## [7] "world_phones.csv"

Write a single regular expression thatmatchesfile names endingwith “.csv” or “.csv.gz”.Also,
write a regex that matches CSV files whose names do not begin with “eurusd”.

6.2.5 Locating pattern occurrences
regexpr finds the first occurrence of a pattern in each string:

regexpr("spam", x, fixed=TRUE)

## [1] 1 3 -1 -1

## attr(,"match.length")

## [1] 4 4 -1 -1

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

In particular, there is a pattern occurrence starting at the 3th code point of the 2nd
string in x. Moreover, there is no pattern match in the last string (denoted with -1).

The match.length attribute is generallymoreworthwhile when searchingwith regular
expressions.

To locate all the matches, i.e., globally, we use gregexpr:
7 http://www.pcre.org/current/doc/html/pcre2pattern.html

http://www.pcre.org/current/doc/html/pcre2pattern.html
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# `spam` followed by 0 or more letters, case insensitively

gregexpr("(?i)spam\\p{L}*", x, perl=TRUE)

## [[1]]

## [1] 1

## attr(,"match.length")

## [1] 4

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

##

## [[2]]

## [1] 3 12

## attr(,"match.length")

## [1] 8 4

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

##

## [[3]]

## [1] 7

## attr(,"match.length")

## [1] 4

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

##

## [[4]]

## [1] -1

## attr(,"match.length")

## [1] -1

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

As we have noted in Section 4.4.2, wrapping the results in a list was a clever choice as
the number of matches can obviously vary between strings.

In Section 7.2, we will take a look at the Map function, which, along with substring

introduced below, can aid in getting the most out of such data. Meanwhile, let us just
mention that regmatches extracts the matching substrings:
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regmatches(x, gregexpr("(?i)spam\\p{L}*", x, perl=TRUE))

## [[1]]

## [1] "spam"

##

## [[2]]

## [1] "spammite" "spam"

##

## [[3]]

## [1] "SPAM"

##

## [[4]]

## character(0)

Note (*) Let us considerwhat happenswhen a regular expression contains parenthes-
ised subexpressions (capture groups).

r <- "(?<basename>[^. ]+)\\.(?<extension>[^ ]*)"

The above regex consists of two such parts. The first one is labelled “basename” and is
comprised of a number of arbitrary characters except for the space and the dot. The
second group, named “extension” is a substring of anything but the space. These two
are separated by a dot.

Such a pattern can be used for unpacking space-delimited lists of file names.

z <- "dataset.csv.gz something_else.txt spam"

regexpr(r, z, perl=TRUE)

## [1] 1

## attr(,"match.length")

## [1] 14

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

## attr(,"capture.start")

## basename extension

## [1,] 1 9

## attr(,"capture.length")

## basename extension

## [1,] 7 6

## attr(,"capture.names")

## [1] "basename" "extension"

gregexpr(r, z, perl=TRUE)

## [[1]]

## [1] 1 16

(continues on next page)
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(continued from previous page)

## attr(,"match.length")

## [1] 14 18

## attr(,"index.type")

## [1] "chars"

## attr(,"useBytes")

## [1] TRUE

## attr(,"capture.start")

## basename extension

## [1,] 1 9

## [2,] 16 31

## attr(,"capture.length")

## basename extension

## [1,] 7 6

## [2,] 14 3

## attr(,"capture.names")

## [1] "basename" "extension"

The capture.* attributes give us access to the matches to the individual capture
groups, i.e., the basename and the extension.

Exercise 6.3 (*) Check out the difference between the results generated by regexec and reg-
expr as well as gregexec and gregexpr.

6.2.6 Replacing pattern occurrences
sub and gsub can replace first and all, respectively, matches to a pattern:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")

sub("spam", "ham", x, fixed=TRUE)

## [1] "ham" "y hammite spam" "yummy SPAM" "sram"

gsub("spam", "ham", x, fixed=TRUE)

## [1] "ham" "y hammite ham" "yummy SPAM" "sram"

Note (*) If a regex features some capture groups, matches thereto can be mentioned
not only in the pattern itself, but also in the replacement string:

gsub("(\\p{L})\\p{L}\\1", "\\1", "aha egg gag NaN spam", perl=TRUE)

## [1] "a egg g N spam"

The abovematches a letter (it is a capture group), another letter, and the former letter
again. Each such palindrome of length 3 is replaced with just the repeated letter.

Exercise 6.4 (*)Display the source code of glob2rx by calling print(glob2rx) and study how
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this function converts wildcards such as file???.* or *.csv to regular expressions that can be
passed to, e.g., list.files.

6.2.7 Splitting strings into tokens
strsplit divides each string in a character vector into chunks.This time, though, the
search pattern, specifying the token delimiter, is given as the second argument:

strsplit(c("spam;spam;eggs;;bacon", "spam"), ";", fixed=TRUE)

## [[1]]

## [1] "spam" "spam" "eggs" "" "bacon"

##

## [[2]]

## [1] "spam"

6.3 Other string operations
6.3.1 Extracting substrings
substring extracts parts of strings between given character position ranges.

substring("spammity spam", 1, 4) # from 1st to 4th character

## [1] "spam"

substring("spammity spam", 10) # from 10th to end

## [1] "spam"

substring("spammity spam", c(1, 10), c(4, 14)) # vectorisation

## [1] "spam" "spam"

substring(c("spammity spam", "bacon and eggs"), 1, c(4, 5))

## [1] "spam" "bacon"

Note There is also a replacement (compare Section 9.4.6) version of the above:

x <- "spam, spam, bacon, and spam"

substring(x, 7, 11) <- "eggs"

print(x)

## [1] "spam, eggs, bacon, and spam"

Unfortunately, the number of characters in the replacement string should not exceed
the length of the part being substituted (try “chickpeas” instead of “eggs”). However,
substring replacement can be written as a composition of substring extraction and
concatenation:
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paste(substring(x, 1, 6), "chickpeas", substring(x, 11), sep="")

## [1] "spam, chickpeas, bacon, and spam"

Exercise 6.5 Take the output generated byregexprandapplysubstring to extract the pattern
occurrences. If there is nomatch in some string, the corresponding output should be NA.

6.3.2 Translating characters
tolower and toupper can be used to convert between lower and upper case:

toupper("spam")

## [1] "SPAM"

Note Just like many other string operations in base R, these functions perform very
simple character substitutions and they might not be valid in natural language pro-
cessing tasks. For instance, groß is not converted to GROSS, which is the correct case
folding in German.

Moreover, chartr translates individual characters:

chartr("\\", "/", "c:\\windows\\system\\cmd.exe") # chartr(old, new, x)

## [1] "c:/windows/system/cmd.exe"

chartr("([S", ")]*", ":( :S :[")

## [1] ":) :* :]"

In thefirst line,we replace each backslashwith slash.The second example replaces “(”,
“[”, and “S” with “)”, “]”, and “*”, respectively.

6.3.3 Ordering strings
We have previously mentioned that operators such as `<` and `>=` as well as func-
tions like sort, order, rank, but also xtfrm8 are based on the lexicographic ordering of
strings.

sort(c("chłodny", "hardy", "chladný", "hladný"))

## [1] "chladný" "chłodny" "hardy" "hladný"

It is worth noting that the ordering is dependent on the currently selected locale, see
Sys.getlocale("LC_COLLATE"). For instance, in the Slovak language setting, we would
obtain "hardy" < "hladný" < "chladný" < "chłodny".

Note Many “structured” data items can be displayed or transmitted as human-

8 See Section 12.3.1 for a use case.
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readable strings. Inparticular,weknow that as.numeric canbeused to convert a string
to a number. Moreover, in Section 10.3.1, we will discuss date-time objects such as
"1970-01-01 00:00:00 GMT". We will be processing them with specialised functions
such as strptime and strftime.

Important (*) Aswe havementioned,many string operations in base R are not neces-
sarily portable. The stringx package defines drop-in, “fixed” replacements therefor.
They are based on the International Components for Unicode (ICU9) library, which is
a de facto standard for the processing of Unicode text, and the R package stringi; see
[26].

# call install.packages("stringx") first

suppressPackageStartupMessages(library("stringx")) # load the package

sort(c("chłodny", "hardy", "chladný", "hladný"), locale="sk_SK")

## [1] "hardy" "hladný" "chladný" "chłodny"

toupper("gro\u00DF") # compare base::toupper("gro\u00DF")

## [1] "GROSS"

detach("package:stringx") # unload the package

6.4 Other atomic vector types (*)
We have discussed four vector types: logical, double, character, and list (the lat-
ter being a generic-recursive vector). To get the complete picture of the sequence-like
types in R, let us briefly mention integer, complex, and raw atomic types, so that we
are not surprised when we encounter them.

6.4.1 Integer vectors (*)
Integer scalars can be input manually by using the L suffix:

(x <- c(1L, 2L, -1L, NA_integer_)) # looks like numeric

## [1] 1 2 -1 NA

typeof(x) # but is integer

## [1] "integer"

Some functions return them in certain contexts10:

9 https://icu.unicode.org/
10 Actually, 1:10 returns an integer vector in a compact (ALTREP, see [51]) form; compare the results of the

call to “.Internal(inspect(1:10))” and “.Internal(inspect(seq(1, 10, 1)))”. This way, the whole vector
does not have to be allocated which saves memory and time. At the R level, though, it behaves as any other
integer (numeric) sequence.

https://icu.unicode.org/
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typeof(1:10) # seq(1, 10) as well, but not seq(1, 10, 1)

## [1] "integer"

as.integer(c(-1.1, 0, 1.9, 2.1)) # truncate/round towards 0

## [1] -1 0 1 2

In the vast majority of expressions, integer vectors behave like numeric ones, and are
silently coerced to double if need be, so there is no real practical reason to distinguish
between them (they are of internal interest, e.g., when writing C/C++ extensions; see
Chapter 14). For example:

1L/2L # like 1/2 == 1.0/2.0

## [1] 0.5

Note (*) R integers are 32-bit signed types. The double type can store more integers
than them (with themaximal contiguously representable integer being 253 vs 231 − 1
in the former case; see Section 3.2.3):

as.integer(2^31-1) + 1L # 32-bit integer overflow

## Warning in as.integer(2^31 - 1) + 1L: NAs produced by integer overflow

## [1] NA

as.integer(2^31-1) + 1 == 2^31 # integer+double == double – OK

## [1] TRUE

(2^53 - 1) + 1 == 2^53 # OK

## [1] TRUE

(2^53 + 1) - 1 == 2^53 # lost due to FP rounding, left result is 2^53 - 1

## [1] FALSE

Note Since R 3.0, there is support for vectors longer than 231 − 1 elements. As there
areno64-bit integers inR, these are indexedbydoubles anyway (aswehavebeendoing
all this time). Interestingly, x[1.9] is the same as x[1] and x[-1.9]means x[-1] (trun-
cation of the fractional part).This is why the notation like x[length(x)*0.2]works re-
gardless of whether the length of x is a multiple of 5 or not, which is neat.

6.4.2 Raw vectors (*)
Vectors of type raw can store bytes, i.e., unsigned 8-bit integers, whose range is 0-255
(there are no raw NAs). For example:

as.raw(c(-1, 0, 1, 2, 0xc0, 254, 255, 256, NA))

## Warning: out-of-range values treated as 0 in coercion to raw

## [1] 00 00 01 02 c0 fe ff 00 00
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They are displayed as two-digit hexadecimal (base-16) numbers. Also note thatwemay
enter such numbers using the “0x” prefix.

There are only few functions that deal with such vectors: e.g., readBin, charToRaw, and
rawToChar.

6.4.3 Complex vectors (*)
We can also play with vectors of type complex, with “1i” representing the imaginary
unit, √−1. Complex numbers appear in quite a few engineering or scientific applic-
ations, e.g., in physics, electronics, or signal processing and are (at least: should be)
part of many university-level subjects or textbooks in mathematics11.

c(0, 1i, pi+pi*1i, NA_complex_)

## [1] 0.0000+0.0000i 0.0000+1.0000i 3.1416+3.1416i NA

Apart from the basic operators, mathematical and aggregation functions, procedures
like fft, solve, qr, or svd can be fed with or produce such data. For more details, see
help("complex") and somematrix examples in Chapter 11.

6.5 Exercises
Exercises marked with (*) might require tinkering with regular expressions or third-
party R packages.

Exercise 6.6 Answer the following questions:

• Howmany characters are there in the string "ab\n\\\t\\\\\""?What about "-{ab\n\\\
t\\\\\"-)}-"?

• What is the result of calling “paste(NA, 1:5, collapse="")”?

• What is themeaning of the following sprintf format strings: "%s", "%20s", "%-20s", "%f",
"%g", "%e", "%5f", "%5.2f%%", "%.2f", "%0+5f", and "[%+-5.2f]"?

• What is the difference between regexpr and gregexpr? What does “g” in the latter name
stand for?

• What is the result of a call to “grepl(c("spam", "spammity spam", "aubergines"),

"spam")”?

• Is it always the case that “"Aaron" < "Zorro"”?

• Why “x < "10"” and “x < 10” may return different results?

• If x is a character vector, is “x == x” always equal to TRUE?

11 Even the statistics/machine learning oriented ones, because of their heavy use of numerical comput-
ing, e.g., [19, 29].
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• If x and y are character vectors of lengths n andm, respectively, what is the length of the
output of “match(x, y)”?

• If x is a named vector, why there is a difference between “x[NA]” and “x[NA_character_]”?

• What is the difference between “x == y” and “x %in% y”?

Exercise 6.7 Let x, y, and z be atomic vectors and a and b be single strings. Generate the same
results as “pastena(x, collapse=b)”, “pastena(x, y, sep=a)”, “pastena(x, y, sep=a,

collapse=b)”, “pastena(x, y, z, sep=a)”, “pastena(x, y, z, sep=a, collapse=b)”,
assuming that pastena is a version of paste (which we do not have) that handles missing data
in a way consistent withmost other functions.

Exercise 6.8 Based on list.files and glob2rx, generate the list of all PDFs on your com-
puter.Then, using file.size filter out the files smaller than 10MiB.

Exercise 6.9 Read a text file that stores a long paragraph of some banal prose. Concatenate
all the lines to form a single, long string. Using strwrap and cat, output the paragraph on the
console, nicely formatted to fit an aesthetic width, say, 60 text columns.

Exercise 6.10 (*) Implement your own, simplified version of basename and dirname.

Exercise 6.11 (*) Implement an operation similar to trimws using the functions introduced in
this chapter.

Exercise 6.12 (*) Write a regex that extracts all words from each string in a given character
vector.

Exercise 6.13 (*)Write a regex that extracts, from each string in a character vector, all:

• integers numbers (signed or unsigned),

• floating-point numbers,

• numbers of any kind (including those in scientific notation),

• #hashtags,

• email@addresses,

• hyperlinks of the form http://… and https://….

Exercise 6.14 (*)What does 42i, 42L, and 0x42 stand for?

Exercise 6.15 (*) Check out stri_sort in the stringi package (or sort.character in
stringx) for a way to obtain an ordering like "a1" < "a2" < "a10" < "a11" < "a100".

Exercise 6.16 (*) In sprintf, the formatter "%20s"means that if a string is less than 20 bytes
long, the remainingbyteswill be replacedwith spaces.Only forASCII characters (English letters,
digits, some punctuation marks, etc.) it is true that one character is represented by 1 byte. Other
Unicode code points can take up between 2 and 4 bytes.

cat(sprintf("..%6s..", c("abc", "1!<", "aßc", "ąß©")), sep="\n") # aligned?

## .. abc..

## .. 1!<..

(continues on next page)
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(continued from previous page)

## .. aßc..

## ..ąß©..

Use the stri_pad function from the stringi package to align the strings aesthetically. Altern-
atively, check out sprintf from stringx.

Exercise 6.17 (*) Implement an operation similar to stri_pad from stringi using the func-
tions introduced in this chapter.



7
Functions

R is a functional language, where functions play first fiddle. Each action we perform
reduces itself to a call to some function, or a combination thereof.

So farwehave been tinkeringwith dozens of available functionswhich are part of base
R, with only few exceptions. They constitute the essential vocabulary that everyone
must be able to speak fluently.

Any operation, be it sum, sqrt, or paste, when fed with a number of arguments, gen-
erates some (hopefully useful) return value.

sum(1:10) # invoking `sum` on a specific argument

## [1] 55

From a user’s perspective, each function ismerely a tool. To achieve a goal at hand, we
do not really have to care about what is going on under its hood, i.e., how the inputs
are actually being transformed so that, after a couple of nanoseconds or hours, we
can enjoy what has been yielded. This is very convenient: all we need to know is the
function’s specification which can be stated, for example, informally, in plain Polish
or Malay, in its help page.

In this chapter, we will learn how to write our own functions. The use of this skill is a
good development practice when we expect that some operations are to be executed
many times but perhaps on different data.

Also, some R functions aremeant to invoke other functions, for instance on every ele-
ment in a list or every section of a data frame grouped by a qualitative variable, so it
is good to learn know howwe can specify a custom operation to be propagated there-
over.

Example 7.1 Given some objects (whatever):

x1 <- runif(16)

x2 <- runif(32)

x3 <- runif(64)

when we want to apply the same action on different data, say, compute the root mean square,
instead of re-typing almost identical expressions (or a bunch of them) over and over again:

sqrt(mean(x1^2))

## [1] 0.6545

(continues on next page)



114 I DEEP

(continued from previous page)

sqrt(mean(x2^2)) # the same second time - borderline okay

## [1] 0.56203

sqrt(mean(x3^2)) # tedious, barbarous, and error-prone

## [1] 0.57206

we can generalise the operation to any object like x:

rms <- # bound what follows to name `rms`

function(x) # a function that takes one parameter, `x`

sqrt(mean(x^2)) # expression to transform the input to yield output

and then re-use it on different concrete data instances:

rms(x1)

## [1] 0.6545

rms(x2)

## [1] 0.56203

rms(x3)

## [1] 0.57206

or even combine it with other function calls:

rms(sqrt(c(x1, x2, x3)))^2

## [1] 0.50824

Important Does writing your own functions equal reinventing the wheel? Can
everything be found on the internet these days (including on Stack Overflow, GitHub,
or CRAN)?

Luckily, this is not the case. Otherwise, data analysts’, researchers’, and developers’
lives could be consideredmonotonous, dreary, and uninspiring. Plus, sometimes it is
much quicker to write a function from scratch than to get through the whole garbage
dump from where, only occasionally, we can dig out some pearls. Not to mention the
self-educative side: we become better programmers by crunching those exercises.We
are advocating for minimalism here, remember?

This and many more other important issues in function design will be reflected upon
in Chapter 9.



7 FUNCTIONS 115

7.1 Creating and invoking functions
7.1.1 Anonymous functions
Functions are usually created by means of the following notation:

function(args) body

First, args is a (possibly empty) list of comma-separated parameter names which are
supposed to act as input variables.

Second, body is a single R expression which will be evaluated when the function is
called.The value that this expression yields will constitute the function’s output.

For example, here is a definition of a function which takes no inputs and generates a
constant output:

function() 1

## function() 1

Wethus created a functionobject.However, it has disappeared immediately thereafter,
as we have not used it at all.

Any function, say, f can be invoked, i.e., evaluated on concrete data, by using the nota-
tion f(arg1, ..., argn), where “arg1, ..., argn” are the arguments to be passed to
f.

(function() 1)() # invoking f like f(); here, no arguments are expected

## [1] 1

Only now we have obtained a return value.

Note (*) Calling typeof on a function object will report "closure" (for user-defined
functions), "builtin", or "primitive" (for some built-in, base ones), for the reasons
that we explain in more detail1 in Section 9.5.3:

typeof(function() 1)

## [1] "closure"

7.1.2 Named functions
Function objects can be bound with names so that they can be referred to multiple
times:

1 In short: each function consists of a list of formal arguments, a body, an possibly (if it is a closure) an
enclosing environment.
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one <- function() 1 # one <- (function() 1)

Wecreated an object named one (we use bold font to indicate that it is of type function,
because functions are so important in R). We are very familiar with such a notation,
as not since yesterday we are used to writing “x <- 1” etc.

Invoking one, which can be done by writing one(), will yield a return value:

one() # (function() 1)()

## [1] 1

This output can be used in further computations, for instance:

0:2 - one() # 0:2 - (function() 1)(), i.e., 0:2 - 1

## [1] -1 0 1

7.1.3 Passing arguments to functions
Functions with no arguments are kind of boring, thus let us distil a more serious op-
eration:

concat <- function(x, y) paste(x, y, sep="")

Here we have created amapping whose aim is to concatenate two objects bymeans of
a specialised call to paste. Yours faithfully pleads guilty to multiplying entities need-
lessly, because it shouldnot be a problem for anyone towrite paste(x, y, sep="") each
time. Yet, ‘tis merely an illustration.

The concat function has two parameters, “x” and “y”. Hence, calling it will require the
provision of two arguments, which we put within round brackets and separate from
each other by commas.

u <- 1:5

concat("spam", u) # i.e., concat(x="spam", y=1:5)

## [1] "spam1" "spam2" "spam3" "spam4" "spam5"

Important Notice the distinction: parameters (also called formal arguments) are ab-
stract, general, or symbolic; “something, anything that will be put in place of xwhen
the function is invoked”. By contrast, arguments (a.k.a. actual parameters) are con-
crete, specific, and real.

During the above call, x in the function’s body is precisely "spam", and nothing else.
Also, the u object from the caller’s environment is seen under the name y there. Most
of the time (however, see Section 16.3), it is best to think of the function as being fed
not with u per se, but the value that u is bound to, i.e., “1:5”.

Also:



7 FUNCTIONS 117

x <- 1:5

y <- "spam"

concat(y, x) # concat(x="spam", y=1:5)

## [1] "spam1" "spam2" "spam3" "spam4" "spam5"

This is still a call to equivalent to concat(x=y, y=x). The argument x is being assigned
with the value of y from the calling environment, "spam". Yes, one x is not the same
as the other x, and which is which is unambiguously defined by the context. Under-
standing and being able to manipulate such abstractions is basic logic and common
sense that everyone should master.

Exercise 7.2 Write a function called standardise that takes a numeric vector x as argument
and returns its standardised version, i.e., from each element in x subtract the sample arithmetic
mean and then divide it by the standard deviation.

Note Recall from Section 2.1.3 that, syntactically speaking, the following are per-
fectly valid alternatives to the positionally-matched call concat("spam", u); see Sec-
tion 15.4.4 for more details.

concat(x="spam", y=u)

concat(y=u, x="spam")

concat("spam", y=u)

concat(u, x="spam")

concat(x="spam", u)

concat(y=u, "spam")

However, the last twoshouldparticularly be avoided, for the sakeof the readers’ sanity.
It is best to provide positionally-matched arguments before the keyword-based ones.

Also, in Section 10.5, we introduce the (overused) forward-pipe operator, `|>`, which
enables the above to be written as “"spam" |> concat(u)”.

7.1.4 Grouping expressionswith curly braces, `{`
We have been informed that a function’s body is a single R expression whose evalu-
ated value is passed to the user as its output. This may sound restrictive and contrast
with what we have experienced so far. Rarely are we faced with such simple comput-
ing tasks and we have already seen R functions performing quite sophisticated oper-
ations.

It turns out that, grammatically, a single R expression can be arbitrarily complex
(Chapter 15); we can use curly braces to group many calls that are to be evaluated one
after another.

For instance:
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{

cat("first expression\n")

cat("second expression\n")

# ...

cat("last expression\n")

}

## first expression

## second expression

## last expression

Note thatweused four spaces to visually indent the constituents forgreater readability
(somedevelopers prefer tabs over spaces, othersfind twoor three spacesmoreurbane,
but we do not). This single (compound) expression can now play a role of a function’s
body.

Important The last expression evaluated in a curly-braces delimited blockwill be con-
sidered its the output value.

x <- {

1

2

3 # <--- last expression: will be taken as the output value

}

print(x)

## [1] 3

Note (*)Theabove codeblock canalsobewrittenmore concisely by replacingnewlines
with semicolons, although with perhaps some loss in readability:

{1; 2; 3}

## [1] 3

In Section 9.4, we will give a fewmore details about `{`.

Example 7.3 Here is a version of the above concat functionwhich takes care of amore Chapter
2-style missing values’ propagation:

concat <- function(a, b)

{

z <- paste(a, b, sep="")

z[is.na(a) | is.na(b)] <- NA_character_

z # last expression in the block – return value

}
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Example calls:

concat("a", 1:3)

## [1] "a1" "a2" "a3"

concat(NA_character_, 1:3)

## [1] NA NA NA

concat(1:6, c("a", NA_character_, "c"))

## [1] "1a" NA "3c" "4a" NA "6c"

Let us appreciate the fact thatwe could keep the code brief thanks to paste and `|` implementing
the recycling rule.

Exercise 7.4 Write a function called normalise that takes a numeric vector x and returns its
version shifted and scaled to the [0, 1] interval. To do so, from each element subtract the sample
minimumand thendivide it by the range, i.e., the difference between themaximumand themin-
imum. Avoid computing min(x) twice.

Exercise 7.5 Write a function that applies the robust standardisation of a numeric vector: sub-
tract the median and divide it by the median absolute deviation, 1.4826 times the median of the
absolute differences between the values and their median.

Note R is an open-source (free, libre) project – users are not only encouraged to
run the software for whatever the purpose, but also study and modify its source
code without any restrictions. This applies both to functions that we have authored
ourselves:

print(concat)

## function(a, b)

## {

## z <- paste(a, b, sep="")

## z[is.na(a) | is.na(b)] <- NA_character_

## z # last expression in the block – return value

## }

and to the routines that are part of base R or any other extension packages:

print(union)

## function (x, y)

## {

## u <- as.vector(x)

## v <- as.vector(y)

## unique(c(u, v))

## }

## <environment: namespace:base>

Nevertheless, some functionality might be implemented in a compiled programming
language such as C, C++, or Fortran; notice a call to .Internal in the source code of
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paste, .Primitive in list, or .Call in runif.Therefore, we will sometimes have to dig
a little bit deeper to access the underlying source code; see Chapter 14 formore details.

7.2 Functional programming
R is a functional programming language. As such, it shares a number of common fea-
tures with other languages that emphasise on the role of function manipulation in
software development (e.g., CommonLisp, Scheme,OCaml,Haskell, Clojure, F#). Let
us explore them now.

7.2.1 Functions are objects
R functions were given the right to a fair go; they are what we refer to as first-class cit-
izens. In other words, our interaction with them is not limited to their invocation; we
treat them as any other language objects. Namely, they can be:

• stored inside list objects:

list(identity, nrow, sum) # a list with three elements of type function

## [[1]]

## function (x)

## x

## <environment: namespace:base>

##

## [[2]]

## function (x)

## dim(x)[1L]

## <environment: namespace:base>

##

## [[3]]

## function (..., na.rm = FALSE) .Primitive("sum")

This is possible owing to the fact that lists, as we recall, can embrace R objects of
any kind.

• created and then called inside another function’s body:

euclidean_distance <- function(x, y)

{

square <- function(z) z^2 # auxiliary/internal/helper function

sqrt(sum(square(x-y))) # square root of the sum of squares

}

(continues on next page)
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(continued from previous page)

euclidean_distance(c(0, 1), c(1, 0)) # example call

## [1] 1.4142

This is whywe tend to classify functions as representatives of recursive types (com-
pare is.recursive).

• passed as arguments to other operations:

# Replaces missing values with a given aggregate

# of all non-missing elements:

fill_na <- function(x, filler_fun)

{

missing_ones <- is.na(x) # otherwise, we'd call is.na twice

replacement_value <- filler_fun(x[!missing_ones])

x[missing_ones] <- replacement_value

x

}

fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), mean)

## [1] 0 3 3 2 3 7 3

fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), median)

## [1] 0.0 2.5 2.5 2.0 3.0 7.0 2.5

We call these higher-order functions.

Note The more advanced techniques, which we will discuss in the third part of the
book, will let the functions be:

• returned as other function’s outputs,

• equipped with auxiliary data,

• generated programmatically on the fly,

• modified at runtime.

Belowwe review themost basic higher-order functions, inparticular: do.call and Map.

7.2.2 Calling on precomputed argumentswith do.call
The notation like f(arg1, ..., argn) has no monopoly over how we are supposed to
call a function on a specific sequence of comma-delimited arguments: the latter do
not have to be hardcoded.

Here is an alternative. We can first prepare a number of objects to be passed as f’s
inputs, wrap them in a list l, and then invoke do.call(f, l) to get the same result.
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words <- list(

c("spam", "bacon", "eggs"),

c("buckwheat", "quinoa", "barley"),

c("ham", "spam", "spam")

)

do.call(paste, words) # paste(words[[1]], words[[2]], words[[3]])

## [1] "spam buckwheat ham" "bacon quinoa spam" "eggs barley spam"

do.call(cbind, words) # column-bind; returns a matrix (explained later)

## [,1] [,2] [,3]

## [1,] "spam" "buckwheat" "ham"

## [2,] "bacon" "quinoa" "spam"

## [3,] "eggs" "barley" "spam"

do.call(rbind, words) # row-bind (explained later)

## [,1] [,2] [,3]

## [1,] "spam" "bacon" "eggs"

## [2,] "buckwheat" "quinoa" "barley"

## [3,] "ham" "spam" "spam"

Note that the length and content of the list passed as the second argument of do.call
can be arbitrary (possibly unknown at the time of writing the code). See Section 12.1.2
for more use cases, e.g., ways to concatenate a list of data frames (perhaps produced
by some complex chain of commands) into a single data frame.

If elements of the list are named, they will be matched to the corresponding keyword
arguments.

x <- 2^(seq(-2, 2, length.out=101))

plot_opts <- list(col="red", lty="dashed", type="l")

do.call(plot, c(list(x, log2(x), xlab="x", ylab="log2(x)"), plot_opts))

## (plot display suppressed)

Note that, e.g., plot_opts can now be reused in further calls to graphical functions.
This is very convenient as it avoids repetitions.

7.2.3 Common higher-order functions
There is an important class of higher-order functions that allow us to apply custom
operations on consecutive elements of sequences without relying on loop-like state-
ments, at least explicitly.They can be found in all functional programming languages
(e.g., Lisp,Haskell, Scala) and have been ported to various add-on libraries (functools
in Python, more recent versions of the C++ Standard Library, etc.) or frameworks
(Apache Spark and the like).Their presence reflects the obvious truth that some kinds
of operations occur more frequently than other ones.

In particular:

• Map calls a function on each element of a sequence in order to transform:
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– their individual components (just like sqrt, round, or the unary `!` operator
in R), or

– the corresponding elements ofmany sequences so as to vectorise a given op-
eration elementwisely (compare the binary `+` or paste),

• Reduce (also called accumulate) applies a binary operation to combine consecutive
elements in a sequence, e.g., to generate the aggregates, like, totally (compare sum,
prod, all, max) or cumulatively (compare cumsum, cummmin),

• Filter creates a subset of a sequence that is comprised of elements that enjoy a
given property (which we typically achieve in R bymeans of the `[` operator),

• Find locates the first element that fulfils some logical condition (compare which),

and so forth.

Below we will only focus on the Map function.The inspection of the remaining ones is
left as an exercise. This is because, oftentimes, we can be better-off with their more
R-ish versions (e.g., using the subsetting operator, `[`).

7.2.4 Vectorising functionswith Map
In data-centric computing, we are frequently faced with tasks that involve processing
eachandevery element in a sequence independently, one after another. Suchuse cases
can benefit from vectorised operations like those discussed in Chapter 2, Chapter 3,
and Chapter 6.

Most of the functions that we have introduced in the preceding parts, unfortunately,
cannot be applied on lists. For instance, if we try calling sqrt on a list, we will get an
error, even if it is a list of numeric vectors only. Oneway to compute the square root of
all elements would be to invoke sqrt(unlist(...)). It is a go-to approach if we wish
to treat all the list’s elements as one sequence. But this comes at a price of losing the
list’s structure.

Wehavealsodiscussed someoperations that arenot vectorisedwith respect to all their
arguments, even though they could have been designed this way, e.g., grepl.

The Map function2 applies an operation on each element in a vector or the correspond-
ing elements in a number of vectors. In many situations, it may be used as a more
elegant alternative to for loops that we will introduce in the next chapter.

First3, a call to Map(f, x) yields a list whose i-th element is equal to f(x[[i]]) (recall
that `[[` works on atomic vectors too).

For example:

2 Yes, the author is aware that Mapwas implemented using the slightlymore primitive mapply, butwe are
not fond of the latter’s having the SIMPLIFY argument set to TRUE by default.

3This use case scenario can also be programmedusing lapply; lapply(x, f, ...) is equivalent to Map(f,
x, MoreArgs=list(...)).
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x <- list( # an example named list

x1=1:3,

x2=seq(0, 1, by=0.25),

x3=c(1, 0, NA_real_, 0, 0, 1, NA_real_)

)

Map(sqrt, x) # x is named, hence the result will be named too

## $x1

## [1] 1.0000 1.4142 1.7321

##

## $x2

## [1] 0.00000 0.50000 0.70711 0.86603 1.00000

##

## $x3

## [1] 1 0 NA 0 0 1 NA

Map(length, x)

## $x1

## [1] 3

##

## $x2

## [1] 5

##

## $x3

## [1] 7

unlist(Map(mean, x)) # compute three aggregates, convert to an atomic vector

## x1 x2 x3

## 2.0 0.5 NA

Map(function(n) round(runif(n, -1, 1), 1), c(2, 4, 6)) # x is atomic now

## [[1]]

## [1] 0.4 0.8

##

## [[2]]

## [1] 0.5 0.8 -0.1 -0.7

##

## [[3]]

## [1] -0.3 0.0 0.5 1.0 -0.9 -0.7

Next, we can vectorise a given function over a number of parameters. A call to, e.g.,
Map(f, x, y, z) results in a list whose i-th element is equal to f(x[[i]], y[[i]],

z[[i]]). Just like in case of, e.g., paste, recycling rule will be applied if necessary.

For example, the following generates list(seq(1, 6), seq(11, 13), seq(21, 29)):

Map(seq, c(1, 11, 21), c(6, 13, 29))

## [[1]]

## [1] 1 2 3 4 5 6

(continues on next page)
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(continued from previous page)

##

## [[2]]

## [1] 11 12 13

##

## [[3]]

## [1] 21 22 23 24 25 26 27 28 29

Moreover, we can get list(seq(1, 40, length.out=10), seq(11, 40, length.out=5),

seq(21, 40, length.out=10), seq(31, 40, length.out=5)) by calling:

Map(seq, c(1, 11, 21, 31), 40, length.out=c(10, 5))

## [[1]]

## [1] 1.0000 5.3333 9.6667 14.0000 18.3333 22.6667 27.0000 31.3333

## [9] 35.6667 40.0000

##

## [[2]]

## [1] 11.00 18.25 25.50 32.75 40.00

##

## [[3]]

## [1] 21.000 23.111 25.222 27.333 29.444 31.556 33.667 35.778 37.889 40.000

##

## [[4]]

## [1] 31.00 33.25 35.50 37.75 40.00

Note If we have some additional arguments to be passed to the function applied
(which the function does not have to be vectorised over), we can wrap them inside
a separate list and toss it via the MoreArgs argument (à la do.call).

unlist(Map(mean, x, MoreArgs=list(na.rm=TRUE))) # mean(..., na.rm=TRUE)

## x1 x2 x3

## 2.0 0.5 0.4

Alternatively, we can always construct a custom anonymous function:

unlist(Map(function(xi) mean(xi, na.rm=TRUE), x))

## x1 x2 x3

## 2.0 0.5 0.4

Exercise 7.6 Here is an example list of files (see our teaching data repository4) with daily Forex
rates:

4 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek
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file_names <- c(

"euraud-20200101-20200630.csv",

"eurgbp-20200101-20200630.csv",

"eurusd-20200101-20200630.csv"

)

Call Map to read each dataset with scan and determine the minimal, mean, and maximal value
in each series.

Exercise 7.7 Implement your own version of the Filter function based on a call to Map.

7.3 Accessing third-party functions
Whenwe indulge in the writing of a software piece, a few questions naturally arise. Is
the problem we are facing fairly complex? Has it already been successfully addressed
in its entirety? If not, can it, or its parts, be split into manageable chunks? Can it be
constructed based on some readily available nontrivial components?

A smart developer is independent, but knows when to stand on the shoulders to cry
on. Let us explore some ways in which we can reuse the existing function libraries.

7.3.1 Using R packages
Most contributed R extensions come in the form of the so-called add-on packages,
which can include:

• reusable code (e.g., new functions),

• data (which we can exercise on),

• documentation (manuals, vignettes, etc.);

see Section 9.3.2 for somemore and [59] for all the details.

Most packages are published in the moderated repository that is part of the Compre-
hensive R Archive Network (CRAN5). However, there are also other popular sources such
as Bioconductor6 which specialises in bioinformatics.

To fetch a package pkg from a repository (CRAN by default; see, however, the repos

argument), we call install.packages("pkg").

A call to library("pkg") loads an indicated package and makes the exported objects
available to the user (i.e., attaches it to the search path; see Section 16.2.6).

For instance, in one of the previous chapters, we have mentioned the gsl package:

5 https://cloud.r-project.org/
6 https://bioconductor.org/

https://cloud.r-project.org/
https://bioconductor.org/
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# call install.packages("gsl") first

library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf_poch() from GNU GSL

## [1] 1320 17160 240240 3603600

Here, poch is an object exported by package gsl. If we did not call library("gsl"),
trying to access the former would result in an error.

We could also have accessed the above functionwithout attaching it to the search path
by using the pkg::object syntax, i.e., gsl::poch.

Exercise 7.8 Use the find function to determine which packages define the following objects:
mean, var, find, and Map. Recall from Section 1.4 where such information can be found in these
objects’ manual pages.

Note For more information about any R extension, call help(package="pkg"). Also,
it is a good idea to visit the package’s CRAN entry at an address like https://CRAN.R-
project.org/package=pkg to access some additional information (e.g., vignettes; see also
vignette(package="pkg")). Why waste our time and energy by querying a web search
engine thatwill leadus to some (usually low-quality)middlemanwhenyoucanacquire
authoritative knowledge directly from the source?

Moreover, it is worth exploring various CRAN Task Views7 that group the packages
into topics such as Genetics, Graphics, and Optimisation. These are edited by experts in
their relevant fields.

Important Frequently, R packages are written in their respective authors’ free time,
many of whom are volunteers/public servants/enthusiasts who are neither paid for
doing this nor it is part of the so-called their job. You can show appreciation for their
generosity by, e.g., spreading the word about their software by citing them in public-
ations (see citation(package="pkg")), talking about themduring lunch time, ormen-
tioning them in (un)social media. You can also help them improve the existing code
base by reporting bugs, polishing documentation, proposing new features, or clean-
ing up the redundant fragments of their APIs. Some readers will become one of them
someday (when they will come up with something useful for our community).

Default packages

Note that the always-on package base is a must-have that provides us with the most
crucial functions (vector addition, c, Map, library). Certain other packages are also
loaded by default:

7 https://cloud.r-project.org/web/views/

https://cloud.r-project.org/web/views/
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getOption("defaultPackages")

## [1] "datasets" "utils" "grDevices" "graphics" "stats"

## [6] "methods"

Although this list can, technically speaking, be changed, in this book we assume that
the above are always attached, because it is reasonable to do so. This is why in Sec-
tion 2.4.5, there was no need to call, for example, library("stats") before referring
to the var and sd functions.

On a side note, grDevices and graphics will be discussed in Chapter 13. methods will
be mentioned in Section 11.5. datasets brings a few example R objects that we can
exercise our skills on. Functions from utils, graphics, and stats, on the other hand,
already appeared here and there.

Source vs binary packages (*)

R is a free and open project, therefore its packages are published primarily in the
source form – so that anyone can study how they work and improve them or reuse
parts thereof in different projects.

If we call install.packages("path", repos=NULL, type="source"), we should be able
to install a package fromsources: path can either bepinpointing adirectory or a source
tarball (see help("untar"), most often as a compressed pkg_version.tar.gz file).

Note thattype="source" is thedefaultunlessone isonW****wsor somem**OSboxes;
see getOption("pkgType"). This is because these two might require additional build
tools to be present in the system, especially if a package features C, C++, or Fortran
code; see Chapter 14 and Section C.3 of [61]:

• Rtools8 onW****ws,

• Xcode Command Line Tools9 onm**OS.

Because of these systems’ being less developer-oriented, as a courtesy to their users,
CRAN also distributes the platform-specific binary versions of the packages (.zip or
.tgz files). install.packageswill try to fetch them by default.

Example 7.9 It is very easy to fetch a package’s source directly from GitLab or GitHub, which
are quite popularhostingplatforms these days.At the time ofwriting this, the relevant linkswere,
respectively:

• https://gitlab.com/user/repo/-/archive/branch/repo-branch.zip

• https://github.com/user/repo/archive/branch.zip

For example, to download the contents of themaster branch in the repository rpackagedemo
owned by gagolews, we can call:

8 https://cran.r-project.org/bin/windows/Rtools/
9 https://developer.apple.com/xcode/resources/

https://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/resources/
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f <- tempfile() # temporary file name - download destination

download.file("https://github.com/gagolews/rpackagedemo/archive/master.zip",

destfile=f)

Next, the contents can be extracted with unzip:

t <- tempdir() # temporary directory to extract the files to

(d <- unzip(f, exdir=t)) # returns extracted file paths

The path where the files were extracted can be passed to install.packages:

install.packages(dirname(d)[1], repos=NULL, type="source")

file.remove(c(f, d)) # clean up

Exercise 7.10 Use the git2r package to clone the git repository located at https://github.com/
gagolews/rpackagedemo.git and install the package published therein from the current R ses-
sion.

7.3.2 Managing dependencies (*)
The currently-installed add-on packages may be upgraded to their most recent ver-
sions available on CRAN (or other indicated repository) by calling update.packages.

As a general rule, themore experienced developers we become, the less excited we get
about thenew. Sure, bugfixesandsomewell-thoughtof additional features areusually
welcome, but just wewait until an updated package API for the n-th time, n≥2, breaks
our program that used to work flawlessly for so long.

Hence, when designing software projects (see Chapter 9 for more details), it is essen-
tial that we ask ourselves the ultimate question: dowe really need to import that pack-
age with lots of dependencies from which we will just use only about 3–5 functions?
Wouldn’t it be better to write our own version of some functionality (and learn some-
thing new, exercise our brain, etc.) or call a mature terminal-based tool?

Otherwise, as all the historical versions of all the packages are archived on CRAN10,
some software dependency management can easily be conducted by storing differ-
ent version of packages in different directories (only one version of a package can be
loaded at a time though).Thisway,we can create some sort of an isolated environment
for the add-ons.

To fetch the locations where packages are sought (in this very order), call:

.libPaths()

## [1] "/home/gagolews/R/x86_64-pc-linux-gnu-library/4.3"

## [2] "/usr/local/lib/R/site-library"

## [3] "/usr/lib/R/site-library"

## [4] "/usr/lib/R/library"

10 https://cran.r-project.org/src/contrib/Archive/

https://github.com/gagolews/rpackagedemo.git
https://github.com/gagolews/rpackagedemo.git
https://cran.r-project.org/src/contrib/Archive/
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Thesame function canbeused to addnew folders to the searchpath; see also the envir-
onment variable R_LIBS_USER (e.g., help("Sys.setenv")). The install.packages func-
tion will honour them as target directories, see its lib parameter for more details.

Moreover, thepackagesmaydeposit someauxiliary data on theuser’smachine.There-
fore, it might be a good idea to set the following directories (via the corresponding
environment variables) as relative to the current project:

tools::R_user_dir("pkg", "data") # R_USER_DATA_DIR

## [1] "/home/gagolews/.local/share/R/pkg"

tools::R_user_dir("pkg", "config") # R_USER_CONFIG_DIR

## [1] "/home/gagolews/.config/R/pkg"

tools::R_user_dir("pkg", "cache") # R_USER_CACHE_DIR

## [1] "/home/gagolews/.cache/R/pkg"

7.3.3 Calling external programs
Many tasks can naturally be accomplished by calling external programs. Such an ap-
proach is particularly natural onUnix-like systems,which classically followamodular,
minimalist design patterns: there are many tools at a developer’s hand and each tool
is specialised at solving a single, well-defined problem.

Apart from the many standard Unix commands11, we can consider, for example:

• pandoc12 converts documents betweenmarkup formats, e.g.,Markdown, reStruc-
turedText, LaTeX, LibreOfficeWriter, EPUB;

• pdflatex, xelatex, and lualatex compile LaTeX documents to PDF;

• convert (from ImageMagick13) applies various operations on bitmap graphics (scal-
ing, cropping, conversion between formats);

• graphviz14 and PlantUML15 can be used to create various graphs and diagrams;

• jupyter-nbconvert converts Jupyter16 notebooks (see Section 1.2.5) to other
formats such as LaTeX, HTML, Markdown, etc.;

• python,{program}perl,…canbecalled toperformtasks that canbeexpressedmore
easily in languages other than R;

and so forth.

Good news is that R not only can be called from the shell (in an interactive or batch
mode; see Section 1.2), but also it can serve well as a glue language itself.

The system2 function can be used to invoke any system command. Communication

11 https://en.wikipedia.org/wiki/List_of_Unix_commands
12 https://pandoc.org/
13 https://imagemagick.org/
14 https://graphviz.org/
15 https://plantuml.com/
16 https://jupyter.org/

https://en.wikipedia.org/wiki/List_of_Unix_commands
https://pandoc.org/
https://imagemagick.org/
https://graphviz.org/
https://plantuml.com/
https://jupyter.org/
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between such programs can be done bymeans of, e.g., intermediate text, JSON, CSV,
XML, or any other files.The stdin, stdout, and stderr arguments can be used to con-
trol the redirection of the standard I/O streams.

system2("pandoc", "-s input.md -o output.html")

system2("bash", "-c 'for i in `seq 1 2 10`; do echo $i; done'", stdout=TRUE)

## [1] "1" "3" "5" "7" "9"

system2("python3", "-", stdout=TRUE,

input=c(

"import numpy as np",

"print(repr(np.arange(5)))"

))

## [1] "array([0, 1, 2, 3, 4])"

Note that the current working directory can be read and changed bymeans of a call to
getwd and setwd, respectively. It is the directory fromwhere the current R session was
started.

Important Relying on system2 assumes that the commands referred to are available
on the target platform.Hence, itmightnot beportable, unless additional assumptions
are made (e.g., that a user runs some Unix system, that certain libraries are installed
therein). We strongly recommend GNU/Linux or FreeBSD for both software devel-
opment and production use, as they are free, open, developer-friendly, user-loving,
reliable, ethical, and sustainable.

7.3.4 A note on interfacing C, C++, Python, Java, etc. (*)
Most stand-alone data processing algorithms are implemented in compiled, slightly
lower-level programming languages. This usually makes them faster and more re-
usable in other environments. For instance, it is often the case that an industry-
standard library is written in very portable C, C++, or Fortran and has some bindings
available for easier access fromwithinR, Python, Julia, etc.This is the casewith FFTW,
LIBSVM,mlpack, OpenBLAS, ICU, and GNUGSL, amongst many others.

For basic ways to interact with such compiled code, see Chapter 14.

Also, the rJava package can be used to dynamically create JVMobjects and access their
fields and methods. Similarly, reticulate can be used to access Python objects, in-
cluding numpy arrays and pandasdata frames (but see also the rpy2package forPython).

Important We should not feel obliged to use R in all the parts of a data pro-
cessing pipeline. Some activities can be expressed more naturally in other lan-
guages/environments (e.g., parse rawdata and create an SQL database in Python, but
visualise it in R). We can use other tools as the glue language (including R, Python, or
Bash) that will steer the data flow in the right direction.
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7.4 Exercises
Exercise 7.11 Answer the following questions:

• What is the result of “x <- 2; x <- function(x) x^2; x(x)”?

• How to write a function that returns two objects?

• What is a higher-order function?

• What are the use cases of do.call?

• Why a call to Map is not necessary in the expression “Map(paste, x, y, z)”?

• What is the difference between Map(mean, x, na.rm=TRUE) and Map(mean, x, More-

Args=list(na.rm=TRUE))?

• What do wemean when we write stringx::sprintf?

• How to get access to the vignettes (tutorials, FAQs, etc.) of the data.table and dplyr pack-
ages? Why perhaps 95% of R users would just googleit and what is sub-optimal about this
strategy?

• What is the difference between a source and a binary package?

• How to update the base package?

• How to assure that we will always run an R session with only specific versions of a set of
packages?

Exercise 7.12 Write a function that computes the Gini index of a vector of positive integers x,
which, assuming 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑛, is equal to:

𝐺(𝑥1, … , 𝑥𝑛) =
∑𝑛

𝑖=1(𝑛 − 2𝑖 + 1)𝑥𝑖

(𝑛 − 1) ∑𝑛
𝑖=1 𝑥𝑖

.

Exercise 7.13 Implement a function between(x, a, b) that verifies whether each element
in x is in the [a, b] interval or not. Return a logical vector of the same length as x. Make sure
the function is correctly vectorised with respect to all the arguments and handles missing data
correctly.

Exercise 7.14 Write your own version of the strrep function called dup.

dup <- ...to.do...

dup(c("a", "b", "c"), c(1, 3, 5))

## [1] "a" "bbb" "ccccc"

dup("a", 1:3)

## [1] "a" "aa" "aaa"

dup(c("a", "b", "c"), 4)

## [1] "aaaa" "bbbb" "cccc"
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Exercise 7.15 Given a list x, generate its sublist with all the elements equal to NULL removed.

Exercise 7.16 Implement your own version of the built-in sequence function.

Exercise 7.17 Using Map, how can we generate window indexes like:

## [[1]]

## [1] 1 2 3

##

## [[2]]

## [1] 2 3 4

##

## [[3]]

## [1] 3 4 5

##

## [[4]]

## [1] 4 5 6

Write a function windows(k, n) that yieldsk indexwindowswith elements between 1 andn (the
above example is for k=3 and k=6).

Exercise 7.18 Implement a function movstat(f, x, k) that computes, using Map, a given ag-
gregate f of each k consecutive elements in x. For instance:

movstat <- ...to.do...

x <- c(1, 3, 5, 10, 25, -25) # example data

movstat(mean, x, 3) # 3-moving mean

## [1] 3.0000 6.0000 13.3333 3.3333

movstat(median, x, 3) # 3-moving median

## [1] 3.0000 6.0000 13.3333 3.3333

Exercise 7.19 Write a function to extract all q-grams, q ≥ 1, from a given character vector.
Return a list of character vectors. For examples, 2-grams (bigrams) in "abcd" are: "ab", "bc",
“cd”`.

Exercise 7.20 Recodea character vectorwitha small number of distinct values toavectorwhere
each unique code is assigned a positive integer from 1 to k. Example calls and the corresponding
expected results:

recode <- ...to.do...

recode(c("a", "a", "a", "b", "b"))

## [1] 1 1 1 2 2

recode(c("x", "z", "y", "x", "y", "x"))

## [1] 1 3 2 1 2 1

Exercise 7.21 Implement a function that returns the number of occurrences of each unique ele-
ment in a given atomic vector.The return value should be anumeric vector equippedwith a names
attribute.
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count <- ...to.do...

count(c(5, 5, 5, 5, 42, 42, 954))

## 5 42 954

## 4 2 1

count(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", NA_character_))

## w x y z <NA>

## 1 5 3 1 1

Hint: use match and tabulate.

Exercise 7.22 Implement a function that extends upon the built-in duplicated, indicating
which occurrence (starting from the beginning of the vector) of a repeated value a given value
constitutes.

duplicatedn <- ...to.do...

duplicatedn(c("a", "a", "a", "b", "b"))

## [1] 1 2 3 1 2

duplicatedn(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", "z"))

## [1] 1 1 1 2 2 3 1 4 5 3 2

Exercise 7.23 Based on a call to Map, implement a function my_split such that, given a vec-
tor x and an atomic vector y of the same length as x, my_split(x, y) yields the same result as
split(x, y).

Exercise 7.24 Extend my_split to handle the second argument being a list of the form
list(y1, y2, ...) that represents the product of many levels. If the ys are of different lengths,
apply the recycling rule.

Exercise 7.25 Implement my_unsplit being your own version of the built-in unsplit. Make
sure it holds my_unsplit(split(x, g), g) == x for x and g of the same lengths.

Exercise 7.26 Write a function that takes as arguments: (a) an integer n, (b) a numeric vector
x of length k and no duplicated elements, (c) a vector of probabilities p of length k; verify that
𝑝𝑖 ≥ 0 for all 𝑖 and ∑𝑘

𝑖=1 𝑝𝑖 ≃ 1. Based on a random number generator from the uniform
distribution on the unit interval, generate n independent realisations of a random variable 𝑋
such that Pr(𝑋 = 𝑥𝑖) = 𝑝𝑖 for 𝑖 = 1, … , 𝑘. Hint: to obtain a single value:
1. generate 𝑢 ∈ [0, 1],

2. find𝑚 ∈ {1, … , 𝑘} such that 𝑢 ∈ (∑𝑚−1
𝑗=1 𝑝𝑗, ∑

𝑚
𝑗=1 𝑝𝑗],

3. the result is then 𝑥𝑚.

Exercise 7.27 Write a function that takes as arguments: (a) an increasingly sorted vector x of
length n, (b) any vector y of length n, (c) a vector z of length k and elements in [𝑥1, 𝑥𝑛). Let 𝑓 be
the piecewise linear spline that interpolates the points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛). Return a vector w
of length k such that𝑤𝑖 = 𝑓 (𝑧𝑖).
Exercise 7.28 (*) Write functions dpareto, ppareto, qpareto, and rpareto that implement
the basic functions related to the Pareto distribution; compare Section 2.3.4.
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8
Flow of execution

The ifelse and Map functions are very powerful, but they allow us to process only the
consecutive elements in a vector.

Thus, let us (finally!) discuss different ways to alter a program’s control flowmanually,
based on some criterion, and to evaluate the same expression a number of times, but
perhapsondifferentdata.Beforeproceedingany further, let us, however, contemplate
on the fact that we have managed to do without them for such a long time – and the
data processing exercises we learnt to solve were far from trivial.

8.1 Conditional evaluation
Life is full of surprises, so we would be nice if we were able to adapt to whatever the
circumstances are going to be.

The following evaluates a given expression if and only if a logical condition is true.

if (condition) expression

When performing some other_expression is preferred rather than doing nothing in
the case of the condition’s being false, we can write:

if (condition) expression else other_expression

For instance:

(x <- runif(1)) # to spice things up

## [1] 0.28758

if (x > 0.5) cat("head") else cat("tail")

## tail

Many expressions can of course be grouped with curly braces, `{`.

if (x > 0.5) {

cat("head")

x <- 1

(continues on next page)
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} else {

cat("tail")

x <- 0

}

## tail

print(x)

## [1] 0

Important At the top level,we shouldnot put anew line before else, otherwisewewill
get an error like Error: unexpected 'else' in "else".This is because the interpreter
enthusiastically executes the statements been read line by line as soon as it regards
them as stand-alone expressions. In this case, we first get an if without else, and
then, separately, a dangling elsewithout the preceding if.

This does not happen when a conditional statement is part of an expression group,
because the latter is read in its entirety.

function (x)

{ # opening bracket – start

if (x > 0.5)

cat("head")

else # not dandling, because {...} is read as a whole

cat("tail")

} # closing bracket – expression ends

As an exercise, try removing the curly braces and see what happens.

8.1.1 Return value
`if` is a function (compare Section 9.4), hence has a return value – the result of eval-
uating the conditional expression.

(x <- runif(1))

## [1] 0.28758

y <- if (x > 0.5) "head" # no else

print(y)

## NULL

y <- if (x > 0.5) "head" else "tail"

print(y)

## [1] "tail"

This is particularly useful when a call to `if` is the last expression in the code block
constituting a function’s body.
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mint <- function(x)

{

if (x > 0.5) # the last expression (actually, the only one)

"head" # this can be the return value...

else

"tail" # or this one, depending on the condition

}

mint(x)

## [1] "tail"

unlist(Map(mint, runif(5)))

## [1] "tail" "head" "tail" "head" "head"

Example 8.1 Add-on packages can be loaded using requireNamespace. Contrary to library,
the former does not fail when a package is not available. Also, it does not attach it to the search
path; see Section 16.2.6.

Instead, it returns a logical value indicating if the package is available for use. This can be use-
ful inside other functions where the availability of some additional features depends on the user
environment’s configuration:

process_data <- function(x)

{

if (requireNamespace("some_extension_package", quietly=TRUE))

some_extension_package::very_fast_method(x)

else

normal_method(x)

}

8.1.2 Nested ifs
If more than two test cases are possible, i.e., when we need to go beyond either con-
dition or !condition, then we can use the following construction:

if (a) {

expression_a

} else if (b) {

expression_b

} else if (c) {

expression_c

} else {

expression_else

}

This evaluates all conditions a, b, … (in this order) until the first positive case is found,
and then executes the corresponding expression.
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Note that the above is nothing else than a series of nested if statements:

if (a) {

expression_a

} else {

if (b) {

expression_b

} else {

if (c) {

expression_c

} else {

expression_else

}

}

}

but written in a less readable1manner.

Exercise 8.2 Write a function named sign that determines if a given numeric value is "pos-
itive", "negative", or "zero".

8.1.3 Condition: Either TRUE or FALSE
if expects a condition that is a single, well-defined logical value, either TRUE or FALSE.
Thence, problemsmay arise when this is not the case.

If the condition is of length not equal to one, we get an error:

if (c(TRUE, FALSE)) cat("spam")

## Error in if (c(TRUE, FALSE)) cat("spam"): the condition has length > 1

if (logical(0)) cat("bacon")

## Error in if (logical(0)) cat("bacon"): argument is of length zero

We cannot pass a missing value either:

if (NA) cat("ham")

## Error in if (NA) cat("ham"): missing value where TRUE/FALSE needed

Important If we think that we are absolutely immune to thewriting of code violating
the above constraints, just we wait until the condition becomes a function of data for
which there is no sanity-checking in place.

mint <- function(x)

if (x > 0.5) "H" else "T"

(continues on next page)

1 (*) Somewhat related is the switch function which relies on lazy evaluation of its arguments (Chapter
17). Still, it can always be replaced by a series of ifs.
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mint(0.25)

## [1] "T"

mint(runif(5))

## Error in if (x > 0.5) "H" else "T": the condition has length > 1

mint(log(rnorm(1))) # not obvious, only triggered sometimes

## Warning in log(rnorm(1)): NaNs produced

## Error in if (x > 0.5) "H" else "T": missing value where TRUE/FALSE needed

In Chapter 9, we will be particularly interested in ways to assure input data integrity,
so that situations such as above will either fail gracefully or succeed bombastically.

Here, we should probably make sure that x is a single finite numeric value. Alternat-
ively, we had rather test whether all(x > 0.5, na.rm=TRUE).

Interestingly, objects other that logical are accepted: they will be coerced if needed.

x <- 1:5

if (length(x)) # i.e., length(x) != 0, but way less readable

cat("length is not zero")

## length is not zero

Recall that coercion of numeric to logical yields FALSE if and only if the original value
is zero.

8.1.4 Short-circuit evaluation
Specially for formulating logical conditions in if and while (see below), we have the
scalar `||` (alternative) and `&&` (conjunction) operators.

FALSE || TRUE

## [1] TRUE

NA || TRUE

## [1] TRUE

Contrary to their vectorised counterparts (`|` and `&`), the scalar operators are lazy
(Chapter 17) in the sense that they evaluate the first operand and then determine if the
computing of the second one is necessary (because, e.g., FALSE && whatever is always
FALSE anyway).

Therefore,

if (a && b)

expression

is equivalent to:
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if (a) {

if (b) { # compute b only if a is TRUE

expression

}

}

and:

if (a || b)

expression

corresponds to:

if (a) {

expression

} else if (b) { # compute b only if a is FALSE

expression

}

For instance, “is.vector(x) && length(x) > 0 && x[[1]] > 0” is a safe test that
takes into account that “x[[1]]” has only the desired meaning for objects that are not
non-empty vectors.

Some other examples (recall that the expressionswithin the curly braces are evaluated
one after another and that the result is determined by the last value in the series):

{cat("spam"); FALSE} || {cat("ham"); TRUE} || {cat("cherries"); FALSE}

## spamham

## [1] TRUE

{cat("spam"); TRUE} && {cat("ham"); FALSE} && {cat("cherries"); TRUE}

## spamham

## [1] FALSE

Exercise 8.3 Study the source code of isTRUE and isFALSE and determine if these functions
could be useful in formulating the conditions within the if expressions.

8.2 Exception handling
Exceptions are exceptional, but theymayhappenandbreak things. For instance,when
we try to download a file and the internet connection drops. Or an optimisation al-
gorithm fails to converge. Or we just have a bug in our code. Or:

read.csv("/path/to/a/file/that/does/not/exist")

## Warning in file(file, "rt"): cannot open file '/path/to/a/file/that/does/

(continues on next page)
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## not/exist': No such file or directory

## Error in file(file, "rt"): cannot open the connection

Three types of conditions are frequently observed:

• errors – they stop the flow of execution,

• warnings – non critical, but can be turned into errors (see warn in option),

• messages – they transmit some diagnostic information.

These can be manually triggered by means of stop, warning, and message functions.

Errors (but warnings too) can be handled bymeans of the tryCatch function, amongst
others.

tryCatch({ # block of expressions to execute, until an error occurs

cat("a\n")

stop("b") # error – breaks the linear control flow

cat("c\n")

},

error = function(e) { # executed immediately upon an error

cat(sprintf("error: %s\n", e[["message"]]))

},

finally = { # always executed at the end, regardless of error occurrence

cat("finally!\n")

}

)

## a

## error: b

## finally!

The two other conditions can be ignored by calling suppressWarnings and suppress-

Messages.

log(-1)

## Warning in log(-1): NaNs produced

## [1] NaN

suppressWarnings(log(-1)) # yeah, yeah, we know what we're doing

## [1] NaN

Exercise 8.4 At the time ofwriting of this book, the data.table package emits amessage upon
attachment. Call suppressMessages to silence it. Note that consecutive calls to library do not
reload an already loaded package, therefore the message will only be seen once per R session.

Related functions include stopifnot discussed in Section 9.2 and on.exitmentioned
in Section 17.4; see also Section 9.3.3 for some code debugging tips.
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8.3 Repeated evaluation
And now for something completely different… time for the elephant in the room!

We have been able to do without loops so far (and will be quite all right in the second
part of the book too), because many data processing tasks can be written in terms of
vectorised operations such as `+`, sqrt, sum, `[`, Map, and Reduce. Oftentimes, com-
pared to their loop-based counterparts, they are not onlymuchmore readable but also
more efficient. We will explore this in the exercises below.

However, at times, using an explicit while or for loop might be the only natural way
of solving a problem, for instance, when processing chunks of data streams. Also, an
explicitly “looped” algorithmmay occasionally have better2 time ormemory complex-
ity.

8.3.1 while

if considers a given logical condition and thus determines whether to execute a given
statement. On the other hand,

while (condition) # single TRUE or FALSE, as in `if`

expression

evaluates a given expression as long as the logical condition is true.Therefore, it is ad-
visable to make the condition dependent upon some variable that can be modified by
the expression.

i <- 1

while (i <= 3) {

cat(sprintf("%d, ", i))

i <- i + 1

}

## 1, 2, 3,

Nested loops are of course possible too:

i <- 1

while (i <= 2) {

j <- 1

while (j <= 3) {

cat(sprintf("%d %d, ", i, j))

j <- j + 1

}

cat("\n")

(continues on next page)

2 But in such cases it will often benefit from a rewrite in C or C++; see Chapter 14.
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i <- i + 1

}

## 1 1, 1 2, 1 3,

## 2 1, 2 2, 2 3,

Example 8.5 Implement a simple linear congruential pseudorandom number generator that,
given some seed𝑋0 ∈ [0, 𝑚), outputs a sequence (𝑋1, 𝑋2, … ) defined by:

𝑋𝑖 = (𝑎𝑋𝑖−1 + 𝑐) mod 𝑚,

with, e.g., 𝑎 = 75, 𝑐 = 74, and𝑚 = 216 + 1 (here,mod is the division reminder, `%%`). Note
that this generatorhaspoor statistical propertiesandshouldnotbeused inpractice. Inparticular,
after some number of operations 𝑘, we will find a cycle such that𝑋𝑘 = 𝑋1, 𝑋𝑘+1 = 𝑋2, ….

8.3.2 for

The for-each loop:

for (name in vector)

expression

takes each element, from the beginning to the end, in a given vector, assigns it some
name, and evaluates the expression.

Example:

fridge <- c("spam", "spam", "bacon", "eggs")

for (food in fridge)

cat(sprintf("%s, ", food))

## spam, spam, bacon, eggs,

Onemore:

for (i in 1:length(fridge)) # better: seq_along(fridge), see below

cat(sprintf("%s, ", fridge[i]))

## spam, spam, bacon, eggs,

Just one more, promise:

for (i in 1:2) {

for (j in 1:3)

cat(sprintf("%d %d, ", i, j))

cat("\n")

}

## 1 1, 1 2, 1 3,

## 2 1, 2 2, 2 3,



146 I DEEP

Note that the iterator still exists after the loop’s watch has ended:

print(i)

## [1] 2

print(j)

## [1] 3

Important Writing:

for (i in 1:length(x))

print(x[i])

is not necessarily safe, because if x is an empty vector, then:

x <- logical(0)

for (i in 1:length(x)) print(x[i])

## [1] NA

## logical(0)

Recall fromChapter 5 that x[1] tries to access an out of bounds element here and x[0]
returns nothing.

Wegenerally suggest replacing1:length(x)withseq_along(x)orseq_len(length(x)).
wherever possible.

Note Themodel for loop above is roughly equivalent to:

name <- NULL

tmp_vector <- vector

tmp_iter <- 1

while (tmp_iter <= length(tmp_vector)) {

name <- tmp_vector[[tmp_iter]]

expression

tmp_iter <- tmp_iter + 1

}

Note that tmp_vector is determined before the loop itself. Hence, any changes to vec-
torwill not influence the execution flow. Also note that due to the use of `[[`, the loop
can be applied on lists as well.

Example 8.6 Let x be a list and f be a function.The following code generates the same result as
Map(f, x):

n <- length(x)

(continues on next page)



8 FLOW OF EXECUTION 147

(continued from previous page)

ret <- vector("list", n) # a new list of length `n`

for (i in seq_len(n))

ret[[i]] <- f(x[[i]])

Example 8.7 Letxandybe two listsandfbea function.Here is themostbasic versionofMap(f,
x, y). Note that x and ymight be of different lengths.

nx <- length(x)

ny <- length(y)

n <- max(nx, ny)

ret <- vector("list", n)

for (i in seq_len(n))

ret[[i]] <- f(x[[((i-1)%%nx)+1]], y[[((i-1)%%ny)+1]])

Feel free to upgrade the above byaddingawarning like the longer argument is not amultiple
of the length of the shorter one. Also, rewrite itwithout the use of themodulo operators, `%%`.

8.3.3 break and next
break canbeused to escape the current loop. next skips the remaining expressions and
advances to the next iteration (to where the testing of the logical condition occurs).

Here is a rather random example:

x <- runif(1000)

s <- 0

for (e in x) {

if (e > 0.1)

next

print(e)

if (e < 0.01)

break

s <- s + e

}

## [1] 0.045556

## [1] 0.04206

## [1] 0.024614

## [1] 0.045831

## [1] 0.094841

## [1] 0.00062477

print(s)

## [1] 0.2529
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Computes the sum of the elements in x that are less than or equal to 0.1 from the be-
ginning, stopping at the first element less than 0.01.

Note that we have used the frequently occurring design pattern:

for (e in x) {

if (condition)

next

many_statements...

}

which is equivalent to:

for (e in x) {

if (!condition) {

many_statements...

}

}

but avoids introducing a nested block of expressions.

Note (*) There is a third loop type,

repeat

expression

which is a shorthand for

while (TRUE)

expression

i.e., it is a possibly infinite loop. Such loops are useful when implementing situations
such as do-stuff-until-a-thing-happens, e.g., when we want to execute a command at
least once.

i <- 1

repeat { # while (TRUE)

# simulate dice casting until we throw "1"

if (runif(1) < 1/6) break # not an infinite loop after all

i <- i+1

}

print(i)

## [1] 6

Exercise 8.8 What is wrong with the following code?
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j <- 1

while (j <= 10) {

if (j %% 2 == 0) next

print(j)

j <- j + 1

}

Exercise 8.9 What about this one?

j <- 1

while (j <= 10);

j <- j + 1

8.3.4 return

return, when called from within a function, immediately yields a specified value and
goes back to the caller.

For example, here is a simple recursive function that flattens a given list:

my_unlist <- function(x)

{

if (is.atomic(x))

return(x)

# so if we are here, x is definitely not atomic

out <- NULL

for (e in x)

out <- c(out, my_unlist(e))

out # or return(out); it's the last expression anyway, so not necessary

}

my_unlist(list(list(list(1, 2), 3), list(4, list(5, list(6, 7:10)))))

## [1] 1 2 3 4 5 6 7 8 9 10

Note that return is a function: the round brackets are obligatory,

8.3.5 A note on time and space complexity of algorithms (*)
Analysis of algorithms (e.g., [14, 40]), can give us a rough estimate of their run times
or memory consumption as a function of the input data size, especially for big data.

In scientific computing and data science, wemost often deal with vectors (sequences)
or matrices/data frames (tabular data). Therefore, we might be interested in determ-
ining howmany primitive operations need to be performed as a function of their length
n or the number of rows n and columns p, respectively.
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TheO (Big-Oh) notation, for instance, can express the upper bounds for time/resource
consumption in asymptotic cases. For instance, we say that the time complexity is
𝑂(𝑛2), if for large 𝑛, the number of operations to perform will be proportional to at
most the square of the vector size (more precisely, there exists𝑚 and 𝐶 > 0 such that
for all 𝑛 > 𝑚, the number of operations is≤ 𝐶𝑛2).

Therefore, if we have two algorithms that solve the same task, one that has𝑂(𝑛2) time
complexity, and other of 𝑂(𝑛3), it is better to choose the former, because for large
problem sizes we expect it to be faster.

Moreover, whether time grows proportionally to log 𝑛, √𝑛, 𝑛, 𝑛 log𝑛, 𝑛2, 𝑛3, or 2𝑛,
can be useful in predicting how big the data can be if we have a fixed deadline or not
too much space left on the disk.

Exercise 8.10 The hclust function determines a hierarchical clustering of a dataset. It is fed
with an object that stores the distance between all the pairs of input points.There are𝑛(𝑛−1)/2
(i.e.,𝑂(𝑛2)) unique point pairs for any givenn. One numeric scalar (double type) takes 8 bytes
of storage. If you have 16 GB or RAM, what is the largest dataset that you can cluster on your
machine using this function?

Oftentimes, we can learn about the time or memory complexity of the functions we
use from their documentation; see, e.g., help("findInterval").

Example 8.11 Acourse indata structures inalgorithms,which this one isnot,will giveusplenty
of opportunities to implementmany algorithms ourselves.This way, we can gain a lot of insights
and intuitions.

For instance, this is a𝑂(𝑛)-time algorithm:

for (i in seq_len(n))

expression

and this is one runs in𝑂(𝑛2) time:

for (i in seq_len(n))

for (j in seq_len(n))

expression

as long as, of course, the expression is rather primitive (e.g., operations on scalar variables).

R is a very expressive language and hence quite complex and lengthy operations can look pretty
innocent (it is a glue language for rapid prototyping, after all).

For example:

for (i in seq_len(n))

for (j in seq_len(n))

z <- z + x[[i]] + y[[j]]

can be seen as𝑂(𝑛3) if each element in the lists x and y as well as z itself are atomic vectors of
length n.
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Similarly,

Map(mean, x)

is𝑂(𝑛2) if x is a list of n atomic vectors each of length n.

Note A quite common statistical scenario involves the generation of a data buffer of
a fixed size:

ret <- c()

for (i in n)

ret[[i]] <- generate_data(i) # here: ret[[length(ret)+1]] <- ...

Thisnotation, however, involves the growingof the ret array in each iteration. Luckily,
sinceR version 3.4.0, each such size extensionhas amortised𝑂(1) timedue to the fact
that some more memory is internally reserved for its prospective growth (dynamic
arrays; see, e.g., Chapter 17 of [14]).

However, it would still be better to pre-allocate the output vector and grant it the de-
sired, final size already upon creation.

Note that we can construct vectors of specific lengths and types in an efficient way
(more efficient than with rep) by calling:

numeric(3)

## [1] 0 0 0

numeric(0)

## numeric(0)

logical(5)

## [1] FALSE FALSE FALSE FALSE FALSE

character(2)

## [1] "" ""

vector("numeric", 8)

## [1] 0 0 0 0 0 0 0 0

vector("list", 2)

## [[1]]

## NULL

##

## [[2]]

## NULL

Note Not all data fit intomemory, but it does notmean thatwe should start installing
Apache Hadoop and Spark immediately. Some datasets can be processed on a chunk-
by-chunk basis.
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R enables data stream handling (some can be of infinite length) through file connec-
tions, for example:

f <- file("https://github.com/gagolews/teaching-data/raw/master/README.md",

open="r") # a big file, the biggest file ever

i <- 0

while (TRUE) {

few_lines <- readLines(f, n=4) # read only four lines at a time

if (length(few_lines) == 0) break

i <- i + length(few_lines)

}

close(f)

print(i) # the number of lines

## [1] 90

Many functions support reading from/writing to already established connections of
different types, e.g., file, gzfile, textConnection, batch-by-batch.

A frequent scenario involves reading a very large CSV, JSON, or XML file only thou-
sands of lines/records at a time, parsing and cleansing them, and exporting to SQL
databases (which we will exercise in Chapter 12).

Also note that the always-open text connections stdout and stderr (for writing), and
stdin (for reading) are by default mapped to the “terminal/console” and “keyboard”,
respectively. Call scan, cat, and stop to interact with such sources/targets.

8.4 Exercises
Note that, from now on, we should stay alert. Many, if not all, of the following tasks
can still be implemented without the explicit use of the R loops, but based only on the
operations covered in the previous chapters. If this is the case, try implementing both
the looped and loop-free version. Use microbenchmark::microbenchmark or proc.time
to compare the run-times3.

Exercise 8.12 Answer the following questions:

• Let x be a numeric vector.When does if(x > 0) ... yield awarning?When does it give an
error? How to prevent this?

• What is the dangling else?

• What happens if you put if as the last expression in a curly braces block within a function’s
body?

3 It might be the case that a for-based solution is faster (e.g., for larger objects) because of the use of a
more efficient algorithm. Such cases will especially benefit from a rewrite in C or C++ (Chapter 14).
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• Why do we say that `&&` and `||` are lazy?What are their use cases?

• What is the difference between `&&` and `&`?

• Can while always be replaced with for?What about the other way around?

• What is wrong with “return (1+2)*3”?

Exercise 8.13 Verify which of the following can be safely used as logical conditions in if state-
ments. If that is not the case for all x, y, …, determine the additional conditions that should be
imposed in order to make them valid.

• x == 0,

• x[y] > 0,

• any(x>0),

• match(x, y),

• any(x %in% y).

Exercise 8.14 What can gowrong in the following code chunk, depending on the type and form
of x? Consider as many scenarios as possible.

count <- 0

for (i in 1:length(x))

if (x[i] > 0)

count <- count + 1

Exercise 8.15 Implement shift_left(x, n) and shift_right(x, n). The former function
gets rid of the first n observations in xandaddsnmissing values at the end of the resulting vector,
e.g., shift_left(c(1, 2, 3, 4, 5), 2) is c(3, 4, 5, NA, NA). On the other hand,
shift_right(c(1, 2, 3, 4, 5), 2) is c(NA, NA, 1, 2, 3).

Exercise 8.16 Implement your own version of diff.

Exercise 8.17 Write a function that determines the longest increasing trend in a given numeric
vector, i.e., the length of the longest subsequence of consecutive elements that are increasing. For
example, the input c(1, 2, 3, 2, 1, 2, 3, 4, 3) should yield 4.

Exercise 8.18 Implement the functions that round down and round up, to a number of decimal
digits, each element in a numeric vector.

This concludes the first part of this magnificent book.
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9
Designing functions

In Chapter 7, we learnt how to write our own functions.This skill is vital to enforcing
the good development practice of avoiding the repetition of code: running the same
command sequence on different data.

This chapter is devoted to the designing of such reusable modules so that they are
easier to use, test, andmaintain.We also provide somemore technical details, which
were not of the highest importance upon our first exposure to this topic, but which
are crucial to our better understanding of how R works.

9.1 Principles of sustainable design
Good design is more art than science. As usual in real life, we will need to makemany
compromises. This is because improving things with regard to one criterion some-
times makes them worse with respect to other aspects1 (also which we are not aware
of). Also, not everything that counts can and will be counted. Below are some obser-
vations, ideas, and food for thought.

9.1.1 Towrite or to abstain
Functions that we write ourselves can oftentimes be consideredmerely creative com-
binations of the building blocks available in base R or a few high-quality add-on pack-
ages2. Some are simpler than others. Thus, there is a question if a new operation
should be introduced at all: whether we are faced with the case ofmultiplying entities
without necessity.

On the onehand, theDRY (don’t repeat yourself) principle tells us thatmost frequently
used (say, at least three times) code chunks should be generalised in the form of a new
function. As far as non-trivial operations are concerned, this is definitely a correct
approach.

On the other hand, not every generalisation is necessarily welcome. Let us say that we
are lazy and tired of writing g(f(x)) for the n-th time. Why don’t we therefore intro-

1 Compare the notion of Pareto efficiency.
2 If some non-trivial operation is missing, we can always implement it at the C language level; see

Chapter 14.
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duce h defined as a combination of g and f? This might seem like a good idea, but let
us not take it for granted: being tired might be an indication of our body and mind
needing a rest; being lazy can be a call for more self-discipline (not an overly popular
word these days, but still, a precious trait).

Example 9.1 paste0 is a specialised version of paste, but having the sep argument hardcoded
to an empty string.

• Even if this might be the most often applied use case, is the introduction of a new function
justifiable? Is it so hard to write “paste=""” each time?

• Would changing paste’s default argument be better? That of course would harm backward
compatibility, but what strategies could we apply to make the transition as smooth as pos-
sible?

• Would it be better to introduce a new version of pastewith sep defaulting to "", informing
the users that the old version is deprecated and to be removed in, say, two years? Or maybe
one year is better? Or five?

Example 9.2 In R 4.0, deparse1 has been introduced: it is merely a combination of deparse
(see below) and paste:

print(deparse1)

## function (expr, collapse = " ", width.cutoff = 500L, ...)

## paste(deparse(expr, width.cutoff, ...), collapse = collapse)

## <environment: namespace:base>

Let us say this covers 90%of use cases: was introducing it a justified idea then?What if that num-
ber was 99%?

Overall, more functions contribute to the information overload. We do not want our
users to be overwhelmed by toomany choices. Luckily, nothing is cemented once and
for all. Had we done bad design choices resulting in our API’s being bloated, we can
always clean up those that no longer spark joy.

9.1.2 To pamper or to challenge
Think about the kind of audience we would like to serve: is it our team only, students,
professionals, certain client groups, etc.? Do they have mathematical, programming,
engineering, or scientific background? Not everything that is appropriate for one co-
hort, will be valuable for another. And not everything that is good for some now, will
be beneficial for them in the long run. People (their skills, attitudes, etc.) change.

Example 9.3 Assumewearewritinga friendlyand inclusivepackage fornoviceswhowould like
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to grasp the basics of data analysis as quickly3 as possible.Without much effort, it would enable
them to solve 80–95% of the most common, easy problems.

Think of introducing the students to a function that returns five largest observations in a given
vector. Let us call it nlargest: so pleasant to use. It makes the students feel empowered quickly.

Still,when facedwith the remaining5–20%tasks, theywillhave to learnanother,moreadvanced,
generic, and powerful tool anyway (in our case, the baseR itself). Are they determined and skilled
enough to do that? Time will tell.The least we can do is to be explicit about it.

Recall that it took us some time to arrive at order and subsetting via `[`. Assuming that we read
this book from the beginning to the end and solve all the exercises, which we should, we are now
able to implement the said nlargest (and lots of other functions) ourselves, using a single line of
code. This will also pay off in many scenarios that we will be facing in the future, e.g., when we
consider matrices and data frames.

Yes, everyone will be reinventing their own nlargest this way. But this constitutes a great exer-
cise: by our being too nice, some might have lost an opportunity to learn a new, more universal
skill.

Although most of the users would really love to minimise the effort put into all their
activities, ultimately, they sometimes need to learn new things. Let us thus not be
afraid to teach them stuff.

Furthermore, we do not want to discourage experts (or experts to-be) by presenting
themwithoverly simplified solutions that keep theirhands tiedwhensomethingmore
ambitious needs to be done.

9.1.3 To build or to reuse
In the short term, the fail fast philosophy encourages us to build our applications using
prefabricatedcomponents.This is fantastic at theearly stageof its life cycle. Ifwebuild
something really simple orwhosepurpose ismerely to illustrate an idea, show-off how
“awesome” we are, or to educate, let us be explicit about it so that other users do not
feel obliged to treat our product (exercise) seriously.

In the (not so likely, probabilistically speaking) event of its becoming successful, we
should start thinking about the project’s long-term stability and sustainability. After
all, relying on third-party functions, packages, or programsmakes our software pro-
jects less… independent.This may be problematic, because:

• the dependencies might not be available on every platform or may behave differ-
ently across various system configurations,

3Wewill leave the reflection on whether this is at all feasible for another time.
Note that this strategy is employed bymany companies (and drug dealers): make the introductory exper-

ience super-smooth and fun. At the same time, do not allow your users to become independent too easily.
Instead, make them rely on your product lines/proprietary solutions/payable services etc.
The free softwaremovement,with its do-it-yourself approach, emphasises onusers’ becoming autonom-

ous.This does not contradict the user-friendliness (but that many open-source projects could benefit from
becoming less exclusive is a different story, and this book tries to make a change in this area too).
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• they may be huge (and can depend on other external software too),

• their APIs may change which could result in our project’s not working anymore,

• their functionality can change which can lead to some unexpected behaviours.

Hence, it might be a good idea to rewrite some parts from scratch on our own.

Exercise 9.4 Identify someR packages onCRANwithmany dependencies. Seewhat functions
do they import from other packages. How often it is just a few lines of code?

TheUnix philosophy emphasises upon the building and using of minimalist yet non-
trivial, single-purpose, high quality pieces of software that can work as parts of more
complex pipelines. R serves as a glue language quite well.

In the long run, some of our software projectsmight converge to such a tool – itmight
be a good idea to standardise our API (e.g., make it available from the command-line;
Section 1.2) so that the users of other languages can benefit from our work too.

Important If our project is merely a modified interface/front-end to a standalone
programdeveloped by others, we should be humble about it andmake sure it is not us
who get all the credit for other people’s work.

Also,we should state very clearly howcan theoriginal tools beused to achieve the same
goals, e.g., when working from the command line.

9.2 Managing data flow
A function,most of the time, can and should be treated as a black box: its callers donot
have to care what it hides inside. After all, they are supposed to use it: given some in-
puts, they expect awell-defined (read: explained in verydetail in the function’smanual;
see Section 9.3.2) outputs.

9.2.1 Checking input data integrity and argument handling
A function takes R objects of any kind as arguments, but it does notmean that feeding
it with every- or any-thing is healthy for its guts.

When designing functions, it is best to handle the inputs in a manner similar to base
R’s behaviour.This will make our contributions easier to handle.

Unfortunately, base R functions frequently do not handle arguments of similar kind
100% consistently. Such variability might be due to many reasons and, in essence, is
not necessarily bad. Usually, there might be many different possible behaviours and
choosingoneover anotherwillmakea fewusersunhappyanyway.Somechoicesmight
not be optimal, but they are for historical compatibility (e.g., with S). Of course, it
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might also happen (but the probability is low) that there is a bug or something is not
at all well designed.

This iswhy it is better to keep the vocabulary quite restricted (andweadvocate for such
minimalism in this book): even if there are exceptions to the general rules, with fewer
functions, they are simply easier to remember.

Consider the following case study, illustrating that even the extremely simple scenario
where we deal with a single positive integer, is not necessarily straightforward.

Exercise 9.5 Inmathematical notation, we usually denote the number of objects in a collection
with the famous “n”.

It is implicitly assumed that such n is a single natural number (although whether this includes
0 or not should be specified at some point). The functions runif, sample, seq, rep, strrep, and
class::knn take it as arguments.But nothingprevents their users from trying to challenge them
by passing:

• 2.5, -1, 0, 1-1e-16 (non-positive numbers, non-integers);

• NA_real_, Inf (not finite);

• 1:5 (not of length 1; after all, there are no scalars in R)

• numeric(0) (an empty vector);

• TRUE, NA, c(TRUE, FALSE, NA), "1", c("1", "2", "3") (non-numeric, but coercible to);

• list(1), list(1, 2, 3), list(1:3, 4) (non-atomic);

• "spam" (utter nonsense);

• as.matrix(1), factor(7), factor(c(3, 4, 2, 3)), etc. (compound types; see Chapter
10).

Read the aforementioned functions’ reference manuals and call them on different inputs, noting
how differently they handle such atypical arguments.

Sometimes we will rely on other functions to handle the data integrity checking for
us.

Example 9.6 Let us consider the following function that generates n pseudorandom numbers
from the unit interval rounded to d decimal digits. We strongly believe or hope (good faith and
high competence assumption) that its authors knewwhat they were doing when they wrote:

round_rand <- function(n, d)

{

x <- runif(n) # runif will check if `n` makes sense

round(x, d) # round will determine the appropriateness of `d`

}

What constitutes correct n and d and how the function behaves when not provided with positive
integers is determined by the two underlying functions, runif and round:
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round_rand(4, 1) # the expected use case

## [1] 0.3 0.8 0.4 0.9

round_rand(4.8, 1.9) # 4, 2

## [1] 0.94 0.05 0.53 0.89

round_rand(4, NA)

## [1] NA NA NA NA

round_rand(0, 1)

## numeric(0)

If well thought-out and adequately documented, many such design choices can be
defended. Some programmers will opt for high uniformity/compatibility across nu-
merous tools, but there are cases where some exceptions/diversity domore good than
harm.

Yet, we should keep inmind that the functions wewritemight be part of amore com-
plicated data flow pipeline, where some other function generates a value that we did
not expect (because of a bug therein or because we did not study its manual) and this
value is used as input to our function. In our case, this would correspond to the said n
or d being determined programmatically.

Example 9.7 Continuing the previous example, the followingmight be somewhat challenging
with regard to our being flexible and open-minded:

round_rand(c(100, 42, 63, 30), 1) # length(c(...)), 1)

## [1] 0.7 0.6 0.1 0.9

round_rand("4", 1) # as.numeric(...), 1

## [1] 0.2 0.0 0.3 1.0

Sure, it is quite convenient, but might lead to problems that are hard to diagnose.

Also note the not-really informative error messages in cases like:

round_rand(NA, 1)

## Error in runif(n): invalid arguments

round_rand(4, "1")

## Error in round(x, d): non-numeric argument to mathematical function

Hence, some defensive designmechanisms are not a bad idea, especially if they lead to
generating an informative error message.

Important stopifnotgives a convenientmeans to assert the enjoyment of our expect-
ations about a function’s arguments (or some intermediate values). A call to stopi-

fnot(cond1, cond2, ...) is more or less equivalent to:

if (!(is.logical(cond1) && !any(is.na(cond1)) && all(cond1)))

stop("`cond1` are not all TRUE")

if (!(is.logical(cond2) && !any(is.na(cond2)) && all(cond2)))

(continues on next page)
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(continued from previous page)

stop("`cond2` are not all TRUE")

...

Thus, if all the elements in the given logical vectors are TRUE, nothing happens and we
can safely move on.

Example 9.8 We can rewrite the above function as follows:

round_rand2 <- function(n, d)

{

stopifnot(

is.numeric(n), length(n) == 1,

is.finite(n), n > 0, n == floor(n),

is.numeric(d), length(d) == 1,

is.finite(d), d > 0, d == floor(d)

)

x <- runif(n) # runif will check if n makes sense

round(x, d) # round will determine the appropriateness of d

}

round_rand2(5, 1)

## [1] 0.7 0.7 0.5 0.6 0.3

round_rand2(5.4, 1)

## Error in round_rand2(5.4, 1): n == floor(n) is not TRUE

round_rand2(5, "1")

## Error in round_rand2(5, "1"): is.numeric(d) is not TRUE

This implements the strictest test for “a singlepositive integer”possible. In the caseofanyviolation
of the underlying condition, we get a very informative error message.

Example 9.9 At other times, wemight be interested in argument checking like:

if (!is.numeric(n))

n <- as.numeric(n)

if (length(n) > 1) {

warning("only the first element will be used")

n <- n[1]

}

n <- floor(n)

stopifnot(is.finite(n), n > 0)

This way, "4" and c(4.9, 100)will all be accepted as 44.

We see that there is always a tension between being generous/flexible and pre-
cise/restrictive. Also, for some functions, it will be better to behave differently than

4 Note that here we rely on S3 generics is.numeric and as.numeric; see Section 10.4.
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the others, because of their particular use cases. Too much uniformity is as bad as
chaos. Overall, we should rely on common sense, but add some lightweight foolproof
mechanisms.

It is our duty to be explicit about all the assumptions wemake or exceptions we allow
(by writing good documentation; see Section 9.3.2).

We will revisit this topic in Section 10.4.

Note Example exercises related to the improving of the consistency of base R’s hand-
ling of arguments in different domains include the vctrs and stringx packages5. Can
these contributions be justified?

Exercise 9.10 Reflect on how you would handle the following scenarios (and how base R and
other packages or languages you know deals with them):

• a vectorised mathematical function (empty vectors? non-numeric inputs? what if it is
equipped with the names attribute? what if it has other ones?);

• an aggregation function (what about missing values? empty vectors?);

• a function vectorised with regard to two arguments (elementwise vectorisation? recycling
rule? only scalar vs vector or vector vs vector of the same length allowed? what if one argu-
ment is a row vector and the other is a column vector);

• a function vectorised with respect to all arguments (really all? maybe some exceptions are
necessary?);

• a function vectorisedwith respect to thefirst argument but not the second (why sucha restric-
tion? when?).

Find a few functions that match each case.

9.2.2 Putting outputs into context
The functions we write do not exist in a vacuum. We should put them into a much
broader context: how are they going to be used when combined with other tools?

As a general rule, our functions should generate outputs of predictable kind, so that
when we write and read the code chunks that utilise them, we can easily deduce what
is going to happen.

Example 9.11 Some base R functions do not adhere to this rule for the sake of (questionable)
users’ convenience.Wewill meet a few of them in Chapter 11 and Chapter 12. In particular, sap-
ply and the underlying simplify2array, can return a list, an atomic vector, or amatrix.

simplify2array(list(1, 3:4)) # list

## [[1]]

(continues on next page)

5 Yours truly is the author of the latter and thus is guilty of multiplying entities beyond necessity.
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(continued from previous page)

## [1] 1

##

## [[2]]

## [1] 3 4

simplify2array(list(1, 3)) # vector

## [1] 1 3

simplify2array(list(1:2, 3:4)) # matrix

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

Further, the index operator with drop=TRUE, which is the default, may output an atomic vector.
But it may as well yield amatrix or a data frame.

(A <- matrix(1:6, nrow=3)) # an example matrix

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

A[1, ] # vector

## [1] 1 4

A[1:2, ] # matrix

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

A[1, , drop=FALSE] # matrix with 1 row

## [,1] [,2]

## [1,] 1 4

We proclaim that the default functions’ behaviour should be to return the object of
the most generic kind possible (if there are other options), and then to either have a
further argument whichmust be explicitly set if we really wish to simplify the output,
or we should ask the user to call a simplifier explicitly.

In the latter case, the simplifier should probably fail issuing an error if it is unable
to neaten the object or at least apply some brute force solution (e.g., or “fill the gaps”
somehow itself, possibly with a warning).

Example 9.12 For instance:

as.numeric(A[1:2, ]) # always returns a vector

## [1] 1 2 4 5

stringi::stri_list2matrix(list(1, 3:4)) # fills the gaps with NAs

## [,1] [,2]

## [1,] "1" "3"

## [2,] NA "4"
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Ideally, a function should perform one (and only one) well-defined task. If a function
tends to generate objects of different kinds, depending on the arguments provided,
maybe it is better to write two functions instead?

Exercise 9.13 Functions such as rep, seq, and sample do not performa single task.Or do they?

Note (*) In a purely functional programming language, we can assume the so-called
referential transparency: a call to a pure function can always safely be replaced with the
value it is supposed to generate. If this is true, then for the same set of argument val-
ues, the output is always the same. Furthermore, there are no side effects. In R, it is
not really the case:

• a call can introduce/modify/delete variables in other environments (see Chapter
16), e.g., the state of the random number generator,

• due to lazy evaluation, functions are free to interpret the argument forms (passed
expressions, i.e., not only: values) inwhateverway they like (see Section 9.5.7, Sec-
tion 12.3.9, and Section 17.5),

• printing, plotting, file reading, database access have apparent consequences with
regard to the state of some external resources.

Important Each function must return some value, but there are several instances
(e.g., plotting, printing), where this does not make sense.

In such a case,we should consider returning invisible(NULL), a NULLwhosefirst print-
ing will be suppressed.

Compare the following:

(function() NULL)() # anonymous function, called instantly

## NULL

(function() invisible(NULL))() # printing suppressed

x <- (function() invisible(NULL))()

print(x) # no longer invisible

## NULL

Take a look at the return value of the built-on cat.
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9.3 Organising andmaintaining functions
9.3.1 Function libraries
Definitions of frequently-used functions or datasets can be emplaced in separate
source files (.R extension) for further reference.

Such libraries can be executed by calling:

source("path_to_file.R")

Exercise 9.14 Create a source file (script) named mylib.R, where you define a function called
nlargestwhich returns a few largest elements in a given atomic vector.

Fromwithin another script, call source("mylib.R") (note that relative paths to refer to the cur-
rent working director; (compare Section 2.1.6) and then write a few lines of code where you test
nlargest on some example inputs.

9.3.2 Writing R packages (*)
When a function library grows substantially, or when there is a need for equipping it
with the relevantmanual pages6 (Section 9.3.2) or compiled code (Chapter 14), turning
it into an own R package (Section 7.3.1) might be a good idea (even if it is only for our
own or small team’s purpose).

Important Note that you do not have to publish your package on CRAN7. Many users
are tempted to submit whatever they have been tinkering around with for a while.
Have mercy on the busy CRANmaintainers and do not contribute to the information
overload, unless you have comeupwith something potentially useful for other R users
(make it less about you, and more about the community; thank you in advance). R
packages can always be hosted on and installed from, for instance, GitLab or GitHub.

Package structure (*)

A source package is merely a directory containing some special files and subdirectories:

• DESCRIPTION – a text file that gives the name of the package, its version, authors,
dependencies upon other packages, license, etc.;

• NAMESPACE – a text file containing directives stating which objects are to be expor-
ted so that they are available to the package users, and which names are to be im-
ported from other packages;

6This should read: i.e., always.
7 And always consult the CRAN Repository Policy at https://cran.r-project.org/web/packages/policies.

html.

https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
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• R – a directory with R scripts (.R files), which define, e.g., functions, example
datasets, etc.;

• man – a directory with R documentation files (.Rd), describing at least all the ex-
ported objects; see Section 9.3.2;

• src – optional; compiled code, see Chapter 14;

• tests – optional; tests to run on the package check, see Section 9.3.3.

See Section 1 in [59] formoredetails andother options: there is noneed for us to repeat
the information from the official manual as everyone can read it themself.

Exercise 9.15 Inspect the source codeof the examplepackageavailable fordownload fromhttps:
//github.com/gagolews/rpackagedemo/.

Building and installing (*)

Recall from Section 7.3.1 that a source package can be built and installed by calling:

install.packages("pkg_directory", repos=NULL, type="source")

Then it canbeusedas anyotherRpackage (Section 7.3.1). Inparticular, it canbe loaded
and attached to the search path (Section 16.2.6) via a call to:

library("pkg")

This makes all the objects marked as exportable in its NAMESPACE file available to the
user; see also Section 16.3.5.

Exercise 9.16 Create your own package mypkg featuring some of the solutions to the exercises
you have solved whilst studying the material in the previous chapters. When in doubt, refer to
the official manual, [59].

Note (*)The building and installing of packages also be done from the command line:

R CMD build pkg_directory # creates a distributable source tarball (.tar.gz)

R CMD INSTALL pkg-version.tar.gz

R CMD INSTALL --build pkg_directory

Also, someusers could potentially benefit fromcreating ownMakefiles that help auto-
mate the processes of building, testing, checking, etc.

Documenting R packages (*)

Documenting functions and commenting code thoroughly is critical, even if we just
write for ourselves. Most programmers sooner or later will note that they find it hard
to determine what a piece of code is doing after they took a break from it. In some
sense, we always write for external audiences, which includes our future self.

https://github.com/gagolews/rpackagedemo/
https://github.com/gagolews/rpackagedemo/
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The help system is one of the stronger assets of the R environment. By far we should
have interacted with many man pages and got a good idea of what constitutes an in-
formative documentation piece.

From the technical side, R Documentation (.Rd) files should be emplaced in the man
subdirectory of a source package. All exported objects (e.g., functions) should be de-
scribed clearly. Additional topics can be covered too.

During the package install, the .Rd files are converted to various output formats, e.g.,
HTML or plain text, and displayed upon a call to the well-known help function.

Documentation files use a LaTeX-like syntax, which looks quite obscure to an un-
trained eye.The relevant commands are explained in very detail in Section 2 ofWriting
R Extensions [59].

Note The process of writing .Rd files by hand might be tedious, especially keep-
ing track of the changes to the \usage and \arguments commands. Rarely do we re-
commend the use of third-party packages, because base R facilities are usually good
enough, but roxygen2 might be worth a try, because it really makes the developers’
lives easier. Most importantly, it allows for documentation to be specified alongside
the functions’ definitions, which is muchmore natural.

Exercise 9.17 Add a fewmanual pages to your example R package.

9.3.3 Assuring quality code
Below we mention some good development practices related to maintaining quality
code. This is an important topic, but writing about them is tedious to the same ex-
tent that reading about them is boring, because it is themore-artistic part of software
engineering. After all, these are some heuristics that are learnt best by observing and
mimicking what the others are doing (and hence the exercises below will encourage
to do so).

Managing changes andworking collaboratively

It is a good idea to employ some source code version control system, such as git, to
keep track of the changes made to the software.

Note It is worth investing some time and effort to learn how to use git from the com-
mand line; see https://git-scm.com/doc.

There are a few hosting providers for git repositories, with GitLab and GitHub being
particularly popular choices amongst open-source software developers.

Not only do they support working collaboratively on the projects, they also are
equipped with additional tools for reporting bugs, suggesting feature requests, etc.

https://git-scm.com/doc
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Exercise 9.18 Find where the source code of some of your favourite R packages or other open-
source projects is hosted. Explore the corresponding repositories, feature trackers, wikis, discus-
sion boards, etc. Note that each community is different and is governed by different guidelines:
after all, we are from all over the world.

Test-driven development and continuous integration

It is often hygienic to include some principles of test-driven development when writ-
ing own functions.

Exercise 9.19 Assume that, for some reasons, we were asked to write a function to compute the
root mean square (quadratic mean) of a given numeric vector. Before implementing the actual
routine, it is a good idea to reflect upon what we want to achieve, especially how we want our
function to behave in certain boundary cases.

stopifnot gives simple means to ensure a given assertion is fulfilled. If that is the case, it will
move forward quietly.

Let us say we have come up with the following set of expectations:

stopifnot(all.equal(rms(1), 1))

stopifnot(all.equal(rms(1:100), 58.16786054171151931769))

stopifnot(all.equal(rms(rep(pi, 10)), pi))

stopifnot(all.equal(rms(numeric(0)), 0))

Write a function rms that fulfils the above assertions.

Exercise 9.20 Implement your own version of the sample function (assuming replace=TRUE),
using calls to runif. Start by writing a few unit tests.

There are also a couple of R packages that support writing and executing unit tests,
including testthat, tinytest (which is a lighter-weight version of the former), RUnit,
or realtest. However, in the most typical use cases, relying on stopifnot is powerful
enough.

Exercise 9.21 (*) Consult theWriting R Extensions manual [59] about where and how to
include unit tests in your example package.

Note (*) R includes a built-in mechanism to check a couple of code quality areas:
running R CMD check pkg_directory from the command line (preferably using the
most recent version of R) can suggest a number of improvements.

Also, it is possible to use various continuous integration techniques that are automat-
ically triggered when pushing changes to our software repositories; see GitLab CI or
GitHub Actions. For instance, it is possible to run a package build, install, and check
process upon every git commit. Also, CRAN features some continuous integration
services, including checking the package on a range of different platforms.
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Debugging

For all his life, the current author has been debugging his programs primarily by
manually printing the state of the suspicious variables (printf and the like) indifferent
areas of the code. Hahaha, so old school. Yet, weirdly efficient.

R has an interactive debugger; see the browser function. Also, refer to Section 9 of [63]
for more details.

Some IDEs (e.g., RStudio) support this feature, too; see their corresponding docu-
mentation.

Profiling

Typically, a program spends a relatively long time executing only a small portion of
code. The Rprof function can be a helpful tool to identify which chunks might need a
rewrite, for instance, using a compiled language (Chapter 14).

Please remember, though, that not only implementations of algorithms that have
hight computational complexity can form a bottleneck, but also data input and out-
put (such as reading files fromdisk, printingmessages, on the console, queryingWeb
APIs, etc.).

9.4 Special functions: Syntactic sugar
Some functions, such as `*`, are somewhat special. They can be referred to using an
alternative syntax which, for some reason,most of us accepted as the default one. Be-
low we will reveal, amongst others, that “5 * 9” reduces to an ordinary function call:

`*`(5, 9) # a call to `*` with 2 arguments, equivalent to 5 * 9

## [1] 45

9.4.1 A note on backticks
In Section 2.2, we have mentioned that we can assign (as in `<-`) syntactically valid
names to our objects. Most identifiers comprised of letters, digits, dots, and under-
scores can be used directly in R code.

Nevertheless, it is possible to label our objects howeverwe like: non-syntactically valid
(nonstandard) identifiers just need to be enclosed in backticks (back quotes, grave ac-
cents):

`42 a quite peculiar name :O lollolll` <- c(a=1, `b c`=2, `42`=3, `!`=4)

1/(1+exp(-`42 a quite peculiar name :O lollolll`))

## a b c 42 !

## 0.73106 0.88080 0.95257 0.98201
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Of course, such names are less convenient, but still: backticks let us refer to them in
any context.

9.4.2 Dollar, `$` (*)
Thedollar operator, `$`, can be used as an alternative accessor to a single element in a
named list8.

If label is a syntactically valid name, then x$label does the same job as x[["label"]]
(saving five keystrokes: such a burden!).

x <- list(spam="a", eggs="b", `eggs and spam`="c", best.spam.ever="d")

x$eggs

## [1] "b"

x$best.spam.ever # recall that a dot has no special meaning in most contexts

## [1] "d"

Nonstandard names must still be enclosed in backticks

x$`eggs and spam` # x[["eggs and spam"]] is okay as usual

## [1] "c"

We are minimalist-by-design here. Thence, we will tend to avoid this operator, as
it does not really increase the expressive power of our function repertoire. Also, it
neither works on atomic vectors nor onmatrices.

Furthermore, it does not work with names that are generated programmatically:

what <- "spam"

x$what # the same as x[["what"]] – we don't want this

## NULL

x[[what]] # works fine

## [1] "a"

The support for the partial matching of element names has been added to provide the
users working in quick-and-dirty, interactive programming sessionswith some relief
in the case where they find the typing of the whole label extremely problematic:

x$s # x[["s"]] would return NULL; you will get no warning here!

## Warning in x$s: partial match of 's' to 'spam'

## [1] "a"

It is generally a bad programming practice, because the result depends on the names
of other items in x (which might change later) and can decrease code readability. The
only reason why we have obtained a warningmessage was because this book enforces
the options(warnPartialMatchDollar=TRUE) setting, which, sadly, is not the default.

8 And hence also from data frames.
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Note the behaviour on ambiguous partial matches:

x$egg # ambiguous resolution

## NULL

As well as on element assignment:

x$s <- "e"

str(x)

## List of 5

## $ spam : chr "a"

## $ eggs : chr "b"

## $ eggs and spam : chr "c"

## $ best.spam.ever: chr "d"

## $ s : chr "e"

This did not modify spam: it added a new element, s.

9.4.3 Curly braces, `{`
A block of statements grouped with curly braces, `{`, corresponds to a function call.
When we write:

{

print(TRUE)

cat("two")

3

}

## [1] TRUE

## two

## [1] 3

The parser translates it to a call to:

`{`(print(TRUE), cat("two"), 3)

## [1] TRUE

## two

## [1] 3

When the above is executed, every argument, one by one, is evaluated. Then, the last
value is returned as the result of that call.

9.4.4 `if`
if is a function, too; as mentioned in Section 8.1, it returns the value corresponding
to the expression evaluated conditionally. Hence, wemay write:
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if (runif(1) < 0.5) "head" else "tail"

## [1] "head"

but also:

`if`(runif(1) < 0.5, "head", "tail")

## [1] "head"

Note A call like `if`(test, what_if_true, what_if_false) can only work correctly
because of the lazy evaluation of function arguments; see Chapter 17.

On a side note, while, for, repeat can also be called that way, but they return invis-

ible(NULL).

9.4.5 Operators are functions too
Calling built-in operators as functions

Every arithmetic, logical, and relational operator is translated to a call to the corres-
ponding function. For instance:

`<`(`+`(`*`(`-`(3), 4)), 5) # 2+(-3)*4 < 5

## [1] TRUE

Also, x[i] is equivalent to `[`(x, i) and x[[i]]maps to `[[`(x, i).

Knowing this will not only enable us to manipulate unevaluated R code (Chapter 15)
or access the corresponding manual pages (see, e.g., help("[")), but also write some
expressions in a more concise manner. For instance,

x <- list(1:5, 11:17, 21:23)

unlist(Map(`[`, x, 1)) # 1 is a further argument passed to `[`

## [1] 1 11 21

is equivalent to a call to Map(function(e) e[1], x).

Note Unsurprisingly, the assignment operator, `<-`, is a function too. It returns the
assigned value, invisibly.

Knowing that `<-` binds right to left (compare help("Syntax")), this iswhy the expres-
sion “a <- b <- 1” results in both a and b being assigned 1: it is equivalent to “`<-`("a",
`<-`("b", 1))” and “`<-`("b", 1)” returns 1.

Owing to the pass-by-value semantics (Section 9.5.1) we can also expect that we will
alwaysbe (with theexceptionof environments,Chapter 16) assigninga copyof thevalue
on the righthand side.
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x <- 1:6

y <- x # makes a copy (but delayed, on demand, for performance reasons)

y[c(TRUE, FALSE)] <- NA_real_ # modify every 2nd element

print(y)

## [1] NA 2 NA 4 NA 6

print(x) # state of x has not changed — x and y are different objects

## [1] 1 2 3 4 5 6

This is especially worth pointing out to Python (amongst others) programmers, where
the above assignment would mean that x and y both refer to the same (shared) object
in the computer’s memory.

However, with no harm done to semantics, the actual copying of x is postponed until
absolutely necessary (Section 16.1.4). This is efficient both time- andmemory-wise.

Creating own binary operators

We can also introduce our own binary operators named like `%myopname%`:

`%:)%` <- function(e1, e2) (e1+e2)/2

5 %:)% 1:10

## [1] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Recall that `%%` and `%/%` are built-in operators denoting division remainder and in-
teger division. Rarely will we be defining our own operators, but when we encounter
a similar one next time, wewill no longer be surprised. For instance, in Chapter 11, we
will learn about `%*%`, which implements matrix multiplication.

Note In Chapter 10, we will note that most existing operators can be overloaded for
objects of different types.

9.4.6 Replacement functions
Functions generally do not change the state of their arguments. However, there is
some syntactic sugar that allows us to replace objects or parts thereof with new con-
tent. We call them replacement functions.

For instance, three of the following calls replace the input xwith its modified version:

x <- 1:5 # example input

x[3] <- 0 # replace the 3rd element with 0

length(x) <- 7 # "replace" length

names(x) <- LETTERS[seq_along(x)] # replace the names attribute

print(x) # `x` is now different

(continues on next page)
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(continued from previous page)

## A B C D E F G

## 1 2 0 4 5 NA NA

Creating replacement functions

A replacement function is a mapping named like `name<-` with at least two paramet-
ers:

• x (the object to be modified),

• ... (possible further arguments),

• value (as the last parameter; the object on the righthand side of the `<-` operator).

Most often, we will be interacting with existing replacement functions, not creating
our own ones. But knowing how to do the latter is key to understanding this language
feature.

For example:

`add<-` <- function(x, where=TRUE, value)

{

x[where] <- x[where] + value

x # the modified object that will replace the original one

}

The above aims to add some value to a subset of the input vector x (by default, to each
element therein) and return its altered version that will replace the object it has been
called upon.

y <- 1:5 # example vector

add(y) <- 10 # calls `add<-`(y, value=10)

print(y) # y has changed

## [1] 11 12 13 14 15

add(y, 3) <- 1000 # calls `add<-`(y, 3, value=1000)

print(y) # y has changed again

## [1] 11 12 1013 14 15

We see that calling “add(y, w) <- v” works as if we have called “y <- `add<-`(y, w,

value=v)”.

Note (*) According to [63], a call “add(y, 3) <- 1000” is a syntactic sugar precisely for:

`*tmp*` <- y # temporary substitution

y <- `add<-`(`*tmp*`, 3, value=1000)

rm("*tmp*") # remove the named object from the current scope

Thishas at least two implications. First, in the unlikely event that a variable `*tmp*` ex-
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istedbefore the call to the replacement function, itwill benomore, itwill cease tobe. It
will be an ex-variable. Second, the temporary substitution guarantees that ymust ex-
ist before the call (a function’s body does not have to refer to all the arguments passed;
because of lazy evaluation, see Chapter 17, we could get away with it otherwise).

Substituting parts of vectors

The replacement versions of the subsetting operators are named as follows:

• `[<-` is used in substitutions like “x[i] <- value”,

• `[[<-` is called when we perform “x[[i]] <- value”,

• `$<-` is used whilst calling “x$i <- value”.

Here is a use case:

x <- 1:5

`[<-`(x, c(3, 5), NA_real_) # returns a new object

## [1] 1 2 NA 4 NA

print(x) # does not change the original input

## [1] 1 2 3 4 5

On a side note, `length<-` can be used to expand or shorten a given vector by calling
“length(x) <- new_length”; see also Section 5.3.3.

x <- 1:5

x[7] <- 7

length(x) <- 10

print(x)

## [1] 1 2 3 4 5 NA 7 NA NA NA

length(x) <- 3

print(x)

## [1] 1 2 3

Despite the fact that, semantically speaking, calling `[<-` results in the creation of a
new vector (a modified version of the original one), we may luckily expect some per-
formance optimisations happening behind the scenes.

Exercise 9.22 Write a function `extend<-`, which pushes new elements at the end of a given
vector, modifying it in place.

`extend<-` <- function(x, value) ...to.do...

Example use:

x <- 1

extend(x) <- 2 # push 2 at the back

extend(x) <- 3:10 # add 3, 4, ..., 10

(continues on next page)
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print(x)

## [1] 1 2 3 4 5 6 7 8 9 10

Replacing attributes

Many replacement functions deal with the re-setting of objects’ attributes (Sec-
tion 4.4).

In particular, for each special attribute, there is also its replacement version, e.g.,
`names<-`, `class<-`, `dim<-`, `levels<-`, etc.

x <- 1:3

names(x) <- c("a", "b", "c") # change the `names` attribute

print(x) # x has been altered

## a b c

## 1 2 3

Individual (arbitrary, including non-special ones) attributes can be set using `attr<-`
and all of them can be established by means of a single call to `attributes<-`.

x <- "spam"

attributes(x) <- list(shape="oval", smell="meaty")

attributes(x) <- c(attributes(x), taste="umami")

attr(x, "colour") <- "rose"

print(x)

## [1] "spam"

## attr(,"shape")

## [1] "oval"

## attr(,"smell")

## [1] "meaty"

## attr(,"taste")

## [1] "umami"

## attr(,"colour")

## [1] "rose"

Also note that setting an attribute to NULL results, by convention, in its removal:

attr(x, "taste") <- NULL # this is tasteless now

print(x)

## [1] "spam"

## attr(,"shape")

## [1] "oval"

## attr(,"smell")

## [1] "meaty"

## attr(,"colour")

(continues on next page)
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## [1] "rose"

attributes(x) <- NULL # remove all

print(x)

## [1] "spam"

Which can be useful in contexts such as:

x <- structure(c(a=1, b=2, c=3), some_attrib="value")

y <- `attributes<-`(x, NULL)

Here, x retains its attributes, and y is a version of xwith metadata removed.

Compositions of replacement functions

Updating only selected names like:

x <- c(a=1, b=2, c=3)

names(x)[2] <- "spam"

print(x)

## a spam c

## 1 2 3

is possible due to the fact that “names(x)[i] <- v” is equivalent to:

old_names <- names(x)

new_names <- `[<-`(old_names, i, value=v)

x <- `names<-`(x, value=new_names)

Important More generally, a composition of replacement calls “g(f(x, a), b) <- y”
yields a result equivalent to “x <- `f<-`(x, a, value=`g<-`(f(x, a), b, value=y))”.
Note that both f and `f<-` need to be defined, but having g is not necessary.

Exercise 9.23 (*)What is “h(g(f(x, a), b), c) <- y” equivalent to?

Exercise 9.24 Write a (very handy!) function `recode<-` which replaces specific elements in
a character vector with some other ones, allowing the following interface:

`recode<-` <- function(x, value) ...to.do...

x <- c("spam", "bacon", "eggs", "spam", "eggs")

recode(x) <- c(eggs="best spam", bacon="yummy spam")

print(x)

## [1] "spam" "yummy spam" "best spam" "spam" "best spam"

We see that the named character vector gives a few from="to" pairs, e.g., all eggs are to be re-
placed by best spam.
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Now, determine which calls are equivalent to the following:

x <- c(a=1, b=2, c=3)

recode(names(x)) <- c(c="z", b="y") # or equivalently = ... ?

print(x)

## a y z

## 1 2 3

y <- list(c("spam", "bacon", "spam"), c("spam", "eggs", "cauliflower"))

recode(y[[2]]) <- c(cauliflower="broccoli") # or = ... ?

print(y)

## [[1]]

## [1] "spam" "bacon" "spam"

##

## [[2]]

## [1] "spam" "eggs" "broccoli"

Exercise 9.25 (*) Consider the `recode<-` function from the previous exercise.

Here is an examplematrixwith thedimnamesattributewhosenamesattribute is set (more details
in Chapter 11):

(x <- Titanic["Crew", "Male", , ])

## Survived

## Age No Yes

## Child 0 0

## Adult 670 192

recode(names(dimnames(x))) <- c(Age="age", Survived="survived")

print(x)

## survived

## age No Yes

## Child 0 0

## Adult 670 192

This changes the x object. For each of the following subtasks, write a single call that alters
names(dimnames(x))without modifying x in-place but returning a recoded copy of:

• names(dimnames(x)),

• dimnames(x)),

• x.

Exercise 9.26 (*) Consider the `recode<-` function once again but now let an example object
be a data frame featuring a column of class factor:

x <- iris[c(1, 2, 51, 101), ]

recode(levels(x[["Species"]])) <- c(

setosa="SET", versicolor="VER", virginica="VIR"

)

(continues on next page)
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print(x)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 SET

## 2 4.9 3.0 1.4 0.2 SET

## 51 7.0 3.2 4.7 1.4 VER

## 101 6.3 3.3 6.0 2.5 VIR

Without modifying x in-place, how to change levels(x[["Species"]]) and return an altered
copy of:

• levels(x[["Species"]]),

• x[["Species"]],

• x?

9.5 Arguments and local variables
9.5.1 Pass by “value”
As a general rule, functions cannot change the state of their arguments9.We can think
of them as being passed by value, i.e., as if their copy was made.

test_change <- function(y)

{

y[1] <- 7

y

}

x <- 1:5

test_change(x)

## [1] 7 2 3 4 5

print(x) # same

## [1] 1 2 3 4 5

If the above was not the case, the state of xwould have been changed after the call.

9.5.2 Variable scope
Function arguments, as well as any other variables we create inside a function’s body,
are relative to each call to that function.

9With the exception of objects of type environment, which are passed by reference; see Chapter 16. Also,
the fact that we have access to unevaluated R expressions can cause further deviations to this rule (see be-
low).
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test_change <- function(x)

{

x <- x+1

z <- -x

z

}

x <- 1:5

test_change(x*10)

## [1] -11 -21 -31 -41 -51

print(x) # x in the function's body was a different x

## [1] 1 2 3 4 5

print(z) # z was local

## Error in eval(expr, envir, enclos): object 'z' not found

Both x and z are local variables. They only live whilst our function is being executed.
The former temporarilymasks10 the object of the same name from the caller’s context.

Important It is a good development practice to refrain from referring to objects not
created within the current function, especially to “global” variables. We can always
pass an object as an argument explicitly.

Note It is a function call as such, not curly braces per se that form a local scope.

Writing “x <- { y <- 1; y + 1 }”, y is not an auxiliary variable; it is an ordinary
named object created alongside x.

On the other hand, in “x <- (function() { z <- 1; z + 1 })()”, zwill not be available
thereafter.

9.5.3 Closures (*)
Most user-defined functions are, in fact, representatives of the so-called closures; see
Section 16.3.2 and [1].They not only consist of an R expression to evaluate but also can
carry some auxiliary data.

For instance, given two equal-length numeric vectors x and y, a call to approxfun(x,

y) returns a function that linearly interpolates between the consecutive points (𝑥1, 𝑦1),
(𝑥2, 𝑦2), and so forth, so that a corresponding 𝑦 can be determined for any 𝑥.

10 In Chapter 16, we will discuss this topic in-depth; objects are bound to their names within environ-
ments. Moreover, R uses lexical (static) scoping, which is not necessarily intuitive, especially taking into
account that a function’s environment can always be changed.
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x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x^2)

f2 <- approxfun(x, x^3)

f1(0.75) # check that it is quite close to the true 0.75^2

## [1] 0.565

f2(0.75) # compare with 0.75^3

## [1] 0.4275

Inspecting, however, the source codes of the above functions:

print(f1)

## function (v)

## .approxfun(x, y, v, method, yleft, yright, f, na.rm)

## <environment: 0x560784ab71f8>

print(f2)

## function (v)

## .approxfun(x, y, v, method, yleft, yright, f, na.rm)

## <environment: 0x560784c25798>

we might wonder how they can produce different results: it is evident that they are
identical. It turns out, however, that they internally store some additional data that is
referred to upon their calls:

environment(f1)[["y"]]

## [1] 0.00 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

environment(f2)[["y"]]

## [1] 0.000 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1.000

This andmanymore we will explore in great detail in the third part of this book.

9.5.4 Default arguments
Wehavealreadymentionedabove thatwhendesigning functionsperforming complex
tasks, we will sometimes be faced with a design problem: how to find a sweet spot
between being generous/mindful of the diverse needs of our users and making the
API neither overwhelming nor oversimplistic.

We know that it is best if a function performs a single well-specified task, but also
allows its behaviour to be tweaked, if one wishes to do so. This principle can be facil-
itated by the use of default arguments.

For instance, log computes logarithms, by default, the natural ones.

log(2.718) # the same as log(2.78, base=exp(1)) — default base

## [1] 0.9999

log(4, base=2) # different base

## [1] 2
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Exercise 9.27 Study the documentation of the following functions and note the default values
that they define: round, hist, grep, and download.file.

We can easily define our own functions equipped with such recommended settings:

test_default <- function(x=1) x

test_default() # use default

## [1] 1

test_default(2) # use something else

## [1] 2

Most often, default arguments are just constants, e.g., 1. Generally, though, they can
beanyRexpressions, also includinga reference toother argumentspassed to the same
function; see more in Section 17.2.

Note that default arguments will most often appear and the end of the parameter list,
but see Section 9.4.6 (on replacement functions) for a well-justified exception.

9.5.5 Lazy vs eager evaluation
In some languages, function arguments are always evaluated prior to a call. In R,
though, they are only computedwhen actually needed.We call it lazy or delayed evalu-
ation.Recall that inSection8.1.4,we introduced the short-circuit evaluationoperators
`||` (or) and `&&` (and). They are able to do their job precisely thanks to this mechan-
ism.

Example 9.28 In the following example, we do not use the function’s argument at all:

lazy_test1 <- function(x) 1 # x not used at all

lazy_test1({cat("and now for something completely different!"); 7})

## [1] 1

Otherwise, we would see amessage being printed out on the console.

Example 9.29 Next, let us use x amidst other expressions in the body:

lazy_test2 <- function(x)

{

cat("it's... ")

y <- x+x # using x twice

cat(" a man with two noses")

y

}

lazy_test2({cat("and now for something completely different!"); 7})

## it's... and now for something completely different! a man with two noses

## [1] 14
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Note that an argument is evaluated once, and its value is stored for further reference. If that was
not the case, we would see twomessages like and now....

Wewill elaborate on this in Chapter 17.

9.5.6 Ellipsis, `...`
Let us start with an exercise.

Exercise 9.30 Note the presence of `...` in the parameter list of c, list, structure, cbind,
rbind, cat, Map (and the underlying mapply), lapply (a specialised version of Map), optimise,
optim, uniroot, integrate, outer, aggregate. What purpose does it serve, according to these
functions’ manual pages?

Wecan create a variadic functionbyplacing adot-dot-dot (ellipsis; see help("dots")), `.
..`, somewhere in its parameter list.The ellipsis serves as a placeholder for all objects
passed to the function but not matched by any formal (named) parameters.

The easiestway to process arguments passed via `...` programmatically (see also Sec-
tion 17.3) is by redirecting them to list.

test_dots <- function(...)

list(...)

test_dots(1, a=2)

## [[1]]

## [1] 1

##

## $a

## [1] 2

Such a list can be processed just like… any other R list. What we can do with these
arguments is only limited by our creativity (in particular, recall from Section 7.2.2 the
very powerful do.call function). Still, there are twomajor use cases of the ellipsis11:

• create a new object by combining an arbitrary number of other objects:

c(1, 2, 3) # 3 arguments

## [1] 1 2 3

c(1:5, 6:7) # 2 arguments

## [1] 1 2 3 4 5 6 7

structure("spam") # 0 additional arguments

## [1] "spam"

structure("spam", color="rose", taste="umami") # 2 further arguments

## [1] "spam"

## attr(,"color")

## [1] "rose"

(continues on next page)

11Which is somewhat similar to Python’s *args and **kwargs in a function’s parameter list.
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## attr(,"taste")

## [1] "umami"

cbind(1:2, 3:4)

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

cbind(1:2, 3:4, 5:6, 7:8)

## [,1] [,2] [,3] [,4]

## [1,] 1 3 5 7

## [2,] 2 4 6 8

sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 42)

## [1] 108

• pass further arguments (as-is) to other methods :

lapply(list(c(1, NA, 3), 4:9), mean, na.rm=TRUE) # mean(x, na.rm=TRUE)

## [[1]]

## [1] 2

##

## [[2]]

## [1] 6.5

integrate(dbeta, 0, 1,

shape1=2.5, shape2=0.5) # dbeta(x, shape1=2.5, shape2=0.5)

## 1 with absolute error < 1.2e-05

Example 9.31 The documentation of lapply (let us call help("lapply") now) states that this
function is defined as lapply(X, FUN, ...). Here, the ellipsis is a placeholder for a number of
optional arguments that can be passed to FUN. Hence, if we denote the i-th element of a vector X
by X[[i]], calling lapply(X, FUN, ...) will return a list whose i-th element will be equal to
FUN(X[[i]], ...).

Exercise 9.32 Usinga single call tolapply, generate a listwith threenumeric vectors of lengths
3, 9, and 7, respectively, drawn from the uniformdistribution on the unit interval.Then, upgrade
your code to get numbers sampled from the interval [−1, 1].

9.5.7 Metaprogramming (*)
In the third part of this book, we will learn that we can access the expressions passed
as functions’ arguments programmatically. In particular, a call to the composition of
deparse and substitute can convert them to a character vector:

test_deparse_substitute <- function(x)

deparse(substitute(x))

test_deparse_substitute(testing+1+2+3)

(continues on next page)
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## [1] "testing + 1 + 2 + 3"

test_deparse_substitute(spam & spam^2 & bacon | grilled(spam))

## [1] "spam & spam^2 & bacon | grilled(spam)"

Exercise 9.33 Check out the y-axis label generated by plot.default((1:100)^2). Inspect its
source code. Note a call to the two aforementioned functions.

Similarly, call shapiro.test(log(rlnorm(100))) and take note of the data: field.

A function is free to do with such an expression whatever it likes. For instance, it can
change it and then evaluate it in a very different context. Thanks to such a language
feature, certain operations can be expressed much more compactly. In theory, it is a
potent tool. Unfortunately, it is easy to findmanypractical exampleswhere it has been
over/misused andmade the learning or using of R confusing.

Example 9.34 (*) The built-in subset and transform use metaprogramming techniques to
specify basic data frame transformations (see Section 12.3.9 and Section 17.5). For instance:

transform(

subset(

iris,

Sepal.Length>=7.7 & Sepal.Width >= 3.0,

select=c(Species, Sepal.Length:Sepal.Width)

),

Sepal.Length.mm=Sepal.Length/10

)

## Species Sepal.Length Sepal.Width Sepal.Length.mm

## 118 virginica 7.7 3.8 0.77

## 132 virginica 7.9 3.8 0.79

## 136 virginica 7.7 3.0 0.77

Note that none of the arguments (except iris) makes sense outside of the function call contexts.
In particular, neither Sepal.Length nor Sepal.Width variables exist.

The two functions took the liberty to interpret the arguments passed how they felt like.They have
created their own virtual reality within our well-defined world. The reader must refer to their
documentation to discover the meaning of such special syntax.

Note (*) Some functions have rather peculiar default arguments. For instance, in the
manual pageof prop.test,we read that the alternativeparameterdefaults to c("two.
sided", "less", "greater") but that "two.sided" is actually the default one.

If we call print(prop.test), we will find the code line responsible for this behaviour:
“alternative <- match.arg(alternative)”. Consider the following example:

test_match_arg <- function(x=c("a", "b", "c")) match.arg(x)

(continues on next page)
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test_match_arg() # missing argument — choose 1st

## [1] "a"

test_match_arg("c") # one of the predefined options

## [1] "c"

test_match_arg("d") # unexpected setting

## Error in match.arg(x): 'arg' should be one of "a", "b", "c"

In this setting, match.arg only allows an actual parameter from a given set of choices
but selects the first option, if the argument is missing.

Unfortunately, we have to learn this behaviour by heart, because actually looking at
the above source code gives us no clue about this being possiblewhatsoever. If such an
expressionwas normally evaluated, wewould either be using the default argument or
whatever the user passed as x (but then the function would not know about the range
of possible choices). A call to “match.arg(x, c("a", "b", "c"))” could guarantee the
desired functionality andwould bemuchmore readable. Instead,metaprogramming
techniques allowed match.arg to access the enclosing function’s default argument list
without our explicitly referring to them.

One may ask: why is it so? The only sensible answer to this will be “because its pro-
grammer decided it must be this way”. Let us contemplate this for a while. In cases
like these, we are dealing not with some base R language design choice that wemight
like or dislike, but which we should just accept as an inherent feature. Rather, we are
struggling intellectually because of some programmer’s (mis)use (in good faith…) of
R’s flexibility itself.They have introduced a slang/dialect on top of ourmother tongue,
whose meaning is valid only within this function. Blame the middleman, not the en-
vironment, please.

This is why here we generally advocate for avoiding relying on metaprogramming-
based techniqueswherever possible.We shall elaborate on this in the third part of this
book.

9.6 Exercises
Exercise 9.35 Answer the following questions:

• Will “stopifnot(1)” stop? What about “stopifnot(NA)”, “stopifnot(TRUE, FALSE)”,
and “stopifnot(c(TRUE, TRUE, NA))”?

• What does the `if` function return?

• Does `attributes<-`(x, NULL)modify x?

• When can we be interested in calling `[` and `[<-` as functions (and not as operators) dir-
ectly?
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• How to define our own binary operator? Can it have some default arguments?

• What are the main use cases of `...`?

• What is wrong with transform, subset, and match.arg?

• When a call like “f(-1, do_something_that_takes_a_million_years())” does not ne-
cessarily have to be a bad idea?

• What is the difference between “names(x)[1] <- "new name"” and “names(x[1]) <- "new

name"”?

• Whatmight be the form of x if it is legit to call it like x[[c(1, 2)]]()()()[[1]]()()?

Exercise 9.36 What is the return value of a call to “f(list(1, 2, 3))”?

f <- function(x)

{

for (e in x) {

print(e)

}

}

Is it NULL, invisible(NULL), x[[length(x)]], or invisible(x[[length(x)]])?

Exercise 9.37 The split function also has its replacement version. Study its documentation to
learn how it works.

Exercise 9.38 A call to ls(envir=baseenv()) returns all objects defined in the base package
(see Chapter 16). List the names corresponding to some replacement functions.

Important Apply the principle of test-driven development when solving the remain-
ing exercises (or those which you have skipped intentionally).

Exercise 9.39 Implement your own version of the Position and Find functions. Evaluation
should stop as soon as the first element fulfilling a given predicate has been found.

Exercise 9.40 Implement your own version of the Reduce function.

Exercise 9.41 Write a function slide(f, x, k, ...) which returns a list y of size
length(x)-k+1 such that y[[i]] = f(x[i:(i+k-1)], ...)

unlist(slide(sum, 1:5, 1))

## [1] 1 2 3 4 5

unlist(slide(sum, 1:5, 3))

## [1] 6 9 12

unlist(slide(sum, 1:5, 5))

## [1] 15

Exercise 9.42 Using slide defined above, write another function that counts how many in-
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creasing pairs of numbers are featured in a given numeric vector. For instance, in c(0, 2, 1,

1, 0, 1, 6, 0), there are three such pairs: (0, 2), (0, 1), (1, 6).

Exercise 9.43 (*) Write your own version of tools::package_dependencies with re-

verse=TRUE based on information extracted by calling utils::available.packages.



10
S3 classes

Let x be a randomly generated matrix with 1 000 000 rows and 1 000 columns, y be a
data frame with results from the latest survey indicating that things are not the way
most people (nomatter the side of the many political spectra) think they are, and and
z be another matrix, this time with many zeroes.

Human brain is not capable of handling too much information which is too specific.
This is why we have a natural tendency to group different entities based on their sim-
ilarities so as to form somemore abstract classes thereof.

Also, many of us are inherently lazy. Thus, oftentimes we will take shortcuts to min-
imise energy (at a price to be paid later).

Printing out a matrix, a data frame, and a time series are all still instances of the dis-
playing of things, although they surely differ in detail. Now that ad probably forgot-
ten which objects are hidden behind x, y, and z, being able to simply call “print(y)”
without having to recall that, yes, y is a data frame, might seem quite appealing.

This chapter introduces the so-calledS3 classes [13],whichprovidea lightweight object
oriented programming (OOP) approach for automated dispatching of calls to generics
of the type “print(y)” to concretemethods such as “print.data.frame(y)”, based on the
class of the object they are invoked upon.

S3 classes in their essence are beautifully simple1. They are inspired2 by the well-
thought-through concepts present in other functional programming languages (such
as the Common Lisp Object System; see below). Ultimately, those generics andmethods
are ordinary R functions (Chapter 7) and classes aremerely additional object attributes
(Section 4.4).

Of course this does notmean that wrapping our heads around themwill be effortless.
However, unlike other “class systems”3, S3 is ubiquitous in R programming: suffice it

1 However, some classes, even the built-in ones that we describe here, can be poorly designed (e.g, some
crucial methods might be missing, they can be not-well-interoperable with other classes, etc.). Do not
blame this messenger. Remember that the R environment is still very reliable. Also, there are cases where
changing the current behaviour in one place could lead to undesirable consequences elsewhere.

2Theywere built on top of the ordinary (“old S”) R, hence have certain limitationswhat we discuss in the
sequel: classes cannot be formally defined (often we will use named lists for representing objects, and we
know we cannot be any more flexible than this), and the dispatching can only be based on the class of one
(usually the first, but, e.g., binary operators take both types into account) of the arguments.

3 Other class systemsmay give an impression that they are alien implants that were forcefully added to
our language to solve a specific, rather narrow class of problems; e.g., S4 (Section 11.5), Reference Classes
(Section 16.1.5), and other ones proposed by third-party packages
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to say that factors, matrices, and data frames discussed in the next chapters are quite
straightforward, S3-based extensions of the concepts we have introduced so far.

10.1 Object type vs class
Recall that typeof (introduced in Section 4.1) returns the internal type of any R object.
Even though there are only few admissible cases thereof4, they open theworld of end-
less possibilities5.

Thebasic typeswe covered so far (mostly atomic and generic vectors; compare Figure 1
in the Preface) provide a basis for more complex data structures.This is thanks to the
fact that they can be equipped with arbitrary attributes (Section 4.4).

typeof(NULL)

## [1] "NULL"

typeof(c(TRUE, FALSE, NA))

## [1] "logical"

typeof(c(1, 2, 3, NA_real_))

## [1] "double"

typeof(c("a", "b", NA_character_))

## [1] "character"

typeof(list(list(1, 2, 3), LETTERS))

## [1] "list"

typeof(function(x) x)

## [1] "closure"

The interesting fact is that most compound types, whose most prevalent instances are
constructed using the mechanisms discussed in this chapter6, only pretend they are
something different from what they actually are. They are often quite good at doing
their job, though, and hence might be useful. By knowing what is under their hood
we will demystify them and become able to manipulate their state outside of the pre-
scribed use cases.

Important Setting the class attributemightmake some objects behave differently in
certain scenarios.

Example 10.1 Let us consider two identical objects equipped with different class attributes.

4Their list is hardcoded at theC language level; compare the list of SEXPTYPEs in [62] and see alsoChapter
14.

5 In particular, in sec:xptr, wemention externalptrswhich are simply pointers tomemory allocated on
the heap, so these might be any instances of C structs or C++ classes, etc. This makes R a very extensible
language.

6 But of course there is more; see the S4 and other systems discussed in Section 11.5.
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xt <- structure(123, class="POSIXct") # POSIX calendar time

xd <- structure(123, class="Date")

Despite that both objects are being represented using numeric vectors:

c(typeof(xt), typeof(xd))

## [1] "double" "double"

When printed, they are decoded quite differently:

print(xt)

## [1] "1970-01-01 10:02:03 AEST"

print(xd)

## [1] "1970-05-04"

In the former case, 123 is treated as the number of seconds since the so-called UNIX epoch, 1970-
01-01T00:00:00+0000. The latter is deciphered as the number of days since the said (quite
widely used in computer systems by the way) timestamp.

Wemayhence suspect, andweare absolutely right, that there exists someunderlyingmechanism
that actually calls a version of print that is dependent on an object’s virtual class.

That this only depends on the class attribute, which might be set, unset, or reset quite freely, is
emphasised below:

attr(xt, "class") <- "Date" # change class from POSIXct to Date

print(xt) # same 123, but now interpreted as Date

## [1] "1970-05-04"

as.numeric(xt) # drops all attributes

## [1] 123

unclass(xd) # drops the class attribute; `attr<-`(xd, "class", NULL)

## [1] 123

We are having so much fun that one more illustration can only add to joy.

Example 10.2 Consider an example data frame:

x <- iris[1:3, 1:2] # a subset of a built-in example data frame

print(x)

## Sepal.Length Sepal.Width

## 1 5.1 3.5

## 2 4.9 3.0

## 3 4.7 3.2

This is an object of the following class (an object whose class attribute is set to):

attr(x, "class")

## [1] "data.frame"
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Some may say, and they are absolutely right, that we have not covered data frames yet: this is
the topic of Chapter 12, which is still ahead of us. However, from the current perspective, we are
interested in the fact that anRdata frame ismerelya list (Chapter 4) of vectors of the same lengths
equipped with names and row.names attributes.

typeof(x)

## [1] "list"

attr(x, "class") <- NULL # or x <- unclass(x)

print(x)

## $Sepal.Length

## [1] 5.1 4.9 4.7

##

## $Sepal.Width

## [1] 3.5 3.0 3.2

##

## attr(,"row.names")

## [1] 1 2 3

Important Revealing how x is actually represented, enables us to process it (although
perhaps not in the most convenient or efficient manner) using the extensive skill set
that we have already7 developed by studying thematerial covered in the previous part
of our book (including solving all the exercises). This can be particularly useful, espe-
cially bearing inmind that some (built-inor third-party)data typesarenotparticularly
well-designed.

Note again that attributes are simple additions to R objects. However, as we said in
Section 4.4.3, certain attributes are special, and class is one of them.

In particular, we can set class to be only a character vector (possibly of length greater
than one; see Section 10.2.5).

x <- 12345

attr(x, "class") <- 1 # character vectors only

## Error in attr(x, "class") <- 1: attempt to set invalid 'class' attribute

Furthermore, there exists the class function that can read the value of the class at-
tribute. Its replacement version is also available.

class(x) <- "Date" # set; the same as attr(x, "class") <- "Date"

class(x) # get; the same as attr(x, "class")

## [1] "Date"

Important The class function always yields a value, even if the corresponding at-

7 For instance, consider once again the example from Section 5.4.3 that applies the split function on a
data frame reduced to a list.
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tribute is not set. We call it an implicit class. Compare between the following and the
outputs generated by typeof:

class(NULL) # no `class` set, because NULL cannot have attributes at all

## [1] "NULL"

class(c(TRUE, FALSE, NA)) # no attributes, so class is implicit (= typeof)

## [1] "logical"

class(c(1, 2, 3, NA_real_)) # typeof yields "double"

## [1] "numeric"

class(c("a", "b", NA_character_))

## [1] "character"

class(list(list(1, 2, 3), LETTERS))

## [1] "list"

class(function(x) x) # typeof yields "closure"

## [1] "function"

Also, in Chapter 11, we will note that any object equipped with the dim attribute also
has an implicit class:

(x <- as.matrix(c(1, 2, 3)))

## [,1]

## [1,] 1

## [2,] 2

## [3,] 3

attributes(x) # `class` is not amongst the attributes

## $dim

## [1] 3 1

class(x) # implicit class

## [1] "matrix" "array"

typeof(x) # it is still a numeric vector (under the hood)

## [1] "double"

10.2 Generics andmethod dispatching
10.2.1 Generics, default, and custommethods
Let us inspect the source code of the print function:

print(print) # sic!

## function (x, ...)

## UseMethod("print")

## <environment: namespace:base>
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Any function like the above8 we will call from now on an S3 (S version 3) generic. Its
only job is to invoke UseMethod("print"). This dispatches the control flow to another
function, referred to asmethod, based on the class of the first argument.

Important Even though it cannot be implied by the reading the above source code, all
arguments passed to the generic will also be available9 in the method dispatched to.

For example, let us define an object of class categorical (a name that we have just
comeupwith;we could have called it cat, CATEGORICAL, or SpanishInquisition aswell),
whichwill be our own version of the famous built-in factor type that we discuss later.

x <- structure(

c(1, 3, 2, 1, 1, 1, 3),

levels=c("a", "b", "c"),

class="categorical"

)

We assume that such an object is a vector of small positive integers (codes) equipped
with the levels attribute being a character vector of length no less than themaximum
of the said integers. The first category will be used to decipher the meaning of code
“1”, for example. Hence, the above vector represents a sequence a, c, b, a, a, a, c.

We have not defined any special method for the printing of objects of class categor-
ical. Hence, when we call print, the default (fallback) method will be called:

print(x)

## [1] 1 3 2 1 1 1 3

## attr(,"levels")

## [1] "a" "b" "c"

## attr(,"class")

## [1] "categorical"

This is the standard function for displaying numeric vectors that we are all well famil-
iar with. Its name is print.default, and we can always call it directly:

print.default(x) # the default print method

## [1] 1 3 2 1 1 1 3

## attr(,"levels")

## [1] "a" "b" "c"

(continues on next page)

8 Some functions can have a version of UseMethod hidden at the C language level (internally); see Sec-
tion 10.2.3.

9This uses a quite obscure hack. It should also be noted that UseMethod heavily relies on metaprogram-
ming (compare Chapter 17). Therefore, it should not be considered an ordinary function call. For instance,
it can only be called inside a function’s body. Also, once called, it does not return to the generic. Before
dispatching to a particular method, it creates a couple of hidden variables which give more detail on the
operation conveyed, e.g., `.Generic` or `.Class`; see help("UseMethod") and Section 5 in [63].
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## attr(,"class")

## [1] "categorical"

Wecan,however, introduceourownmethod for the customprintingof objects of class
categorical, whose namemust precisely be print.categorical:

print.categorical <- function(x, ...)

{

x_character <- attr(x, "levels")[unclass(x)]

print(x_character) # calls `print.default`

cat(sprintf("Categories: %s\n",

paste(attr(x, "levels"), collapse=", ")))

invisible(x) # this is what all print methods do; see help("print")

}

Now, calling print automatically dispatches the control flow to the above method:

print(x)

## [1] "a" "c" "b" "a" "a" "a" "c"

## Categories: a, b, c

Of course, the defaultmethod can still be called; calling print.default(x) directly will
output the same result as before.

Note print.categorical has been equipped with the dot-dot-dot attribute, because
the generic print had one too; we should always ensure consistency ourselves10.

10.2.2 Creating own generics
Introducing new S3 generics is as straightforward as defining a function that calls
UseMethod.

For instance, here is a dispatcher which allows for creating new objects of class cat-
egorical based on other objects:

as.categorical <- function(x, ...)

UseMethod("as.categorical") # synonym: UseMethod("as.categorical", x)

We always need to define the default method:

as.categorical.default <- function(x, ...)

{

x <- as.character(x)

(continues on next page)

10 In particular, the checking of S3 generic/method consistency is part of R package check.
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xu <- unique(sort(x)) # drops NAs

structure(

match(x, xu),

class="categorical",

levels=xu

)

}

Testing:

as.categorical(c("a", "c", "a", "a", "d", "c"))

## [1] "a" "c" "a" "a" "d" "c"

## Categories: a, c, d

as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))

## [1] "3" "6" "4" NA "9" "9" "6" NA "3"

## Categories: 3, 4, 6, 9

Note that print.categorical has been invoked twice here. The above is quite flexible
already, because it relies on the generic (Section 10.2.3) as.character, which handles
a wide variety of data types. Of course, it does not mean we cannot be more precise
about some particular ones.

Example 10.3 For instance, wemightwant to forbid the conversion from lists, because this does
not necessarily make sense:

as.categorical.list <- function(x, ...)

stop("conversion of lists to categorical is not supported")

The users can always be instructed in the method’s documentation that they are the ones re-
sponsible for an explicit conversion of list objects to something different prior to a call to as.
categorical.Whether this was a good design choice, time will tell.

Example 10.4 Note that the default method deals with logical vectors perfectly fine:

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.default

## [1] "TRUE" "FALSE" NA NA "FALSE"

## Categories: FALSE, TRUE

However, wemight still want to introduce a specialised version, because we know a slightlymore
efficient algorithm (andwe have nothing better to do) based on the fact that FALSE and TRUE con-
verted to numeric yield 0 and 1, respectively:

as.categorical.logical <- function(x, ...)

{

x <- as.logical(x) # or stopifnot(is.logical(x)) ?

structure(

(continues on next page)
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x + 1, # only 1, 2, and NAs will be generated

class="categorical",

levels=c("FALSE", "TRUE")

)

}

This yields the same result, but is a bit faster:

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.logical

## [1] "TRUE" "FALSE" NA NA "FALSE"

## Categories: FALSE, TRUE

Note that we have performed some argument validation at the beginning, because a user is al-
ways able to call a method directly on an R object of any kind (which is a good thing!; see Sec-
tion 10.2.4). In other words, there is no guarantee that the argument xmust be of type logical.

10.2.3 Built-in generics
Many functions and operatorswe have introduced so far are in fact S3 generics: print,
head, `[`, `+`, `<=`, as.character, as.list, round, log, sum, c, and na.omit, to name a
few.

Some of them might not even call UseMethod explicitly; dispatching can be done
internally, at the C language level11. Overall, the list of all S3 generics is some-
what difficult to generate12. Luckily, at least the internal ones are enumerated in
help("InternalMethods") and help("groupGeneric").

Example 10.5 Let us overload the as.charactermethod.The default one does not makemuch
sense for the objects of our custom type:

as.character(x)

## [1] "1" "3" "2" "1" "1" "1" "3"

So:

as.character.categorical <- function(x, ...)

attr(x, "levels")[unclass(x)]

And now:

11Which is quite unfortunate because it decreases transparency; we need to look this information up
somewhere in the documentation (instead of simply inspecting a function’s source code; see, e.g., cbind).
Also, it allows for some methods to be hardcoded at the C language level too, and thus be unoverload-
able. Some of such design choices can somewhat be defended, though, as they increase execution speed
or memory consumption. However, we are not particularly happy about them.

12 See also .knownS3Generics and .S3_methods_tablewhich are related to the advanced topics we cover in
Section 16.3.6.
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as.character(x)

## [1] "a" "c" "b" "a" "a" "a" "c"

Exercise 10.6 Overload the uniquemethod for objects of class categorical.

Exercise 10.7 Overload the repmethod for objects of class categorical.

Example 10.8 New types should be designed carefully. For instance, if we forget to consider
overloading the to-numeric converter, we might end up with some users being puzzled13 when
they see:

(x <- as.categorical(c(4, 9, 100, 9, 9, 100, 42, 666, 4)))

## [1] "4" "9" "100" "9" "9" "100" "42" "666" "4"

## Categories: 100, 4, 42, 666, 9

as.double(x) # as.double.default(x)

## [1] 2 5 1 5 5 1 3 4 2

Hence, wemight want to introduce:

as.double.categorical <- function(x, ...)

{

# as.double.default(as.character.categorical(x))

as.double(as.character(x))

}

Which now yields:

as.double(x) # as.double.categorical(x)

## [1] 4 9 100 9 9 100 42 666 4

Note We can still use unclass to fetch the codes:

unclass(x)

## [1] 2 5 1 5 5 1 3 4 2

## attr(,"levels")

## [1] "100" "4" "42" "666" "9"

This is because the above returns a class-free object, which is now guaranteed to be
handled by the default methods (print, subsetting, as.character, etc.).

13 It is a different story if this is our conscious design choice and that this is the behaviour we really
want. If we document this thoroughly (see how help("factor") discusses the behaviour of a to-numeric
conversion), only a user’s ignorancewill there be to blamewhen they still are confused about this behaviour.
Remember that we can never make an API totally foolproof and that there will always be someone who
will challenge/stress-test our ideas. Bad design is always bad, but being overprotective has its cons as well.
Choose your audience wisely.
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Exercise 10.9 What would happen if we used as.numeric instead of unclass in print.

categorical and as.character.categorical?

Exercise 10.10 Update the abovemethods in such away that we can also createnamed objects
of class categorical (i.e., equipped with the names attribute).

Exercise 10.11 Note that the levels of x are sorted lexicographically, not numerically. Introduce
a single method that wouldmake the above code (when re-runwithout any alterations) generate
amore natural result.

10.2.4 First-argument dispatch and calling S3methods directly
With S3, the dispatching is donemost often based on the class of only one14 argument:
by default, the first one from the parameter list.

For example, the c function is a genericwhich dispatches on the class of the first argu-
ment. Let us overload it for categorical objects (or, more precisely, create a function
that will be dispatched to when the generic is called upon a series of objects such that
the first element is of the said class).

c.categorical <- function(...)

as.categorical(

unlist(

lapply(list(...), as.character)

)

)

It converts each argument to a character vector (relying on the generic as.character
to take care of the details) andmakes use of the fact that unlist converts a list of such
atomic vectors to a single sequence of strings.

Calling c with the first argument being of class categorical dispatches to the above
method:

x <- c(9, 5, 7, 7, 2)

xc <- as.categorical(x)

c(xc, x) # c.categorical

## [1] "9" "5" "7" "7" "2" "9" "5" "7" "7" "2"

## Categories: 2, 5, 7, 9

However, if the first argument is, say, unclassed, the defaultmethodwill be consulted:

c(x, xc) # default c

## [1] 9 5 7 7 2 4 2 3 3 1

14This is R, so there are, of course,many exceptions to this rule whichweremade for the (debatable) sake
of the R users’ convenience. In particular, in Section 12.1.2 we mention that cbind and rbind will dispatch
to the data.framemethod if at least one argument is a data frame (and other ones are unclassed). Binary
operators dispatch on the type of both operands; see Section 10.2.6. Furthermore, it isworth noting that the
S4 class system that we discuss in Section 11.5 allows for dispatching based on the classesmany arguments.
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Thismethod ignores the class attribute and sees xc as-it-is, a barebone numeric vec-
tor:

`attributes<-`(xc, NULL) # the underlying codes

## [1] 4 2 3 3 1

This is not a bug!This is a well-documented (and now explained) behaviour. After all,
compound types (classed objects) are merely emulated through the basic ones.

Important In most cases, S3 methods can be called directly to get the desired out-
come:

c.categorical(x, xc) # force a call to the specific method

## [1] "9" "5" "7" "7" "2" "9" "5" "7" "7" "2"

## Categories: 2, 5, 7, 9

We said “in most cases”, because somemethods can be:

• hardcoded at the C language level (for instance, there is no c.default defined at
all15),

• hidden (defined in a package’s namespace but not exported); see Section 16.3.6,

• overloaded as a group; see Section 10.2.6 and help("groupGeneric").

Example 10.12 Just for fun, let us find a partition of the iris dataset into three clusters using
the k-means algorithm:

res <- kmeans(iris[-5], centers=3, nstart=10)

print(res)

## K-means clustering with 3 clusters of sizes 50, 62, 38

##

## Cluster means:

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 1 5.0060 3.4280 1.4620 0.2460

## 2 5.9016 2.7484 4.3935 1.4339

## 3 6.8500 3.0737 5.7421 2.0711

##

## Clustering vector:

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## [71] 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## [ reached getOption("max.print") -- omitted 51 entries ]

(continues on next page)

15 Dispatching to internalmethods can also be done… internally. For instance, overloading `<.character`
(or Compare.character; see below) will have no effect unless the base `<` is replaced with a custom one that
makes an explicit call to UseMethod. Most often, we can expect that the built-in types (e.g., atomic vectors),
factors, data frames, andmatrices and other arrays might be treated specially.
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(continued from previous page)

##

## Within cluster sum of squares by cluster:

## [1] 15.151 39.821 23.879

## (between_SS / total_SS = 88.4 %)

##

## Available components:

##

## [1] "cluster" "centers" "totss" "withinss"

## [5] "tot.withinss" "betweenss" "size" "iter"

## [9] "ifault"

The above is an object of class:

class(res)

## [1] "kmeans"

which in fact is a:

typeof(res)

## [1] "list"

The underlying list looks like:

unclass(res)

## $cluster

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## [71] 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## [ reached getOption("max.print") -- omitted 51 entries ]

##

## $centers

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 1 5.0060 3.4280 1.4620 0.2460

## 2 5.9016 2.7484 4.3935 1.4339

## 3 6.8500 3.0737 5.7421 2.0711

##

## $totss

## [1] 681.37

##

## $withinss

## [1] 15.151 39.821 23.879

##

## $tot.withinss

## [1] 78.851

##

(continues on next page)
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(continued from previous page)

## $betweenss

## [1] 602.52

##

## $size

## [1] 50 62 38

##

## $iter

## [1] 2

##

## $ifault

## [1] 0

We already know that the above was displayed in a fancy way only because there is a print

method overloaded for objects of class kmeans.

But is there really?

print.kmeans

## Error in eval(expr, envir, enclos): object 'print.kmeans' not found

Even though the method is hidden (internal) in the stats package’s namespace, from Sec-
tion 16.3.6 we will learn that it can be accessed by calling getS3method("print", "kmeans")

or referring to stats:::print.kmeans (note the triple colon).

10.2.5 Multi-class-ness
The class attribute can be instantiated as a character vector of any length. For ex-
ample:

(t1 <- Sys.time())

## [1] "2023-04-27 15:26:35 AEST"

(t2 <- strptime("2021-08-15T12:59:59+1000", "%Y-%m-%dT%H:%M:%S%z"))

## [1] "2021-08-15 12:59:59"

Let us inspect the classes of these two objects:

class(t1)

## [1] "POSIXct" "POSIXt"

class(t2)

## [1] "POSIXlt" "POSIXt"

In Section 10.3.1, we will discuss date-time classes in more detail: this is where we
will take note that the former is represented as a numeric vector, whilst the latter is
a list. Hence, primarily, these two should be seen as instances of two distinct types.
However, both of themhave a lot in common, hence it was awise design choice to also
allow them to be seen as the representatives of the same generic category of POSIX
time objects.
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Important When calling a generic function16 f on an object x of classes17 class1,
class2, …, classK (in this order), UseMethod(f, x) dispatches to the method determ-
ined as follows:

1. if f.class1 is available18, call it;

2. otherwise, if f.class2 is available, call this one;

3. …;

4. otherwise, if f.classK is available, invoke it;

5. otherwise, refer to the fallback f.default.

Example 10.13 There is amethod diff for objects of class POSIXt featuring a statement:

r <- if (inherits(x, "POSIXlt")) as.POSIXct(x) else x

This way, we can be handling both POSIXct and POSIXlt instances via the same procedure.

Let us see in this simple scheme nomagic. It is nothingmore than what we described
above: a way of determining which method should be called for a particular R object.
It can of course be used as a mechanism to mimic (and certainly it was inspired by)
the idea of inheritance in object-oriented programming languages, but note that the
S3 system does not allow for defining classes in any formal manner.

For example, we cannot say that objects of class POSIXct inherit from POSIXt or each
object of class POSIXct is also an instance of POSIXt. The class attribute can still be set
arbitrarily on an per-object basis: we can create ones whose class is simply POSIXct

(without the POSIXt part) or even c("POSIXt", "POSIXct") (in this very order).

Note In any method, it is possible to call the method corresponding to the next class
by calling NextMethod.

For instance, ifwe are in f.class1, a call to NextMethod(f)will try invoking f.class2. If
such amethod does not exist, furthermethods in the search chainwill be tried, falling
back to the default method if necessary. An example will be given below.

10.2.6 Operator overloading
Operators are ordinary functions (Section 9.4.5). Even though what follows can par-
tially be implied bywhatwe have said above, as usual in R, therewill be some oddities.

16The case of binary operators is handled differently; see Section 10.2.6.
17 UseMethod dispatches on the implicit class as determined by the class function (note that the class

attribute does not necessarily have to be set in order for class to return a sensible answer).
18 For more details on S3 method lookup; see Section 16.3.6.
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For example, let us overload the index operator for objects of class categorical. Look-
ingat help("["),we see that thedefaultmethodhas twoarguments: x (the categorical
object being sliced) and i (the indexer). Ours will have the same interface then:

`[.categorical` <- function(x, i)

{

structure(

unclass(x)[i], # `[`(unclass(x), i)

class="categorical",

levels=attr(x, "levels") # the same levels as input

)

}

However, we note that the default S3 method, `[.default`, is hardcoded at the C lan-
guage level.Therefore, we cannot refer to it directly.This is whywe had to call unclass.
Alternatively, we can also call NextMethod:

`[.categorical` <- function(x, i)

{

structure(

NextMethod("["), # call default method, passing `x` and `i`

class="categorical",

levels=attr(x, "levels") # the same levels as input

)

}

We can also introduce the replacement version of this operator:

`[<-.categorical` <- function(x, i, value)

{

levels <- attr(x, "levels")

value <- match(value, levels) # integer codes corresponding to levels

structure(

NextMethod("[<-"), # call default method, passing `x`, `i`, `values`

class="categorical",

levels=levels # same levels as input

)

# # or, equivalently:

# structure(

# `[<-`(unclass(x), i, value=match(value, attr(x, "levels"))),

# class="categorical",

# levels=attr(x, "levels")

# )

}

Testing:
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x <- as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))

x[1:4]

## [1] "3" "6" "4" NA

## Categories: 3, 4, 6, 9

x[1:4] <- c("6", "7")

print(x)

## [1] "6" NA "6" NA "9" "9" "6" NA "3"

## Categories: 3, 4, 6, 9

Note how we handled the case of non-existing levels and that the recycling rule has
been automagically inherited (amongst other features) from the default index oper-
ator.

Exercise 10.14 Do these two operators preserve the names attribute of x? Is indexing with neg-
ative integers or logical vectors supported as well?Why is that/is that not the case?

Furthermore, let us overload the `==` operator. Assume19 that we would like two cat-
egorical objects be compared based on the actual labels they encode, in an element-
wise manner:

`==.categorical` <- function(e1, e2)

as.character(e1) == as.character(e2)

We are feeling lucky: by not performing any type checking, we rely on the particular
as.charactermethods corresponding to the types of e1 and e2. Also, assuming that
as.character always20 returns an object of type character, we dispatch to the default
method for `==` (which handles atomic vectors).

Some examples:

as.categorical(c(1, 3, 5, 1)) == as.categorical(c(1, 3, 1, 1))

## [1] TRUE TRUE FALSE TRUE

as.categorical(c(1, 3, 5, 1)) == c(1, 3, 1, 1)

## [1] TRUE TRUE FALSE TRUE

c(1, 3, 5, 1) == as.categorical(c(1, 3, 1, 1))

## [1] TRUE TRUE FALSE TRUE

Important In the case of binary operators, dispatching is done based on the classes
of both arguments. In all three example calls above, we call `==.categorical`, regard-
less of whether the classed object is the first or the second operand. If two operands

19There are of course many possible ways to implement the `==` operator for the discussed objects. For
instance, itmay returneither a single TRUEor FALSEdepending if twoobjects are identical (althoughprobably
overloading all.equal would be a better idea). We could also be comparing the corresponding underlying
integer codes instead of the labels, etc.

20Which of course does not have to be the case; it is merely an assumption based on our belief in the
common sense of other developers.
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are classed and different methods are overloaded for both of them, a warning will be
generated and the default internal method will be called.

`==.A` <- function(e1, e2) "A"

`==.B` <- function(e1, e2) "B"

structure(c(1, 2, 3), class="A") == structure(c(2, NA, 3), class="B")

## Warning: Incompatible methods ("==.A", "==.B") for "=="

## [1] FALSE NA TRUE

Note (*) By defining a single Ops method, we can define the meaning of all binary
operators at once.

Ops.categorical <- function(e1, e2)

{

if (!(.Generic %in% c("<", ">", "<=", ">=", "==", "!=")))

stop(sprintf("%s not defined for 'categorical' objects", .Generic))

e1 <- as.character(e1)

e2 <- as.character(e2)

NextMethod(.Generic) # dispatch to the default method (for character)

}

as.categorical(c(1, 3, 5, 1)) > c(1, 2, 4, 2)

## [1] FALSE TRUE TRUE FALSE

Here .Generic is a variable representing the name of the operator (generic) being in-
voked; see sec:use-method.

Other group generics are: Summary (including functions such as min, sum, and all), Math
(abs, log, and round, etc.), and Complex (e.g.,Re, Im); see help("groupGeneric") formore
details. Note that sometimes we will need to rely on registerS3method to force R to
recognise a custommethod related to such generics.

10.3 Common built-in S3 classes
Let us discuss some noteworthy built-in classes, including the ones that represent
date/time information and factors (ordered or not).

Classes for representing tabular data will be dealt with in separate parts of this text-
book, owing to their importance and ubiquity. Namely, matrices and other arrays are
covered in Chapter 11, and data frames in Chapter 12.
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The inspecting of other21 interesting classes is left as a simple exercise to the kind
reader.

10.3.1 Date, time, etc.
The Date class can be used to represent… dates.

(x <- c(Sys.Date(), as.Date(c("1969-12-31", "1970-01-01", "2023-02-29"))))

## [1] "2023-04-27" "1969-12-31" "1970-01-01" NA

class(x)

## [1] "Date"

Complex types are built upon basic ones; underneath, what we deal with is:

typeof(x)

## [1] "double"

unclass(x)

## [1] 19474 -1 0 NA

which is thenumberofdays since the socalledUNIXepoch, 1970-01-01T00:00:00+0000
(midnight GMT/UTC).

The POSIXct (calendar time) class can be used to represent date-time objects:

(x <- Sys.time())

## [1] "2023-04-27 15:26:35 AEST"

class(x)

## [1] "POSIXct" "POSIXt"

typeof(x)

## [1] "double"

unclass(x)

## [1] 1682573196

Underneath, it is the number of seconds since the UNIX epoch. By default, whilst
printing, the current default timezone is used (see Sys.timezone). However, such ob-
jects can be equipped with the tzone attribute.

structure(1, class=c("POSIXct", "POSIXt")) # using current default timezone

## [1] "1970-01-01 10:00:01 AEST"

structure(1, class=c("POSIXct", "POSIXt"), tzone="UTC")

## [1] "1970-01-01 00:00:01 UTC"

In both cases, the time is 1 second after the beginning of UNIX epoch. In the former,
it is displayed in the current local timezone, though (on the author’s PC).

Exercise 10.15 UseISOdatetime to inspecthowmidnightsaredisplayed indifferent timezones.

21 An (incomprehensive) approximation to the list of available classes canbegeneratedby calling unique(.
S3_methods_table[, 2]).



210 II DEEPER

There is also the POSIXlt (local time) class, which is represented using a list of atomic
vectors22.

(x <- as.POSIXlt(c(a="1970-01-01 00:00:00", b="2030-12-31 23:59:59")))

## a b

## "1970-01-01 00:00:00 AEST" "2030-12-31 23:59:59 AEDT"

class(x)

## [1] "POSIXlt" "POSIXt"

typeof(x)

## [1] "list"

str(unclass(x)) # calling str instead of print to make display more compact

## List of 11

## $ sec : num [1:2] 0 59

## $ min : int [1:2] 0 59

## $ hour : int [1:2] 0 23

## $ mday : int [1:2] 1 31

## $ mon : int [1:2] 0 11

## $ year : Named int [1:2] 70 130

## ..- attr(*, "names")= chr [1:2] "a" "b"

## $ wday : int [1:2] 4 2

## $ yday : int [1:2] 0 364

## $ isdst : int [1:2] 0 1

## $ zone : chr [1:2] "AEST" "AEDT"

## $ gmtoff: int [1:2] NA NA

## - attr(*, "tzone")= chr [1:3] "" "AEST" "AEDT"

## - attr(*, "balanced")= logi TRUE

Exercise 10.16 Read about the meaning of each named element, especially mon and year; see
help("DateTimeClasses").

The manual states that POSIXlt is supposedly closer to human-readable forms than
POSIXct, but it is a matter of taste. Some R functions return the former, and some
yield the latter type.

Exercise 10.17 The two main functions for date formatting and parsing, strftime and strp-
time, use special field formatters (similar to those used by sprintf). Read about them in the R
manual.What type of inputs do they accept?What outputs do they produce?

There is a number of methods overloaded for objects of the said classes. In fact, the
first call in this section already involved the use of c.Date.

Exercise 10.18 Play around with the overloaded versions of seq, rep, and as.character.

Note that a specific number of days or seconds can be added to or subtracted from a
date or time, respectively. However, - (see also diff) can also be applied on two date-
time objects, which yields an object of class difftime.

22Which was inspired by C’s tm structure defined in <time.h>.
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Sys.Date() - (Sys.Date() - 1)

## Time difference of 1 days

Sys.time() - (Sys.time() - 1)

## Time difference of 1 secs

Exercise 10.19 Check out how objects of class difftime are internally represented.

Applying other arithmetic operations on date-time objects yields an error. Also note
that because date-time objects are just numbers, they can be compared to each other
using binary operators23 and methods such as sort and order24 could be applied
thereon.

Exercise 10.20 Check out the stringx packagewhich replaces the base R date-time processing
functions with their more portable counterparts.

Exercise 10.21 proc.time can be used to measure the time to execute a given expression:

t0 <- proc.time() # timer start

# ... to do - something time-consuming ...

sum(runif(1e7)) # whatever, just testing

## [1] 4999488

print(proc.time() - t0) # elapsed time

## user system elapsed

## 0.239 0.024 0.262

The function returns an object of class proc_time. Inspect how it is represented internally.

10.3.2 Factors
The factor class is often used to represent categorical (qualitative) data, e.g., species,
groups, types. In fact, the example categorical class that we played with above has
been inspired by the built-in factor.

(x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon"))

## [1] "spam" "spam" "bacon" "sausage" "spam" "bacon"

(f <- factor(x))

## [1] spam spam bacon sausage spam bacon

## Levels: bacon sausage spam

Take note of how factors are printed: there are no double quote characters around the
labels and the list of levels is given at the end.

Internally, such objects are represented as integer vectors (Section 6.4.1) with ele-

23The overloaded group generic Ops prevents us from adding or multiplying two dates and defines the
meaning of the comparison operators. As an exercise, check out its source code.

24 See an exercise below on the use of xtfrm.
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ments between 1 and k with the special (as in Section 4.4.3) levels attribute being a
character vector of length k25.

class(f)

## [1] "factor"

typeof(f)

## [1] "integer"

unclass(f)

## [1] 3 3 1 2 3 1

## attr(,"levels")

## [1] "bacon" "sausage" "spam"

attr(f, "levels") # also: levels(f)

## [1] "bacon" "sausage" "spam"

Factors are often used instead of character vectors defined over a small number of
unique labels26, where there is a need to manipulate their levels easily.

attr(f, "levels") <- c("a", "b", "c") # also levels(f) <- c(....new...)

print(f)

## [1] c c a b c a

## Levels: a b c

The underlying codes remain the same.

Certain operations on vectors of small integers are relatively easy to implement, es-
pecially those concerning element grouping: splitting, counting, plotting (e.g., Fig-
ure 13.17). It is because the integer codes can naturally be used whilst indexing other
vectors. In Section 5.4, we mentioned a few functions related to this, such as match,
split, findInterval, and tabulate. Specifically, the latter canbe implemented like “for
each i, increase count[factor_codes[i]] by one”.

Exercise 10.22 Study the source code of the factor function. Note the use of as.character,
unique, order, and match.

Exercise 10.23 Implement a simplified version of table based on tabulate. It shouldwork for
objects of class factor and return a named numeric vector.

Exercise 10.24 Implement your own version of cut based on findInterval.

Important The as.numeric method has not been overloaded for factors. Therefore,
whenwe call the generic, the defaultmethod is used: it returns the underlying integer
codes as-is.This can surprise the unaware users when they play with factors that fea-
ture levels consisting of strings representing integer numbers:

25 [63] states: Factors are currently implementedusing an integer array to specify the actual levels anda secondarray
of names that are mapped to the integers. Rather unfortunately users often make use of the implementation in order to
make some calculations easier.This, however, is an implementation issue and is not guaranteed to hold in all implement-
ations of R. Still, fortunately, this has been a de facto standard for factors for a very long time.

26 Recall that there is aglobal (internal) string cache,hencehavingmanyduplicated strings isnot an issue,
memory-use-wisely.
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(g <- factor(c(11, 15, 16, 11, 13, 4, 15))) # converts numbers to strings

## [1] 11 15 16 11 13 4 15

## Levels: 4 11 13 15 16

as.numeric(g) # the underlying codes

## [1] 2 4 5 2 3 1 4

as.numeric(as.character(g)) # to get the numbers en-coded

## [1] 11 15 16 11 13 4 15

Unfortunately, support for factors is often hardcoded at the C language level, which
will make this class behave less predictably (from the R perspective). In particular, the
manual overloading of methods for factor objects might have no effect.

Important If f is a factor, then x[f] does not behave like x[as.character(f)] (index-
ing by labels, using the names attribute). Instead, we get x[as.numeric(f)] (the under-
lying codes will determine the positions).

h <- factor(c("a", "b", "a", "c", "a", "c"))

levels(h)[h] # the same as c("a", "b", "c")[c(1, 2, 1, 3, 1, 3)]

## [1] "a" "b" "a" "c" "a" "c"

c(b="x", c="y", a="z")[h] # names are not used whilst indexing

## b c b a b a

## "x" "y" "x" "z" "x" "z"

c(b="x", c="y", a="z")[as.character(h)] # names are used now

## a b a c a c

## "z" "x" "z" "y" "z" "y"

More often than not, indexing by factors will happen “accidentally”, leading to our
being slightly puzzled. In particular, factors look much like character vectors when
they are featured in data frames:

(df <- data.frame(A=c("x", "y", "z"), B=factor(c("x", "y", "z"))))

## A B

## 1 x x

## 2 y y

## 3 z z

class(df[["A"]])

## [1] "character"

class(df[["B"]])

## [1] "factor"

(*)Upuntil R 4.0,many functions (including data.frameand read.csv) had the string-
sAsFactors option (see help("options")) set to TRUE, which resulted in all character
vectors’ being automatically converted to factors when, e.g., creating data frames
(compare Chapter 12). Luckily, this is no longer the case, but they can still be en-
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countered sporadically: for instance, the built-in iris dataset has the fifth column of
class:

class(iris[["Species"]])

## [1] "factor"

Important Be careful when combining factors and not-factors:

x <- factor(c("A", "B", "A"))

c(x, "C")

## [1] "1" "2" "1" "C"

c(x, factor("C"))

## [1] A B A C

## Levels: A B C

Exercise 10.25 Note thatwhen subsetting a factor object, the resultwill have the levelsattrib-
ute inherited as-is.

f[c(1, 2)] # drop=FALSE

## [1] c c

## Levels: a b c

However:

f[c(1, 2), drop=TRUE]

## [1] c c

## Levels: c

Implement your own version of the droplevels function which removes the unused attributes.

Exercise 10.26 The replacement version of the index operator does not automatically add new
levels to the modified object:

x <- factor(c("A", "B", "A"))

`[<-`(x, 4, value="C") # like in x[4] <- "C"

## Warning in `[<-.factor`(x, 4, value = "C"): invalid factor level, NA

## generated

## [1] A B A <NA>

## Levels: A B

Implement your own version of `[<-.factor]` which is capable of doing so.
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10.3.3 Ordered factors
Note that when creating factors, we can enforce a particular ordering and the number
of levels:

x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon")

factor(x, levels=c("eggs", "bacon", "sausage", "spam"))

## [1] spam spam bacon sausage spam bacon

## Levels: eggs bacon sausage spam

If we want the arrangement of the levels to define a linear ordering relation over set
of the labels, we can call:

(f <- factor(x, levels=c("eggs", "bacon", "sausage", "spam"), ordered=TRUE))

## [1] spam spam bacon sausage spam bacon

## Levels: eggs < bacon < sausage < spam

class(f)

## [1] "ordered" "factor"

This yields an ordered factor, which enables comparisons like:

f[f >= "bacon"] # what's not worse than bacon?

## [1] spam spam bacon sausage spam bacon

## Levels: eggs < bacon < sausage < spam

How is that possible?Well, based on information provided in this chapter it will come
as no surprise that it is because… someone has implemented a comparison operator
for objects of class ordered.

10.3.4 Formulae (*)
Formulae are created by means of the `~` operator. Some R users employ them
to specify widely-conceived statistical models in functions such as lm (e.g., linear re-
gression), glm (logistic regression etc.), aov (analysis of variance), wilcox.test (the
two-sampleMann-Whitney-Wilcoxon test), aggregate (computing aggregates within
data groups), boxplot (box-and-whisker plots for a variable split by a combination of
factors), or plot (scatter plots); see also Chapter 11 in [53].

For instance, they can be used to describe symbolic relationships such as:

• “y as a linear combination of x1, x2, and x3”,

• “y grouped/split by a combination of x1 and x2”,

where y, x1, etc., are, for example, column names in some data frame.

Due to the fact that formulae are interpreted by the corresponding functions, and not
theR language itself, programmers are free to assign themanymeaning. As their syn-
tax is quite esoteric, beginners might find them confusing. Hence, we will discuss
themmuch later: in Section 17.6.
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For now, good news is that the use of formulae can usually quite easily be avoided27.

10.4 Argument checking revisited
Recall that anything can be passed as a function’s input. Here are some additions to
the topic we touched upon in Section 9.2.1.

Despite that compoundobjects are internally represented throughbasic types (suchas
numeric vectors, lists, or combinations thereof) and attributes, unless we really know
better (which, by the way, this book is all about), we should be relying on the hopefully
well-thought-out methods developed by the class’ designer.

Ideally, when checking arguments passed to a function, determining if an object is of
a desired type should be solely done by means of the generics like is.class. If that is
not the case, a call to as.class should be used to make sure we will be dealing with an
object of the desired type.

If a conversion is not possible, either because a specific method is unavailable or be-
cause its designer decided that this must be the case, whatever the consequences are
is not necessarily our problem anymore.

We should explain to the user that the input type assurance is done via this verymech-
anism and, in case they get any surprising results, they should check/redefine the un-
derlying is.class or as.class themselves.

This is of course not watertight, and there will be users complaining that they get un-
expected or confusing (in their opinion) outputs. With infinitely many potential types,
however, we cannot respond to every possible situation.

Example 10.27 As an illustration, here is a function that counts the number of occurrences of
items in a numerised (digitised?) version of a given object:

numtable <- function(x)

{

if (!is.numeric(x)) x <- as.numeric(x) # two generics!

u <- unique(x)

structure(

tabulate(match(x, u)),

names=as.character(u)

)

}

27 For example, lm.fit can be used instead of lm. It is slightly more difficult to learn, surely, but has
the added benefit of making sure the user knows that all model variables are not magical (especially the
nonlinear/mixed effect terms).
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Let us assume that the user has been informed (in the corresponding documentation page) that x
must be a numeric vector (as in is.numeric) or an object coercible to (bymeans of as.numeric).

The callers will be stress-testing our function inmany different ways:

numtable(c(1, 3, 5, 5, 1, 5))

## 1 3 5

## 2 1 3

This is an intended behaviour.

numtable(c("1", "3", "5", "5", "1", "5"))

## 1 3 5

## 2 1 3

Thismakes sense too, a character vector consisting of number-strings has been fed on input.

numtable(c("a", "e", "z", "z", "a", "z"))

## Warning in numtable(c("a", "e", "z", "z", "a", "z")): NAs introduced by

## coercion

## <NA>

## 6

Does the output make no sense? Of course, it does, they have just passed something not easily
coercible to a numeric vector. Note the warning that suggests there is something wrong.The user
needs to correct their possible mistake by themself.

numtable(list(1, 2, 3:10, 2))

## Error in numtable(list(1, 2, 3:10, 2)): 'list' object cannot be coerced to

## type 'double'

Again, makes sense. ‘But I think that this function should apply unlist automatically’ – well,
if you want such a behaviour, why don’t you call numtable(unlist(...)) yourself? It is not so
difficult.

numtable(factor(c(1, 3, 5, 5, 1, 5)))

## 1 2 3

## 2 1 3

Is this confusing? No; this is a well-documented behaviour of as.numeric on objects of type
factor (whichwasdesignedbyanother developer).Auser should know (butwe can remind them
about it in the documentation) that in this case, as.character should rather be called first.

Of course, sometimes users might discover bugs or unexpected behaviours, especially related to
boundary caseswehavenot been considerate enough to inspect.Weare of course the ones to blame
for the following:

numtable(numeric(0)) # bug: this should be corrected

(continues on next page)
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(continued from previous page)

## <NA>

## 0

10.5 (Over)using the forward-pipe operator, `|>` (*)
The object-oriented programming paradigm is useful when we wish to define a new
data type, perhaps even a hierarchy of types. Many development teams find it an ef-
ficient tool to organise larger pieces of software. Yet, in the broad data science and
numerical computing domains,more often than not, we are the consumers of object-
orientation rather than class designers.

Thanks to the discussed method dispatch mechanism, our language is easily extens-
ible and something that mimics a new data type can easily be introduced. Most im-
portantly, methods can be added or removed during run-time, e.g., when importing
external packages.

However, R is still a functional programming language, where functions not only are
first-class citizens; they are privileged. Of course, there are some inherent limitations
stemming from the ingenious simplicity of S3: method dispatch is usually based only
on the type of the first function argument, classes cannot be defined formally (but see
Section 11.5) and that there is no real encapsulation (we cannot actually hide data from
a user28). However, overall the whole concept has proven quite versatile.

In functional programming, emphasis is on operations (verbs), not data (nouns).This
leads toavery readable syntax, for example (assuming thatsquare,x, andyare sensibly
defined), the mean squared error can be written as:

mean(square(x-y))

This is very user-centric. However, when implementing more complex data pro-
cessing pipelines, a programmer thinks “first, I need to do this, then I need to do that,
and afterwards…”.When theywrite it down, there can be somepressing ofHOMEand
END keys on the keyboard involved.This should not be a problem for most program-
mers.

finally(thereafter(then(first(x))))

However, some people are inherently lazy, always complaining and/or always trying
to “optimise”29 things.

28Which can be good, right?
29 Do not get yours truly wrong, improving things is generally good, but overall, in the long run, as a

compulsive habit (“this is what (some) stakeholders want”, “we need to be agile and responsive”, etc.), it is
not really sustainable (also for the environment!). Less is better, even though a little harder. By introducing
a new, parallel syntax, we not only duplicate the existing features and cause some divide in the community
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Example 10.28 Base R is of course extremely flexible and we can introduce new vocabulary as
we please. In Chapter 12, we study an example, where we define:

• group_by (a function that splits a data framewith respect to a combination of levels in given
named columns and returns a list of data frames with class list_dfs),

• aggregate.list_dfs (which applies a given aggregation function on each column of each
data frame in a given list), and

• mean.list_dfs (a specialised version of the former that calls mean).

The specifics do not reallymatter now, let us just consider the notationweusewhen the operations
are chained:

# select a few rows and columns from the `iris` data frame:

iris_subset <- iris[51:150, c("Sepal.Width", "Petal.Length", "Species")]

# compute the averages of all variables grouped by Species:

mean(group_by(iris_subset, "Species"))

## Species x Mean

## 1 versicolor Sepal.Width 2.770

## 2 versicolor Petal.Length 4.260

## 3 virginica Sepal.Width 2.974

## 4 virginica Petal.Length 5.552

This is quite readable: we compute themean in groups defined by Species in a subset of the iris
data frame. All verbs appear on the lefthand side of the expression, with the last (the most im-
portant?) operation being listed first.

By the way, self-explanatory variable names and rich comments are priceless.

In more traditional object-oriented programming languages, either the method list
is sealed inside30 the class’ definition (like in C++), or some peculiar patches must be
applied to inject a method (like in Python)31. There, it is the objects that are told what
to do: they are treated as black boxes.

Some popular languages rely on the message-passing syntax, where operations are
propagated (and written) left-to-right instead of inside-out. For instance, in C++ and
Python (amongstmanyothers), “obj.method1().method2()”means “call method1on obj
and then call method2 on the result.

SinceR4.1.0, there is a pipe operator32, `|>`,which ismerely a syntactic sugar for trans-
lating between themessage-passing and function-centric notion. In a nutshell, writ-
ing:

(someuserswill be introduced to the system through thenew interface andnot know the old one, otherswill
have to learn the new syntax to be able to communicate with the former group) but also introduce a whole
new set of issues (how tomake the new functions interoperablewith each other in a seamlessmanner, etc.).

30When methods are parts of particular classes, there can be a lot of duplicated code. Functional OOP
can bemore developer-friendly as we can implement all methods related to roughly the same functionality
in one spot.

31 See also the concept of extensionmethods in C# or Kotlin or, to some extent, class inheritance.
32 It was inspired by `|` in Bash and `|>@` in F# and Julia (which are part of the language specification).

Also, there is a `%>%` operator (and related ones) in the R package magrittr.
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x |> f() |> g(y) |> h()

(x-y) |> square() |> mean()

is equivalent, respectively, to:

h(g(f(x), y))

mean(square(x-y))

This syntax is developer-centric: it emphasises on the order in which the operations
are executed, something that could always be achievedwith the function-centric form
and perhaps a few auxiliary variables.

The placeholder `_` can be used in the righthand side of the pipe operator (only once)
to indicate that the lefthand side should be matched to a specific named argument of
the function to be called. Otherwise, the lefthandside always becomes passed as the
first argument.

Therefore, the two following expressions are equivalent:

x |> median() |> `-`(e1=x, e2=_) |> abs() |> median()

median(abs(x-median(x)))

Example 10.29 In the above example, a pipe operator version of the iris aggregation exercise
would look like:

iris_subset |> group_by("Species") |> mean()

Expressions in the righthand side must always be proper calls. Therefore, the use of
round brackets is obligatory.Thus, when passing anonymous functions, we should be
writing:

runif(10) |> (function(x) mean((x-mean(x))^2))() # note the `()` at the end

## [1] 0.078184

Peculiarly, in R 4.1.0, a “shorthand” notation notation for creating functions was in-
troduced.Wecan save sevenkeystrokes andwrite “\(...) expr” insteadof “function(.
..) expr”.

runif(10) |> (\(x) mean((x-mean(x))^2))() # note the `()` at the end

## [1] 0.078184

Thisbook isminimalist bydesignand there is nothing that cannot be achievedwithout
the pipe operator. Hence, we will be refraining33 ourselves from using it.

Note Whenwriting code interactively, wemay sometimes benefit from the use of the

33Which some readers would name an uncool (old-school) approach, but we do not care. Remember that
the functional syntax is the native one and we have to be able to understand it anyway.
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rightward `->` operator. Suffice to say that “name <- value” and “value -> name” are
synonymous.

This way we can write some lengthy code, store the result in an intermediate variable,
and then continue on in the next line (possibly referring to that auxiliary value more
than once). In the long run, multiplying entities without necessity is unsustainable.

For instance:

runif(10) -> .; mean((.-mean(.))^2)

## [1] 0.078184

or:

iris[, c("Sepal.Width", "Petal.Length", "Species")] -> .

.[ .[, "Species"] %in% c("versicolor", "virginica"), ] -> .

mean(group_by(., "Species"))

## Species x Mean

## 1 versicolor Sepal.Width 2.770

## 2 versicolor Petal.Length 4.260

## 3 virginica Sepal.Width 2.974

## 4 virginica Petal.Length 5.552

`.` is as good a variable name as any other one.

10.6 Exercises
Exercise 10.30 Answer the following questions:

• How to display the source code of the default methods for head and tail?

• Can there be, at the same time, one object of class c("A", "B") and another one of class
c("B", "A")?

• If f is a factor, what are the relationships between as.character(f), as.numeric(f), as.
character(as.numeric(f)), and as.numeric(as.character(f))?

• If x is a named vector and f is a factor, is x[f] equivalent to x[as.character(f)] or rather
x[as.numeric(f)]?

Exercise 10.31 A user calls:

plot(x, y, col="red", ylim=c(1, max(x)), log="y")

where x and y are numeric vectors. Consult help("plot") for the meaning of the ylim and log
arguments.Was that straightforward?
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Exercise 10.32 Explain why the two following calls yield significantly different results and
present a workaround:

c(Sys.Date(), "1970-01-01")

## [1] "2023-04-27" "1970-01-01"

c("1970-01-01", Sys.Date())

## [1] "1970-01-01" "19474"

Exercise 10.33 Write methods head and tail for our example categorical class.

Exercise 10.34 (*)Write anRpackage that definesS3 classcategoricalanda couple ofmeth-
ods therefor. Note the need for the use of the S3method directive NAMESPACE; see [59].

Exercise 10.35 Inspect the result of a call to binom.test(79, 100). Find themethod respons-
ible for the pretty-printing of such objects.

Exercise 10.36 Inspect the result of a call to rle(c(1, 1, 1, 4, 3, 3, 3, 3, 3,, 2, 2)).
Find themethod responsible for the pretty-printing of such objects.

Exercise 10.37 Readmoreabout theconnection class; see theValue section inhelp("connections").

Exercise 10.38 Readabout the subsetting operators overloaded for thepackage_version class;
see help("numeric_version").

Exercise 10.39 There are xtfrm methods overloaded for classes such as numeric_version,
difftime, Date, and factor. Find out how theywork andwhere theymight be useful (especially
in relation to order and sort; see also Section 12.3.1).

Exercise 10.40 Give an example where split(x, list(y1, y2)) (with default arguments)
will fail to generate the correct result.

Exercise 10.41 Write a function that determines the mode, i.e., the most frequently occurring
value in a given object of class factor. If the mode is not unique, return a randomly chosen one
(each with the same probability).

Exercise 10.42 Implement your own version of the gl function.

Exercise 10.43 Check out which built-in date-time functions the stringx package replaces
withmore portable ones.



11
Matrices and other arrays

When we equip an atomic or generic vector with the dim attribute, it automatically
becomes an object of S3 class array. In particular, two-dimensional arrays (primary
S3 class matrix) allow us to represent tabular data where items are aligned into rows
and columns:

structure(1:6, dim=c(2, 3)) # a matrix with 2 rows and 3 columns

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

This (combinedwith the fact that there aremany built-in functions overloaded for the
matrix class) opens up a range of new possibilities, which we explore in this chapter.
In particular, we discuss how to perform basic algebraic operations such as matrix
multiplication, transpose, finding eigenvalues, and performing various decomposi-
tions. We also cover data wrangling operations such as array subsetting and column-
and rowwise aggregation.

Important Oftentimes, a numericmatrix with n rows andmwill be used to represent
n points (samples) in anm-dimensional (withm features or variables) space,ℝ𝑚.

Furthermore, in the next chapter, we will introduce data frames: matrix-like objects
whose columns can be of any (not necessarily the same) type.

11.1 Creating arrays
11.1.1 matrix and array
Amatrix can be conveniently created by means of the matrix function.

(A <- matrix(1:6, byrow=TRUE, nrow=2))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6
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The above converted an atomic vector of length six into a matrix with two rows. The
number of columns was determined automatically (ncol=3 could have been passed to
get the same result).

Important By default, the elements of the input vector are read columnwisely:

matrix(1:6, ncol=3) # byrow=FALSE

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

Amatrix can be equippedwith dimension names, being a list of two character vectors
of appropriate sizes, labelling each row and column, in this order:

matrix(1:6, byrow=TRUE, nrow=2, dimnames=list(c("x", "y"), c("a", "b", "c")))

## a b c

## x 1 2 3

## y 4 5 6

Alternatively, to create a matrix, we can use the array function, which requires the
number of rows and columns be specified explicitly.

array(1:6, dim=c(2, 3))

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

Note that the elements are consumed in a column-major manner.

Arrays of dimensionality other than 2 are also possible. Here is a one-dimensional ar-
ray. When printed, it is indistinguishable from an atomic vector (but still the class

attribute is set to array):

array(1:6, dim=6)

## [1] 1 2 3 4 5 6

And now for something completely different: a three-dimensional array of size 3-by-
4-by-2

array(1:24, dim=c(3, 4, 2))

## , , 1

##

## [,1] [,2] [,3] [,4]

## [1,] 1 4 7 10

## [2,] 2 5 8 11

## [3,] 3 6 9 12

(continues on next page)
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(continued from previous page)

##

## , , 2

##

## [,1] [,2] [,3] [,4]

## [1,] 13 16 19 22

## [2,] 14 17 20 23

## [3,] 15 18 21 24

which can be thought of as twomatrices of size 3-by-4 (because how else can we print
out a 3D object on a 2D console?).

The array function can be fedwith the dimnames argument too. For instance, the above
three-dimensional hypertable would require a list of three character vectors, of sizes
3, 4, and 2, respectively.

Exercise 11.1 That 10-dimensional arrays are also possible the reader is encouraged to try out
themself.

11.1.2 Promoting and stacking vectors
We can promote an ordinary vector to a column vector, i.e., amatrix with one column
by calling:

as.matrix(1:2)

## [,1]

## [1,] 1

## [2,] 2

cbind(1:2)

## [,1]

## [1,] 1

## [2,] 2

and to a row vector:

t(1:3) # transpose

## [,1] [,2] [,3]

## [1,] 1 2 3

rbind(1:3)

## [,1] [,2] [,3]

## [1,] 1 2 3

Actually, cbind and rbind stand for column- and row-bind; they allowmultiple vectors
andmatrices be stacked one after/below another:

rbind(1:4, 5:8, 9:10, 11) # row bind

## [,1] [,2] [,3] [,4]

(continues on next page)



226 II DEEPER

(continued from previous page)

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 9 10

## [4,] 11 11 11 11

cbind(1:4, 5:8, 9:10, 11) # column bind

## [,1] [,2] [,3] [,4]

## [1,] 1 5 9 11

## [2,] 2 6 10 11

## [3,] 3 7 9 11

## [4,] 4 8 10 11

cbind(1:2, 3:4, rbind(11:13, 21:23)) # vector, vector, 2x3 matrix

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 3 11 12 13

## [2,] 2 4 21 22 23

and so forth.

Unfortunately, the generalised recycling rule is not implemented in full:

cbind(1:4, 5:8, cbind(9:10, 11)) # different from cbind(1:4, 5:8, 9:10, 11)

## Warning in cbind(1:4, 5:8, cbind(9:10, 11)): number of rows of result is

## not a multiple of vector length (arg 1)

## [,1] [,2] [,3] [,4]

## [1,] 1 5 9 11

## [2,] 2 6 10 11

Note that the first two arguments are of length four.

11.1.3 Simplifying lists
simplify2array is an extension of the unlist function. Given a list of atomic vectors,
each of length one, it will return a flat atomic vector. However, if a list of equisized
vectors of greater lengths is given, these will be converted to a matrix.

simplify2array(list(1, 11, 21)) # each of length 1

## [1] 1 11 21

simplify2array(list(1:3, 11:13, 21:23, 31:33)) # each of length 3

## [,1] [,2] [,3] [,4]

## [1,] 1 11 21 31

## [2,] 2 12 22 32

## [3,] 3 13 23 33

simplify2array(list(1, 11:12, 21:23)) # no can do

## [[1]]

## [1] 1

##

(continues on next page)
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## [[2]]

## [1] 11 12

##

## [[3]]

## [1] 21 22 23

Note that in the second example, each vector becomes a separate column of the res-
ulting matrix1.

See Section 12.3.7 for a fewmore examples.

Example 11.2 There are quite a few functions that call the above automatically by default (com-
pare the simplify or SIMPLIFY (sic!) argument in sapply, tapply, mapply, replicate, etc.).

For instance:

min_mean_max <- function(x) c(Min=min(x), Mean=mean(x), Max=max(x))

sapply(split(iris[["Sepal.Length"]], iris[["Species"]]), min_mean_max)

## setosa versicolor virginica

## Min 4.300 4.900 4.900

## Mean 5.006 5.936 6.588

## Max 5.800 7.000 7.900

Take note of what constitutes the columns of the returnmatrix.

Exercise 11.3 Note the behaviour of as.matrix on list arguments. Write your own version
of simplify2array named as.matrix.list that always returns a matrix. If a list of non-
equisized vectors is given, fill the missing cells with NAs.

Important Sometimes a call to do.call(cbind, x)) might be a better idea than a
referral to simplify2array. Provided that x is a list of atomic vectors, it always returns
a matrix: shorter vectors are recycled (which might be welcome, but not necessarily).

do.call(cbind, list(a=c(u=1), b=c(v=2, w=3), c=c(i=4, j=5, k=6)))

## Warning in (function (..., deparse.level = 1) : number of rows of result

## is not a multiple of vector length (arg 2)

## a b c

## i 1 2 4

## j 1 3 5

## k 1 2 6

Example 11.4 Consider a named toy list of numeric vectors:

x <- list(a=runif(10), b=rnorm(15))

1Which can easily be explained by the fact that matrix elements are stored in a columnwise order.
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Compare the results generated by sapply (which calls simplify2array):

sapply(x, function(e) c(Mean=mean(e)))

## a.Mean b.Mean

## 0.57825 0.12431

sapply(x, function(e) c(Min=min(e), Max=max(e)))

## a b

## Min 0.045556 -1.9666

## Max 0.940467 1.7869

with its version based on do.call and cbind:

sapply2 <- function(...)

do.call(cbind, lapply(...))

sapply2(x, function(e) c(Mean=mean(e)))

## a b

## Mean 0.57825 0.12431

sapply2(x, function(e) c(Min=min(e), Max=max(e)))

## a b

## Min 0.045556 -1.9666

## Max 0.940467 1.7869

Note that sapplymay return an atomic vector with somewhat surprising names.

11.1.4 Beyond numeric arrays
Arrays built upon atomic vectors other than numeric ones are possible too. For in-
stance, later we will stress that comparisons featuring matrices are performed ele-
mentwisely, which results in logical matrices:

A >= 3

## [,1] [,2] [,3]

## [1,] FALSE FALSE TRUE

## [2,] TRUE TRUE TRUE

Furthermore, matrices of character strings can be useful too:

matrix(strrep(LETTERS[1:6], 1:6), ncol=3)

## [,1] [,2] [,3]

## [1,] "A" "CCC" "EEEEE"

## [2,] "BB" "DDDD" "FFFFFF"

And of course complex matrices:

A + 1i

## [,1] [,2] [,3]

(continues on next page)
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## [1,] 1+1i 2+1i 3+1i

## [2,] 4+1i 5+1i 6+1i

We are not limited to atomic vectors: lists can be a basis for arrays as well:

matrix(list(1, 11:21, "A", list(1, 2, 3)), nrow=2)

## [,1] [,2]

## [1,] 1 "A"

## [2,] integer,11 list,3

Some elements are not displayed properly, but they are still there.

11.1.5 Internal representation
Anobject of S3 class array is an atomic vector or a list equippedwith the dims attribute,
which is a vector of nonnegative integers. Interestingly,wedonot have to set the class
attribute explicitly: the accessor function class will return an implicit2 class anyway
(compare Section 4.4.3).

class(1) # atomic vector

## [1] "numeric"

class(structure(1, dim=rep(1, 1))) # 1D array (vector)

## [1] "array"

class(structure(1, dim=rep(1, 2))) # 2D array (matrix)

## [1] "matrix" "array"

class(structure(1, dim=rep(1, 3))) # 3D array

## [1] "array"

Note that a 2-dimensional array is additionally of class matrix.

Optional dimension names are represented bymeans of the dimnames attribute, which
is a list of d character vectors, where d is the array’s dimensionality.

(A <- structure(1:6, dim=c(2, 3), dimnames=list(letters[1:2], LETTERS[1:3])))

## A B C

## a 1 3 5

## b 2 4 6

dim(A) # or attr(A, "dim")

## [1] 2 3

dimnames(A) # or attr(A, "dimnames")

## [[1]]

## [1] "a" "b"

##

(continues on next page)

2 Also, note that calling unclass on amatrix has no effect.
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(continued from previous page)

## [[2]]

## [1] "A" "B" "C"

Important Internally, elements in an array are always stored in the columnwise
(column-major, Fortran) order:

as.numeric(A) # drop all attributes to reveal the underlying numeric vector

## [1] 1 2 3 4 5 6

Setting byrow=TRUE in a call to the matrix only affects the order in which this function
reads a given source vector, not the column/row-majorness.

(B <- matrix(1:6, ncol=3, byrow=TRUE))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

as.numeric(B)

## [1] 1 4 2 5 3 6

The two said special attributes can be modified through the replacement functions
`dim<-` and `dimnames<-` (and of course `attr<-` as well). In particular, changing dim
does not alter the underlying atomic vector; it only affects how other functions, in-
cluding the corresponding printmethod, interpret their placement on a virtual grid:

`dim<-`(A, c(3, 2)) # not the same as transpose of A

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

What we have obtained is a different view on the same flat data vector. Also, dimnames
were dropped because its size became incompatible with the newly requested dimen-
sionality.

Exercise 11.5 Study the source code of the nrow, NROW, ncol, NCOL, rownames, row.names, and
colnames functions.

Interestingly, for one-dimensional arrays, the names function returns a sensible value
(based on the dimnames attributewhich is a list featuring one character vector), despite
the names attribute’s not being set.

What is more, dimnames itself can be named:

names(dimnames(A)) <- c("ROWS", "COLUMNS")

print(A)

(continues on next page)
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## COLUMNS

## ROWS A B C

## a 1 3 5

## b 2 4 6

It is still a numeric matrix, but the presentation thereof is slightly prettified.

Exercise 11.6 outer applies a given (vectorised elementwisely) function on each pair of ele-
ments from two vectors, forming a two-dimensional result grid. Based on two calls to rep, im-
plement your own version thereof.

Some examples:

outer(c(x=1, y=10, z=100), c(a=1, b=2, c=3, d=4), "*") # multiplication

## a b c d

## x 1 2 3 4

## y 10 20 30 40

## z 100 200 300 400

outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"

## [2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"

Exercise 11.7 Showhow match(y, z) canbe implementedwith outer. Is its time andmemory
complexity optimal, though?

Exercise 11.8 table createsa contingencymatrix/array that counts thenumberofuniquepairs
of corresponding elements fromone ormore vectors of equal lengths. Implement its one- and two-
argument version based on tabulate.

For example:

tips <- read.csv(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/other/tips.csv"), comment.char="#") # a data.frame (list)

table(tips[["day"]])

##

## Fri Sat Sun Thur

## 19 87 76 62

table(tips[["smoker"]], tips[["day"]])

##

## Fri Sat Sun Thur

## No 4 45 57 45

## Yes 15 42 19 17
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11.2 Array indexing
Array subsetting can be performed bymeans of an overloaded3 `[` method, which we
will usually provide with many indexers – two in the matrix case; see help("[").

In this section, we will be referring to the two following example matrices.

(A <- matrix(1:12, byrow=TRUE, nrow=3))

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 11 12

B <- A

dimnames(B) <- list(

c("a", "b", "c"), # row labels

c("x", "y", "z", "w") # column labels

)

B

## x y z w

## a 1 2 3 4

## b 5 6 7 8

## c 9 10 11 12

Subsetting higher-dimensional arrays will be covered at the end.

11.2.1 Arrays are built upon basic vectors
Firstly, let us note, though, that subsetting based on one indexer (as in Chapter 5) will
refer to the underlying flat vector.

For instance:

A[6]

## [1] 10

This is the element in the third row, second column: recall that values are stored in a
column-major order.

11.2.2 Selecting individual elements
Mathematically, we say that our example 3-by-4 real matrix𝐀 ∈ ℝ3×4 is like:

𝐀 = ⎡⎢⎢
⎣

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12

⎤⎥⎥
⎦

.

3 Hidden deeply at the C language level.
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Matrix elements are aligned in a two-dimensional grid.They are organised into rows
and columns. Hence, we can pinpoint a cell using two indexes: 𝑎𝑖,𝑗 refers to the i-th
row and the j-th column.

Similarly in R:

A[3, 2] # 3rd row, 2nd column

## [1] 10

B["c", "y"] # using dimnames == B[3, 2]

## [1] 10

11.2.3 Selecting rows and columns
Some textbooks, and we are fond of this notation here as well, mark with 𝐚𝑖,⋅ a vector
that consists of all the elements in the i-th rowandwith𝐚⋅,𝑗 all items in the j-th column.

In R, these will correspond to one of the indexers being left out.

A[3, ] # 3rd row

## [1] 9 10 11 12

A[, 2] # 2nd column

## [1] 2 6 10

B["c", ] # or B[3, ]

## x y z w

## 9 10 11 12

B[, "y"] # or B[, 2]

## a b c

## 2 6 10

Let us stress that A[1], A[1, ], and A[, 1] have all different meanings. Also, we see
that the results’ dimnames are adjusted accordingly; see also unnamewhich can take care
of them once and for all.

Exercise 11.9 Use duplicated to remove repeating rows in a given numeric matrix (see also
unique).

11.2.4 Dropping dimensions
Extracting an individual element or a single row/column from a matrix yields an
atomic vector. If the dim attribute consists of 1s only, it will be removed whatsoever.

In order to obtain proper row and column vectors, we can request the preservation
of the dimensionality of the output object (and, more precisely, the length of dim) by
passing drop=FALSE to `[`.

A[1, 2, drop=FALSE] # 1st row, 2nd columns

## [,1]

## [1,] 2

(continues on next page)
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A[1, , drop=FALSE] # 1st row

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

A[ , 2, drop=FALSE] # 2nd column

## [,1]

## [1,] 2

## [2,] 6

## [3,] 10

Important The drop argument unfortunately defaults to TRUE. Many bugs could be
avoided more easily otherwise, especially when the indexers are generated program-
matically.

See also the drop function which gets rid of the dimensions that have only one level.

Note For list-based matrices, we can also use a multi-argument version of `[[` to
extract the individual elements.

C <- matrix(list(1, 11:12, 21:23, 31:34), nrow=2)

C[1, 2] # for `[`, input type is the same as the output type, hence a list

## [[1]]

## [1] 21 22 23

C[1, 2, drop=FALSE]

## [,1]

## [1,] integer,3

C[[1, 2]] # extract

## [1] 21 22 23

11.2.5 Selecting submatrices
Indexing based on two vectors, both of length two or more, extracts a sub-block of a
givenmatrix:

A[1:2, c(1, 2, 4)] # rows 1 and 2, columns 1, 2, and 4

## [,1] [,2] [,3]

## [1,] 1 2 4

## [2,] 5 6 8

B[c("a", "b"), -3]

## x y w

## a 1 2 4

## b 5 6 8
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Note again that drop=TRUE is the default, which affects the behaviour if one of the in-
dexers is a scalar.

A[c(1, 3), 3]

## [1] 3 11

A[c(1, 3), 3, drop=FALSE]

## [,1]

## [1,] 3

## [2,] 11

Exercise 11.10 Overload the split function for the matrix class in such a way that, given a
matrix with n rows and an object of class factor of length n (or a list of such objects), a list of n
matrices is returned. For example:

split.matrix <- ...to.do...

A <- matrix(1:12, nrow=3) # matrix whose rows are to be split

s <- factor(c("a", "b", "a")) # determines the grouping of rows

split(A, s)

## $a

## [,1] [,2] [,3] [,4]

## [1,] 1 4 7 10

## [2,] 3 6 9 12

##

## $b

## [,1] [,2] [,3] [,4]

## [1,] 2 5 8 11

11.2.6 Selecting elements based on logical vectors
Logical vectors can also be used as indexers, with consequences that are not hard to
guess:

A[c(TRUE, FALSE, TRUE), -1] # select 1st and 3rd row, all but 1st column

## [,1] [,2] [,3]

## [1,] 4 7 10

## [2,] 6 9 12

B[B[, "x"]>1 & B[, "x"]<=9, ] # all rows where x is in (1, 9]

## x y z w

## b 5 6 7 8

## c 9 10 11 12

A[2, colMeans(A)>6, drop=FALSE] # 2nd row of the columns with means > 6

## [,1] [,2]

## [1,] 8 11

Note In Section 11.3, we note that comparisons involving matrices are performed in
an elementwise manner, for example:
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A>7

## [,1] [,2] [,3] [,4]

## [1,] FALSE FALSE FALSE TRUE

## [2,] FALSE FALSE TRUE TRUE

## [3,] FALSE FALSE TRUE TRUE

Such logicalmatrices can be used to index othermatrices of the same size.This always
yields a (flat) vector in return.

A[A>7]

## [1] 8 9 10 11 12

This nothing else than the single-indexer subsetting involving two flat vectors (a nu-
meric and a logical one); the dim attributes are not considered here.

Exercise 11.11 Implement your own versions of max.col, lower.tri, and upper.tri.

11.2.7 Selecting based on two-columnnumericmatrices
We can also index a matrix A with a two-column matrix of positive integers I, for in-
stance:

(I <- cbind(

c(1, 3, 2, 1, 2),

c(2, 3, 2, 1, 4)

))

## [,1] [,2]

## [1,] 1 2

## [2,] 3 3

## [3,] 2 2

## [4,] 1 1

## [5,] 2 4

Now A[I] gives an easy access to:

• A[I[1, 1], I[1, 2]],

• A[I[2, 1], I[2, 2]],

• A[I[3, 1], I[3, 2]],

• …

and so forth. In other words, each row of I gives the coordinates of the elements to
extract.

A[I]

## [1] 4 9 5 1 11
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This is exactly A[1, 2], A[3, 3], A[2, 2], A[1, 1], A[2, 4]. The result is always a
flat vector.

Note which can also return a list of index matrices:

which(A>7, arr.ind=TRUE)

## row col

## [1,] 2 3

## [2,] 3 3

## [3,] 1 4

## [4,] 2 4

## [5,] 3 4

Moreover, arrayInd can be used to convert flat indexes to multidimensional ones.

Exercise 11.12 Implement your ownversion of arrayInd anda function performing the inverse
operation.

Exercise 11.13 Implement your own version of diag.

11.2.8 Higher-dimensional arrays
For d-dimensional arrays, indexing can involve up to d indexes.

This isparticularlyuseful fordim-namedarrays that represent contingency tablesover
a Cartesian product of multiple factors. The built-in datasets::Titanic object is an
example of this:

str(dimnames(Titanic)) # for reference (note that dimnames are named)

## List of 4

## $ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"

## $ Sex : chr [1:2] "Male" "Female"

## $ Age : chr [1:2] "Child" "Adult"

## $ Survived: chr [1:2] "No" "Yes"

Titanic["Crew", "Male", "Adult", "Yes"]

## [1] 192

gives the number of adult malemembers of the crewwho survived the accident. Also:

Titanic["Crew", , "Adult", ]

## Survived

## Sex No Yes

## Male 670 192

## Female 3 20

and so on.
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Exercise 11.14 Check if the above four-dimensional array can be indexed bymeans of matrices
with four columns.

11.2.9 Replacing elements
There is of course also amultidimensional version of the replacement subsetting func-
tion, `[<-`.

Generally, subsetting drops all attributes except names, dim, and dimnames (unless it
does not make sense otherwise). The replacement variant of the index operator mod-
ifies vector values but generally preserves all the attributes.

This enables transformingmatrix elements like:

B[B<10] <- A[B<10]^2

print(B)

## x y z w

## a 1 16 49 100

## b 4 25 64 121

## c 9 10 11 12

B[] <- rep(seq_len(NROW(B)), NCOL(B)) # NOT the same as B <- ...

print(B)

## x y z w

## a 1 1 1 1

## b 2 2 2 2

## c 3 3 3 3

Take note of the preservation of dim and dimnames.

Exercise 11.15 Given a character matrix with entities that can be interpreted as numbers like:

(X <- rbind(x=c(a="1", b="2"), y=c("3", "4")))

## a b

## x "1" "2"

## y "3" "4"

convert it to a numeric matrix with a single line of code. Preserve all attributes.

11.3 Common pperations
11.3.1 Matrix transpose
Thematrix transpose, mathematically denoted with𝐀𝑇, is available via a call to t:
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(A <- matrix(1:6, byrow=TRUE, nrow=2))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

t(A)

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

Hence, if 𝐁 = 𝐀𝑇, then it is a matrix such that 𝑏𝑖,𝑗 = 𝑎𝑗,𝑖. In other words, in the
transposedmatrix, rows become columns and columns become rows.

For higher-dimensional arrays, a generalised transpose can be achieved with aperm

(try permuting the dimensions of Titanic). Also note that the conjugate transpose of
a complex matrix𝐀 is done via Conj(t(A)).

11.3.2 Vectorisedmathematical functions
Vectorised functions such as sqrt, abs, round, log, exp, cos, sin, etc., operate on each
element of a given array4.

A <- matrix(1/(1:6), nrow=2)

round(A, 2) # rounds every element in A

## [,1] [,2] [,3]

## [1,] 1.0 0.33 0.20

## [2,] 0.5 0.25 0.17

Exercise 11.16 Using a single call to matplot, which accepts the y argument be amatrix, draw
a plot of sin(𝑥), cos(𝑥), | sin(𝑥)|, and | cos(𝑥)| for 𝑥 ∈ [−2𝜋, 6𝜋].

11.3.3 Aggregating rows and columns
Whenwe call an aggregation functiononanarray, itwill reduce all elements to a single
number:

(A <- matrix(1:12, byrow=TRUE, nrow=3))

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 11 12

mean(A)

## [1] 6.5

4They are simply applied on each element of the underlying flat vector. In Section 5.5, we have men-
tioned that unary functions preserve all attributes of their inputs, hence also dim and dimnames.
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The apply functionmay be used to summarise individual rows or columns in amatrix:

• apply(A, 1, f) applies a given function f on each row of a matrix A;

• apply(A, 2, f) applies f on each column of A.

For instance:

apply(A, 1, mean) # synonym: rowMeans(A)

## [1] 2.5 6.5 10.5

apply(A, 2, mean) # synonym: colMeans(A)

## [1] 5 6 7 8

Note that the function being applied does not have to return a single number:

apply(A, 2, range) # min and max

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 9 10 11 12

apply(A, 1, function(row) c(Min=min(row), Mean=mean(row), Max=max(row)))

## [,1] [,2] [,3]

## Min 1.0 5.0 9.0

## Mean 2.5 6.5 10.5

## Max 4.0 8.0 12.0

Take note of the columnwise order of the output values.

applyworks on higher-dimensional arrays too:

apply(Titanic, 1, mean) # 1st dimension - Class

## 1st 2nd 3rd Crew

## 40.625 35.625 88.250 110.625

apply(Titanic, c(1, 3), mean) # w.r.t. Class (1st) and Age (3rd)

## Age

## Class Child Adult

## 1st 1.50 79.75

## 2nd 6.00 65.25

## 3rd 19.75 156.75

## Crew 0.00 221.25

11.3.4 Binary operators
In Section 5.5, we have stated that binary elementwise operations, such as addition
or multiplication, preserve the attributes of the longer input or both (with the first
argument preferred to the second) if they are of equal sizes.

Taking into account that:

• an array is simply a flat vector equipped with the dim attribute, and
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• we refer to the respective defaultmethods when applying binary operators

allows us to deduce how `+`, `<=`, `&`, etc. behave in a number of different contexts.

Array-Array. First, let us note what happens when we operate on two arrays of
identical dimensionalities.

(A <- rbind(c(1, 10, 100), c(-1, -10, -100)))

## [,1] [,2] [,3]

## [1,] 1 10 100

## [2,] -1 -10 -100

(B <- matrix(1:6, byrow=TRUE, nrow=2))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

A + B # elementwise addition

## [,1] [,2] [,3]

## [1,] 2 12 103

## [2,] 3 -5 -94

A * B # elementwise multiplication (not: algebraic matrix multiply)

## [,1] [,2] [,3]

## [1,] 1 20 300

## [2,] -4 -50 -600

This is simply the addition and multiplication of the corresponding elements of two
givenmatrices.

Array-Scalar. Second, we can apply scalar-matrix operations:

(-1)*B

## [,1] [,2] [,3]

## [1,] -1 -2 -3

## [2,] -4 -5 -6

A^2

## [,1] [,2] [,3]

## [1,] 1 100 10000

## [2,] 1 100 10000

Thesemultiplied each element in B by -1 and squared every element in A, respectively.

Also note that the behaviour of relational operators is similar:

A >= 1 & A <= 100

## [,1] [,2] [,3]

## [1,] TRUE TRUE TRUE

## [2,] FALSE FALSE FALSE
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Array-Vector. Next, based on the recycling rule and the fact that elements are ordered
columnwisely, we get that:

B * c(10, 100)

## [,1] [,2] [,3]

## [1,] 10 20 30

## [2,] 400 500 600

multiplied every element in the first row by 10 and each element in the second row by
100.

Note that if wish to multiply each element in the first, second, …, etc. column by the
first, second, …, etc. value in a vector, we should not call:

B * c(1, 100, 1000)

## [,1] [,2] [,3]

## [1,] 1 2000 300

## [2,] 400 5 6000

but rather:

t(t(B) * c(1, 100, 1000))

## [,1] [,2] [,3]

## [1,] 1 200 3000

## [2,] 4 500 6000

or:

t(apply(B, 1, `*`, c(1, 100, 1000)))

## [,1] [,2] [,3]

## [1,] 1 200 3000

## [2,] 4 500 6000

Exercise 11.17 Write a function which standardises the values in each column of a given mat-
rix: for each column, from every element, subtract the mean and then divide it by the standard
deviation. Try to do it in a few different ways, including via a call to apply, sweep, scale, or
based solely on arithmetic operators.

Note Some sanity checks are being done on the dim attributes, so not every configur-
ation is possible. Notice the following peculiarities:

getOption("error")

## NULL

A + t(B) # dim==c(2, 3) vs dim==c(3, 2)

## Error in A + t(B): non-conformable arrays

A * cbind(1, 10, 100) # this is too good to be true

## Error in A * cbind(1, 10, 100): non-conformable arrays

(continues on next page)
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A * rbind(1, 10) # but A * c(1, 10) works...

## Error in A * rbind(1, 10): non-conformable arrays

A + 1:12

## Error in eval(expr, envir, enclos): dims [product 6] do not match the

## length of object [12]

A + 1:5 # partial recycling is okay

## Warning in A + 1:5: longer object length is not a multiple of shorter

## object length

## [,1] [,2] [,3]

## [1,] 2 13 105

## [2,] 1 -6 -99

11.4 Numericalmatrix algebra (*)
Many data analysis and machine learning algorithms, in their essence, involve quite
simplematrix algebra and numerical mathematics. Suffice to say that anyone serious
about data science and scientific computing should learn the necessary theory; see,
for example, [29] and [30].

R is a convenient interface to thewell-testedandstable algorithms from,amongst oth-
ers, LAPACK and BLAS5. Belowwemention only a few of them.Note that there aremany
third-party packages featuring hundreds of algorithms tackling differential equa-
tions, constrained andunconstrained optimisation, etc.; exploring the relevantCRAN
Task Views6 can give a good overview.

11.4.1 Matrixmultiplication
`*` performs elementwise multiplication. For what we call (algebraic) matrix multi-
plication, we should use the `%*%` operator.

Refreshing from a basic linear algebra course, matrix multiplication can only be per-
formed on two matrices of compatible sizes: the number of columns in the left matrix
must match the number of rows in the right operand.

Given 𝐀 ∈ ℝ𝑛×𝑝 and 𝐁 ∈ ℝ𝑝×𝑚, their multiply is a matrix 𝐂 = 𝐀𝐁 ∈ ℝ𝑛×𝑚 such
that 𝑐𝑖,𝑗 is the dot product of the i-th row in𝐀 and the j-th column in𝐁:

𝑐𝑖,𝑗 = 𝐚𝑖,⋅ ⋅ 𝐛⋅,𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗,

5 (*) Note that we can select the underlying implementation of BLAS at R’s compile time; see Section A.3
in [61]. Some of them are faster than others.

6 https://cran.r-project.org/web/views/

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
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for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚.
For instance:

(A <- rbind(c(1, 1, 1), c(-1, 1, 0)))

## [,1] [,2] [,3]

## [1,] 1 1 1

## [2,] -1 1 0

(B <- rbind(c(3, -1), c(1, 2), c(6, 1)))

## [,1] [,2]

## [1,] 3 -1

## [2,] 1 2

## [3,] 6 1

A %*% B

## [,1] [,2]

## [1,] 10 2

## [2,] -2 3

Note When applying `%*%` on one or more flat vectors, their dimensionality will be
promoted automatically to make the operation possible. Note that, however, c(a, b)

%*% c(c, d) gives a scalar 𝑎𝑐 + 𝑏𝑑, and not a 2-by-2 matrix.

Further, crossprod(A, B) yields 𝐀𝑇𝐁 and tcrossprod(A, B) determines 𝐀𝐁𝑇 more
efficiently than relying on `%*%`. Note that we can omit the second argument and get
𝐀𝑇𝐀 and𝐀𝐀, respectively

crossprod(c(1, 1)) # Euclidean norm squared

## [,1]

## [1,] 2

crossprod(c(1, 1), c(-1, 1)) # dot product of two vectors

## [,1]

## [1,] 0

crossprod(A) # same as t(A) %*% A, i.e., dot products of all column pairs

## [,1] [,2] [,3]

## [1,] 2 0 1

## [2,] 0 2 1

## [3,] 1 1 1

Recall that if the dot product of two vectors is equal to 0, we say that they are ortho-
gonal (perpendicular).

Exercise 11.18 (*)Write your own versions of cov and cor: functions to compute the covariance
and correlationmatrices.Make use of the fact that the former can be determinedwith crossprod
based on a centred version of an input matrix.
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11.4.2 Solving systems of linear equations
The solve function can be used to solve m systems of n linear equations of the form
𝐀𝐗 = 𝐁, where𝐀 ∈ ℝ𝑛×𝑛 and𝐗,𝐁 ∈ ℝ𝑛×𝑚 (via the LU decomposition with partial
pivoting and row interchanges).

11.4.3 Norms andmetrics
Given an n-by-mmatrix𝐀, calling norm(A, "1"), norm(A, "2"), and norm(A, "I"), we
can compute the operator norms:

‖𝐀‖1 = max𝑗=1,…,𝑚 ∑𝑛
𝑖=1 |𝑎𝑖,𝑗|,

‖𝐀‖2 = 𝜎1(𝐀) = sup𝟎≠𝐱∈ℝ𝑚
‖𝐀𝐱‖2
‖𝐱‖2

‖𝐀‖𝐼 = max𝑖=1,…,𝑛 ∑𝑚
𝑗=1 |𝑎𝑖,𝑗|,

where 𝜎1 gives the largest singular value (see below).

Also, passing "F" as the second argument yields the Frobenius norm, ‖𝐀‖𝐹 =
√∑𝑛

𝑖=1 ∑𝑚
𝑗=1 𝑎2

𝑖,𝑗, and "M" computes the max norm, ‖𝐀‖𝑀 = max 𝑖=1,…,𝑛
𝑗=1,…,𝑚

|𝑎𝑖,𝑗|.

Note that if𝐀 is a columnvector, then ‖𝐀‖𝐹 and ‖𝐀‖2 are equivalent and are referred to
as theEuclideannorm.Moreover, ‖𝐀‖𝑀 = ‖𝐀‖𝐼 give the supremumnormandoutputs
‖𝐀‖1 the Manhattan (taxicab) one.

Exercise 11.19 Given an n-by-m matrix 𝐀 representing m vectors in ℝ𝑛, normalise each
column so that you obtainm unit vectors, i.e., whose Euclidean norm is 1.

Further, distdetermines all pairwise distances between a set of n vectors inℝ𝑚, writ-
ten as a n bymmatrix.

For example, let us consider three vectors inℝ2:

(X <- rbind(c(1, 1), c(1, -2), c(0, 0)))

## [,1] [,2]

## [1,] 1 1

## [2,] 1 -2

## [3,] 0 0

as.matrix(dist(X, "euclidean"))

## 1 2 3

## 1 0.0000 3.0000 1.4142

## 2 3.0000 0.0000 2.2361

## 3 1.4142 2.2361 0.0000

From that we see that the distance between the 1st and the 3rd vector is ca. 1.41421.
Euclidean, maximum, Manhattan, and Canberra distances/metrics are available,
amongst others.

Exercise 11.20 dist returns an object of S3 class dist. Inspect how it is represented.

Example 11.21 adist implements a couple of stringmetrics. For example:
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x <- c("spam", "bacon", "eggs", "spa", "spams", "legs")

names(x) <- x

(d <- adist(x))

## spam bacon eggs spa spams legs

## spam 0 5 4 1 1 4

## bacon 5 0 5 5 5 5

## eggs 4 5 0 4 4 2

## spa 1 5 4 0 2 4

## spams 1 5 4 2 0 4

## legs 4 5 2 4 4 0

gives the Levenshtein distances between each pair of strings. In particular, we need two edit op-
erations (character insertions, deletions, or replacements) to turn "eggs" into "legs" (add l and
remove g).

Example 11.22 Objects of classdist canbeused to performhierarchical clusterings of datasets.
For example:

h <- hclust(as.dist(d), method="average") # see also: plot(h, labels=x)

cutree(h, 3)

## spam bacon eggs spa spams legs

## 1 2 3 1 1 3

yields a grouping into 3 clusters determined by the average linkage ("legs" and "eggs" are
grouped together, "spam", "spa", "spams" form another cluster, and "bacon" is a singleton).

11.4.4 Eigenvalues and eigenvectors
eigen returns a sequence of eigenvalues (𝜆1, … , 𝜆𝑛) (ordered nondecreasingly w.r.t.
|𝜆𝑖|) and a matrix 𝐕 whose columns define the corresponding eigenvectors (scaled to
unit length) of a givenmatrix𝐗. To recall, by definition it holds that𝐗𝐯⋅,𝑖 = 𝜆𝑖𝐯⋅,𝑖.

Here are the eigenvalues and the corresponding eigenvectors of an example matrix
(defining rotation in 2D by𝜋/3):

(R <- rbind(c(cos(pi/3), -sin(pi/3)), c(sin(pi/3), cos(pi/3))))

## [,1] [,2]

## [1,] 0.50000 -0.86603

## [2,] 0.86603 0.50000

eigen(R)

## eigen() decomposition

## $values

## [1] 0.5+0.86603i 0.5-0.86603i

##

## $vectors

## [,1] [,2]

(continues on next page)



11 MATRICES AND OTHER ARRAYS 247

(continued from previous page)

## [1,] 0.70711+0.00000i 0.70711+0.00000i

## [2,] 0.00000-0.70711i 0.00000+0.70711i

Example 11.23 Consider a pseudorandom sample from a bivariate7 normal distribution; see
Figure 11.1.

Z <- matrix(rnorm(2000), ncol=2) # independent N(0, 1)

Z <- Z %*% rbind(c(1, 0), c(0, sqrt(5))) # scaling

Z <- Z %*% R # rotation

Z <- t(c(10, -5) + t(Z)) # translation

plot(Z, asp=1)

5 10 15

-8
-6

-4
-2

0

Z[,1]

Z[
,2

]

Figure 11.1: Example bivariate normal sample

It is known that eigenvectors of the covariance matrix correspond to the principal components of
the original dataset and the eigenvalues give the variance explained by them:

eigen(cov(Z))

## eigen() decomposition

## $values

## [1] 5.18609 0.98386

##

## $vectors

## [,1] [,2]

(continues on next page)

7 For drawing random samples from any multivariate distribution, refer to the theory of copulas, e.g.,
[45].There are a few R packages on CRAN that implement the most popular models.
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(continued from previous page)

## [1,] -0.86715 0.49804

## [2,] -0.49804 -0.86715

this roughly corresponds to the principal directions [sin(𝜋/3), cos(𝜋/3)] and the thereto-
orthogonal [cos(𝜋/3), − sin(𝜋/3)]with variances of 5 and 1, respectively. Still, this method
of performing a PCA is not particularly numerically stable; see below for an alternative.

11.4.5 QR decomposition
We say that a real n-by-mmatrix𝐐, 𝑛 ≥ 𝑚, is orthogonal, whenever𝐐𝑇𝐐 = 𝐈 (iden-
titymatrix)which is equivalent to its columns being orthogonal unit vectors (note that
if𝐐 is a square matrix, then𝐐𝑇 = 𝐐−1 if and only if𝐐𝑇𝐐 = 𝐐𝐐𝑇 = 𝐈).
Let 𝐀 be a real8 n-by-mmatrix with 𝑛 ≥ 𝑚. Then 𝐀 = 𝐐𝐑 is its QR decomposition
(in the so-called narrow form), if𝐐 is an orthogonal n-by-mmatrix and𝐑 is an upper
triangularm-by-m one.

The qr function returns an object of S3 class qr from which we can extract the two
components; see the qr.Q and qr.R functions.

Example 11.24 Let 𝐗 be an n-by-m data matrix, representing n points inℝ𝑚, and a vector
𝐲 ∈ ℝ𝑛 of the desired outputs corresponding to each input. For fitting a linear model 𝐱𝑇𝜽,
where𝜽 is a vector of m parameters, we can use the method of least squares, whichminimises

ℒ(𝜽) =
𝑛

∑
𝑖=1

(𝐱𝑇
𝑖,⋅𝜽 − 𝑦𝑖)

2
= ‖𝐗𝜽 − 𝐲‖2

2

It might be shown that if 𝐗 = 𝐐𝐑, then 𝜽 = (𝐗𝑇𝐗)−1 𝐗𝑇𝐲 = 𝐑−1𝐐𝑇𝐲, which can
conveniently be determined via a call to qr.coef.

In particular, we can fit a simple linear regressionmodel 𝑦 = 𝑎𝑥 + 𝑏 by considering𝐗 = [𝑥, 1]
and𝜽 = [𝑎, 𝑏], for example (see Figure 11.2):

x <- cars[["speed"]]

y <- cars[["dist"]]

X <- cbind(x, 1) # the model is theta[1]*x + theta[2]*1

qrX <- qr(X)

(theta <- solve(qr.R(qrX)) %*% t(qr.Q(qrX)) %*% y) # or: qr.coef(qrX, y)

## [,1]

## x 3.9324

## -17.5791

plot(x, y, xlab="speed", ylab="dist") # scatter plot

abline(theta[2], theta[1], lty=2) # add the regression line

8 𝐀 can also be a complexmatrix, which results in its QR decomposition’s being such that𝐐 is a unitary
matrix.
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Figure 11.2: The built-in cars dataset and the fitted regression line

Note that solvewith one argument determines the inverse of a givenmatrix.The fittedmodel is
𝑦 = 3.93241𝑥 − 17.5791.
The same approach is used by lm.fit, which is theworkhorse behind the lmmethod accepting an
R formula (which some readers might be familiar with; compare Section 17.6).

lm.fit(cbind(x, 1), y)[["coefficients"]] # also: lm(dist~speed, data=cars)

## x

## 3.9324 -17.5791

11.4.6 SVD decomposition
Given a real n-by-mmatrix𝐗, its singular value decomposition (SVD) is given by𝐗 =
𝐔𝐃𝐕𝑇, where𝐃 is a p-by-p diagonalmatrix (featuring the so-called singular values of
𝐗, 𝑑1,1 ≥ … ≥ 𝑑𝑝,𝑝 ≥ 0, 𝑝 = min{𝑛, 𝑚}) and 𝐔, 𝐕 are orthogonal matrices of size
n-by-p andm-by-p, respectively.

svdmaynotonlybeused todetermine the solution to linear regression9 butalso toper-
form the principal component analysis10. Namely, 𝐕 gives the eigenvectors of 𝐗𝑇𝐗.
Assuming that𝐗 is centred at 0, the latter is precisely its scaled covariance matrix.
Example 11.25 Continuing the PCA example above, we can determine the principal directions
also by calling:

9 As the pseudoinverse 𝐗+ = (𝐗𝑇𝐗)−1 𝐗𝑇 = 𝐕𝐃+𝐔𝑇 = 𝐑−1𝐐𝑇 , with 𝐗+𝐗 = 𝐈. Here 𝐃+ is a
transposed version of𝐃 featuring the reciprocals of its non-zero elements.

10 See the source code of getS3method("prcomp", "default").
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Zc <- apply(Z, 2, function(x) x-mean(x)) # centred version of Z

svd(Zc)[["v"]]

## [,1] [,2]

## [1,] -0.86715 0.49804

## [2,] -0.49804 -0.86715

11.5 S4 classes (*)
The concept of the S3-style object oriented programming is based on a brilliantly
simple idea (see Chapter 10): calling a generic f(x) automatically dispatches to a
method f.class_of_x(x) or f.default(x) in the case where the former does not ex-
ist. Naturally, it has some inherent limitations:

• classes cannot be formally defined; the class attributemay be assigned arbitrarily
onto any object11,

• argument dispatch is performed only12 with regard to one data type13.

In most cases, and with appropriate level of mindfulness, this is not a problem at all.
However, it is a typical condition of programmers who come to our world frommore
mainstream languages (e.g., C++; yours truly included) until they appreciate the true
beauty of R’s being somewhat different. Before they fully develop such an acquired
taste, though, they grow restless as “R is not a real object oriented system because it
lacks polymorphism, encapsulation, formal inheritance, and so on and so forth, and
something must be done about it”. The truth is that it had not have to, but with high
probability it would have anyway in one way or another.

And so when the fourth version of the S language was introduced in 1998 (see [9]),
it brought a new object oriented system which we are used to referring to as S4. Its
R version has been implemented in the methods package. Below we discuss it briefly;
for more details, see help("Classes_Details") and help("Methods_Details") as well
as [10] and [11].

Note (*) S4 was loosely inspired by the Common Lisp Object System (with its def-
class, defmethod, etc.; see, e.g., [20]). In the current author’s opinion, the S4 system
is somewhat an afterthought. Due to appendages like this, R seems like a patchwork

11 A partial solution to this could involve defining a method like validate.class_name, that is called fre-
quently and which checks whether a given object enjoys some desired constraints.

12 Although there are functions featuring someworkarounds (see, e.g., cbindwhich dispatches to cbind.
data.frame if one argument is a data frame and the remaining ones are vectors or matrices). Also, we said
in the previous chapter that binary operators consider the classes of both operands.

13 Hypothetically, we can imagine an OOP system relying on methods named like method.class_name1.
class_name2 where dispatching is based on two argument types. This would be beautiful, but it is not the
case in R.
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language; suffice it to say that it was not the last attempt to do a somewhat more real
OOP in the overall functional R: the story will continue in Section 16.1.5.

The main problem with all the OOP approaches is that each of them is parallel to S3
which never lost its popularity and is still at the very core of our language. We are
thus covering them for the sake of completeness, because that’s what must be done.
After all, with non-zero probability, the reader will sooner or later come across such
objects (e.g., below we explain the meaning of notation like x@slot). Also, yours truly
rebelliously suggests taking statements such as “for new projects, it is recommended
to use the more flexible and robust S4 scheme provided in the methods package” (see
help("UseMethod")) with a pinch of salt.

11.5.1 Defining S4 classes
An S4 class can formally be registered by means of a call to setClass.

For instance:

library("methods") # in the case where it is not auto-loaded

setClass("categorical", slots=c(data="integer", levels="character"))

defines a class named categorical with two slots data and levels being integer and
character vectors, respectively. Note that this notation is already quite peculiar: there
is no assignment which would suggest that we have introduced something novel.

An object of the above class can be instantiated by calling new:

z <- new("categorical", data=c(1L, 2L, 2L, 1L, 1L), levels=c("a", "b"))

print(z)

## An object of class "categorical"

## Slot "data":

## [1] 1 2 2 1 1

##

## Slot "levels":

## [1] "a" "b"

That z is of the recently-introduced class can be verified as follows:

is(z, "categorical")

## [1] TRUE

class(z) # also: attr(z, "class")

## [1] "categorical"

## attr(,"package")

## [1] ".GlobalEnv"

Important Some R packages will be importing from the methods only for the sake of
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being able to access the convenient is function – it does not mean they are defining
new S4 classes.

Note S4 objects are marked as being of the following basic type:

typeof(z)

## [1] "S4"

For technical details on how they are internally represented, see Section 1.12 in [62].
In particular, in our case, all the slots are simply stored as object attributes:

attributes(z)

## $data

## [1] 1 2 2 1 1

##

## $levels

## [1] "a" "b"

##

## $class

## [1] "categorical"

## attr(,"package")

## [1] ".GlobalEnv"

11.5.2 Accessing slots
Reading orwriting slot contents can be done bymeans of the `@` operator and the slot
function or their replacement versions.

z@data # or slot(z, "data")

## [1] 1 2 2 1 1

z@levels <- c("A", "B")

Note The `@` operator can only be used on S4 objects and some sanity checks are
automatically performed:

z@unknown <- "spam"

## Error in (function (cl, name, valueClass) : 'unknown' is not a slot in

## class "categorical"

z@data <- "spam"

## Error in (function (cl, name, valueClass) : assignment of an object of

## class "character" is not valid for @'data' in an object of class

## "categorical"; is(value, "integer") is not TRUE
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11.5.3 Definingmethods
For the S4 counterparts of the S3 generics (Section 10.2), see help("setGeneric").
Luckily, there is a good degree of interoperability between the S3 and S4 systems.

Let us start by introducing a new method for the well-known as.character generic.
Instead of defining as.character.categorical, we need to register a new routinewith
setMethod.

setMethod(

"as.character", # name of the generic

"categorical", # class of 1st arg; or: signature=c(x="categorical")

function(x, ...) # method definition

x@levels[x@data]

)

Testing:

as.character(z)

## [1] "A" "B" "B" "A" "A"

The S4 counterpart of print is show:

setMethod(

"show",

"categorical",

function(object)

{

x_character <- as.character(object)

print(x_character) # calls `print.default`

cat(sprintf("Categories: %s\n",

paste(object@levels, collapse=", ")))

}

)

Interestingly, it is involved automatically upon a call to print:

print(z) # calls `show` for `categorical`

## [1] "A" "B" "B" "A" "A"

## Categories: A, B

Methods thatdispatchon the typeofmultiple arguments arepossible too, for example:

setMethod(

"split",

c(x="ANY", f="categorical"),

function (x, f, drop=FALSE, ...)

(continues on next page)
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(continued from previous page)

split(x, as.character(f), drop=drop, ...)

)

allows the first argument to be of any type (like a default method), and:

setMethod(

"split",

c(x="matrix", f="categorical"),

function (x, f, drop=FALSE, ...)

lapply(

split(seq_len(NROW(x)), f, drop=drop, ...), # calls the above

function(i) x[i, , drop=FALSE])

)

is a version tailored for matrices. Testing:

A <- matrix(1:35, nrow=5) # whatever

split(A, z) # matrix,categorical

## $A

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## [1,] 1 6 11 16 21 26 31

## [2,] 4 9 14 19 24 29 34

## [3,] 5 10 15 20 25 30 35

##

## $B

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## [1,] 2 7 12 17 22 27 32

## [2,] 3 8 13 18 23 28 33

split(1:5, z) # ANY,categorical

## $A

## [1] 1 4 5

##

## $B

## [1] 2 3

Exercise 11.26 Overload the `[` operator for the categorical class

11.5.4 Defining constructors
We can also overload the initializemethod which is automatically called by new:

setMethod(

"initialize", # class name

"categorical", # method name

function(.Object, x)

(continues on next page)
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{ # the method itself

x <- as.character(x) # see above

xu <- unique(sort(x)) # drops NAs

.Object@data <- match(x, xu)

.Object@levels <- xu

.Object # return value - a modified object

}

)

This allows for constructing new objects of class categorical based on an object like x
above, for instance:

w <- new("categorical", c("a", "c", "a", "a", "d", "c"))

print(w)

## [1] "a" "c" "a" "a" "d" "c"

## Categories: a, c, d

Note that we have not set the two slots directly.They were automatically taken care of
by initialize.

Exercise 11.27 Set up a validatingmethod for our class; see help("setValidity").

11.5.5 Inheritance
New S4 classes can be derived from existing ones, for instance:

setClass("binary", contains="categorical")

is a child class inhering all slots from its parent. We can, for example, overload the
initialisation method for it:

setMethod(

"initialize",

"binary",

function(.Object, x)

{

x <- as.character(as.integer(as.logical(x)))

xu <- c("0", "1")

.Object@data <- match(x, xu)

.Object@levels <- xu

.Object

}

)

Testing:
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new("binary", c(TRUE, FALSE, TRUE, FALSE, NA, TRUE))

## [1] "1" "0" "1" "0" NA "1"

## Categories: 0, 1

Note that we are still using the showmethod of the parent class.

11.5.6 A note on the Matrix package
The Matrix package is perhaps the most widely known showcase of the S4 object-
orientation (and that is the reason why we cover S4 in this very chapter). It defines
classes and methods for dense and sparse matrices, including rectangular, symmet-
ric, triangular, band, and diagonal ones.

For instance, large graph (e.g., in network sciences) or preference (e.g., in recom-
mender systems) data can be represented using sparse matrices (those which feature
many 0s; after all, it is extremelymore common for two vertices in a network to not be
joined by an edge than to be connected).

For example:

library("Matrix")

(A <- Diagonal(x=1:5))

## 5 x 5 diagonal matrix of class "ddiMatrix"

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 . . . .

## [2,] . 2 . . .

## [3,] . . 3 . .

## [4,] . . . 4 .

## [5,] . . . . 5

created a real diagonal matrix. Moreover:

B <- as(A, "sparseMatrix")

B[1, 2] <- 7

B[4, 1] <- 42

print(B)

## 5 x 5 sparse Matrix of class "dgCMatrix"

##

## [1,] 1 7 . . .

## [2,] . 2 . . .

## [3,] . . 3 . .

## [4,] 42 . . 4 .

## [5,] . . . . 5

yields a general sparse real matrix in the CRC (compressed, sparse, column-oriented)
format.

For more information on the package, see vignette(package="Matrix").
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11.6 Exercises
Exercise 11.28 Let X be amatrix with dimnames set, e.g.:

X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix

dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names

print(X)

## a b c d

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 11 12

Explain (in your own words) the meaning of the following expressions involving matrix subset-
ting. Note that not each of them is valid.

• X[1, ],

• X[, 3],

• X[, 3, drop=FALSE],

• X[3],

• X[, "a"],

• X[, c("a", "b", "c")],

• X[, -2],

• X[X[,1] > 5, ],

• X[X[,1]>5, c("a", "b", "c")],

• X[X[,1]>=5 & X[,1]<=10, ],

• X[X[,1]>=5 & X[,1]<=10, c("a", "b", "c")],

• X[, c(1, "b", "d")].

Exercise 11.29 Assuming that X is an array, what are the differences between the following in-
dexing schemes?

• X["1", ] vs X[1, ],

• X[, "a", "b", "c"] vs X["a", "b", "c"] vs X[, c("a", "b", "c")] vs X[c("a", "b",

"c")],

• X[1] vs X[, 1] vs X[1, ],

• X[X>0] vs X[X>0, ] vs X[, X>0],

• X[X[, 1]>0] vs X[X[, 1]>0,] vs X[,X[,1]>0],

• X[X[, 1]>5, X[1, ]<10] vs X[X[1, ]>5, X[, 1]<10].
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Exercise 11.30 Give a fewways to create amatrix like:

## [,1] [,2]

## [1,] 1 1

## [2,] 1 2

## [3,] 1 3

## [4,] 2 1

## [5,] 2 2

## [6,] 2 3

and one like:

## [,1] [,2] [,3]

## [1,] 1 1 1

## [2,] 1 1 2

## [3,] 1 2 1

## [4,] 1 2 2

## [5,] 1 3 1

## [6,] 1 3 2

## [7,] 2 1 1

## [8,] 2 1 2

## [9,] 2 2 1

## [10,] 2 2 2

## [11,] 2 3 1

## [12,] 2 3 2

Exercise 11.31 For a given real n-by-m matrix 𝐗, determine the bounding hyperrectangle of
thusly encoded n input points in an m-dimensional space. Return a 2-by-m matrix 𝐁 with
𝑏1,𝑗 = min𝑖 𝑥𝑖,𝑗 and 𝑏2,𝑗 = max𝑖 𝑥𝑖,𝑗.

Exercise 11.32 Let 𝐭 be vector of n integers in {1, … , 𝑘}. Write a function to one-hot-encode
each 𝑡𝑖: return a 0-1matrix𝐑 of sizen-by-k such that 𝑟𝑖,𝑗 = 1 if and only if 𝑗 = 𝑡𝑖. For example,
if 𝐭 = [1, 2, 3, 2, 4] and 𝑘 = 4, then:

𝐑 =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Ona side note, such a representation is usefulwhen solving, e.g., amulticlass classification prob-
lem bymeans of k binary classifiers.

Then, write another function, but this time setting 𝑟𝑖,𝑗 = 1 if and only if 𝑗 ≥ 𝑡𝑖, e.g.:

𝑅 =
⎡
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 1 1
0 0 1 1
0 1 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.
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Important Kind reminder: as usual, try to solve all the exercises without the use of
explicit for and while loops (provided that it is possible).

Exercise 11.33 Given an n-by-k real matrix, apply the softmax function on each row, i.e., map
𝑥𝑖,𝑗 to

exp(𝑥𝑖,𝑗)

∑𝑘
𝑙=1 exp(𝑥𝑖,𝑙)

. Then, one-hot decode the values in each row, i.e., find the column number

with the greatest value. Return a vector of size nwith elements in {1, … , 𝑘}.
Exercise 11.34 Assume that an n-by-d real matrix𝐗 represents n points inℝ𝑑.Write a func-
tion (but do not refer to dist) that determines the pairwise distances between all then points and
a given 𝐲 ∈ ℝ𝑑. Return a vector 𝐝 of length nwith 𝑑𝑖 = ‖𝐱𝑖,⋅ − 𝐲‖2.

Exercise 11.35 Let𝐗 and𝐘 be two real-valued matrices of sizes n-by-d andm-by-d, respect-
ively, representing two sets of points inℝ𝑑. Return an integer vector 𝐫 of lengthm such that 𝑟𝑖
indicates the index of the point in𝐗with the least distance to (the closest to) the i-th point in𝐘,
i.e., 𝑟𝑖 = argmin𝑗 ‖𝐱𝑗,⋅ − 𝐲𝑖,⋅‖2.

Exercise 11.36 Write your own version of the built-in utils::combn.

Exercise 11.37 Time series are vectors or matrices of class ts equipped with the tsp attribute,
amongst others. Refer to help("ts") for more information about how they are represented and
what S3methods have been overloaded for them.

Exercise 11.38 (*) Numeric matrices can be stored in a CSV file, amongst others. Usually, we
will be loading them via read.csv, which returns a data frame (see Chapter 12), for example:

X <- as.matrix(read.csv(

paste0(

"https://github.com/gagolews/teaching-data/",

"raw/master/marek/eurxxx-20200101-20200630.csv"

),

comment.char="#",

sep=","

))

Write your own function read_numeric_matrix(file_name, comment, sep)which is instead
based on a few calls to scan. Use file to establish a file connection to be able to ignore the com-
ment lines and fetch the column names before reading the actual numeric values.

Exercise 11.39 (*) Using readBin, read the t10k-images-idx3-ubyte.gz from the MNIST
database homepage14.The output object should be a three-dimensional, 10000-by-28-by-28 ar-
ray with real elements between 0 and 255. Refer to the File Formats section therein for more de-
tails.

Exercise 11.40 (**) Circular convolution of discrete-valued multidimensional signals can be
performed by means of fft and matrix multiplication, whereas affine transformations require

14 https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist/

https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist/
https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist/
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only the latter. Apply various image transformations such as sharpening, shearing, and rotating
on theMNIST digits and plot the results using the image function.

Exercise 11.41 (*) Using constrOptim, find the minimum of the Constrained Betts Function
𝑓 (𝑥1, 𝑥2) = 0.01𝑥2

1 +𝑥2
2 −100with linear constraints2 ≤ 𝑥1 ≤ 50,−50 ≤ 𝑥2 ≤ 50, and

10𝑥1 ≥ 10 + 𝑥2. (**) Also, use solve.QP from the quadprog package of find theminimum.
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Data frames

Most matrices are built on top of atomic vectors and hence allow items of the same
type to be arranged into rows and columns. Data frames (objects of S3 class data.
frame, first introduced in [13]), on the other hand, are collections of vectors of the same
lengths ormatriceswith identical row counts, hence allowing to represent structured1
data of possibly heterogeneous types, for instance:

class(iris) # `iris` is an example built-in data frame

## [1] "data.frame"

iris[c(1, 51, 101), ] # 3 chosen rows from `iris`

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 51 7.0 3.2 4.7 1.4 versicolor

## 101 6.3 3.3 6.0 2.5 virginica

is a mix of numeric and factor-type data.

The good news is that not only data frames are built upon named lists (e.g., to extract
a column we can refer to `[[`), but also many functions recognise them to be matrix-
like, (e.g., to select specific rows and columns, two indexes can be passed to `[` like in
the example above). Hence, it will soon turn out that we already know a lot about how
to perform basic data wrangling activities, even if we do not full realise it now.

Important Some of us will approach this chapter biased by what we know from else-
where, including our experience with some popular third-party packages for data
frame processing. The art is to filter out that information as noise (at least, for the
time being). We will show how powerful base R vocabulary is and how much can be
implied from thematerial covered in the preceding chapters. And yes, this book is like
a good thriller/drama/love story: it is meant to be read from the beginning to end, so
please go back to the start of this comprehensive course if youhappened to pop in here
by accident or driven by “but I need to know now”. Goodmorning.

1We are already highly skilled in handling unstructured data and turning it to something that is much
more regular: the numerous functions for processing numeric and character vectors as well as lists that we
have covered in the first part of this book allow us to extract meaningful data from text, handle missing
values, engineer features, and so forth.
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12.1 Creating data frames
12.1.1 data.frame and as.data.frame
Most frequently, we create data frames based on a series of logical, numeric, or char-
acters vectors of identical lengths. The data.frame function is particularly useful in
such a scenario:

(x <- data.frame(

a=c(TRUE, FALSE),

b=1:6,

c=runif(6),

d=c("spam", "spam", "eggs")

))

## a b c d

## 1 TRUE 1 0.77437 spam

## 2 FALSE 2 0.19722 spam

## 3 TRUE 3 0.97801 eggs

## 4 FALSE 4 0.20133 spam

## 5 TRUE 5 0.36124 spam

## 6 FALSE 6 0.74261 eggs

Note that shorter vectors were recycled. That the diverse column types were retained
and no coercion has beenmade, can be verified, e.g., by calling:

str(x)

## 'data.frame': 6 obs. of 4 variables:

## $ a: logi TRUE FALSE TRUE FALSE TRUE FALSE

## $ b: int 1 2 3 4 5 6

## $ c: num 0.774 0.197 0.978 0.201 0.361 ...

## $ d: chr "spam" "spam" "eggs" "spam" ...

We can also fetch the class of each column directly by calling (compare Section 12.3):

sapply(x, class) # the same as unlist(Map(class, x))

## a b c d

## "logical" "integer" "numeric" "character"

Important For many reasons (see, e.g., Section 12.1.5 and Section 12.1.6), we recom-
mend to have the type of each column always checked, for instance by calling the str
function.

Many objects, such as matrices, can easily be coerced to data frames using particular
as.data.framemethods.
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Here is an example matrix:

(A <- matrix(1:6, nrow=3,

dimnames=list(

NULL, # no row labels

c("u", "v") # some column labels

)))

## u v

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

Let us convert it to a data frame:

as.data.frame(A) # as.data.frame.matrix

## u v

## 1 1 4

## 2 2 5

## 3 3 6

Note that a matrix with no row labels is printed slightly differently than a data frame
with (as it will soon turn out) the default row.names.

Named lists are amongst other candidates for a meaningful conversion. Consider an
example list, where each element is a vector of the same length as the other ones:

(l <- Map(

function(x) {

c(Min=min(x), Median=median(x), Mean=mean(x), Max=max(x))

},

split(iris[["Sepal.Length"]], iris[["Species"]])

))

## $setosa

## Min Median Mean Max

## 4.300 5.000 5.006 5.800

##

## $versicolor

## Min Median Mean Max

## 4.900 5.900 5.936 7.000

##

## $virginica

## Min Median Mean Max

## 4.900 6.500 6.588 7.900

Each list element will be turned to a separate column:
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as.data.frame(l) # as.data.frame.list

## setosa versicolor virginica

## Min 4.300 4.900 4.900

## Median 5.000 5.900 6.500

## Mean 5.006 5.936 6.588

## Max 5.800 7.000 7.900

Sadly, as.data.frame.list is not particularly fond of lists of vectors of incompatible
lengths:

as.data.frame(list(a=1, b=11:12, c=21:23))

## Error in (function (..., row.names = NULL, check.rows = FALSE, check.names

## = TRUE, : arguments imply differing number of rows: 1, 2, 3

The above vectors could have been recycled with a warning, but they were not.

as.data.frame(list(a=1:4, b=11:12, c=21)) # recycling rule okay

## a b c

## 1 1 11 21

## 2 2 12 21

## 3 3 11 21

## 4 4 12 21

The method for the S3 class table (mentioned in Chapter 11) can be helpful as well.
Here is an example contingency table together with its unstacked version.

(t <- table(mtcars[["vs"]], mtcars[["cyl"]]))

##

## 4 6 8

## 0 1 3 14

## 1 10 4 0

as.data.frame(t) # as.data.frame.table; see the stringsAsFactors note below!

## Var1 Var2 Freq

## 1 0 4 1

## 2 1 4 10

## 3 0 6 3

## 4 1 6 4

## 5 0 8 14

## 6 1 8 0

Actually, as.data.frame.table is so useful that wemight want to call it directly on any
array. This way, we can convert it from the so-called wide format to the long one; see
Section 12.3.6 for more details.

Note The abovemethod is based on expand.grid, which determines all combinations
of a given series of vectors.
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expand.grid(1:2, c("a", "b", "c")) # see the stringsAsFactors note below!

## Var1 Var2

## 1 1 a

## 2 2 a

## 3 1 b

## 4 2 b

## 5 1 c

## 6 2 c

Overall, many classes of objects can be included2 in a data frame; the popular choices
include Date, POSIXct, and factor. It is worth noting that the data.frame function
calls the corresponding as.data.framemethod, and format is used whilst printing the
columns.

Example 12.1 Here are two custom methods for what we would like to call from now on an S3
class spam:

as.data.frame.spam <- function(x, ...)

structure(

list(x),

class="data.frame",

row.names=seq_along(x)

)

format.spam <- function(x, ...)

paste0("*", x, "*")

Testing data frame creation and printing:

data.frame(

a=structure(c("a", "b", "c"), class="spam"),

b=factor(c("spam", "bacon", "spam")),

c=Sys.Date()+1:3

)

## a b c

## 1 *a* spam 2023-04-28

## 2 *b* bacon 2023-04-29

## 3 *c* spam 2023-04-30

12.1.2 cbind.data.frame and rbind.data.frame
There are data frame-specific versions of cbind or rbind (which we discussed in
the context of stacking matrices in Section 11.1.2). They are used quite eagerly:

2 Also, the attributes of objects stored asmatrix columnswill generally be preserved (even if they are not
displayed by print; see str though).
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help("cbind") states that they will be referred to if at least3 one of its arguments is
a data frame and the other arguments are atomic vectors or lists (possibly with the
dim attribute).

For example:

x <- iris[c(1, 51, 101), c("Sepal.Length", "Species")] # whatever

cbind(Yummy=c(TRUE, FALSE, TRUE), x)

## Yummy Sepal.Length Species

## 1 TRUE 5.1 setosa

## 51 FALSE 7.0 versicolor

## 101 TRUE 6.3 virginica

added a new column to a data frame x. Moreover:

rbind(x, list(42, "virginica"))

## Sepal.Length Species

## 1 5.1 setosa

## 51 7.0 versicolor

## 101 6.3 virginica

## 11 42.0 virginica

added a new row. Note that columns are of different types. Hence, the values to row-
bind were provided as a generic vector. The list can also be named. It can consist of
vectors of length greater than one, given in any order:

rbind(x, list(

Species=c("virginica", "setosa"),

Sepal.Length=c(42, 7)

))

## Sepal.Length Species

## 1 5.1 setosa

## 51 7.0 versicolor

## 101 6.3 virginica

## 11 42.0 virginica

## 2 7.0 setosa

Sometimes referring to thesemethods directlywill be necessary. Consider an example
list of atomic vectors:

x <- list(a=1:3, b=11:13, c=21:23)

First, we call the generic which dispatches to the default method:

3This is a clear violation of the rule that an S3 generic dispatches on the type of only one (usually: first)
argument; an exception made for the sake of the questionable user convenience. Also, note that there is no
cbind.defaultmethod available: it is hardcoded at the C language level.
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do.call(cbind, x)

## a b c

## [1,] 1 11 21

## [2,] 2 12 22

## [3,] 3 13 23

If we want to make sure we garner a data frame in result, we need to write:

do.call(cbind.data.frame, x)

## a b c

## 1 1 11 21

## 2 2 12 22

## 3 3 13 23

This is particularly useful in the context of fetching outputs from Map and its friends,
which are wrapped inside a list. For instance:

l <- unname(Map(

function(x) list(

Sepal.Length=mean(x[["Sepal.Length"]]),

Sepal.Width=mean(x[["Sepal.Width"]]),

Species=x[["Species"]][1]

),

split(iris, iris[["Species"]]) # split.data.frame; see below

))

str(l)

## List of 3

## $ :List of 3

## ..$ Sepal.Length: num 5.01

## ..$ Sepal.Width : num 3.43

## ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1

## $ :List of 3

## ..$ Sepal.Length: num 5.94

## ..$ Sepal.Width : num 2.77

## ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 2

## $ :List of 3

## ..$ Sepal.Length: num 6.59

## ..$ Sepal.Width : num 2.97

## ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 3

This was nothing more than a fancy way to obtain an illustrative list, which we may
now turn into a data frame by calling:

do.call(rbind.data.frame, l)

## Sepal.Length Sepal.Width Species

## 1 5.006 3.428 setosa

(continues on next page)
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(continued from previous page)

## 2 5.936 2.770 versicolor

## 3 6.588 2.974 virginica

On the other hand, do.call(rbind, l) does not return a particularly friendly object
type:

do.call(rbind, l)

## Sepal.Length Sepal.Width Species

## [1,] 5.006 3.428 setosa

## [2,] 5.936 2.77 versicolor

## [3,] 6.588 2.974 virginica

Despite the pretty face, it is a matrix… over a list:

str(do.call(rbind, l))

## List of 9

## $ : num 5.01

## $ : num 5.94

## $ : num 6.59

## $ : num 3.43

## $ : num 2.77

## $ : num 2.97

## $ : Factor w/ 3 levels "setosa","versicolor",..: 1

## $ : Factor w/ 3 levels "setosa","versicolor",..: 2

## $ : Factor w/ 3 levels "setosa","versicolor",..: 3

## - attr(*, "dim")= int [1:2] 3 3

## - attr(*, "dimnames")=List of 2

## ..$ : NULL

## ..$ : chr [1:3] "Sepal.Length" "Sepal.Width" "Species"

12.1.3 Reading data frames
Structureddata canbe imported fromexternal sources, suchasCSV/TSV (comma/tab-
separated values) or HDF5 files, relational databases supporting SQL (see Sec-
tion 12.1.4) web APIs (e.g., through the curl and jsonlite packages), spreadsheets
[60], and so on.

Inparticular, read.csv and the like fetchdata fromplain textfiles consistingof records
where fields are separated by commas, semicolons, tabs, etc.

For instance:

x <- data.frame(a=runif(3), b=c(TRUE, FALSE, TRUE)) # example data frame

f <- tempfile() # temporary file name

write.csv(x, f, row.names=FALSE) # export

This created a CSV file which looks like:
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cat(readLines(f), sep="\n") # print file contents

## "a","b"

## 0.287577520124614,TRUE

## 0.788305135443807,FALSE

## 0.4089769218117,TRUE

The above can be read by calling:

read.csv(f)

## a b

## 1 0.28758 TRUE

## 2 0.78831 FALSE

## 3 0.40898 TRUE

Exercise 12.2 Check out help("read.table") for a long list of tunable parameters, especially:
sep, dec, quote, header, comment.char, and row.names. Further, note that reading from com-
pressed files is supported directly.

Important CSV is by far the most portable and user-friendly format for exchanging
matrix-like objects between different programs and computing languages (e.g., Py-
thon, Julia, LibreOffice Calc, etc.). Such files can be opened in any text editor.

Note Asmentioned in Section 8.3.5, it is possible to process data frames on a chunk-
by-chunk basis, which is beneficial especially when data do not fit intomemory (com-
pare the nrows argument to read.csv).

12.1.4 Interfacing relational databases and queryingwith SQL (*)
The DBI package provides a universal interface for particular database management
systemswhosedrivers are implemented in additional add-ons such as RSQLite, RMari-
aDB, RPostgreSQL, etc., or, more generally, RODBC or odbc. For more details, see Section
4 of [60].

Example 12.3 Let us play with an in-memory (volatile) instance of an SQLite database.

library("DBI")

con <- dbConnect(RSQLite::SQLite(), ":memory:")

This returns an object representing a database connection which we can refer to in further com-
munication.

An easy way to create a database table is to call:

dbWriteTable(con, "mtcars", mtcars) # `mtcars` is a toy built-in data frame
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Alternatively, dbExecute could have been referred to in order to send SQL statements such as
CREATE TABLE ... followed by a series of INSERT INTO ....

Some data retrieval can now follow:

dbGetQuery(con, "

SELECT cyl, vs, AVG(mpg) AS mpg_ave, AVG(hp) AS hp_ave

FROM mtcars

GROUP BY cyl, vs

")

## cyl vs mpg_ave hp_ave

## 1 4 0 26.000 91.00

## 2 4 1 26.730 81.80

## 3 6 0 20.567 131.67

## 4 6 1 19.125 115.25

## 5 8 0 15.100 209.21

This gives us an ordinary R data frame which we can process in the same fashion as any other
object of this kind.

At the end, the database connectionmust be closed.

dbDisconnect(con)

Exercise 12.4 Database passwords should never be stored in plain text files, let alone in R
scripts in version-controlled repositories. Consider a few ways for fetching credentials program-
matically:

• using environment variables (see help("Sys.getenv")),

• using the keyring package,

• callingsystem2 (Section 7.3.3) to retrieve it from the systemkeyring (e.g., thekeyringpack-
age for Python provides a platform-independent command-line utility).

12.1.5 Strings as factors?
The following is so critical that we will devote a separate subsection to discuss it, so
that we always remain vigilant (such is life: maintaining some level of mindfulness is
often a good idea).

Important Some functions related to data frames automatically convert character
vectors to factors.This behaviour is frequently controlled by the stringsAsFactors ar-
gument thereto.

This isparticularlyproblematicdue to the fact that,whenprinted, factor andcharacter
columns look identical:
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(x <- data.frame(a=factor(c("U", "V")), b=c("U", "V")))

## a b

## 1 U U

## 2 V V

We recall from Section 10.3.2 that factors can be nasty. For example, passing factors
as indexers in `[` or converting them with as.numeric might give counterintuitive
(for the uninformed) results. Also, new factor levels must be added manually when
we want to extend themwith more diverse data.This can cause some unexpected be-
haviour in contexts such as:

rbind(x, c("W", "W"))

## Warning in `[<-.factor`(`*tmp*`, ri, value = "W"): invalid factor level,

## NA generated

## a b

## 1 U U

## 2 V V

## 3 <NA> W

It is therefore a good habit to have the data types always checked, for instance:

str(x)

## 'data.frame': 2 obs. of 2 variables:

## $ a: Factor w/ 2 levels "U","V": 1 2

## $ b: chr "U" "V"

Before R 4.0, a number of functions, including data.frame and read.csv had the
stringsAsFactors argument defaulting to TRUE. This is no longer the case for many
of them.

However, exceptions to this rule still exist, e.g., including as.data.frame.table and
expand.grid. Besides, some built-in example data frames have factor-typed columns
inherited from the old days, e.g.:

class(iris[["Species"]])

## [1] "factor"

We observe that the Species column in iris is not of type character.Thence, adding a
new variety might be oblique:

iris2 <- iris[c(1, 51, 101), ] # example subset

levels(iris2[["Species"]]) <- c(levels(iris2[["Species"]]), "croatica")

rbind(iris2, c(6, 3, 3, 2, "croatica"))

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 51 7 3.2 4.7 1.4 versicolor

(continues on next page)
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## 101 6.3 3.3 6 2.5 virginica

## 4 6 3 3 2 croatica

Alternatively, we could have simply converted the Species column to character.

12.1.6 Internal representation
Objects of S3 class data.frame are built upon lists of vectors of the same length or
matrices with identical row counts, which define consecutive columns thereof. Apart
from class, they must be equipped with the following special attributes:

• names – a character vector (as usual in any named list) labelling the columns or
their groups,

• row.names – a character or integer vector with no duplicates nor missing values,
doing what advertised.

Therefore, a data frame can be created from scratch by calling, for example:

structure(

list(a=11:13, b=21:23), # sets the `names` attribute already

row.names=1:3,

class="data.frame"

)

## a b

## 1 11 21

## 2 12 22

## 3 13 23

Here is a data frame based on a length-5 list, a matrix with five rows, and a length-5
numeric vector, with some fancy row names on top:

structure(

list(

a=list(1, 1:2, 1:3, numeric(0), -(4:1)),

b=cbind(u=11:15, v=21:25),

c=runif(5)

),

row.names=c("spam", "bacon", "eggs", "ham", "aubergine"),

class="data.frame"

)

## a b.u b.v c

## spam 1 11 21 0.28758

## bacon 1, 2 12 22 0.78831

## eggs 1, 2, 3 13 23 0.40898

## ham 14 24 0.88302

## aubergine -4, -3, -2, -1 15 25 0.94047
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In general, the columns of type list can contain anything, e.g., other lists or R func-
tions. Including atomic vectors of varying lengths just like above allows for creating
something à la ragged arrays – a pretty handy scenario.

The issue with matrix entries, on the other hand, is that they appear as if they were
many, but – as it will turn out in the sequel – they are often treated as a single com-
plex column, e.g., by the index operator (see Section 12.2). Therefore, from this per-
spective, the above data framehas three columns, not four. Such objects can be output
by aggregate (see Section 12.3), amongst others. Nevertheless, they can be very useful
too, forming natural column groups which can be easily accessed and batch-processed
in the same way.

Important Unfortunately, data frames with list or matrix columns cannot be nor-
mally created with the data.frame nor cbind functions which might explain why they
are less popular.This behaviour is dictated by the particular underlying as.data.frame
methods which are called by both of them. As a curiosity, see help("I") though.

Exercise 12.5 Verify that for a data frame featuringamatrix column, the latter does not require
column names (the second dimnames) set.

The names and row.names attributes are special in the sense of Section 4.4.3. In partic-
ular, they can be accessed or modified by the corresponding functions.

It is worth noting that row.names(df) always returns a character vector, even when
attr(df, "row.names") is an integer vector. Further, setting row.names(df) <- NULL

will re-set4 this attribute to the most commonly desired case of consecutive natural
numbers, for example:

(x <- iris[c(1, 51, 101), ]) # comes with some sad row names

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 51 7.0 3.2 4.7 1.4 versicolor

## 101 6.3 3.3 6.0 2.5 virginica

row.names(x) <- NULL # reset to seq_len(NROW(x))

print(x)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 7.0 3.2 4.7 1.4 versicolor

## 3 6.3 3.3 6.0 2.5 virginica

Exercise 12.6 What is the name of the replacement version of the row.names method for the
data.frame class?

Exercise 12.7 Implement your own version of expand.grid.

4 `attr<-`(df, "row.names") does not feature the same sanity checks as `row.names<-`(df) does. For
instance, it is easy to corrupt a data frame by setting a too-short row.names attribute.
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Exercise 12.8 Implement your own version of xtabs, but which does not rely on a formula
interface (compare Section 10.3.4). Allow three parameters: a data frame, the name of the
“counts” columnand the names of the cross-classifying variables.Hence, my_xtabs(x, "Freq",

c("Var1", "Var2")) should be equivalent to xtabs(Freq~Var1+Var2, x).

12.2 Data frame subsetting
12.2.1 Data frames are lists
Data frames are named lists, where each element represents an individual column.
Therefore5, length yields the number of columns and names gives their respective la-
bels.

Let us play with the following data frame:

(x <- data.frame(

a=runif(6),

b=rnorm(6),

c=LETTERS[1:6],

d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),

d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)

))

## a b c d1 d2

## 1 0.287578 0.070508 A FALSE FALSE

## 2 0.788305 0.129288 B TRUE TRUE

## 3 0.408977 1.715065 C FALSE FALSE

## 4 0.883017 0.460916 D NA TRUE

## 5 0.940467 -1.265061 E FALSE FALSE

## 6 0.045556 -0.686853 F NA TRUE

typeof(x) # each data frame is a list

## [1] "list"

length(x) # the number of columns

## [1] 5

names(x) # column labels

## [1] "a" "b" "c" "d1" "d2"

The one-argument versions of extract and index operators behave as expected. `[[`
fetches (looks inside) the contents of a given column:

5This is a strong word. This implication relies on an implicit assumption that the primitive functions
length and names have not be contaminated by treating data frames differently than named lists. Luckily,
that is indeednot the case.Also, despite the fact thatwehave the indexoperators specially overloaded for the
data.frame class, they behave quite reasonably and, as we will see, they allow for a mix of list- and matrix-
like behaviours.
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x[["a"]] # or x[[1]]

## [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

and `[` returns a data frame (a list with extras) comprised of the specified elements:

x["a"] # or x[1]

## a

## 1 0.287578

## 2 0.788305

## 3 0.408977

## 4 0.883017

## 5 0.940467

## 6 0.045556

x[c(TRUE, TRUE, FALSE, TRUE, FALSE)]

## a b d1

## 1 0.287578 0.070508 FALSE

## 2 0.788305 0.129288 TRUE

## 3 0.408977 1.715065 FALSE

## 4 0.883017 0.460916 NA

## 5 0.940467 -1.265061 FALSE

## 6 0.045556 -0.686853 NA

Just like with lists, the replacement versions of the said operators can be used to add
new or replace existing columns.

y <- head(x, 1) # for a more compact display

y[["a"]] <- round(y[["a"]], 1) # replaces the column with new content

y[["b"]] <- NULL # removes the column, like, totally

y[["e"]] <- 10*y[["a"]]^2 # adds a new column at the end

print(y)

## a c d1 d2 e

## 1 0.3 A FALSE FALSE 0.9

Example 12.9 Some spam for thought to showhowmuchwe already know – a few commonuse
cases of indexing and vectorised functions:

y <- head(x, 1) # for a more compact display

Move column a to the end:

y[unique(c(names(y), "a"), fromLast=TRUE)]

## b c d1 d2 a

## 1 0.070508 A FALSE FALSE 0.28758

Remove column a and c:
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y[-match(c("a", "c"), names(y))]

## b d1 d2

## 1 0.070508 FALSE FALSE

All columns between a and c:

y[match("a", names(y)):match("c", names(y))]

## a b c

## 1 0.28758 0.070508 A

Names starting with d:

y[grep("^d", names(y))]

## d1 d2

## 1 FALSE FALSE

Change name of column c to z:

names(y)[names(y) == "c"] <- "z" # in-place

print(y)

## a b z d1 d2

## 1 0.28758 0.070508 A FALSE FALSE

Change names: d2 to u and d1 to v:

names(y)[match(c("d2", "d1"), names(y))] <- c("v", "u") # in-place

print(y)

## a b z u v

## 1 0.28758 0.070508 A FALSE FALSE

Note SomeRusersmight prefer the `$` operator over `[[`, but we do not. By default,
the former supports partial matching of column names which might be appealing
when R is used interactively. Nonetheless, it does not work on matrices, nor it allows
for programmatically generated names. It is also trickier to use on non-syntactically
valid labels; compare Section 9.4.1.

Exercise 12.10 Write a function names_replace that changes the name of a data frame
columns based on a translation table given in a from=to fashion, for instance:

names_replace <- function(x, ...) ...to.do...

x <- data.frame(a=1, b=2, c=3)

names_replace(x, c="new_c", a="new_a")

## new_a b new_c

## 1 1 2 3
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12.2.2 Data frames arematrix-like
Data frames can be considered “generalised” matrices. They store data of any kind
(possiblymixed) organised in a tabular fashion. Some functionsmentioned in thepre-
vious chapterwill hence be overloaded for thedata frame case.These include: dim (des-
pite the lack of the dim attribute), NROW, NCOL, and dimnames (which is of course based
on row.names and names).

For example:

(x <- data.frame(

a=runif(6),

b=rnorm(6),

c=LETTERS[1:6],

d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),

d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)

))

## a b c d1 d2

## 1 0.287578 0.070508 A FALSE FALSE

## 2 0.788305 0.129288 B TRUE TRUE

## 3 0.408977 1.715065 C FALSE FALSE

## 4 0.883017 0.460916 D NA TRUE

## 5 0.940467 -1.265061 E FALSE FALSE

## 6 0.045556 -0.686853 F NA TRUE

dim(x) # the number of rows and columns

## [1] 6 5

dimnames(x) # it is not a matrix, but a matrix-like object

## [[1]]

## [1] "1" "2" "3" "4" "5" "6"

##

## [[2]]

## [1] "a" "b" "c" "d1" "d2"

In addition to the list-like behaviour, which only allows for dealing with particular
columns or groups thereof, the `[` operator was also equipped with the ability to take
two indexers:

x[1:2, ] # first two rows

## a b c d1 d2

## 1 0.28758 0.070508 A FALSE FALSE

## 2 0.78831 0.129288 B TRUE TRUE

x[x[["a"]] >= 0.3 & x[["a"]] <= 0.8, -2] # or use x[, "a"]

## a c d1 d2

## 2 0.78831 B TRUE TRUE

## 3 0.40898 C FALSE FALSE
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Recall the drop argument to `[` and its effects onmatrix indexing. It the current case,
its behaviour will be similar with regard to the operations on individual columns:

x[, 1] # synonym: x[[1]], because drop=TRUE

## [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

x[, 1, drop=FALSE] # synonym: x[1]

## a

## 1 0.287578

## 2 0.788305

## 3 0.408977

## 4 0.883017

## 5 0.940467

## 6 0.045556

Also, note that whenwe extract a single row andmore than one column, drop does not
really apply. It is because columns (unlike in matrices) can potentially be of different
types:

x[1, 1:2] # two numeric columns but the result is still a numeric

## a b

## 1 0.28758 0.070508

However:

x[1, 1]

## [1] 0.28758

x[1, 1, drop=FALSE]

## a

## 1 0.28758

Note Once again let us take note of logical indexing featuring missing values:

x[x[["d1"]], ]

## a b c d1 d2

## 2 0.78831 0.12929 B TRUE TRUE

## NA NA NA <NA> NA NA

## NA.1 NA NA <NA> NA NA

x[which(x[["d1"]]), ] # drops missing values

## a b c d1 d2

## 2 0.78831 0.12929 B TRUE TRUE

The default behaviour is consistent with many other R functions: it explicitly indic-
ates that something is missing (we are selecting a “don’t know”; hence, the result is
“don’t know” as well). Unfortunately, this comes with no warning. As we rarely check
manually for missing values in the outputs, our absent-mindedness can lead to code
bugs.
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By far, we might have already noted that the index operator adjusts (not: resets) the
row.names attribute. For instance:

(xs <- x[head(order(x[["a"]], decreasing=TRUE), 3), ])

## a b c d1 d2

## 5 0.94047 -1.26506 E FALSE FALSE

## 4 0.88302 0.46092 D NA TRUE

## 2 0.78831 0.12929 B TRUE TRUE

It is a version of x comprised of only top three values in the u column. Indexing by
means of character vectors will refer to row.names and names:

xs["5", c("a", "b")]

## a b

## 5 0.94047 -1.2651

Note that this is not the same as “xs[5, c("a", "b")]”, despite the fact that row.names
is formally an integer vector here.

Note If a data frame features a matrix, we need to use the index/extract operator
twice in order to access a specific sub-column:

(x <- aggregate(iris[1], iris[5], function(x) c(Min=min(x), Max=max(x))))

## Species Sepal.Length.Min Sepal.Length.Max

## 1 setosa 4.3 5.8

## 2 versicolor 4.9 7.0

## 3 virginica 4.9 7.9

x[["Sepal.Length"]][, "Min"]

## [1] 4.3 4.9 4.9

In other words, neither “x[["Sepal.Length.Min"]]” nor “x[, "Sepal.Length.Min"]”
works.

As far as the replacement version of the index operator is concerned, it is a quite flex-
ible tool, allowing the new content to be a vector, a data frame, a list, or even amatrix.

Exercise 12.11 Write two replacement functions6. First, set_row_names which replaces the
row.names of a data frame with the contents of a specific column, for example:

(x <- aggregate(iris[1], iris[5], mean)) # some data frame

## Species Sepal.Length

## 1 setosa 5.006

(continues on next page)

6 (*) Compare pandas.DataFrame.set_index and pandas.DataFrame.reset_index in Python.
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(continued from previous page)

## 2 versicolor 5.936

## 3 virginica 6.588

set_row_names(x) <- "Species"

print(x)

## Sepal.Length

## setosa 5.006

## versicolor 5.936

## virginica 6.588

Second, reset_row_names which converts row.names to a standalone column of a given name,
for instance:

reset_row_names(x) <- "Type"

print(x)

## Sepal.Length Type

## 1 5.006 setosa

## 2 5.936 versicolor

## 3 6.588 virginica

These two functions may be handy as they allow for writing “x[something, ]” instead of
“x[x[["column"]] %in% something, ]”.

12.3 Common operations
Below we review the most commonly applied operations related to data frame
wrangling. We have a few dedicated functions or methods overloaded for the data.
frame class. However, we have already mastered the necessary skills to deal with this
kind of objects through our hard work, in particular involving the solving of the ex-
ercises in the preceding chapters. Let us repeat: data frames are just lists exhibiting
matrix-like behaviour.

12.3.1 Ordering rows
Ordering rows in a data framewith respect to different criteria can be easily achieved
by means of the order function and the two-argument version of `[`.

For instance, here are the top six cars in terms of the time (in seconds) to complete a
402-metre race:

mtcars6 <- mtcars[order(mtcars[["qsec"]])[1:6], ]

mtcars6[["model"]] <- row.names(mtcars6)

row.names(mtcars6) <- NULL

(continues on next page)
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(continued from previous page)

print(mtcars6)

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

order uses a stable sorting algorithm, therefore sortingwith respect to a different cri-
terion will not break the relative ordering of qsec in row groups with ties:

mtcars6[order(mtcars6[["cyl"]]), ]

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

Example 12.12 Notice the difference between ordering by cyl and gear vs gear and cyl:

mtcars6[order(mtcars6[["cyl"]], mtcars6[["gear"]]), ]

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

mtcars6[order(mtcars6[["gear"]], mtcars6[["cyl"]]), ]

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

Note Mixing a increasing and decreasing ordering is tricky as the decreasing argu-
ment to order currently does not accept multiple flags in all the contexts. Perhaps the
easiest way to change the ordering direction is to use the unaryminus operator on the
column(s) to be sorted decreasingly.
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mtcars6[order(mtcars6[["gear"]], -mtcars6[["cyl"]]), ]

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

For factor and character columns, xtfrm can be used to convert them to sort keys first.

mtcars6[order(mtcars6[["cyl"]], -xtfrm(mtcars6[["model"]])), ]

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

Both of the above behave like decreasing=c(FALSE, TRUE).

Exercise 12.13 Write a method sort.data.frame that orders a data frame with respect to a
given set of columns.

sort.data.frame <- function(x, decreasing=FALSE, cols) ...to.do...

sort(mtcars6, cols=c("cyl", "model"))

## mpg cyl disp hp drat wt qsec vs am gear carb model

## 4 19.7 6 145 175 3.62 2.77 15.50 0 1 5 6 Ferrari Dino

## 6 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4 Mazda RX4

## 3 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4 Camaro Z28

## 5 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4 Duster 360

## 1 15.8 8 351 264 4.22 3.17 14.50 0 1 5 4 Ford Pantera L

## 2 15.0 8 301 335 3.54 3.57 14.60 0 1 5 8 Maserati Bora

Unfortunately, that decreasingmust be of length one and be placed as the secondmethod argu-
ment is imposed by the sort S3 generic.

12.3.2 Handling duplicated rows
duplicated, anyDuplicated, and unique have methods overloaded for the data.frame
class.They can be used to indicate, get rid of, or replace the repeating rows.

sum(duplicated(iris)) # how many duplicated rows are there?

## [1] 1

(continues on next page)
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iris[duplicated(iris), ] # show the duplicated rows

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 143 5.8 2.7 5.1 1.9 virginica

12.3.3 Joining (merging) data frames
The merge function can perform the JOIN operation that some readers might know
fromSQL7. Itmatches the items in the columns that two given data frames somewhat
share, and then returns their combination.

Example 12.14 Two calls tomerge couldbeused tomatchdata onprogrammers (each identified
by developer_id and giving such details as their name, location, main skill, etc.) with the in-
formationabout the open-source projects (each identified byproject_idand informingus about
its title, scope, web site, and so forth) they are engaged in (based on a third data frame featuring
developer_id and project_id pairs).

As an simple illustration, consider the two following objects:

A <- data.frame(

u=c("b0", "b1", "b2", "b3"),

v=c("a0", "a1", "a2", "a3")

)

B <- data.frame(

v=c("a0", "a2", "a2", "a4"),

w=c("c0", "c1", "c2", "c3")

)

The two common columns, i.e., storing data of similar nature (a-something strings),
are both named v.

First, the inner (natural) join, where we list only the matching pairs:

merge(A, B) # x=A, y=B, by="v", all.x=FALSE, all.y=FALSE

## v u w

## 1 a0 b0 c0

## 2 a2 b2 c1

## 3 a2 b2 c2

Note that the common column (or, more generally, columns) is included only once in
the result.

7 JOIN is the reverse operation to data normalisation known from theory of relational databases, which
itself reduces data redundancy and increases their integrity.What data scientists need for succeedingwith
their daily activities (analysis, visualisation, processing) is thus the opposite of what the art of data man-
agement focuses on (efficient collection and storage). Readers are encouraged to learn about various nor-
malisation forms from, e.g., [16] or any other course covering this topic.
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The left join guarantees that all elements in the first data frame will be included in the
result:

merge(A, B, all.x=TRUE) # by="v", all.y=FALSE

## v u w

## 1 a0 b0 c0

## 2 a1 b1 <NA>

## 3 a2 b2 c1

## 4 a2 b2 c2

## 5 a3 b3 <NA>

The right join includes all records in the second argument:

merge(A, B, all.y=TRUE) # by="v", all.x=FALSE

## v u w

## 1 a0 b0 c0

## 2 a2 b2 c1

## 3 a2 b2 c2

## 4 a4 <NA> c3

And the full outer join is their set-theoretic union:

merge(A, B, all.x=TRUE, all.y=TRUE) # by="v"

## v u w

## 1 a0 b0 c0

## 2 a1 b1 <NA>

## 3 a2 b2 c1

## 4 a2 b2 c2

## 5 a3 b3 <NA>

## 6 a4 <NA> c3

Exercise 12.15 Show how match (Section 5.4.1) can be used to implement a very basic version
of merge.

12.3.4 Aggregating and transforming columns
Let us discuss how to perform data aggregation or engineer features. Despite the fact
that we already know how to access individual columns with `[` and process them
using themany vectorised functions, we still have something interesting to add about
the said matter.

It would be tempting to try implementing such operations with apply. Unfortunately,
currently this function coerces its argument to a matrix. Hence, we should refrain
from applying it on data frames whose columns are of mixed types8.

However, taking into account that data frames are special lists, we can always call Map
and its relatives.

8 Due to this, storing data as matrix columns inside data frames is not such a bad idea.
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Example 12.16 Given an example data frame:

(iris_sample <- iris[sample(NROW(iris), 6), ])

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 28 5.2 3.5 1.5 0.2 setosa

## 80 5.7 2.6 3.5 1.0 versicolor

## 101 6.3 3.3 6.0 2.5 virginica

## 111 6.5 3.2 5.1 2.0 virginica

## 137 6.3 3.4 5.6 2.4 virginica

## 133 6.4 2.8 5.6 2.2 virginica

To get the class of each column, we can call:

sapply(iris_sample, class) # or unlist(Map(class, iris))

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## "numeric" "numeric" "numeric" "numeric" "factor"

Next, here is a way to compute some aggregates of the numeric columns:

unlist(Map(mean, Filter(is.numeric, iris_sample)))

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 6.0667 3.1333 4.5500 1.7167

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], mean)

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 6.0667 3.1333 4.5500 1.7167

We can also fetchmore than a single summary of each column:

as.data.frame(Map(

function(x) c(Min=min(x), Max=max(x)),

Filter(is.numeric, iris_sample)

))

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## Min 5.2 2.6 1.5 0.2

## Max 6.5 3.5 6.0 2.5

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], quantile, c(0, 1))

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 0% 5.2 2.6 1.5 0.2

## 100% 6.5 3.5 6.0 2.5

Note that the latter called simplify2array automatically, thus the result is a matrix.

On the other hand, standardisation of all the numeric features can be performed, e.g., via a call:
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iris_sample[] <- Map(function(x) {

if (!is.numeric(x)) x else (x-mean(x))/sd(x)

}, iris_sample)

print(iris_sample)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 28 -1.70405 1.03024 -1.76004 -1.65318 setosa

## 80 -0.72094 -1.49854 -0.60591 -0.78117 versicolor

## 101 0.45878 0.46829 0.83674 0.85384 virginica

## 111 0.85202 0.18732 0.31738 0.30884 virginica

## 137 0.45878 0.74927 0.60591 0.74484 virginica

## 133 0.65540 -0.93659 0.60591 0.52684 virginica

12.3.5 Handlingmissing values
The is.namethod for objects of class data.frame returns a logical matrix of the same
dimensionality9 indicating whether the corresponding items are missing or not. Of
course, this function can still be called on individual columns as well.

Further, na.omit can be used to get rid of rows with missing values.

Exercise 12.17 Given a data frame, use is.na and other functions such as apply, approx, etc.,
to:

1. remove all rows that feature at least onemissing value,

2. remove all rows that only consist of missing values,

3. remove all columns that feature at least onemissing value,

4. for each column, replace all missing values with the column averages,

5. for each column, replace all missing values with values that linearly interpolate between the
preceding and succeedingwell-defined observations (which is useful on time series), e.g., the
blanks in c(0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be filled so as to obtain
c(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

12.3.6 Reshaping data frames
Consider an example matrix:

A <- matrix(round(runif(6), 2), nrow=3,

dimnames=list(

c("X", "Y", "Z"), # row labels

c("u", "v") # column labels

))

names(dimnames(A)) <- c("Row", "Col")

(continues on next page)

9 Provided that a data frame does not feature a matrix column.
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print(A)

## Col

## Row u v

## X 0.29 0.88

## Y 0.79 0.94

## Z 0.41 0.05

The as.data.framemethod for the table class can be called directly on any array:

as.data.frame.table(A, responseName="Val")

## Row Col Val

## 1 X u 0.29

## 2 Y u 0.79

## 3 Z u 0.41

## 4 X v 0.88

## 5 Y v 0.94

## 6 Z v 0.05

This is an instance of reshaping an array, andmore precisely, stacking: converting from
a wide (okay, in this example, not so wide, as we have only two columns) to a long
format.

This can be also achieved bymeans of the reshape function which is more flexible and
operates directly on data frames (but is harder to use):

(df <- `names<-`(

data.frame(row.names(A), A, row.names=NULL),

c("Row", "Col.u", "Col.v")))

## Row Col.u Col.v

## 1 X 0.29 0.88

## 2 Y 0.79 0.94

## 3 Z 0.41 0.05

(stacked <- reshape(df, varying=2:3, direction="long"))

## Row time Col id

## 1.u X u 0.29 1

## 2.u Y u 0.79 2

## 3.u Z u 0.41 3

## 1.v X v 0.88 1

## 2.v Y v 0.94 2

## 3.v Z v 0.05 3

Maybe the default column names are not superb, but we can always adjust them
manually afterwards.

The reverse operation is called unstacking:
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reshape(stacked, idvar="Row", timevar="time", drop="id", direction="wide")

## Row Col.u Col.v

## 1.u X 0.29 0.88

## 2.u Y 0.79 0.94

## 3.u Z 0.41 0.05

Exercise 12.18 Given a named numeric vector, convert it to a data frame with two columns, for
instance:

convert <- function(x) ...to.do...

x <- c(spam=42, eggs=7, bacon=3)

convert(x)

## key value

## 1 spam 42

## 2 eggs 7

## 3 bacon 3

Exercise 12.19 Reshape (stack) the built-in WorldPhones dataset.Then, reshape (unstack) the
stacked WorldPhones dataset. Further, unstack the stacked set but first remove10 five random
rows from it, and then randomly permute all the remaining rows. Fill the missing entries with
NAs.

Exercise 12.20 Implement a basic version of as.data.frame.table manually (using rep

etc.). Also, write a function as.table.data.frame that implements its reverse. Make sure both
functions are compatible with each other.

Exercise 12.21 The built-in Titanic is a four-dimensional array. Convert it to a long data
frame.

Exercise 12.22 Performwhat follows on the data frame defined below:

1. convert the second column from character to a list of character vectors (split at ",");

2. extract first elements from each of the vectors;

3. extract last elements;

4. (*) unstack the data frame;

5. (*) stack it back to a data frame featuring a list;

6. convert the list back to a character column (concatenate with "," as separator).

(x <- data.frame(

name=c("Kat", "Ron", "Jo", "Mary"),

food=c("buckwheat", "spam,bacon,spam", "", "eggs,spam,spam,lollipops")

))

## name food
(continues on next page)

10The original dataset can be thought of as representing a fully crossed design experiment (all combina-
tions of two grouping variables are present). Its truncated version is like an incomplete cross design.
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## 1 Kat buckwheat

## 2 Ron spam,bacon,spam

## 3 Jo

## 4 Mary eggs,spam,spam,lollipops

Exercise 12.23 Write a function that converts all matrix-based columns in a given data frame
to separate, atomic columns. Also, write a function to that does the opposite: one that groups all
columns with similar prefixes and turns them intomatrices.

12.3.7 Aggregating data in groups
We can straightforwardly apply various transforms on data groups determined by a
factor-like variable or a combination thereof thanks to the split.data.framemethod,
which returns a list of data frames.

For example:

x <- data.frame(

a=c( 10, 20, 30, 40, 50),

u=c("spam", "spam", "eggs", "spam", "eggs"),

v=c( 1, 2, 1, 1, 1)

)

split(x, x["u"]) # i.e., split.data.frame(x, x["u"]) or x[["u"]]

## $eggs

## a u v

## 3 30 eggs 1

## 5 50 eggs 1

##

## $spam

## a u v

## 1 10 spam 1

## 2 20 spam 2

## 4 40 spam 1

This split xwith respect to the u column serving as the grouping variable. On the other
hand:

split(x, x[c("u", "v")]) # sep="."

## $eggs.1

## a u v

## 3 30 eggs 1

## 5 50 eggs 1

##

## $spam.1

## a u v

(continues on next page)
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## 1 10 spam 1

## 4 40 spam 1

##

## $eggs.2

## [1] a u v

## <0 rows> (or 0-length row.names)

##

## $spam.2

## a u v

## 2 20 spam 2

partitioned with respect to a combination of two factor-like sequences. Note that a
non-existing level pair (eggs, 2) results in an empty data frame.

Exercise 12.24 split.data.frame (when called explicitly) can also be used to break amatrix
into a list of matrices (rowwisely). Given amatrix, perform its train-test split: allocate, say, 70%
of the rows at random into onematrix and the remaining 30% into another one.

If the aggregation of grouped data in numeric columns is needed, sapply is quite con-
venient. To recall, it is a combination of lapply (one-vector version of Map) and sim-

plify2array (Section 11.1.3).

sapply(split(iris[1:2], iris[5]), sapply, mean)

## setosa versicolor virginica

## Sepal.Length 5.006 5.936 6.588

## Sepal.Width 3.428 2.770 2.974

If the function being to apply returns more than a single value, sapplywill not return
a too-informative result by default: the list of matrices converted to a matrix will not
have the row.names argument set. As a workaround, we either call simplify2array ex-
plicitly or pass simplify="array" to sapply:

(res <- sapply(

split(iris[1:2], iris[5]),

sapply,

function(x) c(Min=min(x), Max=max(x)),

simplify="array"

)) # or simplify2array(lapply or Map etc.)

## , , setosa

##

## Sepal.Length Sepal.Width

## Min 4.3 2.3

## Max 5.8 4.4

##

## , , versicolor

##

(continues on next page)
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## Sepal.Length Sepal.Width

## Min 4.9 2.0

## Max 7.0 3.4

##

## , , virginica

##

## Sepal.Length Sepal.Width

## Min 4.9 2.2

## Max 7.9 3.8

This yields a three-dimensional arraywhich is particularly handy if we nowwould like
to access specific results by name:

res[, "Sepal.Length", "setosa"]

## Min Max

## 4.3 5.8

Also, the previously mentioned as.data.frame.tablemethod works like a charm on it
(up to the column names):

as.data.frame.table(res)

## Var1 Var2 Var3 Freq

## 1 Min Sepal.Length setosa 4.3

## 2 Max Sepal.Length setosa 5.8

## 3 Min Sepal.Width setosa 2.3

## 4 Max Sepal.Width setosa 4.4

## 5 Min Sepal.Length versicolor 4.9

## 6 Max Sepal.Length versicolor 7.0

## 7 Min Sepal.Width versicolor 2.0

## 8 Max Sepal.Width versicolor 3.4

## 9 Min Sepal.Length virginica 4.9

## 10 Max Sepal.Length virginica 7.9

## 11 Min Sepal.Width virginica 2.2

## 12 Max Sepal.Width virginica 3.8

Note If the grouping (by) variable is a list of two ormore factors, the combined levels
will be concatenated to a single string:

as.data.frame.table(as.array(sapply(

split(ToothGrowth["len"], ToothGrowth[c("supp", "dose")]),

sapply,

mean

)))

## Var1 Freq

(continues on next page)
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## 1 OJ.0.5.len 13.23

## 2 VC.0.5.len 7.98

## 3 OJ.1.len 22.70

## 4 VC.1.len 16.77

## 5 OJ.2.len 26.06

## 6 VC.2.len 26.14

Also, thenameof theaggregatedcolumn (len) hasbeen included.Thisbehaviour yields
a result that may be deemed convenient in some contexts, but not necessarily so in
other ones.

Exercise 12.25 Many aggregation functions are idempotent, which means that when they are
fed with a vector with all the elements being identical, the result is exactly that unique element:
min, mean, median, and max behave exactly this way.

Overload the mean and medianmethods for character vectors and factors so that they return NA
when they are fed with a sequence of not all elements being the same and the unique value other-
wise.

mean.character <- function(x, na.rm=FALSE, ...) ...to.do...

mean.factor <- function(x, na.rm=FALSE, ...) ...to.do...

This way, we can also aggregate the grouping variables conveniently:

do.call(rbind.data.frame,

lapply(split(ToothGrowth, ToothGrowth[c("supp", "dose")]), lapply, mean))

## len supp dose

## OJ.0.5 13.23 OJ 0.5

## VC.0.5 7.98 VC 0.5

## OJ.1 22.70 OJ 1.0

## VC.1 16.77 VC 1.0

## OJ.2 26.06 OJ 2.0

## VC.2 26.14 VC 2.0

Thebuilt-in aggregatemethod can assist us in a situationwhere a single function is to
be applied on all columns in a data frame.

aggregate(iris[-5], iris[5], mean) # not: ...[[5]]

## Species Sepal.Length Sepal.Width Petal.Length Petal.Width

## 1 setosa 5.006 3.428 1.462 0.246

## 2 versicolor 5.936 2.770 4.260 1.326

## 3 virginica 6.588 2.974 5.552 2.026

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean)

## supp dose len

(continues on next page)
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## 1 OJ 0.5 13.23

## 2 VC 0.5 7.98

## 3 OJ 1.0 22.70

## 4 VC 1.0 16.77

## 5 OJ 2.0 26.06

## 6 VC 2.0 26.14

Note that the second argument, by, must be list-like (therefore also a data frame is
accepted), not a factor nor an atomic vector. Also, if the function being applied returns
many values, they will be wrapped into a matrix column:

(x <- aggregate(iris[2], iris[5], function(x) c(Min=min(x), Max=max(x))))

## Species Sepal.Width.Min Sepal.Width.Max

## 1 setosa 2.3 4.4

## 2 versicolor 2.0 3.4

## 3 virginica 2.2 3.8

class(x[["Sepal.Width"]])

## [1] "matrix" "array"

x[["Sepal.Width"]] # not: Sepal.Width.Max, etc.

## Min Max

## [1,] 2.3 4.4

## [2,] 2.0 3.4

## [3,] 2.2 3.8

It is actually handy, because by referring to x[["Sepal.Width"]] we have access to all
the stats for this column. Further, if many columns are being aggregated at the same
time, we can process all the summaries in the same way.

Exercise 12.26 Check out the built-in by function which supports some basic split-apply-bind
use cases. Note the particularly peculiar behaviour of the printmethod for the by class.

The most flexible scenario involves applying a custom function returning any set of
aggregates in the formofa list and then row-binding the results toobtainadata frame.

Example 12.27 The following implements an R version of what we would express in SQL as:

SELECT supp, dose, AVG(len) AS ave_len, COUNT(*) AS count

FROM ToothGrowth

GROUP BY supp, dose

Ad rem:

do.call(rbind.data.frame, lapply(

split(ToothGrowth, ToothGrowth[c("supp", "dose")]),

function(df) list(

supp=df[1, "supp"],

(continues on next page)
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dose=df[1, "dose"],

ave_len=mean(df[["len"]]),

count=NROW(df)

)

))

## supp dose ave_len count

## OJ.0.5 OJ 0.5 13.23 10

## VC.0.5 VC 0.5 7.98 10

## OJ.1 OJ 1.0 22.70 10

## VC.1 VC 1.0 16.77 10

## OJ.2 OJ 2.0 26.06 10

## VC.2 VC 2.0 26.14 10

Example 12.28 As an exercise, let us study a function that takes a named list x (can be a data
frame) and a sequence of col=f pairs and applies the function f (or each function from a list of
functions f) on the named element col in x:

napply <- function(x, ...)

{

fs <- list(...)

stopifnot(is.list(x), !is.null(names(x)))

stopifnot(all(names(fs) %in% names(x)))

do.call(

c, # concatenates lists

lapply(

structure(seq_along(fs), names=names(fs)),

function(i)

{ # always returns a list

y <- x[[ names(fs)[i] ]]

if (is.function(fs[[i]]))

list(fs[[i]](y))

else

lapply(fs[[i]], function(f) f(y))

}

)

)

}

For example:

first <- function(x, ...) head(x, n=1L, ...) # we use it below

napply(ToothGrowth,

supp=first, dose=first, len=list(ave=mean, count=length)

)

## $supp

(continues on next page)
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## [1] VC

## Levels: OJ VC

##

## $dose

## [1] 0.5

##

## $len.ave

## [1] 18.813

##

## $len.count

## [1] 60

applies first on both ToothGrowth[["supp"]] and ToothGrowth[["dose"]] as well as mean
and length on ToothGrowth[["len"]]. List names are there for amore dramatic effect.

And now:

do.call(

rbind.data.frame,

lapply(

split(ToothGrowth, ToothGrowth[c("supp", "dose")]),

napply,

supp=first, dose=first, len=list(ave=mean, count=length)

)

)

## supp dose len.ave len.count

## OJ.0.5 OJ 0.5 13.23 10

## VC.0.5 VC 0.5 7.98 10

## OJ.1 OJ 1.0 22.70 10

## VC.1 VC 1.0 16.77 10

## OJ.2 OJ 2.0 26.06 10

## VC.2 VC 2.0 26.14 10

or even:

aaaggg <- function(x, by, ...)

do.call(rbind.data.frame, lapply(split(x, x[by]), napply, ...))

so that:

aaaggg(iris, "Species", Species=first, Sepal.Length=mean)

## Species Sepal.Length

## setosa setosa 5.006

## versicolor versicolor 5.936

## virginica virginica 6.588
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This brings fun back to R programming in the sad times when many things are given to us on a
plate.

By the way, the above has not been tested thoroughly, it is a proof of concept; as usual, testing,
debugging, and extending is left as an exercise to the reader.

Example 12.29 In Section 10.5, we have considered an example where we have used our own
group_by function and an aggregationmethod overloaded for the object’s class it returns.

Here is the function that splits adata frame intoa list of data frameswith respect toa combination
of levels in given named columns:

group_by <- function(df, by)

{

stopifnot(is.character(by), is.data.frame(df))

df <- droplevels(df) # in case there are factors with empty levels

structure(

split(df, df[names(df) %in% by]),

class="list_dfs",

by=by

)

}

The next function applies a set of aggregates on every column of each data frame in a given list
(two nested lapplys plus some cosmetic additions):

aggregate.list_dfs <- function(x, FUN, ...)

{

aggregates <- lapply(x, function(df) {

is_by <- names(df) %in% attr(x, "by")

res <- lapply(df[!is_by], FUN, ...)

res_mat <- do.call(rbind, res)

if (is.null(dimnames(res_mat)[[2]]))

dimnames(res_mat)[[2]] <- paste0("f", seq_len(NCOL(res_mat)))

cbind(

`row.names<-`(df[1, is_by, drop=FALSE], NULL),

x=row.names(res_mat),

`row.names<-`(res_mat, NULL)

)

})

combined_aggregates <- do.call(rbind.data.frame, aggregates)

`row.names<-`(combined_aggregates, NULL)

}

aggregate(group_by(ToothGrowth, c("supp", "dose")), range)

## supp dose x f1 f2

## 1 OJ 0.5 len 8.2 21.5

## 2 VC 0.5 len 4.2 11.5

## 3 OJ 1.0 len 14.5 27.3
(continues on next page)
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## 4 VC 1.0 len 13.6 22.5

## 5 OJ 2.0 len 22.4 30.9

## 6 VC 2.0 len 18.5 33.9

We really want our API be bloated, hence let us introduce a convenience function being a spe-
cialised version of the above:

mean.list_dfs <- function(x, ...)

aggregate.list_dfs(x, function(y) c(Mean=mean(y, ...)))

mean(group_by(iris[51:150, c(2, 3, 5)], "Species"))

## Species x Mean

## 1 versicolor Sepal.Width 2.770

## 2 versicolor Petal.Length 4.260

## 3 virginica Sepal.Width 2.974

## 4 virginica Petal.Length 5.552

12.3.8 Transforming data in groups
Somevariableswill sometimesneed tobe transformedrelative towhat is happening in
subsets of a dataset.This is the case, e.g., where we decide thatmissing values should
be replaced by the corresponding within-group averages, or want to compute the rel-
ative ranks or z-scores.

If the losing of the original ordering of rows is not an issue, the standard split-apply-
bind will suffice.

An example data frame:

(x <- data.frame(

a=c( 10, 1, NA, NA, NA, 4),

b=c( -1, 10, 40, 30, 1, 20),

c=runif(6),

d=c("v", "u", "u", "u", "v", "u")

))

## a b c d

## 1 10 -1 0.52811 v

## 2 1 10 0.89242 u

## 3 NA 40 0.55144 u

## 4 NA 30 0.45661 u

## 5 NA 1 0.95683 v

## 6 4 20 0.45333 u

Some operations:

fill_na <- function(x) `[<-`(x, is.na(x), value=mean(x[!is.na(x)]))

standardise <- function(x) (x-mean(x))/sd(x)
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And now:

do.call(rbind.data.frame, lapply(

split(x, x["d"]),

function(df) {

df[["a"]] <- fill_na(df[["a"]])

df[["b"]] <- rank(df[["b"]])

df[["c"]] <- standardise(df[["c"]])

df

}

))

## a b c d

## u.2 1.0 1 1.46357 u

## u.3 2.5 4 -0.17823 u

## u.4 2.5 3 -0.63478 u

## u.6 4.0 2 -0.65057 u

## v.1 10.0 1 -0.70711 v

## v.5 10.0 2 0.70711 v

Note that only the relative ordering of rows within groups has been retained. Overall,
the rows are in a different order.

If this is an issue, we can use the unsplit function:

unsplit(

lapply(

split(x, x["d"]),

function(df) {

df[["a"]] <- fill_na(df[["a"]])

df[["b"]] <- rank(df[["b"]])

df[["c"]] <- standardise(df[["c"]])

df

}

),

x["d"]

)

## a b c d

## 1 10.0 1 -0.70711 v

## 2 1.0 1 1.46357 u

## 3 2.5 4 -0.17823 u

## 4 2.5 3 -0.63478 u

## 5 10.0 2 0.70711 v

## 6 4.0 2 -0.65057 u

Exercise 12.30 Show howwe can do the above also via the replacement version of split.

Example 12.31 Reverting to the previous ordering can be done manually too. It is because the
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split operation behaves as if we first ordered the data frame with respect to the grouping vari-
able(s) (using a stable sorting algorithm).

Here is some transformation of a sample data frame split by a combination of two factors:

(x <- `row.names<-`(ToothGrowth[sample(NROW(ToothGrowth), 10), ], NULL))

## len supp dose

## 1 23.0 OJ 2.0

## 2 23.3 OJ 1.0

## 3 29.4 OJ 2.0

## 4 14.5 OJ 1.0

## 5 11.2 VC 0.5

## 6 20.0 OJ 1.0

## 7 24.5 OJ 2.0

## 8 10.0 OJ 0.5

## 9 9.4 OJ 0.5

## 10 7.0 VC 0.5

(y <- do.call(rbind.data.frame, lapply(

split(x, x[c("dose", "supp")]), # two grouping variables

function(df) {

df[["len"]] <- df[["len"]] * 100^df[["dose"]] * # whatever

ifelse(df[["supp"]] == "OJ", -1, 1) # do not overthink it

df

}

)))

## len supp dose

## 0.5.OJ.8 -100 OJ 0.5

## 0.5.OJ.9 -94 OJ 0.5

## 1.OJ.2 -2330 OJ 1.0

## 1.OJ.4 -1450 OJ 1.0

## 1.OJ.6 -2000 OJ 1.0

## 2.OJ.1 -230000 OJ 2.0

## 2.OJ.3 -294000 OJ 2.0

## 2.OJ.7 -245000 OJ 2.0

## 0.5.VC.5 112 VC 0.5

## 0.5.VC.10 70 VC 0.5

In Section 5.4.4, we havementioned that by calling order, we ca determine the inverse of a given
permutation. Hence, we can call:

y[order(order(x[["supp"]], x[["dose"]])), ] # not: dose, supp

## len supp dose

## 2.OJ.1 -230000 OJ 2.0

## 1.OJ.2 -2330 OJ 1.0

## 2.OJ.3 -294000 OJ 2.0

## 1.OJ.4 -1450 OJ 1.0

## 0.5.VC.5 112 VC 0.5
(continues on next page)
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## 1.OJ.6 -2000 OJ 1.0

## 2.OJ.7 -245000 OJ 2.0

## 0.5.OJ.8 -100 OJ 0.5

## 0.5.OJ.9 -94 OJ 0.5

## 0.5.VC.10 70 VC 0.5

Additionally, we canmanually restore the original row.names, et voilà.

12.3.9 Metaprogramming-based techniques (*)
In Section 9.5.7, we havementioned that due to R’s being equipped with the ability to
writeprograms thatmanipulateunevaluatedexpressions, some functions canprovide
us with convenient11 interfaces to a few common operations. These include transform,
{commandsubset, with, and basically every procedure accepting a formula. Also, the
popular data.table and dplyr packages that we briefly mention in Section 12.3.10 fall
into this class.

However, we have already noted that each such method must be studied separately.
This is because they can arbitrarily interpret the form of the arguments passed thereto,
without taking into account their realmeaning. This is why we try to avoid12 them in
this course: we can do perfectly without them.Withal, they are not only interesting on
their own, but also quite popular in other users’ code, hence the honourablemention.
Learning them inmore detail is left to the kind reader as an optional exercise.

Example 12.32 For instance, let us consider an example call to the subset function:

subset(iris, Sepal.Length>7.5, -(Sepal.Width:Petal.Width))

## Sepal.Length Species

## 106 7.6 virginica

## 118 7.7 virginica

## 119 7.7 virginica

## 123 7.7 virginica

## 132 7.9 virginica

## 136 7.7 virginica

Neither Sepal.Length>7.5nor -(Sepal.Width:Petal.Width)make sense as standaloneR ex-
pressions, because we have not defined the named variables used therein:

11 Furthermore, in some third-party packages, they can sometimes be faster andmorememory efficient
(on larger datasets), as it is usually the case with more specialised tools. However, in many daily program-
ming contexts, the speed of the data wrangling operations is not that often an issue. Remember that we
always have SQL-supporting relational databases at our disposal too.

12We are not alone in our calling to refrain from using them. help("subset") warns (and
help("transform") quite similarly):This is a convenience function intended for use interactively. For programming,
it is better to use the standard subsetting functions like `[`, and in particular the non-standard evaluation of argument
subset can have unanticipated consequences.The same in help("with"): For interactive use, this is very effective
and nice to read. For programming however, i.e., in one’s functions, more care is needed, and typically one should refrain
from using with, as, e.g., variables in datamay accidentally override local variables.
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Sepal.Length>7.5 # utter nonsense

## Error in eval(expr, envir, enclos): object 'Sepal.Length' not found

-(Sepal.Width:Petal.Width) # gibberish

## Error in eval(expr, envir, enclos): object 'Sepal.Width' not found

Only from help("subset"), we can learn that this tool generously decides that the second ex-
pression plays the role of a row selector and the third one removes all the columns between the two
given ones.

In our course, we pay attention to developing transferable skills. Assuming that R is not the only
language we are going to learn during of our long and happy lives, it is muchmore likely that in
the next environment, we will rather be writing somethingmore of the more basic form:

between <- function(x, from, to) (which(from == x):which(to == x))

iris[iris[["Sepal.Length"]]>7.5,

-between(names(iris), "Sepal.Width", "Petal.Width")]

## Sepal.Length Species

## 106 7.6 virginica

## 118 7.7 virginica

## 119 7.7 virginica

## 123 7.7 virginica

## 132 7.9 virginica

## 136 7.7 virginica

Let us stress again that this is a book onhow tobecomeagreat chefwhoproudlyuses produce from
sustainable sources, and not how to order ultra-processed food fromDeliverNoodlesQuickly.com.

Example 12.33 transform can be used to add, modify, and remove columns in a data frame
with the possibility of referring to existing features as if they were ordinary variables:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL))

## mpg cyl disp drat wt qsec vs am gear carb log_hp

## Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005

## Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005

## Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326

## Hornet 4 Drive 21.4 6 258 3.08 3.215 19.44 1 -1 3 1 4.7005

## Hornet Sportabout 18.7 8 360 3.15 3.440 17.02 0 -1 3 2 5.1648

## Valiant 18.1 6 225 2.76 3.460 20.22 1 -1 3 1 4.6540

Similarly, attach adds any named list to the search path (see Section 16.2.6) so that the columns
canbeaccessedbyname.Nevertheless,we cannot alter their contents.Asanalternative,withand
withinmay be referred to if writing df[["..."]] each time is so difficult to us (it should not be):

within(head(mtcars), {

log_hp <- log(hp)

fuel_economy <- 235/mpg

am <- factor(am, levels=c(0, 1), labels=c("no", "yes"))

(continues on next page)
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rm(list=c("mpg", "hp", "vs", "qsec"))

})

## cyl disp drat wt am gear carb fuel_economy log_hp

## Mazda RX4 6 160 3.90 2.620 yes 4 4 11.190 4.7005

## Mazda RX4 Wag 6 160 3.90 2.875 yes 4 4 11.190 4.7005

## Datsun 710 4 108 3.85 2.320 yes 4 1 10.307 4.5326

## Hornet 4 Drive 6 258 3.08 3.215 no 3 1 10.981 4.7005

## Hornet Sportabout 8 360 3.15 3.440 no 3 2 12.567 5.1648

## Valiant 6 225 2.76 3.460 no 3 1 12.983 4.6540

Example 12.34 Asmentioned in Section 10.3.4 (see Section 17.6 formore details), formulae are
special objects that consist of two unevaluated expressions separated by a tilde (`~`).

Functions can support formulae and dowhat they pleasewith them, but a popular approach is to
allow them to express “something grouped by something else” or “one thing as a function of other
things”.

do.call(rbind.data.frame, lapply(split(ToothGrowth, ~supp+dose), head, 1))

## len supp dose

## OJ.0.5 15.2 OJ 0.5

## VC.0.5 4.2 VC 0.5

## OJ.1 19.7 OJ 1.0

## VC.1 16.5 VC 1.0

## OJ.2 25.5 OJ 2.0

## VC.2 23.6 VC 2.0

aggregate(cbind(mpg, log_hp=log(hp))~am:cyl, mtcars, mean)

## am cyl mpg log_hp

## 1 0 4 22.900 4.4186

## 2 1 4 28.075 4.3709

## 3 0 6 19.125 4.7447

## 4 1 6 20.567 4.8552

## 5 0 8 15.050 5.2553

## 6 1 8 15.400 5.6950

head(model.frame(mpg+hp~log(hp)+I(1/qsec), mtcars))

## mpg + hp log(hp) I(1/qsec)

## Mazda RX4 131.0 4.7005 0.060753....

## Mazda RX4 Wag 131.0 4.7005 0.058754....

## Datsun 710 115.8 4.5326 0.053734....

## Hornet 4 Drive 131.4 4.7005 0.051440....

## Hornet Sportabout 193.7 5.1648 0.058754....

## Valiant 123.1 4.6540 0.049455....

If these seem esoteric, it is because that is exactly the case. We need to consult the corresponding
functions’manuals to be able to understandwhat they do.And, aswe donot recommend their use
by beginner programmers, we are not going to explain them here.
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Exercise 12.35 In the last example, the peculiar printing of the last column is due to which
method’s being overloaded?

In the third part of this book, we will return to these functions as they will serve as
a very interesting illustration of how to implement our own procedures that rely on
metaprogramming techniques.

12.3.10 A note on the dplyr (tidyverse) and data.table packages (*)
Thepopular third-party packages data.table and dplyr implement themost common
data frame wrangling procedures. Moreover, some of the operations may be much
faster for larger data sets.

Theyboth introducea completelynewAPI for theoperationswealreadyknowwell how
to perform. Furthermore, they are heavily based onmetaprogramming (nonstandard
evaluation). A good way to learn them is by solving some of the exercises listed below.

Note that dplyr is part of a huge system of interdependent packages called tidyverse

which tend to do things their own way and which became quite invasive over the last
years.Nevertheless,Rprogrammers should remember that they arenot only able todo
without them; they also need to when the processing of other prominent data struc-
tures is required, e.g., of fancy lists and matrices. Base R always comes first as the
more fundamental layer.

Important Some functions we may find useful will (annoyingly to base R users) re-
turn objects of class tibble (tbl_df) (e.g., haven::read.xpt that reads SAS data files).
However, those are in fact data.frame subclasses andwe can always use as.data.frame
to get our favourite objects back.

Also, we cannot stress enough that it is SQL that we recommend to learn as perhaps
the most powerful interface to more considerable amounts of data, and also one that
gives skills which can be used at a later time in other programming environments.

We should remember that base R has already proven long time ago to be a versatile
tool for rapid prototyping, calling specialised procedures written in C or Java, and
wrangling data that fit into memory. For larger problems, techniques for working with
batches of data, samplingmethods, or aggregating data stored elsewhere is often the
way to go, especially when building machine learning models or visualisation13 is re-
quired. Usually, the most recent data will be stored in normalised databases and you
will need to join a few tables in order to fetch something of interest in the current
analysis context.

13 For example, drawing a scatter plot of one billion points barelymakes sense andmay result in unread-
able images of large file sizes.They need to be sampled or summarised (e.g., binned) somehow first.
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12.4 Exercises
Exercise 12.36 Answer the following questions:

• What attributes a data framemust be equipped with?

• If row.names is an integer vector, how to access rows labelled 1, 7, and 42?

• How to create a data frame that features a column that is a list of character vectors of different
lengths?

• How to create a data frame that includes amatrix column?

• How to convert all numeric columns in a data frame to a numeric matrix?

• Assuming that x is an atomic vector, what is the difference between “as.data.frame(x)” vs
“as.data.frame(as.list(x))”vs “as.data.frame(list(a=x))”vs “data.frame(a=x)”?

Exercise 12.37 Assuming that x is a data frame, what is themeaning of/difference between the
following:

• “x["u"]” vs “x[["u"]]” vs “x[, "u"]”?

• “x["u"][1]” vs “x[["u"]][1]” vs “x[1, "u"]” vs “x[1, "u", drop=FALSE]”?

• “x[which(x[[1]] > 0), ]” vs “x[x[[1]] > 0, ]”?

• “x[grep("^foo", names(x))]”?

Exercise 12.38 Assume we have a data frame with columns named like: ID (character),
checked (logical, possibly with missing values), category (factor), x0, … x9 (ten separate nu-
meric columns), y0, … y9 (ten separate numeric columns), coords (numeric matrix with two
columns named lat and long), and features (list of character vectors of different lengths).

• How to extract the rows where checked is TRUE?

• How to extract a subset comprised only of ID and x-something columns?

• How to extract the rows for which ID is like 3 letters and then 5 digits (e.g., XYZ12345)?

• How to select all the numeric columns in one go?

• Assuming that the IDs are like three letters and then five digits, how to add two columns: ID3
(the letters) and ID5 (the five digits).

• How to get rid of all the columns between x3 and y7?

• How to check where both lat and long in coords are positive?

• How to add the row indicating the number of features?

• How to extract the rows where "spam" is amongst the features?

• How to convert it to a long data frame with two columns: ID and feature (individual
strings)?
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• How to change the name of the ID column to id?

• How tomake the y-foo columns appear before the x-bar ones?

• How to order the rows with respect to checked (FALSE first, then TRUE) and IDs (decreas-
ingly)?

• How to remove rows with duplicate IDs?

• How to determine howmany entries correspond to each category?

• How to compute the average lat and long in each category?

• How to compute the average lat and long for each category and checked combined?

Exercise 12.39 Consider the flights14 dataset. Give some ways to select all rows between
March andOctober (regardless of the year).

Exercise 12.40 In this task, youwill be workingwith a version of a dataset on 70k+Melbourne
trees (urban_forest15).

1. Load the downloaded dataset by calling the read.csv function.

2. Fetch the IDs (CoM.ID) and trunk diameters (Diameter.Breast.Height) of five horse chest-
nutswith the smallest diameters at breast height.The output data framemust be sortedwith
respect to Diameter.Breast.Height, decreasingly.

3. Create a new data frame that gives the number of trees planted in each year.

4. Compute the average age (in years, based on Year.Planted; using aggregate) of the trees of
genera (each genus separately): Eucalyptus, Platanus, Ficus, Acer, and Quercus. Depict the
sorted data with barplot.

Exercise 12.41 (*) Consider the historic data dumps of https://travel.stackexchange.com/
available here16. Export the CSV files located therein to an SQLite database. Then, write some
R code that correspond to the following SQL queries (use dbGetQuery to verify your results):

--- 1)

SELECT

Users.DisplayName,

Users.Age,

Users.Location,

SUM(Posts.FavoriteCount) AS FavoriteTotal,

Posts.Title AS MostFavoriteQuestion,

MAX(Posts.FavoriteCount) AS MostFavoriteQuestionLikes

FROM Posts

JOIN Users ON Users.Id=Posts.OwnerUserId

WHERE Posts.PostTypeId=1

GROUP BY OwnerUserId

(continues on next page)

14 https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
15 https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
16 https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
https://travel.stackexchange.com/
https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017
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ORDER BY FavoriteTotal DESC

LIMIT 10

--- 2)

SELECT

Posts.ID,

Posts.Title,

Posts2.PositiveAnswerCount

FROM Posts

JOIN (

SELECT

Posts.ParentID,

COUNT(*) AS PositiveAnswerCount

FROM Posts

WHERE Posts.PostTypeID=2 AND Posts.Score>0

GROUP BY Posts.ParentID

) AS Posts2

ON Posts.ID=Posts2.ParentID

ORDER BY Posts2.PositiveAnswerCount DESC

LIMIT 10

--- 3)

SELECT

Posts.Title,

UpVotesPerYear.Year,

MAX(UpVotesPerYear.Count) AS Count

FROM (

SELECT

PostId,

COUNT(*) AS Count,

STRFTIME('%Y', Votes.CreationDate) AS Year

FROM Votes

WHERE VoteTypeId=2

GROUP BY PostId, Year

) AS UpVotesPerYear

JOIN Posts ON Posts.Id=UpVotesPerYear.PostId

WHERE Posts.PostTypeId=1

GROUP BY Year

--- 4)

SELECT

Questions.Id,

Questions.Title,

BestAnswers.MaxScore,

Posts.Score AS AcceptedScore,

BestAnswers.MaxScore-Posts.Score AS Difference

FROM (

(continues on next page)
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SELECT Id, ParentId, MAX(Score) AS MaxScore

FROM Posts

WHERE PostTypeId==2

GROUP BY ParentId

) AS BestAnswers

JOIN (

SELECT * FROM Posts

WHERE PostTypeId==1

) AS Questions

ON Questions.Id=BestAnswers.ParentId

JOIN Posts ON Questions.AcceptedAnswerId=Posts.Id

WHERE Difference>50

ORDER BY Difference DESC

--- 5)

SELECT

Posts.Title,

CmtTotScr.CommentsTotalScore

FROM (

SELECT

PostID,

UserID,

SUM(Score) AS CommentsTotalScore

FROM Comments

GROUP BY PostID, UserID

) AS CmtTotScr

JOIN Posts ON Posts.ID=CmtTotScr.PostID

AND Posts.OwnerUserId=CmtTotScr.UserID

WHERE Posts.PostTypeId=1

ORDER BY CmtTotScr.CommentsTotalScore DESC

LIMIT 10

--- 6)

SELECT DISTINCT

Users.Id,

Users.DisplayName,

Users.Reputation,

Users.Age,

Users.Location

FROM (

SELECT

Name, UserID

FROM Badges

WHERE Name IN (

SELECT

Name

(continues on next page)
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FROM Badges

WHERE Class=1

GROUP BY Name

HAVING COUNT(*) BETWEEN 2 AND 10

)

AND Class=1

) AS ValuableBadges

JOIN Users ON ValuableBadges.UserId=Users.Id

--- 7)

SELECT

Posts.Title,

VotesByAge2.OldVotes

FROM Posts

JOIN (

SELECT

PostId,

MAX(CASE WHEN VoteDate = 'new' THEN Total ELSE 0 END) NewVotes,

MAX(CASE WHEN VoteDate = 'old' THEN Total ELSE 0 END) OldVotes,

SUM(Total) AS Votes

FROM (

SELECT

PostId,

CASE STRFTIME('%Y', CreationDate)

WHEN '2017' THEN 'new'

WHEN '2016' THEN 'new'

ELSE 'old'

END VoteDate,

COUNT(*) AS Total

FROM Votes

WHERE VoteTypeId=2

GROUP BY PostId, VoteDate

) AS VotesByAge

GROUP BY VotesByAge.PostId

HAVING NewVotes=0

) AS VotesByAge2 ON VotesByAge2.PostId=Posts.ID

WHERE Posts.PostTypeId=1

ORDER BY VotesByAge2.OldVotes DESC

LIMIT 10

Exercise 12.42 (*)Generate aCSVfile featuring some randomdata arranged in a few columns
of the size at least two times larger than your available RAM. Then, export the CSV file to an
SQLite database. Use file connections (Section 8.3.5) and the nrow argument to read.table to
be able to process it on a chunk-by-chunk basis.

Determine whether setting colClasses in read.table speeds up the reading of large CSV files
significantly or not.
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Exercise 12.43 (*) Export the whole XML data dump of StackOverflow17 published at https:
//archive.org/details/stackexchange (see also https://data.stackexchange.com/) to an SQLite
database.

17 https://stackoverflow.com

https://stackoverflow.com
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://data.stackexchange.com/




13
Graphics

The R Project homepage advertises our free software as an environment for statistical
computing and graphics. Hence, had we not dealt with the latter use case, our course
would have been incomplete.

R is nowadays equipped with the two following independent (incompatible, yet coex-
isting) systems for graphics generation; see Figure 13.1.

1. The (historically) newer one, grid (e.g., [44]), is very flexible but might seem quite
complicated. Some readers might have come across the lattice [49] and ggplot2

[54, 57] packages before: they are built on top of grid.

2. On the other hand, its traditional (S-style) counterpart, base graphics (e.g., [7]), is
much easier tomaster. It still gives their users full control over drawing processes.
Its being simple, fast, andminimalistmakes it very attractive fromtheperspective
of this course’s philosophy.

This is why we only cover the second system here.

Note Allfigures in this bookwere generated using graphics and its dependants.They
are sufficiently aesthetic, aren’t they?

13.1 Graphics primitives
In graphics, we do not choose from a superfluity of virtual objects to be placed on an
abstract canvas, letting some algorithm decide how and when to delineate them. We
just draw. To do so,we call functions that plot the following graphics primitives (see, e.g.,
[35, 41]):

• plotting symbols (e.g., pixels, circles stars) of different shapes and colours,

• line segments of different styles (e.g., solid, dashed, dotted),

• polygons (optionally filled),

• text (using available fonts),

• raster images (bitmaps; if the output device supports it).
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higher-level functions (graphics)

higher-level functions (grid)

graphics subsystems

graphics devices
(abstraction layer)

particular devices

graphics

plot.default
boxplot
hist
barplot
image
...

stats

plot.ecdf
plot.hclust
qqplot
...

lattice

...

ggplot2

...

graphics

plot.new
plot.window
plot.xy
polygon
text.default
rasterImage
...

grid

...

grDevices

dev.new
dev.o�f
par
...

grDevices::cairo_pdf

grDevices::svggrDevices::pngtikzDevice::tikz

grDevices::x11

Figure 13.1: Relation between the graphics subsystems
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That’s it. It will turn out that all other shapes (smooth curves, circles) might be easily
approximated using the above.

Example 13.1 Figure 13.2 depicts some graphics primitives which we plotted using the follow-
ing program.Wewill detail the meaning of all the functions in the next sections.

par(mar=rep(0.5, 4)) # small plot margins (bottom, left, top, right)

plot.new() # start a new plot

plot.window(c(0, 6), c(0, 2), asp=1) # x range: 0–6, y: 0–2; proportional

x <- c(0, 0, NA, 1, 2, 3, 4, 4, 5, 6)

y <- c(0, 2, NA, 2, 1, 2, 2, 1, 0.25, 0)

points(x[-(1:6)], y[-(1:6)]) # symbols

lines(x, y) # line segments

text(c(0, 6), c(0, 2), c("(0, 0)", "(6, 2)"), col="red") # two text labels

rasterImage(

matrix(c(1, 0, # 2x3 pixel "image"; 0=black, 1=red

0, 1,

0, 0), byrow=TRUE, ncol=2),

5, 0.5, 6, 2, # position: xleft, ybottom, xright, ytop

interpolate=FALSE

)

polygon(

c(4, 5, 5.5, 4), # x coordinates of the vertices

c(0, 0, 1, 0.75), # y coordinates

lty="dotted", # border style

col="#ffff0044" # fill colour: semi-transparent yellow

)

(0, 0)

(6, 2)

Figure 13.2: Graphical primitives: plotting symbols, line segments, polygons, text la-
bels, and bitmaps; note that objects are added one after another, with newer ones
drawn over the already existing shapes

Important In graphics, most of the function calls have immediate effects. Objects
are drawn on the active plot one by one, and their state cannot be modified later.

Of course, in practice, we do not have to be so low-level all the time. There are many
built-in functions that implement (using exactly the above building blocks) the most
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popular chart types: histograms, bar plots, dendrograms, etc. They should suit our
basic needs. We will review them in Section 13.3.

The more basic routines that we discuss next will still be useful for fine-tuning our
figures and adding further details. But, if the prefabricated components are not what
we are after, we will be able to create any drawing from scratch.

13.1.1 Symbols (points)
The points function can be used a drawa series of plotting symbols (by default, circles)
on the two-dimensional plot region relative to the user coordinate system.

We specify the points’ coordinates using the x and y arguments (two vectors of equal
lengths; no recycling). Alternatively, we may give a matrix or a data frame with two
columns: its first column (regardless how and if it is named) defines the abscissae,
and the second column determines the ordinates.

This function allows each point to be plotted differently, if this iswhatwe desire.Thus,
it is ideal for drawing scatter plots, possibly for grouped data (see Figure 13.17 below).
It is vectorisedwith respect to, amongst others, the col (colour; see Section 13.2.1), cex
(scale, defaults to 1), and pch (plotting character or symbol, defaults to 1, i.e., a circle)
arguments.

Example 13.2 Figure 13.3 gives an overview of the plotting symbols available. Most often used
ones are:

• NA_integer_ – no symbol,

• 0, …, 14 and 15, …, 18 – unfilled and filled symbols, respectively;

• 19, …, 25 – filled symbols with a border of width lwd; for codes 21–25, the fill colour is con-
trolled separately by the bg parameter,

• "." – a tiny point (a “pixel”),

• "a", "1", etc. – a single character (not all Unicode characters are available); strings longer
than one will be truncated.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0.9, 9.1), c(0.9, 4.1))

points(

cbind(1:9, 1), # or x=1:9, y=rep(1, 9)

col="red",

pch=c("A", "B", "a", "b", "Spanish Inquisition", "*", "!", ".", "9")

)

xy <- expand.grid(1:9, 4:2)

text(xy, labels=0:(nrow(xy)-1), pos=1, cex=0.89, offset=0.75, col="darkgray")

points(xy, pch=0:(nrow(xy)-1), bg="yellow")

## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch

## value '26'
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A B a b S * ! 9

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

Figure 13.3: Plotting characters and symbols (pch)

13.1.2 Line segments
lines can be used to draw connected line segments whose mid- and endpoints are
given in a similar manner as in the points function. A series of segments can be in-
terrupted by defining an endpoint whose coordinate is a missing value; compare Fig-
ure 13.2.

Actually, points and lines are wrappers around the same function, plot.xy (which
we usually do not call directly). Their type arguments determine the object to draw;
the only difference between them is that the former uses type="p"whilst the latter re-
lies on type="l" by default. Changing these to type="b" (both) or type="o" (overplot)
will give their combination.Moreover, type="s" and type="S" results in step functions
(with post- and pre-increments, respectively), and type="h" draws bar plot-like ver-
tical lines. See Figure 13.4 for an illustration (implement something similar yourself
as an exercise).

type="h"

type="p"

type="l"

type="b"

type="o"

type="s"

type="S"

Figure 13.4: Different type argument settings in lines or points

The col argument controls the line colour (see Section 13.2.1) and lwd determines
the line width (1 by default). Six named line types (lty) are available, which can also
be specified via their respective numeric identifiers, lty=1, …, lty=6; see Figure 13.5
(implementing a similar plot is left as an exercise). Additionally, custom dashes can
be defined using strings of up to 8 (hexadecimal) digits. Consecutive digits give the
lengths of the dashes and blanks. For instance, lty="1343" yields a dash of length 1,
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followedbya spaceof length 3, thena segmentof length 4, followedbyablankof length
3.The whole sequence will be recycled for as long as necessary.

"solid" or 1 "dashed", "44", or 2

"dotted", "13", or 3 "dotdash", "1343", or 4

"longdash", "73", or 5 "twodash", "2262", or 6

"5515" "9515"

"19" "4484C4"

Figure 13.5: Line types (lty)

Example 13.3 lines can be used for plotting empirical cumulative distribution functions (we
will suggest it asanexercise later), regressionmodels (e.g., lines, splines of differentdegrees), time
series, andanyothermathematical functions, evenwhen theyare smoothandcurvy.Anaked eye
cannot tell the difference between a densely sampled piecewise linear approximation of an object
and its original version.

The code below illustrates this (sad for the high-hearted idealists) truth using the sine function;
see Figure 13.6.

ns <- c(seq(3, 25, by=2), 50, 100)

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, length(ns)*pi), c(-1, 1))

for (i in seq_along(ns)) {

x <- seq((i-1)*pi, i*pi, length.out=ns[i])

lines(x, sin(x))

text((i-0.5)*pi, 0, ns[i], cex=0.89)

}

3 5 7 9 11 13 15 17 19 21 23 25 50 100

Figure 13.6: Sampling more densely gives the illusion of smoothness

Exercise 13.4 Implement your own version of the segments function, using a call to lines.

Exercise 13.5 (*) Implement a simplified version of the arrows function, where the length
of edges of the arrow head is given in user coordinates (and not inches; you will be equipped
with skills to achieve this later; see Section 13.2.5). Use the ljoin and lend arguments (see
help("par") for admissible values) to change the line end and join styles (from the default roun-
ded caps).
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13.1.3 Polygons
polygon draws a possibly filled (if the col argument is notmissing) polygonwith a bor-
der of specified colour and line type (border, lty, lwd). Optionally, instead of filling
with a single colour, the polygon can be hatched (via the density and angle argu-
ments).

Example 13.6 Todemo the above function, let us drawa few regular (equilateral and equiangu-
lar) polygons; seeFigure 13.7.By increasing thenumber of sides,we canobtainanapproximation
to a circle.

regular_poly <- function(x0, y0, r, n=101, ...)

{

theta <- seq(0, 2*pi, length.out=n+1)[-1]

polygon(x0+r*cos(theta), y0+r*sin(theta), ...)

}

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9.5), c(-1, 1), asp=1)

regular_poly(1, 0, 1, n=3)

regular_poly(3.5, 0, 1, n=7, density=15, angle=45, col="tan", border="red")

regular_poly(6, 0, 1, n=10, density=8, angle=-60, lty=3, lwd=2)

regular_poly(8.5, 0, 1, n=100, border="brown", col="lightyellow")

Figure 13.7: Regular polygons drawn using polygon

Note the asp=1 argument to the plot.window function (which we detail below) that guarantees
the same scaling of the x- and y-axes.This way, the circle looks like one, and not an oval.

Note that the last vertex adjoins the first one. Also, if we are absent-minded (or par-
ticularly creative), we can produce self-intersecting or otherwise degenerate shapes.

Exercise 13.7 Implement your own version of the rect function, using a call to polygon.

13.1.4 Text
A call to text, draws arbitrary strings (newlines and tabs are allowed) centred at the
specified points. Moreover, by setting the pos argument, the labels may be placed be-
low, to the left of, etc. the pivots. Some further position adjustments are also possible
(adj, offset); see Figure 13.8.

col specifies the colour, cex affects the size, and srt changes the rotation of the text.

Onmany default graphical devices, we have little control over the font face used: font
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default

pos=1

pos=2
pos=3

pos=4

pos=1

o�fset=1.5

srt
=45

srt
=45

adj=
0

Figure 13.8:The positioning of text with text (the plotting symbols were added for ref-
erence)

family can be selected using family ("sans", "serif", "mono"), and font can be used to
select the normal variant (1), bold (2), italic (3), or bold italic (4). See, however, Sec-
tion 13.2.7 for some workarounds.

Note (*) There is some limited support for basic mathematical symbols and for-
mulae. It relies on some quirky syntax that we enter using unevaluated R expres-
sions (Chapter 15). Still, it should be enough to meet our most basic needs. For in-
stance, passing “quote(beta[i]^j)” as the labels argument to text, will output “𝛽𝑗

𝑖”.
See help("plotmath") for more details.

For more sophisticated mathematical typesetting, see tikzDevice that wemention in
Section 13.2.7. This graphics device outputs plot specifications that can be rendered
by the LaTeX typesetting system.

13.1.5 Raster images (bitmaps) (*)
Most of the output devices also support the drawing of raster images encoded in the
form of bitmaps, i.e.,matrices whose elements represent pixels (see Figure 13.2 for an
example).

Raster images are useful for drawing heat maps or backgrounds of contour plots; see
Section 13.3.4.

Example 13.8 Optionally, bilinear interpolation can be applied if the drawing area is lar-
ger than the bitmap size and we would like to smoothen the colour transitions out. Figure 13.9
presents a very stretched 4-by-3 pixel image, with and without interpolation.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9), c(0, 1))

I <- matrix(nrow=4, byrow=TRUE,

c( "red", "yellow", "white",

"yellow", "yellow", "orange",

"yellow", "orange", "orange",

"white", "orange", "red")

)

(continues on next page)
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(continued from previous page)

rasterImage(I, 0, 0, 4, 1) # interpolate=TRUE

rasterImage(I, 5, 0, 9, 1, interpolate=FALSE)

Figure 13.9: Example bitmaps drawn with rasterImage; with (left) and without (right)
colour interpolation

13.2 Graphics settings
par can be used to query and modify (as long as they are not read-only) a number of
graphics settings.

For instance,wehave several parameters related to the current pageordevice settings,
e.g., the plot’s margins (see Section 13.2.2) or user coordinates (see Section 13.2.3).

Moreover, valuesof someof theparameters set viaparmaybe takenbya fewfunctions1
as settings to use by default. This is the case of, e.g., col, pch, lty in the points and
lines function.

Exercise 13.9 Study the following (pseudo)code.

lines(x, y) # use the default `lty`, i.e., par("lty") == "solid"

old_settings <- par(lty="dashed") # change setting, save old for reference

lines(x, y) # use the default `lty`, i.e., par("lty") == "dashed"

lines(x, y, lty=3) # use the given `lty`

lines(x, y) # lty="dashed"

par(old_settings) # restore previous settings

lines(x, y) # lty="solid"

Thereference list of available parameters is given in help("par"). Belowwediscuss the
most noteworthy ones.

13.2.1 Colours
Many functions allow specifying colours of the plotted objects or their parts; compare,
e.g., col and border arguments to polygon, or col and bg to points.

1 Unfortunately, it is not as straightforward as that. For instance, polygon is not affected by the col set-
ting, axis uses col.axis instead, etc. We should always consult the documentation.
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There are a few ways to specify colours (see the Colour Specification section in
help("par") for more details):

• A "colour name" string, being one of the 657 predefined tags known to the colours
function:

sample(colours(), 8) # this is just a sample

## [1] "grey23" "darksalmon" "tan3" "violetred4"

## [5] "lightblue1" "darkorchid3" "darkseagreen1" "slategray3"

• An "#rrggbb" string, specifying a position in theRGB2 colour space; three series of
hexadecimal numbers of twodigits each, i.e., between00hex = 0 (off) and FFhex =
255 (full on), giving the intensity of the red, green, and blue channels3;
In practice, the col2rgb and rgb functions can be used to convert between the
decimal and hexadecimal representations:

C <- c("black", "red", "green", "blue", "cyan", "magenta",

"yellow", "grey", "lightgrey", "pink") # example colours

(Cmat <- structure(col2rgb(C), dimnames=list(c("R", "G", "B"), C)))

## black red green blue cyan magenta yellow grey lightgrey pink

## R 0 255 0 0 0 255 255 190 211 255

## G 0 0 255 0 255 0 255 190 211 192

## B 0 0 0 255 255 255 0 190 211 203

structure(rgb(Cmat[1, ], Cmat[2, ], Cmat[3, ], maxColorValue=255),

names=C)

## black red green blue cyan magenta yellow

## "#000000" "#FF0000" "#00FF00" "#0000FF" "#00FFFF" "#FF00FF" "#FFFF00"

## grey lightgrey pink

## "#BEBEBE" "#D3D3D3" "#FFC0CB"

• An "#rrggbbaa" string, like above, but with the added alpha channel (two addi-
tional hexadecimal digits): from 00hex = 0 denoting fully transparent, to FFhex =
255 indicating fully visible (“lit”) colour; see Figure 13.2 for an example.
Note that semi-transparency (translucency) can significantly enhance the ex-
pressivity of our data visualisations; see Figure 13.18 and Figure 13.19.

• An integer index, selecting an item from the current palette (with recycling), which
we can get or set by a call to palette.Moreover, 0 identifies the background colour,
par("bg").

Integer colour specifiers are particularly useful when plotting data in groups, as

2 https://en.wikipedia.org/wiki/RGB_color_model
3 From school, we probably know the subtractive CMY (cyan, magenta, yellow) model, where we obtain,

e.g., green colour by using blue-ish and yellow crayons (subtracting certain wavelengths fromwhite light).
The RGBmodel, on the other hand, corresponds to the three photoreceptor/cone cells in the retinas of the
human eyes. Nonetheless, it is additive, and therefore less intuitive: total darkness emerges whenwe do not
emit any light; yellow emerges whenmixing red and green beams, etc.

https://en.wikipedia.org/wiki/RGB_color_model
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defined by factors.The underlying integer level codes can bemapped to consecut-
ive colours from any palette; see Figure 13.17 below for an example.

Example 13.10 It is worth to memorise the colours in the default palette:

palette() # default palette

## [1] "#000000F0" "#DF536BF0" "#61D04FF0" "#2297E6F0" "#28E2E5F0"

## [6] "#CD0BBCF0" "#F5C710F0" "#999999F0"

These are4, in order: black, red, green, blue, cyan, magenta, yellow, grey; see5 Figure 13.10 for an
illustration.

k <- length(palette())

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, k+1), c(0, 1))

points(1:k, rep(0.5, k), col=1:k, pch=16, cex=3)

text(1:k, 0.5, palette(), pos=rep(c(1, 3), length.out=k), col=1:k, offset=1)

text(1:k, 0.5, 1:k, pos=rep(c(3, 1), length.out=k), col=1:k, offset=1)

#000000F0

#DF536BF0

#61D04FF0

#2297E6F0

#28E2E5F0

#CD0BBCF0

#F5C710F0

#999999F01

2

3

4

5

6

7

8

Figure 13.10:The default colour palette

As choosing usable colours requires some talents thatmost programmers lack,wewill
find ourselves relying on some built-in, good-enough colour sets. palette.pals and
hcl.pals return thenamesof theavailablediscrete (qualitative) palettes.Then, palette.
colors and hcl.colors (note the American spelling) can generate a given number of
colours from particular named set.

Continuous (quantitative) palettes arealsoavailable, seerainbow,heat.colors,terrain.
colors, topo.colors, cm.colors, and gray.colors. They transition smoothly between
some predefined pivot colours, e.g., from blue through green to brown (like in a topo-
graphic map with elevation colouring). They may be useful, e.g., when drawing con-
tour plots; compare Figure 13.27.

Exercise 13.11 Createademoof theaforementionedbuilt-inpalettes, ina similar (ornicer) style
to that in Figure 13.11.

4 Actually, red-ish, green-ish, etc.The choice is not only more aesthetic than when pure red, green, etc.
was used (before R 4.0.0), but also should be more friendly to people who have some colour vision defi-
ciencies (ca. every 1 in 12 men (8%) and 1 in 200 women (0.5%), especially in the red-green or blue-yellow
spectrum; see [46] for more details).

5The readers of the printed version of this book should note that its online version displays this figure
(and all other ones) in full colour. See you there.
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Alphabet

Polychrome 36

Classic Tableau

Tableau 10

Set 3

Set 2

Set 1

Pastel 2

Pastel 1

Paired

Dark 2

Accent

Okabe-Ito

ggplot2

R4

R3

Figure 13.11: Qualitative colour palettes in palette.pals; Note that R4 is the default
one, as seen in Figure 13.10

13.2.2 Plotmargins and clipping regions
A device (page) region represents a single plot window, one raster image file, or a page
in a PDF document (see Section 13.2.7 for more information on graphics devices). As
we will learn from Section 13.2.6, it is capable of holding many figures.

Usually, however,wedraw onefigureperpage. In sucha case, thedevice region isdivided
into the following parts:

1) outer margins, which can be set using, e.g., the oma graphics parameter (in text
lines, based on the height of the default font); by default, they equal to 0;

2) figure region:

a) inner (plot) margins, by default mar=c(5.1, 4.1, 4.1, 2.1) text lines (bottom,
left, top, right, respectively); this is where we usually emplace the figure title, axes
labels, etc.

b) plot region, where we draw graphical primitives positioned relative to the user
coordinates.

Note Typically, all drawings are clipped to the plot region, but this can be changed
with the xpd parameter; see also the clip function that allows clipping to an arbitrary
rectangle.
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Example 13.12 Figure 13.12 shows the default page layout. In the code chunk below, note the
use of mtext to print a text line in the inner margins, box to draw a rectangle around the plot or
figure region, axis to add the twoaxes (labels and tickmarks), and title to add somedescriptive
labels.

plot.new(); plot.window(c(-2, 2), c(-1, 1)) # whatever

for (i in 1:4) { # Some text lines on the inner margins

for (j in seq_len(par("mar")[i]))

mtext(sprintf("Text line %d", j), side=i, line=j-1, col="lightgray")

}

title(main="Main", sub="sub", xlab="xlab", ylab="ylab")

box("figure", lty="dashed") # a box around the figure region

box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

rect(-10, -10, 10, 10, col="lightgray") # rectangle (clipped to plot region)

text(0, 0, "Plot region")

lines(c(-3, 0, 3), c(-2, 2, -2)) # standard clipping (plot region)

lines(c(-3, 0, 3), c(-2, 1.25, -2), xpd=TRUE, lty=3) # clip to figure region
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Plot region

Figure 13.12: Figure layout with default inner (mar=c(5.1, 4.1, 4.1, 2.1) text lines)
and outer (oma=c(0, 0, 0, 0)) margins: we see that a lot of space is wasted and hence
some tweaking might be necessary to better suit our needs; note the clipping of the
solid line to the plot region
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13.2.3 User coordinates
plot.window can be used to set the user coordinates. It accepts the following paramet-
ers:

• xlim, ylim – vectors of length two giving the minimal andmaximal ranges on the
respective axes; by default, they are extended by 4% in each direction (for aesthetic
reasons; see, e.g., Figure 13.12), but see the xaxs and yaxs graphics parameters;

• asp– aspect ratio (𝑦/𝑥); defaults to NA, i.e., no adjustment; use asp=1 for circles to
look like ones, and not ovals;

• log – switches logarithmic scaling on particular axes: "" (none; default), "x", "y",
or "xy".

Example 13.13 Thegraphics parameterusr canbeused to read (and set) the extremes of theuser
coordinates in the form (𝑥1, 𝑥2, 𝑦1, 𝑦2).

plot.new()

plot.window(c(-1, 1), c(1, 1000), log="y", yaxs="i")

par("usr")

## [1] -1.08 1.08 0.00 3.00

Note that indeed the x-axis range was extended by 4% in each direction. We have turned this
behaviour off for the y-axis,whichuses the base-10 logarithmic scale. In this case, its actual range
is 10^par("usr")[3:4], because log10 1 = 0 and log10 1000 = 3.
Exercise 13.14 Implement your own version of the abline function.

13.2.4 Axes
Even though axes (labels and tickmarks) can be drawnmanually using the aforemen-
tioned graphics primitives, it is usually too tedious a work.

This is why we tend to rely on the axis function, which draws the object on one of the
plot sides (as usual, 1=bottom, …, 4=right).

Once plot.window is called, axTicks can be called to guesstimate some tasteful (round)
locations for the tick marks based on the current plot size. By default, they are based
on the xaxp and yaxp graphics parameters, which give the axis ranges and the number
of intervals between the tick marks.

plot.new(); plot.window(c(-0.9, 1.05), c(1, 11))

par("usr") # (x1, x2, y1, y2)

## [1] -0.978 1.128 0.600 11.400

par("yaxp") # (y1, y2, n)

## [1] 2 10 4

axTicks(2) # left y-axis

## [1] 2 4 6 8 10

par("xaxp") # (x1, x2, n)

(continues on next page)



13 GRAPHICS 325

(continued from previous page)

## [1] -0.5 1.0 3.0

axTicks(1) # bottom x-axis

## [1] -0.5 0.0 0.5 1.0

par(xaxp=c(-0.9, 1.0, 5)) # change

axTicks(1)

## [1] -0.90 -0.52 -0.14 0.24 0.62 1.00

axis relies on the same algorithm as axTicks. Alternatively, we can provide our own
tick locations and labels.

Example 13.15 Most of the plots in this book use the following graphics settings (except las=1
to axis(2)); see Figure 13.13. Check out help("par"), help("axis"), etc. and tune them up to
suit your needs.

par(mar=c(2.2, 2.2, 1.2, 0.6))

par(tcl=0.25) # the length of the tick marks (fraction of text line height)

par(mgp=c(1.1, 0.2, 0)) # axis title, axis labels, and axis line location

par(cex.main=1, font.main=2) # bold, normal size - main in title

par(cex.axis=0.8889)

par(cex.lab=1, font.lab=3) # bold italic, normal size

plot.new(); plot.window(c(0, 1), c(0, 1))

# a "grid":

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],

col="#00000010")

abline(v=axTicks(2), col="white", lwd=1.5, lty=1)

abline(h=seq(0, 1, length.out=4), col="white", lwd=1.5, lty=1)

# set up axes:

axis(2, at=seq(0, 1, length.out=4), c("0", "1/3", "2/3", "1"), las=1)

axis(1)

title(xlab="xlab", ylab="ylab")

box()

13.2.5 Plot dimensions (*)
There are certain sizes that can be read or specified in inches (1 inch (1”) is exactly 25.4
mm):

• pin – plot dimensions (width, height),

• fin – figure region dimensions,

• din – page (device) dimensions,

• mai – plot (inner) margin size,

• omi – outer margins,

• cin – size of the “default” character (width, height).
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Figure 13.13: Custom axes and other settings

Note that if the figure is scaled, the virtual inch (the one reported by R) will not match
the physical one (e.g., the actual size in the printed version of this book or on the com-
puter screen).

Important Thepositions ofmost of the objects is specified in virtualuser coordinates,
as specifiedby usr.Theyare automaticallymapped to the physicaldevice region, taking
into account the page size, outer and inner margins, etc.

Knowing the above, some basic scaling can be used to convert between user
and physical sizes (in inches), based on the ratios (usr[2]-usr[1])/pin[1] and
(usr[4]-usr[3])/pin[2]; compare the xinch and yinch functions.

Example 13.16 (*) Figure 13.14 shows how we can pinpoint the edges of the figure and device
region in user coordinates.

Exercise 13.17 (*)Note thatwe cannot use mtext to print text on the right innermargin rotated
by 180 degrees as compared to what we see in Figure 13.12. Implement your own version of this
function that will allow you to do so. Hint: use text, the cin graphics parameter, and what you
can read from Figure 13.14.

13.2.6 Many figures on one page (subplots)
It is possible to create many figures on one page. In such a case, each of them has its
own inner margins and a plot region.

A call to par(mfrow=c(nr, nc)) or par(mfcol=c(nr, nc)) splits the page into a regular
grid with nr rows and nc columns. Each invocation of plot.new starts a new figure.
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(usr[1], usr[3])=(-2.00, -1.00)

(usr[1]-mai[2]*xinch, usr[3]-mai[1]*yinch)=(-2.20, -1.20)

(usr[1]-(mai[2]+omi[2])*xinch, usr[3]-(mai[1]+omi[1])*yinch)=(-2.36, -1.35)

(usr[2], usr[4])=(2.00, 1.00)

(usr[2]+mai[4]*xinch, usr[4]+mai[3]*yinch)=(2.20, 1.20)

(usr[2]+(mai[4]+omi[4])*xinch, usr[4]+(mai[3]+omi[3])*yinch)=(2.36, 1.35)

page (device) width, din[1]=5.94"

figure width, fin[1]=5.54"

plot width, usr[2]-usr[1]=4, pin[1]=5.04"

xinch = (usr[2]-usr[1])/pin[1] = 0.79 p
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Figure 13.14: User vs device coordinates

Consecutive figures are either placed in a rowwise manner (mfrow) or the columnwise
one (mfcol). Alternatively, the mfg parameter can be used to enforce a custom order.

Example 13.18 Figure 13.15 depicts an example pagewith fourfigures aligned ona2-by-2 grid.

par(oma=rep(1.2, 4)) # outer margins (default 0)

par(mfrow=c(2, 2)) # a 2x2 plot grid

for (i in 1:4) {

plot.new()

par(mar=c(3, 3, 2, 2)) # each plot can have different inner margins

plot.window(c(i-1, i+1), c(-1, 1)) # separate user coordinates for each

text(i, 0, sprintf("Plot region (plot %d)\n(%d, %d)", i,

par("mfg")[1], par("mfg")[2]))

box("figure", lty="dashed") # a box around the figure region

box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

}

box("outer", lty="dotdash") # a box around the whole page

for (i in 1:4)

mtext(sprintf("Outer margin %d", i), side=i, outer=TRUE)

Thanks to mfrow and mfcol, we can create a scatter plotmatrix or different trellis plots.
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Figure 13.15: A page with four figures created using par(mfrow=c(2, 2))

If a non-regular grid is required, we can call the slightly more sophisticated layout

function (which is incompatible with mfrow and mfcol). Examples will follow later; see
Figure 13.26 and Figure 13.24.

Note that certain grid sizes might affect the mex and cex parameters, and hence the
default font sizes (amongst others). Refer to the documentation of par for more de-
tails.

13.2.7 Graphics devices
Where our plots are displayed depends on our development environment (Section 1.2).
Usersof JupyterLab should seeaplot embedded into the currentnotebook, consumers
of RStudio display them in a dedicated Plots pane, working from the console opens a
new graphics window (unless we work in a text-only environment), whereas compil-
ing utils::Sweave or knitr markup files results in an image included in the output
document.

In practice, we might be interested in exercises our creative endeavours on different
devices. For instance:

cairo_pdf("figure.pdf", width=6, height=3.5) # open "device"

# ... calls to plotting functions...

dev.off() # save file, close device

draws whatever is to be plotted in a PDF file. Similarly, a call to png or svg would cre-
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ate a PNG or a SVG file. In both cases, as we rely on the Cairo library, we are able to
customise the font family by calling Cairo::CairoFonts.

Note Typically, web browsers can display JPEG, PNG, and SVG files. However, JPEG
uses a lossy compression method. Therefore, it is not a particularly fortunate file
format for data visualisations. It does not support transparency either.

PDF is a popular choice in printed publications (e.g., articles or books).

It is worth knowing that PNG and JPEG are raster graphics formats, i.e., they store
figures as bitmaps (pixel matrices). They are fast to render, but the file sizes might be
large ifwewant decent image quality (high resolution).Most importantly, they should
not be scaled: it is best to display them at their original widths and heights.

On the other hand, SVG and PDF files store vector graphics, i.e., all primitives are
described geometrically. This way, the image can be redrawn at any size and should
always be aesthetic.Unfortunately, scatter plots featuringmillions of pointswill result
in large files sizes and relatively slow rendition times (but there are tricks to remedy
this).

Users of TeX might be interested in tikzDevice::tikz, which creates TikZ files that
can be compiled to standalone PDF files or embedded in LaTeX documents (and its
variants).This allows typesetting beautiful equations using the standard "$...$" syn-
tax fromwithin any R string.

A list of many built-in devices is available in help("Devices").

Note (*) The opened graphics devices form a stack; calling dev.off will return to the
last opened device (if any). See dev.list and other functions listed in its help page for
more information.

Note that each device has its own graphics parameters. When opening a new device,
we start with default parameters in place.

Also, dev.hold and dev.flush can be used to suppress the immediate display of the
plotted objects, which might increase the drawing speed on certain devices.

The current plot can be copied to another device (e.g., a PDF file) using dev.print.

Exercise 13.19 (*) Create an animated PNG displaying a large point sliding along the sine
curve. Generate a series of video frames like in Figure 13.16. Store each frame in a separate PNG
file.Then, use ImageMagick6 (compare Section 7.3.3; or rely on some other tool) to combine these
files in the form of a single animated PNG.

6 https://imagemagick.org/

https://imagemagick.org/
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frame 1 frame 11 frame 21 frame 31

Figure 13.16: Selected frames of an example animation: they can be stored in separate
files and then be combined to a single animated PNG

13.3 Higher-level functions
Higher-level plotting commands call plot.new, plot.window, axis, box, title, etc., as
well as draw many graphical primitives on behalf of the user. They provide ready-
to-use implementations of the most common data visualisation tools, e.g., box-and-
whisker plots, histograms, pairs plots, etc.

Below we review some of them. We also show how they can be customised, or even
rewritten from scratch, if we are not completely happywith them.Theywill inspire us
to practice some lower-level graphics programming.

Exercise 13.20 Check out themeaning of the ask, new, xaxt, yaxt, and ann graphics paramet-
ers and how they affect plot.new, axis, title, and so forth.

13.3.1 Scatter- and function plots with plot.default and matplot
Thedefaultmethod for the plot S3 generic is a convenientwrapper around points and
lines.

Example 13.21 plot can be used to draw a scatter plot of two numeric variables, possibly
grouped by another categorical variable. Recalling fromSection 10.3.2 that a factor is in fact rep-
resented as a vector of small natural numbers, its underlying level codes can be used directly as
col or pch specifiers; see Figure 13.17 for a demonstration. Take note of a call to the legend func-
tion.

plot(

jitter(iris[["Sepal.Length"]]), # x (it is a numeric vector)

jitter(iris[["Petal.Width"]]), # y (it is a numeric vector)

col=as.numeric(iris[["Species"]]), # colours (integer codes)

pch=as.numeric(iris[["Species"]]), # plotting symbols (integer codes)

xlab="Sepal length",

ylab="Petal width",

asp=1 # y/x aspect ratio

)

legend(

"bottomright",

(continues on next page)
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(continued from previous page)

legend=levels(iris[["Species"]]),

col=seq_along(levels(iris[["Species"]])),

pch=seq_along(levels(iris[["Species"]])),

bg="white"

)
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Figure 13.17: as.numeric on factors can be used to define different plotting styles for
each factor level

Exercise 13.22 Pass ann=FALSE and axes=FALSE to plot to suppress the addition of axes and
labels.Then, draw themmanually using the functions discusses in the previous section.

Exercise 13.23 Draw a plot of the 𝑦 = sin 𝑥 function using a call to plot. Then, call lines to
depict 𝑦 = cos 𝑥. Add a legend. Later, do the same using a single call to matplot.
Example 13.24 Semi-transparency may convey additional information. In Figure 13.18, we
draw two scatter plots of weight vs height of adult females. If the points are fully opaque, we can-
not judge what is the density around them. On the other hand, translucent symbols somewhat
imitate two-dimensional histograms that we depict later in Figure 13.29.

nhanes <- read.csv( # see https://github.com/gagolews/teaching-data

file="~/Projects/teaching-data/marek/nhanes_adult_female_bmx_2020.csv",

comment.char="#", col.names=c("weight", "height", "armlen", "leglen",

"armcirc", "hipcirc", "waistcirc"))

par(mfrow=c(1, 2))

for (col in c("black", "#00000010"))

plot(nhanes[["height"]], nhanes[["weight"]], col=col,

pch=16, xlab="Height", ylab="Weight")
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Figure 13.18: Semi-transparent symbols can give the idea of the points’ distribution
density

Example 13.25 Figure 13.19 depicts the average monthly temperatures in Warsaw, Poland (a
time series). Note that the translucent ribbon representing the low-high average temperature in-
tervals was added using a call to polygon.

# Warsaw monthly temperatures, source: https://en.wikipedia.org/wiki/Warsaw

high <- c( 0.6, 1.9, 6.6, 13.6, 19.5, 21.9,

24.4, 23.9, 18.4, 12.7, 5.9, 1.6)

mean <- c(-1.8, -0.6, 2.8, 8.7, 14.2, 17.0,

19.2, 18.3, 13.5, 8.5, 3.3, -0.7)

low <- c(-4.2, -3.6, -0.6, 3.9, 8.9, 11.8,

13.9, 13.1, 9.1, 4.8, 0.6, -3.0)

matplot(1:12, cbind(high, mean, low), type="o", col=c(2, 1, 4), lty=1,

xlab="month", ylab="temperature [°C]", xaxt="n", pch=16, cex=0.5)

axis(1, at=1:12, labels=month.abb, line=-0.25, lwd=0, lwd.ticks=1)

polygon(c(1:12, rev(1:12)), c(high, rev(low)), border=NA, col="#ffff0011")

legend("bottom", c("average high", "mean", "average low"),

lty=1, col=c(1, 2, 4), bg="white")

Example 13.26 Figure 13.20 depicts a scatter plot similar to Figure 13.18, but now with the
points’ hue being a function of a third variable.

midpoints <- function(x) 0.5*(x[-1]+x[-length(x)])

layout(matrix(c(1, 2), nrow=1), # 2 plots in 1 page

widths=c(1, lcm(3))) # the 2nd one of fixed width "3cm" (scaled)

z <- nhanes[["waistcirc"]]

(continues on next page)
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Figure 13.19: A semi-transparent ribbon was added by calling polygon to highlight the
area between the low-high ranges (intervals)

(continued from previous page)

breaks <- seq(min(z), max(z), length.out=10)

zf <- cut(z, breaks, include.lowest=TRUE)

col <- hcl.colors(nlevels(zf), "Viridis", alpha=0.5)

plot(nhanes[["height"]], nhanes[["weight"]], col=col[as.numeric(zf)],

pch=16, xlab="Height", ylab="Weight")

par(mar=c(2.2, 0.6, 2.2, 0.6))

plot.new(); plot.window(c(0, 1), c(0, nlevels(zf)))

rasterImage(as.matrix(rev(col)), 0, 0, 1, nlevels(zf), interpolate=FALSE)

text(0.5, 1:nlevels(zf)-0.5, sprintf("%3.0f", midpoints(breaks)))

mtext("Waist Ø", side=3)

Exercise 13.27 Implement your version of the function to draw a scatter plot matrix (a pairs
plot), pairs.

Exercise 13.28 ecdf returns an object of S3 classes c("ecdf", "stepfun"). There are plot
methods overloaded for these classes. Inspect their source code.Then, inspired by this, create your
own function to compute and display the empirical cumulative distribution function correspond-
ing to a given numeric vector.

Exercise 13.29 spline performs cubic spline interpolation, whereas smooth.spline de-
termines a smoothing spline of a given two-dimensional dataset. Plot different splines for
cars[["dist"]] as a function of cars[["speed"]]. Which of these two functions is more ap-
propriate for depicting this dataset?
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Figure 13.20: A 2D scatter plot with a third variable represented by colour

13.3.2 Bar plots and histograms
Abarplot isdrawnusinga seriesof rectangles (i.e., somepolygons) ofdifferentheights
(or widths, if we request horizontal alignment).

Example 13.30 Let us visualise the dataset7 listing the most frequent causes of medication er-
rors (data are fabricated):

cat_med = c(

"Unauthorised drug", "Wrong IV rate", "Wrong patient", "Dose missed",

"Underdose", "Wrong calculation","Wrong route", "Wrong drug",

"Wrong time", "Technique error", "Duplicated drugs", "Overdose"

)

counts_med = c(1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59)

APareto chart combines a bar plot with bars of decreasing heights with a cumulative percentage
curve; see Figure 13.21.Note that barplot returns themidpoints of the bars and that the function
sets the xaxs graphical parameter and thus does not extend the x-axis range by 4% on both sides
(which does not make us happy here).

o <- order(counts_med)

cato_med <- cat_med[o]

pcto_med <- counts_med[o]/sum(counts_med)*100

cumpcto_med <- rev(cumsum(rev(pcto_med)))

# bar plot of %s

(continues on next page)

7 https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts
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(continued from previous page)

par(mar=c(2.2, 0.6, 2.2, 6.6)) # wide left margin

midp <- barplot(pcto_med, horiz=TRUE, xlab="%",

col="white", xlim=c(0, 25), xaxs="r", yaxs="r", yaxt="n",

width=3/4, space=1/3)

text(pcto_med, midp, sprintf("%.1f%%", pcto_med), pos=4, cex=0.89)

axis(4, at=midp, labels=cato_med, las=1)

box()

# cumulative % curve in a new coordinate system

par(usr=c(-4, 104, par("usr")[3], par("usr")[4])) # 0-100 with 4% addition

lines(cumpcto_med, midp, type="o", col=4, pch=18)

axis(3, col=4)

mtext("cumulative %", side=3, line=1.2, col=4)

text(cumpcto_med, midp, sprintf("%.1f%%", cumpcto_med), cex=0.89, col=4,

pos=c(4, 2)[(cumpcto_med>80)+1], offset=0.5)
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Figure 13.21: An example Pareto chart (a fancy bar plot); double axes have a general
tendency to confuse the reader

Exercise 13.31 Drawabarplot summarising thenumberofadults for eachpassengerClassand
Sex in the built-in Titanic dataset, who did not survive the sinking of the deadliest 1912 cruise;
see Figure 13.22.

Exercise 13.32 Implement your own version of barplot, but where the bars are placed exactly
at the positions specified by the user, e.g., allowing the barmidpoints to be consecutive integers.

We are definitely not going to cover the (in)famous pie charts in our book. The hu-
man brain is not very skilled at judging the relative differences between the areas of
geometric objects.
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Figure 13.22: An example bar plot representing a two-way contingency table

Moving on: a histogram is a simple density estimator for continuous data. It can be
thought of as a bar plot with bars of heights proportional to the number of observa-
tions falling into the corresponding disjoint intervals. Most often, there is no space
between the bars to emphasise that the said intervals cover the whole data range.

A histogram can be computed and drawn using the high-level function hist; see Fig-
ure 13.23.

par(mfrow=c(1, 2))

for (breaks in list("Sturges", 25)) {

# Sturges (a heuristic) is the default; any value is merely a suggestion

hist(iris[["Sepal.Length"]], probability=TRUE, xlab="Sepal length",

main=NA, breaks=breaks, col="white")

box() # weirdly we need to add it manually

}

Exercise 13.33 Study the source code of hist.default. Note the (invisibly returned) list (of
S3 class histogram). Then, study graphics:::plot.histogram. Implement similar functions
yourself.

Exercise 13.34 Modify your function to draw a scatter plot matrix in such a way that it gives
the histograms of the marginal distributions on its diagonal.

Example 13.35 Using layout that we mentioned in Section 13.2.6, we can draw a scatter plot
withmarginal histograms; see Figure 13.24.Note thatwe split the page into four plots of unequal
sizes, but the upper right part of the grid is unused.We use hist for binning only (plot=FALSE),
and then barplot for drawing, because it gives greater control over the process (e.g., allows ver-
tical layout).
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Figure 13.23: Example histograms: the same dataset, but different bin numbers

layout(matrix(

c(1, 1, 1, 0, # first row: plot no. 1 of width 3 and nothing

3, 3, 3, 2, # three rows: square plot no. 3 and a thin but long no. 2

3, 3, 3, 2,

3, 3, 3, 2), nrow=4, byrow=TRUE))

par(mex=1, cex=1) # the layout function changed this!

x <- jitter(iris[["Sepal.Length"]])

y <- jitter(iris[["Sepal.Width"]])

# subplot 1

par(mar=c(0.2, 2.2, 0.6, 0.2), ann=FALSE)

hx <- hist(x, plot=FALSE, breaks=seq(min(x), max(x), length.out=20))

barplot(hx[["density"]], space=0, axes=FALSE, col="#00000011")

# subplot 2

par(mar=c(2.2, 0.2, 0.2, 0.6), ann=FALSE)

hy <- hist(y, plot=FALSE, breaks=seq(min(y), max(y), length.out=20))

barplot(hy[["density"]], space=0, axes=FALSE, horiz=TRUE, col="#00000011")

# subplot 3

par(mar=c(2.2, 2.2, 0.2, 0.2), ann=TRUE)

plot(x, y, xlab="Sepal length", ylab="Sepal width",

xlim=range(x), ylim=range(y)) # default xlim, ylim

Example 13.36 (*) Kernel density estimators (KDEs) are another way to guesstimate the data
distribution. The density function, for a given numeric vector, returns a list that features,
amongst others, the x and y coordinates of the points that we can pass directly to the lines func-
tion. Belowwe depict the KDEs of data split into three groups; see Figure 13.25.
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Figure 13.24: Three (four) plots on one page, but on a nonuniform grid created using
layout: a scatter plot with marginal histograms

adjust_transparency <- function(col, alpha)

rgb(t(col2rgb(col)/255), alpha=alpha) # alpha in [0, 1]

pal <- adjust_transparency(palette(), 0.2)

kdes <- lapply(split(iris[["Sepal.Length"]], iris[["Species"]]), density)

matplot(sapply(kdes, `[[`, "x"), sapply(kdes, `[[`, "y"),

type="l", xlab="Sepal length", ylab="density", lwd=1.5)

for (i in seq_along(kdes))

polygon(kdes[[i]][["x"]], kdes[[i]][["y"]], col=pal[i], border=NA)

legend("topright", legend=levels(iris[["Species"]]), bg="white", lwd=1.5,

col=seq_along(levels(iris[["Species"]])),

lty=seq_along(levels(iris[["Species"]])))
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Figure 13.25: Kernel density estimators of sepal length split by species in the Iris data-
set; note the semi-transparent polygons (again)

Exercise 13.37 (*) Implement a function grid_kde, which draws kernel density estimators for
a given numeric variable split by a combination of three factor levels; see Figure 13.26 for an ex-
ample.

grid_kde <- function(data, values, x, y, hue) ...to.do...

tips <- read.csv("~/Projects/teaching-data/other/tips.csv", comment.char="#",

stringsAsFactors=TRUE) # see https://github.com/gagolews/teaching-data

head(tips, 3) # preview an example dataset

## total_bill tip sex smoker day time size

## 1 16.99 1.01 Female No Sun Dinner 2

## 2 10.34 1.66 Male No Sun Dinner 3

## 3 21.01 3.50 Male No Sun Dinner 3

grid_kde(tips, values="tip", x="smoker", y="time", hue="sex")

13.3.3 Box-and-whisker plots
We have already seen a chart generated by boxplot in Figure 5.1. Tinkering with it will
give us some good practice, which in turn shall make us perfect.

Exercise 13.38 Modify the code generating Figure 5.1 so that:

1. same doses are grouped together (more space between different doses; also, on the x-axis,
only unique doses are printed),

2. different supps have different colours (add a legend explaining them).
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Figure 13.26: An example grid plot (also knownas trellis, panel, conditioning, or lattice
plot), featuring kernel density estimators for a numeric variable (amount of tip in aUS
restaurant) split by a combination of three factor levels (smoker, time, sex)

Exercise 13.39 Write a function for drawing box plots using graphics primitives.

Exercise 13.40 (*)Write a function for drawing violin plots (which are similar to box plots, but
use kernel density estimators).

Exercise 13.41 (*) Implement a bag plot, being a two-dimensional version of a box plot (use
chull to compute the convex hull of a point set).

13.3.4 Contour plots and heatmaps
When plotting a function of two variables like 𝑧 = 𝑓 (𝑥, 𝑦), the magnitude of the 𝑧
component can be expressed using colour brightness or hue.

image is a convenient wrapper around rasterImagewhich can be used to draw contour
plots, two-dimensional histograms, heatmaps, etc.

Example 13.42 Figure 13.27 presents a filled contour plot ofHimmelblau’s function, 𝑓 (𝑥, 𝑦) =
(𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2, for 𝑥 ∈ [−5, 5] and 𝑦 ∈ [−4, 4]. A call to contour adds
labelled contour lines (which is actually a nontrivial operation).

x <- seq(-5, 5, length.out=250)

y <- seq(-4, 4, length.out=200)

z <- outer(x, y, function(xg, yg) (xg^2 + yg - 11)^2 + (xg + yg^2 - 7)^2)

image(x, y, z, col=grey(seq(1, 0, length.out=16)))

contour(x, y, z, nlevels=16, add=TRUE)
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Figure 13.27: A filled contour plot ofHimmelblau’s functionwith labelled contour lines

Note that in image, the number of rows in zmatches the length of x, whereas the num-
ber of columns therein is equal to the size of y. This might be counterintuitive; if z is
printed, the image is its 90-degree rotated version.

Example 13.43 Figure 13.28 presents an example heatmap, depicting Pearson’s correlations
between all pairs of variables in the nhanes dataset which we loaded some time ago.

o <- c(6, 5, 1, 7, 4, 2, 3) # order of rows/cols (by similarity)

R <- cor(nhanes[o, o])

par(mar=c(2.8, 7.6, 1.2, 7.6), ann=FALSE)

image(1:nrow(R), 1:ncol(R), R,

ylim=c(nrow(R)+0.5, 0.5),

zlim=c(-1, 1),

col=hcl.colors(20, "BluGrn", rev=TRUE),

xlab=NA, ylab=NA, asp=1, axes=FALSE)

axis(1, at=1:nrow(R), labels=dimnames(R)[[1]], las=2, line=FALSE, tick=FALSE)

axis(2, at=1:ncol(R), labels=dimnames(R)[[2]], las=1, line=FALSE, tick=FALSE)

text(arrayInd(seq_along(R), dim(R)),

labels=sprintf("%.2f", R),

col=c("white", "black")[abs(R<0.8)+1],

cex=0.89)

Exercise 13.44 Check out the heatmap function which uses image together with hierarchical
clustering to find an aesthetic reordering of the matrix’s items.

Example 13.45 Figure 13.29 depicts a two-dimensional histogram. It approaches the idea of
reflecting the points’ density quite differently to the semi-transparent symbols in Figure 13.18.
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Figure 13.28: A correlation heatmap drawn using image

histogram_2d <- function(x, y, k=25, ...)

{

breaksx <- seq(min(x), max(x), length.out=k)

fx <- cut(x, breaksx, include.lowest=TRUE)

breaksy <- seq(min(y), max(y), length.out=k)

fy <- cut(y, breaksy, include.lowest=TRUE)

C <- table(fx, fy)

image(midpoints(breaksx), midpoints(breaksy), C,

xaxs="r", yaxs="r", ...)

}

par(mfrow=c(1, 2))

for (k in c(25, 50))

histogram_2d(nhanes[["height"]], nhanes[["weight"]], k=k,

xlab="Height", ylab="Weight",

col=c("#ffffff00", hcl.colors(25, "Viridis", rev=TRUE))

)

Exercise 13.46 (*) Implement some two-dimensional kernel density estimator andplot it using
contour.
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Figure 13.29: Two-dimensional histograms with different numbers of bins, where the
bin count is reflected by the colour

13.4 Exercises
Exercise 13.47 Answer the following questions:

• Can functions from the graphics package be used to adjust the plots generated by lattice
and ggplot2?

• List the most common graphics primitives.

• Canall high-level functions be implementedusing low-level ones?Asan example, discuss the
key ingredients used in barplot.

• Some high-level functions discussed in this chapter feature the add parameter. What is its
purpose?

• Whatare the admissible values ofpchandlty?Also, in the default palette,what is themean-
ing of colours 1, 2, …, 16? Can their meaning be changed?

• Can all graphics parameters be changed?

• What is the difference between passing xaxt="n" to plot.default vs setting it with par,
and then calling plot.default?

• Which graphics parameters are set by plot.window?

• What is the meaning of the usr parameter when using the logarithmic scale on the x-axis?
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• (*)How to place a plotting symbol exactly 1 centimetre from the top-left corner of the current
page (following the page’s diagonal)?

• Semi-transparent polygons are nice, right?

• Can an ellipse be drawn using polygon?

• What happens when we set the graphics parameter mfrow=c(2, 2)?

• How to export the current plot to a PDF file?

Exercise 13.48 Draw the 2022 BTC-to-USD close rates8 time series. Then, add the 7- and 30-
daymoving average.

(*) Also, fit a local polynomial (moving) regression model using the Savitzky–Golay filter (see
loess).

Exercise 13.49 (*) Draw (from scratch) a candlestick plot for the 2022 BTC-to-USD rates9.

Exercise 13.50 (*) Create a function to draw a normal quantile-quantile (Q-Q) plot, i.e., for
inspecting whether a numeric sample might come from some normal distribution.

Exercise 13.51 (*) Draw a map of the world, where each country is filled with a colour whose
brightness or hue is linked to its Gini index of income inequality. You can easily find the data
onWikipedia. Try to find an open dataset that gives the borders of each country as vertices of a
polygon (e.g., in the form of a (geo)JSONfile).

Exercise 13.52 Next time you see a nice data visualisation somewhere, try to reproduce it using
base graphics.

For further information on graphics generation in R, see, e.g., Chapter 12 in [53], [44],
and [48]. Note that in this chapter, we were only interested in static graphics, e.g., for
use in printed publications or plainwebsites. Interactive plots that a usermight tinker
with in a web browser are a different story.

And so the second part of our course is ended.

8 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
9 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv
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�� Interfacing compiled code (*)

�This chapter is under construction. Please come back later.

R is a nice glue language: it is perfect for implementing datawrangling pipelines, visu-
alisation, and developing prototypes of data analysis algorithms. In other words, it
makes connecting larger building blocks very easy. Still, for performance reasons1, we
recommend moving the more computing-intensive tasks to the C, C++, or Fortran
level. R works very well as a user-friendly interface to compiled code.

Note that the definitive reference on this topic is Chapter 5 in [59].

�This chapter is under construction. Please come back later.

1 A well-written, portable function library relying only on simple data structures (e.g., arrays of type
double and int) can be used in other environments, such as Python (e.g., via Cython) of Julia. Let us re-
member about other programmers yearning for the possibility to enjoy our cultivated algorithms.





15
Unevaluated expressions (*)

In this and the remaining chapters, we will learn some hocus-pocus that should only
be of interest to the advanced-to-be1 and open-minded R programmers who would
really like to understand what is going on under our language’s hood. In particular,
we will inspect the mechanisms behind why certain functions do something very dif-
ferent from what we would expect them to do, if a standard evaluation scheme was
followed (compare subset and transformmentioned in Section 12.3.9).

Namely, in normal programming languages, when we write something like:

plot(x, exp(x))

the expression exp(x), is evaluated first and its value2 (in this case: probably a numeric
vector) is only thenpassed to the plot functionas the actual parameter.Thus, if `x`was
set to be seq(0, 10, length.out=1001), the above never means anything else than:

plot(c(0.00, 0.01, 0.02, 0.03, ...), c(1.0000, 1.0101, 1.0202, 1.0305, ...))

ButRwas heavily inspired by the S language fromwhom it has taken the notion of lazy
arguments (Chapter 17). Being equipped with the ability to apply a set of techniques
referred to asmetaprogramming (computing on the language, reflection),we candefine
functions that can peek outside their small world, and clearly see the code fragment
that was used to generate the arguments passed thereto. Having access to such une-
valuated expressions, we can do to themwhatever we please: print, modify, evaluate on
different data, or ignore whatsoever.

In theory, this enables the implementing ofmany potentially helpful3 beginner-friendly
features, which allow us to express certain requests in a more concise manner. For
instance, that the y-axis labels in Figure 2.2 couldbe generated automatically is exactly
due to the fact that plot was able to see not only a vector like c(1.0000, 1.0101, 1.

0202, 1.0305, ...), but also the expression that generated it, exp(x).

1 Remember that this book is supposed to be read from the beginning to the end. Also, if you have not
tested yourself against all the 300-odd exercises suggested so far, please do it before proceeding with the
material presented here. Only practice makes perfect, and nothing is built in a day. Give yourself time: you
can always come back later.

2 Or a reference/pointer to an object that stores the said value.
3The original authors of R (R. Ihaka and R. Gentleman), in [36], mention: “A policy of lazy arguments is

very useful because it means that, in addition to the value of an argument, its symbolic form can be made
available in the function being called.This can be very useful for specifying functions ormodels in symbolic
form.”
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But, as a formof untamed freedomof expression4,metaprogramming has the potential to
result in chaos, confusion, and division in the user community. In particular, we can
introduce amicrolanguagewithin our language that people outside our circle will not
be able to understand.

Therefore, cursed be us, for we are about to start eating from tree of the knowledge of
good and evil. But remember: with great power comes great responsibility.

15.1 Expressions at a glance
At the most general level, expressions (statements) in a language like R can be classi-
fied into two groups:

• simple expressions:

– constants (e.g., 3.14, 2i, 42L, NA_real_, TRUE, "character string", NULL, -1.
3e-16, 0x123abc),

– names (symbols, identifiers),

• compound expressions – combinations of 𝑛 + 1 expressions (simple or compound)
of the form:

(𝑓 , 𝑒1, 𝑒2, … , 𝑒𝑛).

Aswewill soon see, compound expressions are used to represent a call to 𝑓 (an operator)
on a sequence of arguments 𝑒1, 𝑒2, … , 𝑒𝑛 (operands). This is why, equivalently, we will
also be denoting themwith 𝑓 (𝑒1, 𝑒2, … , 𝑒𝑛).
On the other hand, names such as `x`, `iris`, `sum`, and `spam`, have no meaning
without an explicitly stated context, which will be a topic that we explore in Chapter
16. Prior to that, we treat them as meaning-less.

Hence, for the time being, in this chapter we are only interested in the syn-
tax or grammar of our language, not the semantics. We are abstract in the sense
that, in the expression “mean(rates)+2”5, neither `mean`, `x`, nor even `+` have the
“usual” sense. We should therefore treat them as equivalent to, say, f(g(x), 2) or
spam(bacon(spanish_inquisition), 2).

4 In the current author’s opinion, R (as awhole, in the sense ofR(GNUS)as a language andan environment)
would be better-off if an ordinary programmer was not exposed so much to functions heavily relying on
metaprogramming. A healthy user can perfectly do without (and thus refrain from using) them. The fact
that we call them advanced will not make us cool if we start horsing around with nonstandard evaluation.
Perverse is perhaps a better label.

5Which we know that we can equivalently express as “`+`(mean(rates), 2)”; see Section 9.4.5.
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15.2 Language objects
There are three types of language objects in R:

• name (symbol) – stores object names in the sense of simple expressions: names in Sec-
tion 15.1;

• call – represents unevaluated function calls in the sense of compound expressions
above;

• expression – quite confusingly, represents a sequence of simple or compound ex-
pressions (constants, names, or calls).

One way to create a simple or compound expression is by quoting, where we ask the
interpreter to refrain itself from evaluating a given command:

quote(spam) # name (symbol)

## spam

quote(f(x)) # call

## f(x)

quote(1+2+3*pi) # another call

## 1 + 2 + 3 * pi

Note that none of the above was executed.

Single strings can be converted to names by calling:

as.name("spam")

## spam

And calls can be built programmatically by invoking:

call("sin", pi/2)

## sin(1.5707963267949)

Sometimes we had rather quote the arguments passed:

call("sin", quote(pi/2))

## sin(pi/2)

call("c", 1, exp(1), quote(exp(1)), pi, quote(pi))

## c(1, 2.71828182845905, exp(1), 3.14159265358979, pi)

Objects of type expression can be thought of as list-like objects that consist of simple
or compound expressions.

(exprs <- expression(1, spam, mean(x)+2))

## expression(1, spam, mean(x) + 2)
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Note that all arguments were quoted.

We can select or subset the individual statements using the extraction or index oper-
ators:

exprs[-1]

## expression(spam, mean(x) + 2)

exprs[[3]]

## mean(x) + 2

Exercise 15.1 Check the type of the object returned by a call to “c(1, "two", sd, list(3,

4:5), expression(3+3))”.

There is also an option to parse a given text fragment or a whole source file:

parse(text="mean(x)+2")

## expression(mean(x) + 2)

parse(text=" # two code lines (a comment to be ignored by the parser)

x <- runif(5, -1, 1)

print(mean(x)+2)

")

## expression(x <- runif(5, -1, 1), print(mean(x) + 2))

parse(text="2+") # syntax error - unfinished business

## Error in parse(text = "2+"): <text>:2:0: unexpected end of input 1: 2+ ^

Important The deparse function can be used to convert language objects to character
vectors. For instance:

deparse(quote(mean(x+2)))

## [1] "mean(x + 2)"

This function has the nice side effect of tidying up the code formatting:

exprs <- parse(text=

"`+`(x, 2)->y; if(y>0) print(y**10|>log()) else { y<--y; print(y)}")

Let us print them out:

for (e in exprs)

cat(deparse(e), sep="\n")

## y <- x + 2

## if (y > 0) print(log(y^10)) else {

## y <- -y

## print(y)

## }
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Note Calling classonobjects of the three aforementioned types yields name, call, and
expression, whereas typeof returns symbol, language, and expression, respectively.

15.3 Calls as combinations of expressions
We have mentioned that calls (compound expressions) are combinations of simple or
compound expressions of the form (𝑓 , 𝑒1, … , 𝑒𝑛).
That thefirst expressionon the list, denoted abovewith 𝑓 , plays a special role, is exactly
seen in the following examples:

as.call(expression(f, x))

## f(x)

as.call(expression(`+`, 1, x))

## 1 + x

as.call(expression(`while`, i < 10, i <- i + 1))

## while (i < 10) i <- i + 1

as.call(expression(function(x) x**2, log(exp(1))))

## (function(x) x^2)(log(exp(1)))

as.call(expression(1, x, y, z)) # utter nonsense, but syntactically valid

## 1(x, y, z)

Recall from Section 9.4 that operators and language constructs such as if and while

are ordinary functions.

Furthermore:

expr <- quote(f(1+2, a=1, b=2))

length(expr)

## [1] 4

names(expr) # NULL if no arguments are named

## [1] "" "" "a" "b"

15.3.1 Browsing parse trees
We can access the individual expressions constituting an object of type call using
square brackets. For example:

expr <- quote(1+x)

expr[[1]]

## `+`

(continues on next page)
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(continued from previous page)

expr[2:3]

## 1(x)

A compound expressionwas defined recursively: it can consist of other compound ex-
pressions.

For instance, the following expression:

expr <- quote(

while (i < 10) {

cat("i =", i, "\n")

i <- i+1

}

)

can be rewritten using the 𝑓 (...) notation like:

`while`(`<`(i, 10), `{`( cat("i =", i, "\n"), `<-`(i, `+`(i, 1))))

Equivalently, in the Polish (prefix; (𝑓 , ...); traditionally used in Lisp) notation it will
look like:

(

`while`,

(`<`, i, 10),

(

`{`,

(cat, "i =", i, "\n"),

(

`<-`,

i,

(`+`, i, 1)

)

)

)

Thus, for example, we can dig into the sub-expressions using a series of extractions:

expr[[2]][[1]] # or expr[[c(2, 1)]]

## `<`

expr[[3]][[2]][[4]] # or expr[[c(3, 2, 4)]]

## [1] "\n"

Example 15.2 We can even write a recursive function to traverse the whole parse tree:

recapply <- function(expr)

(continues on next page)
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(continued from previous page)

{

if (is.call(expr)) lapply(expr, recapply)

else expr

}

str(recapply(expr))

## List of 3

## $ : symbol while

## $ :List of 3

## ..$ : symbol <

## ..$ : symbol i

## ..$ : num 10

## $ :List of 3

## ..$ : symbol {

## ..$ :List of 4

## .. ..$ : symbol cat

## .. ..$ : chr "i ="

## .. ..$ : symbol i

## .. ..$ : chr "\n"

## ..$ :List of 3

## .. ..$ : symbol <-

## .. ..$ : symbol i

## .. ..$ :List of 3

## .. .. ..$ : symbol +

## .. .. ..$ : symbol i

## .. .. ..$ : num 1

15.3.2 Manipulating calls
The R language is homoiconic: it can treat code as data. This includes the ability to ar-
bitrarily manipulate it on the fly. This is because, just like on lists, we can freely use
the replacement versions of `[` and `[[` on objects of type call.

expr[[2]][[1]] <- as.name("<=")

expr[[3]] <- quote(i <- i * 2)

print(expr)

## while (i <= 10) i <- i * 2

We are only limited by our imagination.
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15.4 Inspecting function definitions and arguments thereto
15.4.1 Getting the body and formal arguments
Consider the following definition:

test <- function(x, y=1)

x+y # whatever

We know from the first part of this book that calling print on a function will reveal its
source code.

It turnsout thatwecaneasily get access to the list ofparameters in the formofanamed
list6:

formals(test)

## $x

##

##

## $y

## [1] 1

Note that the expressions generating the values of the default arguments are stored
as ordinary list elements (for more details, see Section 17.2).

Furthermore, we can get access to the function’s body:

body(test)

## x + y

It is anobject of thenow-well-knownclasscall.Thus,wecancustomise it asweplease:

body(test)[[1]] <- as.name("*") # change from `+` to `*`

body(test) <- as.call(list(as.name("{"), quote(cat("spam")), body(test)))

test

## function (x, y = 1)

## {

## cat("spam")

## x * y

## }

6 Actually, a special internal datatype called pairlist which is rarely seen in R; see [62] and [59] for in-
formation how to deal with them at the C level. From this course’s perspective, seeing pairlists as named
lists is perfectly fine.
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15.4.2 Getting the expression passed as an actual argument
A call to substitute allows us to reveal the expression used to generate a function’s
argument.

test <- function(x) substitute(x)

Some examples:

test(1)

## [1] 1

test(2+spam)

## 2 + spam

test(test(test(!!7)))

## test(test(!!7))

test() # it is not an error

In Chapter 17, we note that arguments are evaluated only on demand (lazily): substi-
tute triggers no computations.This opens the possibility to implement functions that
interpret their input in whichever way they like; see Section 9.5.7, Section 12.3.9, and
Section 17.5 for examples.

Example 15.3 library (see Section 7.3.1) allows to specify the name of the package to be loaded
both in the form of a character string and a name:

library("gsl") # preferred

library(gsl) # discouraged - via as.character(substitute(package))

A user saves two keystrokes at the cost of not being able to prepare the package name program-
matically before the call:

which_package <- "gsl"

library(which_package) # library("which_package")

## Error in library(which_package): there is no package called

## 'which_package'

In order to make the above possible, we need to alter the character.only argument (which de-
faults to FALSE):

library(which_package, character.only=TRUE)

Exercise 15.4 It is quite common to see a call like deparse(substitute(arg)) or as.

character(substitute(arg)) in many built-in functions. Study the source code of plot.
default, hist.default, prop.test, wilcox.test.default and the aforementioned library.
Explain why they do that. Propose a solution to achieve the same functionality without the use
of reflection techniques.
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15.4.3 Checking if an argument ismissing
There is an easy way to check whether an argument was provided at all:

test <- function(x) missing(x)

test(1)

## [1] FALSE

test()

## [1] TRUE

Exercise 15.5 Study the source code of sample, seq.default, plot.default, matplot, and t.
test.default. Determine the role of a call to missing. Would introducing a default argument
NULL and testing its value with is.null constitute a reasonable alternative?

15.4.4 Determining how a functionwas called
Even though this somewhat touches the topics discussed in the next chapters, it is
worth knowing that sys.call can take a look at the call stack and determine how the
current function was invoked.

Moreover, match.call takes us a step further: it returns a call with argument names
matched to the list of a function’s formal parameters.

For instance:

test <- function(x, y, ..., a="yes", b="no")

{

print(sys.call()) # sys.call(0)

print(match.call())

}

x <- "maybe"

test("spam", "bacon", "eggs", u = "ham"<"jam", b=x)

## test("spam", "bacon", "eggs", u = "ham" < "jam", b = x)

## test(x = "spam", y = "bacon", "eggs", u = "ham" < "jam", b = x)

Another example, where we see that we can access the call stack muchmore deeply:

f <- function(x)

{

g <- function(y)

{

cat("g:\n")

print(sys.call(0))

print(sys.call(-1)) # go back one frame

y

}

(continues on next page)



15 UNEVALUATED EXPRESSIONS (*) 359

(continued from previous page)

cat("f:\n")

print(sys.call(0))

g(x+1)

}

f(1)

## f:

## f(1)

## g:

## g(x+1)

## f(1)

## [1] 2

Note It will be educative to formalise the order of matching function parameters to
the passed arguments. As described in Section 4.3 in [63], it proceeds as follows:

1. keyword arguments with names matched exactly, each name matched at most
once,

2. remaining keyword arguments, but with the partial matching of names listed be-
fore the ellipsis, `...`, each match must be unambiguous,

3. positional matching to the remaining parameters,

4. all remaining arguments (named or not) will be consumed by the ellipsis (if
present).

For instance:

test <- function(spam, jasmine, jam, ..., option=NULL)

print(match.call())

Example calls:

test(1, 2, 3, 4, option="yes")

## test(spam = 1, jasmine = 2, jam = 3, 4, option = "yes")

test(1, 2, jasmine="no", sp=4, ham=7)

## Warning in test(1, 2, jasmine = "no", sp = 4, ham = 7): partial argument

## match of 'sp' to 'spam'

## Warning in match.call(definition, call, expand.dots, envir): partial

## argument match of 'sp' to 'spam'

## test(spam = 4, jasmine = "no", jam = 1, 2, ham = 7)

test(1, 2, ja=7) # ambiguous match

## Warning in test(1, 2, ja = 7): partial argument match of 'ja' to 'jasmine'

## Error in test(1, 2, ja = 7): argument 3 matches multiple formal arguments

(continues on next page)
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(continued from previous page)

test(o=7) # partial matching of `option` failed - `option` is after `...`

## test(o = 7)

Note again that our environment uses options(warnPartialMatchArgs=TRUE).

Exercise 15.6 A function can7 see how it has been defined by its maker. Call sys.function in-
side its body to reveal that.

Exercise 15.7 Execute “match.call(sys.function(-1), sys.call(-1))” in the g function
above.

15.5 Exercises
Exercise 15.8 Answer the following questions:

• What is a simple expression?What is a compound expression? Give a few examples.

• What is the difference between an object of type call and that of type expression?

• What does formals and body return when called on a function object?

• How to test if an argument to a function was given at all? Provide a use case for such a veri-
fication.

• Give a fewways to create an unevaluated call.

• What is the purpose of deparse(substitute(...))? Give a few examples of functions that
use this technique.

• What is the difference between sys.call and match.call?

Exercise 15.9 Write a function that takes the dot-dot-dot argument (Section 9.5.6). Using
match.call (amongst others), determine the list of all the expressions passed via `...`. Note
that some of themmight be named (just like in one of the above examples).The solution is given
in Section 17.3.

Exercise 15.10 Write a function check_if_calls(f, fun_list) that takes another function
{command}fon input. Then, it verifies iff calls any of the functions (refers to by their
names) from a character vector fun_list.

7Therefore, it is possible to write a function that returns a modified version of itself.
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In the first part of our book, we discussed the most essential basic object types: nu-
meric, logical, and character vectors, lists (generic vectors), and functions.

In this chapter, we introduce another basic type: environments. Like lists, they can be
classified as recursive data structures; compare the diagram in Figure 17.2.

Important Each object of type environment consists of:

• a frame1 (Section 16.1), which stores a set of bindings that associate variable names
with their corresponding values; it can be thought of as a container of named R
objects of any type;

• a reference to an enclosing environment2 (Section 16.2.2), which might be inspec-
ted (recursively!) in the case where a requested named variable is not found in the
current frame.

Even though we rarely interact with them directly (unless we need a hash table-like
data structure with a quick by-name element look-up), they are crucial for the R in-
terpreter itself. Namely, we shall soon see that they form the basis of the environment
model of evaluation, which governs how expressions are computed (Section 16.2).

16.1 Frames: Environments as object containers
To create a new, empty environment, we can call the new.env function:

e1 <- new.env()

typeof(e1)

## [1] "environment"

In this section, we treat environments merely as containers for named objects of any
kind, i.e., we deal with the frame part thereof.

1 Not to be confused with a data frame, i.e., an object (list) of S3 class data.frame; see Chapter 12.
2 Some also call it a parent environment, but we will not. We will try following the nomenclature estab-

lished in Section 3.2 in [1]. Note that there is a bit of a mess in the R documentation regarding the way
enclosing environments are referred to as.
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Let us insert some elements into e1:

e1[["x"]] <- "x in e1"

e1[["y"]] <- 1:3

e1[["z"]] <- NULL # unlike in the case of lists, creates a new element

The `[[` operator provides us with a named list-like look-and-feel also in the case of
element extraction:

e1[["x"]]

## [1] "x in e1"

e1[["spam"]] # does not exist

## NULL

(e1[["y"]] <- e1[["y"]]*10) # replace with new content

## [1] 10 20 30

16.1.1 Printing
Let us note that the printing of an environment is quite awkward:

print(e1) # same with str(e1)

## <environment: 0x56315c17c280>

This is the address where e1 is stored in computer’s memory. It can serve as the envir-
onment’s unique identifier.

As we have said, these objects are rather of internal interest. Thus, such esoteric mes-
sagewas perhaps a good design choice to ward off novices. However, we can easily get
the list of objects stored inside the container by calling names:

names(e1) # but attr(e1, "names") is not set

## [1] "x" "y" "z"

Moreover, length gives the number bindings in the frame:

length(e1)

## [1] 3

16.1.2 Environments vs named lists
Environment frames, in some sense, can be thought of as named lists, but the set
of admissible operations is severely restricted. In particular, we cannot extract more
than one element at the same time using the index operator:

e1[c("x", "y")] # but see the `mget` function

## Error in e1[c("x", "y")]: object of type 'environment' is not subsettable

nor can we refer to the elements by position:



16 ENVIRONMENTS AND EVALUATION (*) 363

e1[[1]] <- "bad key"

## Error in e1[[1]] <- "bad key": wrong args for environment subassignment

Exercise 16.1 Check if lapply and Map can be applied directly on environments. Also, can we
iterate over their elements using a for loop?

Still, named lists can be converted to environments and vice versa using as.list and
as.environment.

as.list(e1)

## $x

## [1] "x in e1"

##

## $y

## [1] 10 20 30

##

## $z

## NULL

as.environment(list(u=42, whatever="it's not going to be printed anyway"))

## <environment: 0x56315bd38520>

as.list(as.environment(list(x=1, y=2, x=3))) # no duplicates allowed

## $y

## [1] 2

##

## $x

## [1] 3

16.1.3 Hashmaps: Fast element look-up by name
Environment frames are internally implemented using hash tables (hash maps; see,
e.g., [14, 38]) with character string keys.

Important A hash table is a data structure that allows for a very quick3 lookup and
insertion of individual elements by name.

This comes at a price, including what we have already observed above:

• the elements are not ordered in any particular way: they cannot be referred to via
a numeric index;

• all element names must be unique.

Note A listmay be considered a sequence, but an environment frame is only in fact a set
(a bag) of key–value pairs. Inmost numerical computing applications, we would rather

3 Element lookup, insertion, and deletion in hash tables takes amortised𝑂(1) time.
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store, iterate over, andprocess all the elements in order, hence the greater prevalence of
the former. Lists still allow for an element look-upbyname, even though this is slightly
slower4. Overall, they are muchmore universal.

Example 16.2 Anatural use case ofmanually-created environment framesdealswithgrouping
a series of objects identified by character string keys.

Consider a simple pseudocode for counting the number of occurrences of objects in a given con-
tainer:

for (key in some_container) {

if (!is.null(counter[["key"]]))

counter[["key"]] <- counter[["key"]]+1

else

counter[["key"]] <- 1

}

Let us assume that some_container is large, say, of size𝑛, e.g., it is generated on the fly by read-
ing some data stream.Then, the run-time of the above algorithm will depend on the data struc-
ture used. Ifcounter is a list, then, theoretically, theworst-case performancewill be𝑂(𝑛2) (if all
keys are unique). On the other hand, for environments, it will be faster by an order ofmagnitude:
down to amortised𝑂(𝑛).
Exercise 16.3 Implement a test function according to the above pseudocode and benchmark the
two data structures using proc.time on some example data.

Exercise 16.4 (*) Determine the number of unique text lines in a very large file (assuming that
the set of unique text lines fits into memory, but the file itself does not). Also, determine the five
most frequently occurring text lines.

16.1.4 Pass-by-value, copy on demand: Not for environments
Given any object, say, x, when we issue:

y <- x

its copy5 is made so that y and x are independent of each other. In other words, any
change to the state of x (or y) is not reflected in the state of y (or x).

For instance:

x <- list(a=1)

y <- x

y[["a"]] <- y[["a"]]+1

(continues on next page)

4 Accessing elements by position (numeric index) in lists takes𝑂(1) time. Worst-case scenario for the
element look-up by name (non-existence) is linear with respect to the container size. Also, inserting new
elements at the end takes amortised𝑂(1) time.

5 Delayed (on demand); see below.
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(continued from previous page)

print(y)

## $a

## [1] 2

print(x) # not affected: `x` and `y` are independent

## $a

## [1] 1

The same happens with arguments that we feed to the functions:

mod <- function(y, key) # it is like: local_y <- passed_argument

{

y[[key]] <- y[[key]]+1

y

}

mod(x, "a") # returns a modified copy of `x`

## $a

## [1] 2

print(x) # not affected

## $a

## [1] 1

We can thus say that R applies the pass-by-value strategy here.

Important Environments are the only6 objects that follow the an assign- and pass-
by-reference strategies.

In other words, if we perform:

x <- as.environment(x)

y <- x

then the names x and y are boundwith exactly the same object in computer’smemory:

print(x)

## <environment: 0x56315af65210>

print(y)

## <environment: 0x56315af65210>

Therefore:

6We do not count all the tricks that we can do at the C language level (Chapter 14). Also, the distinction
between pass-by-value and pass-by-reference is slightly more complicated in R because of the lazy evalu-
ation of arguments (Chapter 17). Wemake an idealisation for didactic purposes here.
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y[["a"]] <- y[["a"]]+1

print(y[["a"]])

## [1] 2

print(x[["a"]]) # `x` is `y`, `y` is `x`

## [1] 2

The same happens when we pass an environment to a function:

mod(y, "a") # pass-by-reference (`y` is `x`, remember?)

## <environment: 0x56315af65210>

x[["a"]] # `x` has changed

## [1] 3

Thus, any changes we make to an environment passed as an argument to a function
will be visible outside the call. This minimises time and memory use in certain situ-
ations.

Note (*) For efficiency reasons, when we write “y <- x” , a copy of `x` (unless it is an
environment) is created only if it is absolutely necessary.

Here is some benchmarking of the copy-on-demandmechanism.

n <- 100000000 # like, a lot

Creation of a new large numeric vector:

t0 <- proc.time(); x <- numeric(n); proc.time() - t0

## user system elapsed

## 0.853 1.993 2.852

Creation of a (delayed) copy:

t0 <- proc.time(); y <- x; proc.time() - t0

## user system elapsed

## 0 0 0

This was instant.Thus, we definitely did not duplicate the n data cells.

Copy-on-demand is implemented using some quite simple reference counting; com-
pare sec:memory-management. That, temporarily, x and y point to the same address in
memory can be inspected by calling:

.Internal(inspect(x)) # internal function - do not use it

## @7efba1134010 14 REALSXP g0c7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...

.Internal(inspect(y))

## @7efba1134010 14 REALSXP g0c7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...
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The real copying is only triggeredwhenwe try tomodify x or y.This is when they need
to be separated.

t0 <- proc.time(); y[1] <- 1; proc.time() - t0

## user system elapsed

## 1.227 1.910 3.142

Now x and y are different objects.

.Internal(inspect(x))

## @7efba1134010 14 REALSXP g0c7 [MARK,REF(1)] (len=1000000000, tl=0) 0,0,...

.Internal(inspect(y))

## @7ef9c43ce010 14 REALSXP g0c7 [MARK,REF(1)] (len=1000000000, tl=0) 1,0,...

Note that the elapsed time is similar to that needed to create x from scratch.

Further modifications will already be quick:

t0 <- proc.time(); y[2] <- 2; proc.time() - t0

## user system elapsed

## 0.000 0.001 0.000

16.1.5 A note on reference classes (**)
In Section 11.5, we brieflymentioned the S4 system for object-oriented programming.

It turns out that we also have access to its variant, called reference classes7. It was first
introduced in R version 2.12.0.

Reference classes are implemented using S4 classes with the data part being of type
environment. Thanks to this, we get a more typical object-oriented experience, where
methods canmodify the data they act on in-place.

They are a theoretically interesting concept on its own, and quite appealing to package
developers with C++ or Java background. Nevertheless, in the current author’s opin-
ion, such classes are alien citizens of our environment, violating its functional nature.
Therefore, we will not be discussing them here.

A curious reader is referred to help("ReferenceClasses") and Chapters 9 and 11 of [11]
for more details.

7 Some call them R5, but we will not.
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16.2 The environmentmodel of evaluation
Recall that in Chapter 15, we said that there are three types of expressions: constants
(e.g., 1 and "spam"), names (e.g., `x` and `spam`), and calls (like f(x, 1)).

Important Names (symbols) have nomeaning by themselves.Themeaning of a name
always depends on the context, which is specified by an environment.

Consider a simple expressionmerely consisting of a name, `x`:

expr_x <- quote(x)

Let us define two environments that bind the name `x` with two different constants.

e1 <- as.environment(list(x=1))

e2 <- as.environment(list(x="spam"))

An expression is evaluated within a specific environment. We can do that by calling
eval:

eval(expr_x, envir=e1) # evaluate `x` within environment e1

## [1] 1

eval(expr_x, envir=e2) # evaluate the same `x` within environment e2

## [1] "spam"

Note that the very same expression has two different meanings, depending on the
context. This is quite like in the so-called real life: “I’m good” can mean “I don’t need
anything” but also “My virtues are plentiful”. It all depends who and when is asking,
i.e., in which environment we evaluate the said sentence.

We call this the environment model of evaluation, a notion that R authors have borrowed
from a Lisp-like language called Scheme8 (see Section 3.2 in [1] and Section 6 in [63]).

16.2.1 Getting the current environment (here: the global one)
By default, expressions are evaluated in the current environment. We can fetch it by
calling:

sys.frame(sys.nframe()) # get the current environment

## <environment: R_GlobalEnv>

We are working on the R console, hence the current one is the global environment (user

8That iswhyeveryone seriousaboutRprogrammingshouldadd theStructureandInterpretationofComputer
Programs [1] to their reading list. Also note that R is not the only known marriage between statistics and
Lisp-like languages; see also LISP-STAT [50].
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workspace). We can access it from anywhere by calling globalenv or referring to the
`.GlobalEnv` object.

Example 16.5 Calling any operation, for instance9:

x <- "spammity spam"

means evaluating itwithin the current environment:

eval(quote(x <- "spammity spam"), envir=sys.frame(sys.nframe()))

Here, we bound the string "spammity spam"with name `x` in the current environment’s frame:

sys.frame(sys.nframe())[["x"]] # yes, `x` is in the current environment now

## [1] "spammity spam"

globalenv()[["x"]] # because the global environment is the current one here

## [1] "spammity spam"

Therefore, when we now refer to `x` (fromwithin the current environment):

x # eval(quote(x), envir=sys.frame(sys.nframe()))

## [1] "spammity spam"

exactly the above named object is fetched.

Exercise 16.6 save.image can be used to save the current workspace, i.e., the global environ-
ment, by default, to the file named .Rdata in the current working directory. Test this function in
combination with load.

Note Names startingwith a dot are hidden. ls, a function to fetch all names registered
within a given environment, does not list them by default.

.test <- "spam"

ls() # list all names in the current environment, i.e., the global one

## [1] "e1" "e2" "expr_x" "mod" "x" "y"

Compare the above with:

ls(all.names=TRUE)

## [1] ".Random.seed" ".test" "e1" "e2"

## [5] "expr_x" "mod" "x" "y"

On a side note, `.Random.seed` stores the current pseudorandom number generator’s
seed; compare Section 2.1.5.

9 Letus fornowtake forgranted that `<-` is accessible fromthe current context anddenotes assignment.
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16.2.2 Enclosures, enclosures thereof, etc.
To show that there is much more to the environment model of evaluation than what
wementioned above, let us try to evaluate an expression featuring two names:

e2 <- as.environment(list(x="spam")) # once again (a reminder)

expr_comp <- quote(x < "eggs")

eval(expr_comp, envir=e2)

## Error in x < "eggs": could not find function "<"

The meaning of any constant (here, "spam") is context-independent, `x` is specified
by the environment provided, but the name `<` is not mentioned therein. Hence the
error.

Nonetheless, we feel that we know themeaning of `<`; it is a relational operator, obvi-
ously, isn’t it? To add to confusion, let us note that our experience-grounded intuition
is true in the following context:

e3 <- new.env()

e3[["x"]] <- "bacon"

eval(expr_comp, envir=e3)

## [1] TRUE

So where does the name `<` come from? It is neither included in e2 nor in e3:

e2[["<"]]

## NULL

e3[["<"]]

## NULL

Is `<` hardcoded somewhere? Or is it also dependent on the context? Why is it visible
when evaluating an expression within e3 but not in e2?

Studying10 help("[[") (see the Environments section therein), we discover that
e3[["<"]] is equivalent to a call to get("<", envir=e3, inherits=FALSE).

In help("get"), we read that if the inherits argument is set to TRUE (which is the de-
fault in get), then the enclosing frames of the given environment are searched as well.

Continuing the example from the previous subsection:

get("<", envir=e2) # inherits=TRUE

## Error in get("<", envir = e2): object '<' not found

get("<", envir=e3) # inherits=TRUE

## function (e1, e2) .Primitive("<")

And indeed, we see that `<` is reachable from within e3 but not e2. It means that e3

10Which we should have done already long time ago, but most likely we did not.
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points to another environment where further information should be sought if we were
to leave the current container empty-handed.

Important The reference (pointer) to the enclosing environment is an integral part of
each environment (alongside a frame of objects). It can be fetched and set using the
parent.env function.

16.2.3 Missing names are sought in enclosing environments
To understand the idea of enclosing environments better, let us create two new envir-
onments whose enclosures are set explicitly as follows:

(e4 <- new.env(parent=e3))

## <environment: 0x56315b7a23d0>

(e5 <- new.env(parent=e4))

## <environment: 0x56315b67fd68>

To verify that everything is in order, let us inspect the following:

print(e3) # this is the address of e3 by the way

## <environment: 0x56315bd849d0>

parent.env(e4) # e3 is the enclosing environment of e4

## <environment: 0x56315bd849d0>

parent.env(e5) # e4 is the enclosing environment of e5

## <environment: 0x56315b7a23d0>

Also, let us bind two different objects with the name `y` in e5 and e3.

e5[["y"]] <- "spam"

e3[["y"]] <- function() "a function `y` in e3"

The current state of matters is depicted in Figure 16.1.

e5

y = "spam"

e4

e3

x = "bacon"
y = function...

???

Figure 16.1: Example environments and their enclosures (original setting)

Now, let us consider a simple expression featuring the `y` name only and evaluate it
in the above environments:
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expr_y <- quote(y)

eval(expr_y, envir=e3)

## function() "a function `y` in e3"

eval(expr_y, envir=e5)

## [1] "spam"

No surprises yet. However, evaluating it in e4, which does not feature `y`, yields:

eval(expr_y, envir=e4)

## function() "a function `y` in e3"

This returned `y` from e4’s enclosure, e3.

Let us horse around with the enclosures of e5 and e4 so that we obtain the setting
depicted in Figure 16.2:

parent.env(e5) <- e3

parent.env(e4) <- e5

e5

y = "spam"

e4

e3

x = "bacon"
y = function...

???

Figure 16.2: Example environments and their enclosures (after the change made)

Now evaluating `y` again in the same e4 yields of course a very different result:

eval(expr_y, envir=e4)

## [1] "spam"

Important Names referred to in an expression to be evaluated but missing in the
current environment, will be sought in its enclosure(s).

Note There are some functions related to searching within and modifying environ-
ments which optionally (see their inherits argument) allow for continuing explora-
tions in the enclosures, until successful:

• inherits=TRUE by default:

– exists,

– get,
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• inherits=FALSE by default:

– assign,

– rm (remove).

16.2.4 Looking for functions
Interestingly, if a name is used in place of a function to be called, the object sought is
always11 of mode function.

Consider a similar expression to the above, but this time including name `y` playing
a different role:

expr_y2 <- quote(y()) # a call to something named `y`

eval(expr_y2, envir=e4)

## [1] "a function `y` in e3"

In other words, what we used here was not:

get("y", envir=e4)

## [1] "spam"

but:

get("y", envir=e4, mode="function")

## function() "a function `y` in e3"

Note “name()”, “"name"()”, and “`name`()” are synonymous.However, the first expres-
sion is valid only if name is a syntactically valid name.

16.2.5 Inspecting the search path
Going back to our expression involving a comparison operator:

expr_comp

## x < "eggs"

Why does the following work as expected?

eval(expr_comp, envir=e3)

## [1] TRUE

Well, we gathered all the bits to understand it now. Namely, `<` is a function that is
looked up in the following way:

11This is why we can write “c <- c(1, 2)” and then still be able to call c to create another vector.



374 III DEEPEST

get("<", envir=e3, inherits=TRUE, mode="function")

## function (e1, e2) .Primitive("<")

It was reachable from e3, which means that e3 also has an enclosing environment.

parent.env(e3)

## <environment: R_GlobalEnv>

This is our global namespace, which was the current environment at the time e3 was
created. Still, we have definitely not defined `<` there. It means that the global envir-
onment also has an enclosure.

We can explore thewhole search path easily, by starting at the global environment, and
then following the enclosures recursively.

ecur <- globalenv() # starting point

repeat {

cat(paste0(format(ecur), " (", attr(ecur, "name"), ")")) # pretty-print

if (exists("<", envir=ecur, inherits=FALSE))

cat(strrep(" ", 20), "`<` found here!")

cat("\n")

ecur <- parent.env(ecur) # advance to its enclosure

}

## <environment: R_GlobalEnv> ()

## <environment: 0x56315bfbbe70> (.marekstuff)

## <environment: package:stats> (package:stats)

## <environment: package:graphics> (package:graphics)

## <environment: package:grDevices> (package:grDevices)

## <environment: package:utils> (package:utils)

## <environment: package:datasets> (package:datasets)

## <environment: package:methods> (package:methods)

## <environment: 0x56315a051b80> (Autoloads)

## <environment: base> () `<` found here!

## <environment: R_EmptyEnv> ()

## Error in parent.env(ecur): the empty environment has no parent

Underneath the global environment, there is a whole list of attached packages:

1. packages attached by the user (.marekstuff is used internally in the process of
evaluating code in this book),

2. default packages (Section 7.3.1),

3. (**) Autoloads (for the promises-to loadR packages; compare help("autoload"); it
is a technicality wemay safely ignore here),
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4. the base package, wheremost of the fundamental functions described in the previ-
ous chapters reside.

The `<` operator was found exactly in the base package; we can access it directly by
calling baseenv.

The base environment’s enclosure is the empty environment (emptyenv), which is the
only one followed by nothing (note that the loop might have turn out endless other-
wise).

Note On a side note, the reason why this operation failed:

e2 <- as.environment(list(x="spam")) # to recall

eval(expr_comp, envir=e2)

## Error in x < "eggs": could not find function "<"

is because as.environment sets the enclosing environment to:

parent.env(e2)

## <environment: R_EmptyEnv>

See also list2envwhich gives greater control over this (cf. its parent argument).

16.2.6 Attaching to and detaching from the search path
In Section 7.3.1, we mentioned that we can access the objects exported by a package
without attaching them to the search path by using the pkg::object syntax (this loads
the package if necessary).

For instance:

tools::toTitleCase("`tools` not attached to the search path")

## [1] "`tools` not Attached to the Search Path"

However:

toTitleCase("nope")

## Error in toTitleCase("nope"): could not find function "toTitleCase"

This does not work, because toTitleCase is not reachable from the current environ-
ment.

Let us inspect the current search path (yes, there is a built-in function for that):

search()

## [1] ".GlobalEnv" ".marekstuff" "package:stats"

## [4] "package:graphics" "package:grDevices" "package:utils"

(continues on next page)
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(continued from previous page)

## [7] "package:datasets" "package:methods" "Autoloads"

## [10] "package:base"

Aswriting “pkg::”mightbe inconvenient in the long run (for some),wecancalllibrary
to attach the package to the search path, immediately below the global environment.

library("tools")

The search path becomes (see Figure 16.3 for an illustration):

search()

## [1] ".GlobalEnv" "package:tools" ".marekstuff"

## [4] "package:stats" "package:graphics" "package:grDevices"

## [7] "package:utils" "package:datasets" "package:methods"

## [10] "Autoloads" "package:base"

Therefore, what follows, now works as expected:

toTitleCase("Nobody expects the Spanish Inquisition")

## [1] "Nobody Expects the Spanish Inquisition"

To remove an item from the search path, we can use detach12.

detach("package:tools")

"package:tools" %in% search() # not there anymore

## [1] FALSE

We use the “package:” prefix for the reasons that we shall describe in Section 16.3.5.

Note It turns out that we can also plug into the search path arbitrary environments13
and,by similarity thereto,named lists.Recalling thatdata framesare in fact built upon
the latter (Section 12.1.6), some users rely on this technique to free themselves from
the onerous burden of typing the object name each time its column is to be referred
to:

attach(iris)

head(Sepal.Length) # iris[["Sepal.Length"]]

## [1] 5.1 4.9 4.7 4.6 5.0 5.4

Here, the iris list was converted to an environment, and the necessary enclosures
were set accordingly:

12Which does not unload the package from memory, though; see unload (possibly combined with
library.dynam.unload).

13 Or we should rather say, environment frames. When an environment is attached to the search path,
it is duplicated (so that the changes made to the original environment are not reflected in the copy) and its
previous enclosure is discarded. After all, wewant a series of recursive calls to parent.env to form thewhole
search path.
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packages attached by the user

default packages

package:tools

...

.marekstu�f

...

package:stats

...

package:graphics

...

package:grDevices

...

package:utils

...

package:datasets

...

package:methods

...

global

...

Autoloads

...

package:base

...

Figure 16.3: The search path after attaching the tools package

str(parent.env(globalenv()))

## <environment: 0x56315c0535e8>

## - attr(*, "name")= chr "iris"

str(parent.env(parent.env(globalenv())))

## <environment: 0x56315bfbbe70>

## - attr(*, "name")= chr ".marekstuff"

Overall, attaching data frames is discouraged, especially outside the interactive-
mode. Let us not be too lazy.

detach(iris) # such a relief
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16.2.7 Masking (shadowing) objects fromdown under
Note that assignment via `<-` (and assign, by default) creates a binding in the current
environment.

Therefore, even if the name to-bind exists somewhere on the search path, it will not
be modified. Instead, a new name will be created.

expr_comp <- quote("spam" < "eggs")

eval(expr_comp)

## [1] FALSE

Here, we rely on `<` from the base environment.Withal, we can create an object of the
same name in the current (global) context:

`<` <- function(e1, e2) { warning("This is not the base `<`, mate."); NA }

And now we have two different functions of the same name. When we evaluate an
expressionwithin the current environment or any of its “descendants”, the new name
will shadow the base one:

eval(expr_comp)

## Warning in "spam" < "eggs": This is not the base `<`, mate.

## [1] NA

eval(expr_comp, envir=e5) # e5's enclosure's enclosure is the global env

## Warning in "spam" < "eggs": This is not the base `<`, mate.

## [1] NA

But we can still call the original function directly:

base::`<`(1, 2)

## [1] TRUE

It is also reachable fromwithin the current environment’s “ancestors”:

eval(expr_comp, envir=as.environment("package:utils"))

## [1] FALSE

Before proceeding any further, let us clean up after ourselves, otherwise we will be
asking for trouble.

rm("<") # removes `<` from the global environment

An attached package may introduce some object names that are also available else-
where. For instance:

library("stringx")

## Attaching package: 'stringx'

(continues on next page)
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(continued from previous page)

## The following objects are masked from 'package:base': casefold, chartr,

## endsWith, gregexec, gregexpr, grep, grepl, gsub, ISOdate, ISOdatetime,

## nchar, nzchar, paste, paste0, regexec, regexpr, sprintf, startsWith,

## strftime, strptime, strrep, strsplit, strtrim, strwrap, sub, substr,

## substr<-, substring, substring<-, Sys.time, tolower, toupper, trimws,

## xtfrm, xtfrm.default

Therefore, in the current context, we have what follows:

toupper("Groß") # stringx::toupper

## [1] "GROSS"

base::toupper("Groß")

## [1] "GROß"

Sometimes14,wecanuse assign(..., inherits=TRUE)or its synonym, `<<-`, tomodify
the existing binding (without creating a new one if not necessary).

Note Let us attach the iris data frame (named list) to the search path again:

attach(iris)

Sepal.Length[1] <- 0

This of course does notmodify the original iris nor its converted-to-an-environment
copy that we can find in the search path. Instead, a new vector named Sepal.Length

has been created in the current environment:

exists("Sepal.Length", envir=globalenv(), inherits=FALSE)

## [1] TRUE

We can verify the above statement as follows:

rm("Sepal.Length") # removes the one in the global environment

Sepal.Length[1] # `iris` from the search path

## [1] 5.1

iris[["Sepal.Length"]][1] # the original `iris`

## [1] 5.1

However, by writing:

Sepal.Length[1] <<- 0 # uses assign(..., inherits=TRUE)

We changed the state of the environment on the search path.

14We normally cannot modify package namespaces. As we will mention in Section 16.3.5, they are auto-
matically locked.
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exists("Sepal.Length", envir=globalenv(), inherits=FALSE)

## [1] FALSE

Sepal.Length[1] # `iris` from the search path

## [1] 0

Yet, still, the original iris object is still left untouched, because there is nomechanism
in place that would synchronise the original data frame and the object in the search
path.

iris[["Sepal.Length"]][1] # the original `iris`

## [1] 5.1

16.3 Closures
So farwehave only covered the rules behind the evaluationof standaloneRexpressions.
In this section, we take a look at what happens inside the invoked functions.

16.3.1 Local environment
When we call a function, a new temporary environment is created. This is where all
arguments15 and local variables are emplaced. During the function evaluation, this
environment becomes the current one. After the call, the environment ceases to exist
and we go back to the previous environment from the call stack.

Consider the following function

test <- function(x)

{

print(ls()) # list object names in the current environment

y <- x^2 # creates a new variable

print(sys.frame(sys.nframe())) # get the ID of the current environment

str(as.list(sys.frame(sys.nframe()))) # display its contents

}

First call:

test(2)

## [1] "x"

## <environment: 0x56315c0373d8>

## List of 2

(continues on next page)

15 Function arguments are initially unevaluated; see Chapter 17.
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(continued from previous page)

## $ y: num 4

## $ x: num 2

Second call:

test(3)

## [1] "x"

## <environment: 0x56315c3e7d48>

## List of 2

## $ y: num 9

## $ x: num 3

We note that each time, the current environment is different. This is why we do not
see the `y` variable at the start of the second call. This is a brilliantly simple imple-
mentation of the storage for local variables.

16.3.2 Lexical scope and function closures
The fact that we were able to access the print function (amongst others) in the above
example should make us wonder what is the enclosing environment of that local en-
vironment.

print_enclosure <- function()

print(parent.env(sys.frame(sys.nframe())))

print_enclosure()

## <environment: R_GlobalEnv>

It is the global environment. Let us evaluate the same function from within another
one:

call_print_enclosure <- function()

print_enclosure()

call_print_enclosure()

## <environment: R_GlobalEnv>

It is the global environment again. If R used the so-called dynamic scoping, we would
see the local environment of the function invoking the one above. If this was true, we
would have access to the local variables of the caller fromwithin the callee.
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Important Objects of type closure, i.e., user-defined16 functions, consist of three
components:

• a list of formal arguments (compare formals and Section 15.4.1);

• an expression (compare body and Section 15.4.1 again);

• a reference to the associated environment where the function might store data for
further use (see environment).

By default, the associated environment is set to the current environment where the
function was created.

A local environment created during a function’s call has this associated environment
as its closure.

Due to this, we say that R has lexical (static) scope.

Thence, in the above example, we have:

environment(print_enclosure) # print the associated environment

## <environment: R_GlobalEnv>

Example 16.7 Consider the following function that prints out `x` defined outside of its scope:

test <- function() print(x)

Now:

x <- "x in global"

test()

## [1] "x in global"

printed out `x` from the user workspace, because this is exactly the environment associated with
the function.

However, setting the associated environment to a different one that also happens to define `x`,
will give a different result:

e <- new.env()

e[["x"]] <- "x in e"

environment(test) <- e

test()

## [1] "x in e"

Example 16.8 Consider the following example:
16There are two other types of functions: a special is an internal function that does not necessarily eval-

uate its arguments (e.g., switch, if, or quote; compare also Chapter 17), whereas a builtin always evaluates
its actual parameters, e.g., sum.
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test <- function()

{

cat(sprintf("test: current env: %s\n", format(sys.frame(sys.nframe()))))

subtest <- function()

{

e <- sys.frame(sys.nframe())

cat(sprintf("subtest: enclosing env: %s\n", format(parent.env(e))))

cat(sprintf("x = %s\n", x))

}

x <- "spam"

subtest()

environment(subtest) <- globalenv()

subtest()

}

x <- "bacon"

test()

## test: current env: <environment: 0x56315bdd3c48>

## subtest: enclosing env: <environment: 0x56315bdd3c48>

## x = spam

## subtest: enclosing env: <environment: R_GlobalEnv>

## x = bacon

Here is what happened.

1. A call to test creates a local function subtest, whose associated environment is set to the
local environment of the current call.This is exactly the current environmentwhere subtest
was created.

2. This is why subtest can access the local variable `x` inside its maker.

3. Thenwe change the environment associated with subtest to the global environment.

4. In the next call to subtest, unsurprisingly, we gain access to `x` in the user workspace.

Note In theory, in lexical (static) scoping, which variables a function is referring to
can be deduced by reading the function’s body only, and not how it is called in other
contexts. Yet, the fact thatwe can freelymodify the associated environment anywhere
can complicate the program analysis greatly.

If we find the rules of lexical scoping confusing, we should refrain from referring to
objects outside of the current scope (“global” or “nonlocal” variables”), unless they are
functions defined as top-level ones or coming from the external packages (which is
mostly what we have been doing so far).
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16.3.3 Application: Function factories
As closures are functionswith associated environments, and the role of environments
is to store information, we can consider closures = functions + data.

Wehave seen that already inSection 9.5.3,wherewedescribed the approxfun function.
To recall:

x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x^2)

print(f1)

## function (v)

## .approxfun(x, y, v, method, yleft, yright, f, na.rm)

## <environment: 0x56315c2b3898>

Thevariables `x`, `y`, etc. that f1’s source code refers to are stored inside its dedicated,
associated environment:

ls(envir=environment(f1))

## [1] "f" "method" "na.rm" "x" "y" "yleft" "yright"

We are used to referring to the routines such as approxfun as function factories.They re-
turn functionswhose non-local variables are stored in their associated environments.

Example 16.9 Consider the following function factory:

gen_power <- function(p)

function(x) x^p # p references a non-local variable

A call to gen_power creates a local environment which defines one variable, `p`, where the value
of the argument is stored. Then, we create a function whose associated environment (remember
thatRuses lexical scoping) is that local one.Therefore, the reference to thenon-local `p` in its body
will be resolved therein.This new function is returned by gen_power to the caller. Normally, the
local environment would be destroyed, but it is still used after the call, so it will not be garbage-
collected.

Example calls:

(square <- gen_power(2))

## function(x) x^p

## <environment: 0x56315a5f3ae8>

(cube <- gen_power(3))

## function(x) x^p

## <environment: 0x56315ab6b390>

cube(2)

## [1] 8

square(2)

## [1] 4
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The underlying environment can of course be modified:

assign("p", 7, envir=environment(cube))

cube(2) # so much for the cube

## [1] 128

Example 16.10 Negate is another example of a built-in function factory. Study its source code:

print(Negate)

## function (f)

## {

## f <- match.fun(f)

## function(...) !f(...)

## }

## <environment: namespace:base>

Example 16.11 In [36], the following example is given:

account <- function(total)

list(

balance = function() total,

deposit = function(amount) total <<- total+amount,

withdraw = function(amount) total <<- total-amount

)

Robert <- account(1000)

Ross <- account(500)

Robert$deposit(100)

Ross$withdraw(150)

Robert$balance()

## [1] 1100

Ross$balance()

## [1] 350

We are now able to fully understand why the above code does what it does. This somewhat re-
sembles a class with three methods and one data field. No wonder why reference classes (Sec-
tion 16.1.5) were introduced at some point: they are based on the same concept.

Exercise 16.12 Write a function factory named gen_counter which implements a simple
counter that is increased by one upon each call thereto.

gen_counter <- function() ...to.do...

c1 <- gen_counter()

c2 <- gen_counter()

c(c1(), c1(), c2(), c1(), c2())

## [1] 1 2 1 3 2

Moreover, write a function that resets a given counter to zero.
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reset_counter <- function(counter_fun) ...to.do...

reset_counter(c1)

c1()

## [1] 1

16.3.4 Accessing the calling environment
We know that the environment associated with a function is not necessarily the same
as the environment fromwhich the function was called, sometimes quite confusingly
referred to as the parent frame.

R maintains a whole frame stack. The global environment is assigned number 0. Each
call to a function increases the stack by one frame, whereas returning from a call de-
creases the counter.

To get the current frame number, we call sys.nframe. This is why sys.frame(sys.

nframe()) returns the current environment.

We can fetch the calling environment by referring to parent.frame() or sys.

frame(sys.parent()), amongst others17.

Thanks to parent.frame, wemay easily evaluate arbitrary expressions in (on behalf of)
the calling environment. Normally, we should not be doing that, but some built-in
functions rely on this feature, hence our avid interest in it here. In the subsections
below, we will discuss a few of its use cases.

16.3.5 Package namespaces (*)
Any R package, say, pkg, defines two environments:

• namespace:pkg – where all objects are defined (functions, vectors, etc.); this is the
enclosing environment of all closures in the package;

• package:pkg– can be attached to the search path; contains selected18 objects from
namespace:pkg that can be accessed by the user.

Wewill use our example package discussed Section 7.3.1, which is available for down-
load from https://github.com/gagolews/rpackagedemo/.

library("rpackagedemo") # https://github.com/gagolews/rpackagedemo/

## Loading required package: tools

Here is its DESCRIPTION file:

17 In help("sys.parent"), we read that the parent frame number, as returned by sys.parent(), is not
necessarily equal to sys.nframe()-1. This is certainly true if we are at the top (global) level.

18 Exported using the export or exportPattern directive of the package’s NAMESPACE file; see Section 1 in
[59].

https://github.com/gagolews/rpackagedemo/
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Package: rpackagedemo

Type: Package

Title: Just a Demo R Package

Version: 1.0.2

Date: 1970-01-01

Author: Anonymous Llama

Maintainer: Unnamed Kangaroo <roo@inthebush.au>

Description: Provides a function named bamboo(), just give it a shot.

License: GPL (>= 2)

Imports: stringx

Depends: tools

The Import and Depends fields specify which packages (apart from base) ours depends
on. All items in the latter list are attached to the search path on a call to library, as we
can see above.

The NAMESPACE file specifies the names imported from other packages as well as those
that should be visible to the user:

importFrom(stringx, sprintf)

importFrom(tools, toTitleCase)

S3method(print, koala)

S3method(print, kangaroo, .a_hidden_method_to_print_a_roo)

export(bamboo)

Thus, our package exports one object, a function named bamboo (we will discuss the
S3methods in the next section). It is included in the “package:rpackagedemo” environ-
ment attached to the search path:

ls(envir=as.environment("package:rpackagedemo")) # ls("package:rpackagedemo")

## [1] "bamboo"

Let us give it a shot:

bamboo("spanish inquisition") # rpackagedemo::bamboo

## G'day, Spanish Inquisition!

We did not expect that at all.

Let us inspect its source code:

print(bamboo)

## function (x = "world")

## cat(prepare_message(toTitleCase(x)))

## <environment: namespace:rpackagedemo>

Wesee a call to toTitleCase (most likely from tools, and this is indeed the case), aswell
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as prepare_messagewhich is not listed in the package’s imports. We definitely cannot
access it directly:

prepare_message

## Error in eval(expr, envir, enclos): object 'prepare_message' not found

It turns out that it is the package’s internal function. It is thus included in the
“namespace:rpackagedemo” environment.

(e <- environment(rpackagedemo::bamboo)) # or getNamespace("rpackagedemo")

## <environment: namespace:rpackagedemo>

ls(envir=e)

## [1] "bamboo" "prepare_message" "print.koala"

We can get it via the `:::` operator:

print(rpackagedemo:::prepare_message)

## function (x)

## sprintf("G'day, %s!\n", x)

## <environment: namespace:rpackagedemo>

All functions defined in a package have the correspondingpackagenamespace as their
associated environment. As a consequence, bamboo can refer to prepare_message dir-
ectly.

Now, it will be educative to inspect the enclosure of “namespace:rpackagedemo”:

(e <- parent.env(e))

## <environment: 0x56315bb4ec38>

## attr(,"name")

## [1] "imports:rpackagedemo"

ls(envir=e)

## [1] "sprintf" "toTitleCase"

This is the environment featuring the bindings to all the imported objects.This is why
our package can also refer to stringx::sprintf and tools::toTitleCase.

Its enclosure is the namespace of the base package (not to be confused with
“package:base”):

(e <- parent.env(e))

## <environment: namespace:base>

The next enclosure is, interestingly, the global environment:

(e <- parent.env(e))

## <environment: R_GlobalEnv>



16 ENVIRONMENTS AND EVALUATION (*) 389

And then, of course, the whole search path follows (Section 16.2.5); see Figure 16.4 for
an illustration.

Note (**) All environments related to packages are locked, whichmeans that we can-
not change any bindings within their frames; compare help("lockEnvironment").

In the extremely rare event of our needing to patch an existing function within an
already loaded package, we can call unlockBinding followed by assign to change its
definition.

new_message <- function (x) sprintf("Nobody expects %s!\n", x)

e <- getNamespace("rpackagedemo")

environment(new_message) <- e # set enclosing environment (very important!)

unlockBinding("prepare_message", e)

assign("prepare_message", new_message, e)

rm("new_message")

bamboo("the spanish inquisition")

## Nobody expects The Spanish Inquisition!

R is indeed a quite hackable language (except in the cases where it is not).

Exercise 16.13 (**)A functionorapackagemight register certain functions (hooks) tobe called
upon various events, e.g., attaching a package to the search patch; see help("setHook") and
help(".onAttach").

1. Inspect the source code of plot.new and note a reference to a hook named "before.plot.
new". Try setting such a hook yourself (e.g., one that changes some graphical parameters)
and see what happens upon each call to a graphical function.

2. Define the .onLoad, .onAttach, .onUnload, and .onDetach functions in your own R pack-
age andmake note of when they are invoked.

Exercise 16.14 (**) For the purpose of this book, we have registered a custom "before.plot.

new"hook that sets our favouritegraphicalparameters.Moreover,we replacedplot.windowwith
our custom implementations (note the white grid on a grey background, e.g., in Figure 13.13).

Apply similar hacks to the graphics package so that its outputs suit your taste better.

16.3.6 S3method lookup by UseMethod (*)
Let us go back to the rpackagedemo example. Looking at its NAMESPACE file, we see that
it defines two printmethods: for printing S3 objects of classes koala and kangaroo.

Thepackage is attached to the search path.Therefore,we can access thesemethods via
a call to the corresponding generic:

print(structure("Tiny Teddy", class="koala"))

## This is a cute koala, Tiny Teddy

(continues on next page)
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(user's) search path

global

...

package:rpackagedemo

bamboo

package:base

...

namespace:stringx

sprintf
...

imports:rpackagedemo

sprintf
toTitleCase

namespace:base

cat
...

namespace_rpackagedemo

bamboo
prepare_message
...

namespace:tools

toTitleCase
...

imports:stringx

...

imports:tools

...

... and many more ...

Figure 16.4: Search path for an example package; dashed lines represent environments
associated with closures, whereas solid lines denote enclosing environments; refer-
ences to objects within each package are resolved inside their respective namespaces
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(continued from previous page)

print(structure("Moike", class="kangaroo"))

## This is a very naughty kangaroo, Moike

However, the package does not make the definitions of these S3 methods available to
the user, at least not directly. It is not the first time when we experience such an ob-
scuration.

In the first case, the method is simply hidden in the package namespace. It is still
available under the expected name:

rpackagedemo:::print.koala

## function (x, ...)

## cat(sprintf("This is a cute koala, %s\n", x))

## <environment: namespace:rpackagedemo>

In the second case, it appears under a very different identifier:

rpackagedemo:::.a_hidden_method_to_print_a_roo

## function (x, ...)

## cat(sprintf("This is a very naughty kangaroo, %s\n", x))

## <environment: namespace:rpackagedemo>

Due to the fact that the base UseMethod is still able to find them, we suspect that there
probably is a global register of all S3 methods. And this is indeed the case.

We can use getS3method to get access to what is available via UseMethod:

getS3method("print", "kangaroo")

## function (x, ...)

## cat(sprintf("This is a very naughty kangaroo, %s\n", x))

## <environment: namespace:rpackagedemo>

Important Overall, the search for methods is performed in two places:

1. In the environment where the generic is called (the current environment).

This is why defining print.kangaroo in the current scope will use this method in-
stead of the one from the package:

print.kangaroo <- function(x, ...) cat("Nobody expects", x, "\n")

print(structure("the Spanish Inquisition", class="kangaroo"))

## Nobody expects the Spanish Inquisition

2. In the internal S3 methods table (registration database).

See help("UseMethod") for more details. Also recall that in Section 10.2.3, we
said that UseMethod is not the only way to perform method dispatching: there
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are also internal generics (help("InternalMethods")) and group generic functions
(help("groupGeneric")).

Exercise 16.15 (*) Study the source code of getS3method. Note the reference to the base::.
__S3MethodsTable__. object (this is for R’s internal use, we should not be tinkering with it dir-
ectly). Also, study the registerS3method functionwithwhichwe candefine newS3methods not
necessarily following the generic.classname convention.

16.4 Exercises
Exercise 16.16 Asking too many questions is not very charismatic, but challenge yourself by
trying to find the answer to the following.

• What is the role of a frame in an environment?

• What is the role of an enclosing environment? How to read it or set it?

• What is the difference between a named list and an environment?

• What functions and operators work on named lists but cannot be applied on environments?

• What do wemean by saying that environments are not passed by value to R functions?

• What do wemean by saying that objects are sometimes copied on demand?

• What happens if a name listed in an expression to be evaluated is not found in the current
environment?

• How and what kind of objects can we attach to the search path?

• What happens if we have two identical object names on the search path?

• What do wemean by saying that package namespaces are locked when loaded?

• What is the current environment when we evaluate an expression “on the console”?

• What is the difference between `<-` and `<<-`?

• Do packages have their own search paths?

• What is a function closure?

• What is the difference between the dynamic and the lexical scope?

• When evaluating a function, how the enclosure of the current (local) environment is determ-
ined? Is it the same as the calling environment? How to get it/them programmatically?

• How and why function factories work?

• (*)What is the difference between the “package:pkg” and “namespace:pkg” environments?
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• How to fetch the definition of an S3 method which does not seem to be available directly via
the standard accessor generic.classname?

• (*) base::print.data.frame calls base::format.data.frame (directly). Will the intro-
duction of print.data.frame in the current environment affect how data frames are prin-
ted?

• (*) On the other hand, base::format.data.frame calls the generic base::format on all
the input data frame’s columns. Will the overloading of the particular methods affect how
data frames are printed?

Exercise 16.17 Calling:

pkg <- available.packages()

pkg[, "Package"] # a list of the names of available packages

pkg[, "Depends"] # dependencies

gives the list of available packages and their dependencies. Convert the dependency lists to a list
of character vectors (preferably using regular expressions; see Section 6.2.4).

Then, generate a list of reverse dependencies: what packages depend on each given package.

Use an object of type environment (a hash table) to map the package names to numeric IDs (in-
dexes). This will greatly speed up the processing (compare it to a named list-based implementa-
tion).

Exercise 16.18 According to [63], compare also Section 9.4.6, a call to:

add(x, f(x)) <<- v

translates to:

`*tmp*` <- get(x, envir=parent.env(), inherits=TRUE)

x <<- `add<-`(`*tmp*`, f(x), v) # note: not f(`*tmp*`)

rm(`*tmp*`)

Given:

`add<-` <- function(x, where=TRUE, value)

{

x[where] <- x[where] + value

x # the modified object that will replace the original one

}

y <- 1:5

f <- function() { y <- -(1:5); add(y, y==-3) <<- 1000; y }

Explain why the following calls yield the results they give:
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f()

## [1] -1 -2 -3 -4 -5

print(y)

## [1] 1 2 1003 4 5



17
Lazy evaluation (**)

The ability to create, store, and manipulate unevaluated expressions so that they can
be computed later is not particularly special. Many languages enjoy such metapro-
gramming (computing on the language, reflection) capabilities, e.g., Lisp, Scheme,
Wolfram, Julia, amongst many others.

However, R inherited from its predecessor, the S language, a variation of lazy1 (non-
strict, noneager, delayed) evaluation of function arguments. They are only computed
when their values are first needed. As we can take the expressions used to generate
them (via substitute; see Section 15.4.2), we shall see that we can ignore their mean-
ing in the original (caller’s) context, and compute them in a very different one.

17.1 Evaluation of function arguments
We know that calls such as `if`(test, ifyes, ifno), `||`(mustbe, maybe), or
`&&`(mustbe, maybe) do not have to evaluate all their arguments.

{cat(" first "); FALSE} && {cat(" second "); FALSE}

## first

## [1] FALSE

{cat(" first "); TRUE } && {cat(" Spanish Inquisition "); FALSE}

## first Spanish Inquisition

## [1] FALSE

We can write such functions ourselves. For instance:

test <- function(a, b, c) a + c # b is unused

test({cat("spam\n"); 1}, {cat("eggs\n"); 10}, {cat("salt\n"); 100})

## spam

## salt

## [1] 101

The second argument was not referred to in the function’s body.Therefore, it was not
evaluated.

1 But without the memoisation of results generated by expressions, which is available, e.g., in Haskell.
In other words, in an expression like c(f(x), f(x)), the call f(x)will still be performed twice.
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Example 17.1 Study the following very carefully.

test <- function(a, b, c)

{

cat("Arguments passed to test (expressions): \n")

cat("a = ", deparse(substitute(a)), "\n")

cat("b = ", deparse(substitute(b)), "\n")

cat("c = ", deparse(substitute(c)), "\n")

subtest <- function(x, y, z)

{

cat("Arguments passed to subtest (expressions): \n")

cat("x = ", deparse(substitute(x)), "\n")

cat("y = ", deparse(substitute(y)), "\n")

cat("z = ", deparse(substitute(z)), "\n")

cat("Using x and z... ")

retval <- x + z # does not refer to `y`

cat("Cheers!\n")

retval

}

cat("Using c... ")

c # force evaluation; we do not even have to be particularly creative

subtest(a, ~!~b*2 := headache ->> ha@x$y, c*10) # no evaluation yet!

}

environment(test) <- new.env() # to spice things up

test(

{testx <- "goulash"; cat("spam\n"); 1},

{testy <- "kabanos"; cat("eggs\n"); MeAn(egGs+whatever&!!weird[stuff])},

{testx <- "kransky"; cat("salt\n"); 100}

)

## Arguments passed to test (expressions):

## a = { testx <- "goulash" cat("spam\n") 1 }

## b = { testy <- "kabanos" cat("eggs\n") MeAn(egGs + whatever …

## c = { testx <- "kransky" cat("salt\n") 100 }

## Using c... salt

## Arguments passed to subtest (expressions):

## x = a

## y = `:=`(~!~b * 2, ha@x$y <<- headache)

## z = c * 10

## Using x and z... spam

## Cheers!

## [1] 1001

(continues on next page)
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(continued from previous page)

print(testx)

## [1] "goulash"

print(testy)

## Error in eval(expr, envir, enclos): object 'testy' not found

Ona side note, the `~` (formula) operatorwill be discussed inSection 17.6. Furthermore, the `:=`
operatorwasused inanancient versionofR forassignments, but it is still recognisedby theparser,
yet now it has no associatedmeaning.

Important We note what follows.

• Either the evaluation of an argument does not happen or it is triggered only once
(in which case the result is cached).

• Evaluation is delayed until the very first request for the underlying value (we call it
lazy evaluation).

• Evaluation takes place in the calling environment (parent frame).

• Fetching the expression passed as an argument using substitute (Section 15.4.2)
or checking if an argument was provided with missing (Section 15.4.3) does not
trigger the evaluation.

• Merely passing arguments further to another function usuallydoes not trigger the
evaluation.

We wrote usually, because builtin functions (e.g., c, list, sum, `+`, `&`, and `:`)
always evaluate the arguments. There is no lazy evaluation in case of the argu-
ments passed to group generics; see help("groupGeneric") and Section 10.2.6.
Furthermore, replacement functions’ values arguments (Section 9.4.6) are com-
puted eagerly.

Exercise 17.2 Study the source code of system.time and note the use of delayed evaluation to
measure the duration of the execution of a given expression. Also note the use of on.exit (Sec-
tion 17.4) to react to possible exceptions.

Example 17.3 It turns out that the role of substitute is broader than just getting the expres-
sion passed as an argument.We can actually replace each occurrence of every name from a given
dictionary (a named list or an environment).

For instance:

test <- function(x)

{

subtest <- function(y)

{

ex <- substitute(x, env=parent.frame()) # substitute(x) is just `x`

ey <- substitute(y)
(continues on next page)
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(continued from previous page)

cat("ex =", deparse(ex), "\n")

cat("ey =", deparse(ey), "\n")

eval(as.call(list(substitute, ey, list(x=ex))))

}

subtest(spam(!x[x](x)))

}

test(eels@hovercraft)

## ex = eels@hovercraft

## ey = spam(!x[x](x))

## spam(!eels@hovercraft[eels@hovercraft](eels@hovercraft))

This way, we were not only able to fetch the expression passed as the `x` argument to the calling
function, but also replace every occurrence of `x` in the expression `ey`.

Note that substitute does not evaluate its first argument. Hence, if we called substitute(ey,
...), we would treat `ey` as a quoted name.

Exercise 17.4 Study the source code of replicate:

print(replicate)

## function (n, expr, simplify = "array")

## sapply(integer(n), eval.parent(substitute(function(...) expr)),

## simplify = simplify)

## <environment: namespace:base>

Exercise 17.5 (*) Implement your own version of the bquote function.

Note (*) Internally, lazy evaluation of arguments is implemented using the so-called
promises (compare [63]). As such, they consist of:

• an expression (which we can access by calling substitute);

• an environment where the expression is to be evaluated (once this happens, it is
set to NULL);

• a cached value (computed on demand, once).

This interface is not really visible fromwithin R, but see help("delayedAssign").

Exercise 17.6 Inspect thedefinitionofmatch.fun.Why is it usedby, e.g.,apply,Map, orouter?

Note that it uses eval.parent(substitute(substitute(FUN))) to fetch the expression repres-
enting the argument passed by the calling function (but it is probably very rarely needed there).
Compare:
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test <- function(x)

{

subtest <- function(y)

{

# NOT: substitute(y)

# NOT: eval.parent(substitute(y))

eval.parent(substitute(substitute(y)))

}

subtest(x*3)

}

test(1+2)

## (1 + 2) * 3

17.2 Evaluation of default arguments
Aswe know fromSection 9.5.4, default arguments are special expressions specified in
a function’s parameter list.When a function’s body requires the value of an argument
that was not provided by the caller, the default expression will be evaluated in the cur-
rent (local) environment of the function.This is thus different from the case of normally
passed arguments, which are interpreted in the context of the calling environment.

x <- "banana"

test <- function(y={cat("spam\n"); x})

{

cat(deparse(substitute(y)), "\n")

cat("bacon\n")

x <- "rotten potatoes"

cat(y, y, "\n")

}

test(x)

## x

## bacon

## banana banana

test()

## { cat("spam\n") x }

## bacon

## spam

## rotten potatoes rotten potatoes

(continues on next page)
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(continued from previous page)

test({cat("spam\n"); x})

## { cat("spam\n") x }

## bacon

## spam

## banana banana

As usual, the evaluation is triggered only once, where it is explicitly requested, and
only when needed.

Example 17.7 Consider the following example from [36]:

sumsq <- function(y, about=mean(y), na.rm=FALSE)

{

if (na.rm)

y <- y[!is.na(y)]

sum((y - about)^2)

}

sumsq(c(1, NA_real_, NA_real_), na.rm=TRUE)

## [1] 0

The nice side effect is that the computation of the mean may take into account the removal of the
missing values, if requested.

However, as the idea of lazy evaluation of arguments is alien to most programmers (especially
coming from different languages), it might be better to rewrite the above using a call to missing
(Section 15.4.3):

sumsq <- function(y, about, na.rm=FALSE)

{

if (na.rm)

y <- y[!is.na(y)]

if (missing(about))

about <- mean(y)

sum((y - about)^2)

}

sumsq(c(1, NA_real_, NA_real_), na.rm=TRUE)

## [1] 0

or better even:

sumsq <- function(y, about=NULL, na.rm=FALSE)

{

if (na.rm)

y <- y[!is.na(y)]

(continues on next page)
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(continued from previous page)

if (is.null(about))

about <- mean(y)

sum((y - about)^2)

}

sumsq(c(1, NA_real_, NA_real_), na.rm=TRUE)

## [1] 0

Exercise 17.8 Note that the default arguments to do.call, list2env, and new.env are set to
parent.frame.What does that mean?

Exercise 17.9 Study the source code of the local function:

print(local)

## function (expr, envir = new.env())

## eval.parent(substitute(eval(quote(expr), envir)))

## <environment: namespace:base>

17.3 Ellipsis, `...`, revisited
If our function features the dot-dot-dot parameter, `...`, whatever we pass through
it is packed into a pairlist of promise expressions. Thus, we can enjoy the benefits of
lazy evaluation. In particular, we can redirect all `...`-fed arguments to another call,
as-is.

test <- function(...)

{

subtest <- function(x, ...)

{

cat("x = "); str(x)

cat("... = "); str(list(...))

}

subtest(...)

}

test({cat("eggs! "); 1}, {cat("spam! "); 2}, z={cat("rice! "); 3})

## x = eggs! num 1

## ... = spam! rice! List of 2

## $ : num 2

## $ z: num 3

Exercise 17.10 In the documentation of lapply, we read that this function is called like “lap-
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ply(X, FUN, ...)”, where `...` are optional arguments to FUN. Verify that whatever is
passed via the ellipsis is evaluated only once, and not on each application of FUN on the elements
of X.

Example 17.11 WeknowfromChapter 13 thatmanyhigh-level graphical functions relyonmul-
tiple calls tomoreprimitive functions that allow for settingavariety of parameters (e.g., viapar).
A quite common scenario is for ahigh-level function to submit all the passed arguments to the un-
derlying basic routines that then can decide by themselves which items they are interested in.

test <- function(...)

{

subtest1 <- function(..., a=1) c(a=a)

subtest2 <- function(..., b=2) c(b=b)

subtest3 <- function(..., c=3) c(c=c)

c(subtest1(...), subtest2(...), subtest3(...))

}

test(a="A", b="B", d="D")

## a b c

## "A" "B" "3"

Here, for instance, subtest1 only consumes the value of `a` and ignores all the other arguments
whatsoever. plot.default (amongst others) relies on such a design pattern.

...length() fetches the number of items passed via the ellipsis, ...names() retrieves
their names (in the case they aregivenaskeywordarguments), and ...elt(i)gives the
value of the i-th element. Furthermore, ..1, ..2, … are synonymous with ...elt(1),
...elt(2), etc.

test <- function(...)

{

cat("length:", ...length(), "\n")

cat("names: ", paste(...names(), collapse=", "), "\n")

for (i in seq_len(...length()))

cat(i, ":", ...elt(i), "\n")

print(substitute(...elt(i)))

}

test(u={cat("honey! "); "a"}, {cat("gravy! "); "b"}, w={cat("bacon! "); "c"})

## length: 3

## names: u, , w

## honey! 1 : a

## gravy! 2 : b

## bacon! 3 : c

## ...elt(3L)

Note that ...elt(i) triggers the evaluation of the respective argument. Unfortu-
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nately, we cannot use substitute to fetch the underlying expression. Instead, we can
rely on match.call discussed in Section 15.4.4:

test <- function(a, b, ..., z=1)

{

e <- match.call()[-1]

as.list(e[!(names(e) %in% names(formals(sys.function())))])

}

str(test(1+1, 2+2, 3+3, 4+4, a=2, z=8, w=4))

## List of 4

## $ : language 2 + 2

## $ : language 3 + 3

## $ : language 4 + 4

## $ w: num 4

Note Objects passed via `...`, even if they are specified as keyword arguments, can-
not be referred to by their name, as if they were local variables:

test <- function(...) zzz

test(zzz=3)

## Error in test(zzz = 3): object 'zzz' not found

In other words, no assignment in the local environment is triggered.

Exercise 17.12 Implement your own version of the built-in switch function.

Exercise 17.13 Implement your own version of the stopifnot function.

17.4 on.exit (*)
on.exit registers an expression to be evaluated at the very end of a call, regardless
whether the function exited due to an error or not. It might be used to re-set the
temporarily modified graphical parameters (see par) and system options (options),
or clean up the allocated resources (e.g., close all open file connections).

For instance:

test <- function(reset=FALSE, error=FALSE)

{

on.exit(cat("eggs\n"))

on.exit(cat("bacon\n")) # replace

on.exit(cat("spam\n"), add=TRUE) # add

(continues on next page)



404 III DEEPEST

(continued from previous page)

cat("roti canai\n")

if (reset)

on.exit() # cancels all (replace by nothing)

if (error)

stop("aaarrgh!")

cat("end\n")

"return value"

}

test()

## roti canai

## end

## bacon

## spam

## [1] "return value"

test(reset=TRUE)

## roti canai

## end

## [1] "return value"

test(error=TRUE)

## roti canai

## Error in test(error = TRUE): aaarrgh!

## bacon

## spam

Note that we can always dowithout on.exit, e.g., by applying proper exception hand-
ling techniques; see Section 8.2.

Exercise 17.14 Note the call to:

on.exit(close(file))

in the definition of scan. Is its purpose to close the file on exit?

Exercise 17.15 Why does graphics::barplot.default call the following expressions?

dev.hold()

opar <- if (horiz) par(xaxs="i", xpd=xpd) else par(yaxs="i", xpd=xpd)

on.exit({

dev.flush()

par(opar)

})
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17.5 Metaprogramming and laziness in action: Examples (*)
As we mentioned at the beginning of the previous chapter and in Section 9.5.7 and
Section 12.3.9, due to lazy evaluation,we candefine functions that allow arbitrary gib-
berish as their arguments, as long as they are syntactically valid R expressions. Noth-
ing but basic decency stops us from interpreting them in any way wewant. Each such
function can become a microverse (a microlanguage?) by itself. This might confuse2
our users, as they will have to analyse its behaviour separately.

In this section, wewill take a look at a few built-in functions relying onmetaprogram-
ming and laziness, mostly because that studying them is a good exercise that help ex-
tendourprogramming skills anddeepenourunderstandingof the conceptsdiscussed
in this part of the book.

By nomeans it is an invite to use them in practice.

Still, R’s computingon the language capabilitiesmightbeof interest to someadvanced
programmers (e.g., package developers).

17.5.1 match.arg

We mentioned match.arg in Section 9.5.7. When called normally, it matches a string
against a set of possible choices, similarly to pmatch:

choices <- c("spam", "bacon", "eggs")

match.arg("spam", choices)

## [1] "spam"

match.arg("s", choices) # partial matching

## [1] "spam"

match.arg("eggplant", choices) # no match

## Error in match.arg("eggplant", choices): 'arg' should be one of "spam",

## "bacon", "eggs"

match.arg(choices, choices) # match first

## [1] "spam"

However, skipping the second argument, this function will fetch the choices from the
default argument of the function it is enclosed in!

test <- function(x=c("spam", "bacon", "eggs"))

match.arg(x)

test("spam")

## [1] "spam"

(continues on next page)

2 Novices are prone to overgeneralising when they learn new material that they are still far from com-
fortable with, so such exceptions go against this natural coping strategy of theirs.
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(continued from previous page)

test("s")

## [1] "spam"

test("eggplant")

## Error in match.arg(x): 'arg' should be one of "spam", "bacon", "eggs"

test()

## [1] "spam"

Exercise 17.16 Inspect the source code and the documentation of stats::binom.test, which
looks like:

function(..., alternative = c("two.sided", "less", "greater"))

{

# ...

alternative <- match.arg(alternative)

# ...

}

Note the alternative argument and its peculiar default value.

Exercise 17.17 Study the source code of match.arg. In particular, note the following fragment:

if (missing(choices)) {

formal.args <- formals(sys.function(sysP <- sys.parent()))

choices <- eval(

formal.args[[as.character(substitute(arg))]],

envir=sys.frame(sysP)

)

}

17.5.2 curve

The curve function can be called, e.g., like:

curve(sin(1/x^2), 1/pi, 3, 1001, lty=2)

which results in Figure 17.1. Wait a minute… We did not define `x` to be a sequence
ranging between ca. 0.3 and 3!

Exercise 17.18 Study the source code of curve. Note the following fragment of its definition:

function(expr, from=NULL, to=NULL, n=101, xlab="x", type="l", ...)

{

# ...

expr <- substitute(expr)

ylab <- deparse(expr)

x <- seq.int(from, to, length.out=n)

(continues on next page)
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Figure 17.1: An example plot generated by calling curve

(continued from previous page)

ll <- list(x=x)

y <- eval(expr, envir=ll, enclos=parent.frame())

plot(x=x, y=y, type=type, xlab=xlab, ylab=ylab, ...)

# ...

}

17.5.3 with and within
Environments and named lists (and hence data frames) are similar (Section 16.1.2).
Due to this, the envir argument to eval can be set to either.

Therefore, for instance:

eval(quote(head(Sepal.Length)), envir=iris)

## [1] 5.1 4.9 4.7 4.6 5.0 5.4

evaluates the given expression in something like list2env(iris, parent=parent.

frame()). Thus, even though Sepal.Length is not a standalone variable, it is treated
as if it was one inside the iris data frame.

Note that thanks to the enclosure’s being set to the calling frame, we can successfully
refer to the head function located somewhere on the search path. This is somewhat
similar to attach (Section 16.2.6), but without modifying the search path.

The with function does exactly the above:
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print(with.default)

## function (data, expr, ...)

## eval(substitute(expr), data, enclos = parent.frame())

## <environment: namespace:base>

Example use:

with(iris, {

x <- Sepal.Length # `Sepal.Length` is in `iris`

mean(x)

})

## [1] 5.8433

As we evaluate the above in the local (temporary) environment, we cannot modify the
existing columns of the data frame this way. But then the within function includes a
way to detect and reflect any changes made.

within(iris, {

Sepal.Length <- Sepal.Length/1000

Spam <- "yum!"

}) -> iris2

head(iris2, 3)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species Spam

## 1 0.0051 3.5 1.4 0.2 setosa yum!

## 2 0.0049 3.0 1.4 0.2 setosa yum!

## 3 0.0047 3.2 1.3 0.2 setosa yum!

Exercise 17.19 Study the source code of within:

print(within.data.frame)

## function (data, expr, ...)

## {

## parent <- parent.frame()

## e <- evalq(environment(), data, parent)

## eval(substitute(expr), e)

## l <- as.list(e, all.names = TRUE)

## l <- l[!vapply(l, is.null, NA, USE.NAMES = FALSE)]

## nl <- names(l)

## del <- setdiff(names(data), nl)

## data[nl] <- l

## data[del] <- NULL

## data

## }

## <environment: namespace:base>

Note that evalq(expr, ...) is equivalent to eval(quote(expr), ...), and that vapply(X,
FUN, NA, ...) is like a call to sapply, but it guarantees that the result is a logical vector.
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17.5.4 transform

We can call transform to modify/add columns in a data frame using vectorised func-
tions, for instance:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL), 3)

## mpg cyl disp drat wt qsec vs am gear carb log_hp

## Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005

## Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005

## Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326

Ifwesuspect that this functionevaluates all expressionspassedas `...`within thedata
frame,we are brilliantly right. Furthermore, theremust be somemechanismallowing
for the detection of newly created variables so that new columns can be added.

Exercise 17.20 Study the source code of transform:

print(transform.data.frame)

## function (`_data`, ...)

## {

## e <- eval(substitute(list(...)), `_data`, parent.frame())

## tags <- names(e)

## inx <- match(tags, names(`_data`))

## matched <- !is.na(inx)

## if (any(matched)) {

## `_data`[inx[matched]] <- e[matched]

## `_data` <- data.frame(`_data`)

## }

## if (!all(matched))

## do.call("data.frame", c(list(`_data`), e[!matched]))

## else `_data`

## }

## <environment: namespace:base>

In particular, note that `e` is a named list.

17.5.5 subset

The subset function can be used to select rows and columns of a data frame that meet
certain criteria. For instance:

subset(airquality, Temp>95 | Temp<57, -(Month:Day))

## Ozone Solar.R Wind Temp

## 5 NA NA 14.3 56

## 120 76 203 9.7 97

## 122 84 237 6.3 96

The second argument, the row selector, must definitely be evaluated within the data
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frame.We expect it to reduce itself to a logical vector which then can be passed to the
index operator.

The “select all columns except those between the given ones” part can be implemented
by assigning each column a consecutive integer, and then treating them as numeric
indexes.

Exercise 17.21 Study the source code of subset:

print(subset.data.frame)

## function (x, subset, select, drop = FALSE, ...)

## {

## chkDots(...)

## r <- if (missing(subset))

## rep_len(TRUE, nrow(x))

## else {

## e <- substitute(subset)

## r <- eval(e, x, parent.frame())

## if (!is.logical(r))

## stop("'subset' must be logical")

## r & !is.na(r)

## }

## vars <- if (missing(select))

## rep_len(TRUE, ncol(x))

## else {

## nl <- as.list(seq_along(x))

## names(nl) <- names(x)

## eval(substitute(select), nl, parent.frame())

## }

## x[r, vars, drop = drop]

## }

## <environment: namespace:base>

17.5.6 A forward-pipe operator
In Section 10.5, we mentioned the pipe operator, `|>`. We can implement its simpli-
fied versionmanually:

`%>%` <- function(e1, e2)

{

e2 <- as.list(substitute(e2))

e2 <- as.call(c(e2[[1]], substitute(e1), e2[-1]))

eval(e2, envir=parent.frame())

}

This function imputes `e1` as the first argument in a call `e2` and then evaluates the
new expression.
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Example calls:

x <- c(1, NA_real_, 2, 3, NA_real_, 5)

x %>% mean # mean(x)

## [1] NA

x %>% `-`(1) # x-1

## [1] 0 NA 1 2 NA 4

x %>% na.omit %>% mean # mean(na.omit(x))

## [1] 2.75

x %>% mean(na.rm=TRUE) # mean(x, na.rm=TRUE)

## [1] 2.75

Moreover, at the cost of forcing the evaluation of the lefthand side argument (and thus
losing the potential benefits of lazy evaluation, including the access to the generating
expression), we canmemorise the value of `e1` under the name, say, `.` so that it can
be referred to in the righthand side expression.

`%.>%` <- function(e1, e2)

{

env <- list2env(list(.=e1), parent=parent.frame())

e2 <- as.list(substitute(e2))

e2 <- as.call(c(e2[[1]], quote(.), e2[-1]))

eval(e2, envir=env)

}

This way, we can refer to the value of the lefthand side multiple times in a single call,
for instance:

set.seed(123); runif(5) %.>% `[`(.>0.5) # x[x>0.5] with x=runif(5)

## [1] 0.78831 0.88302 0.94047

This is crazy, I know. I made this. Your author. Onemore then:

# x[x >= 0.5 & x <= 0.9] <- 0.5 with x=round(runif(5), 2):

set.seed(123); runif(5) %.>% round(2) %.>% `[<-`(.>=0.5 & .<=0.9, value=NA)

## [1] 0.29 NA 0.41 NA 0.94

I cannotwait for someone toput this operator into somenewRpackage (it is a brilliant
idea, by the way, isn’t it?) and then confuse thousands of users (“what is this thing?”).

17.5.7 Other ideas (**)
Why stop ourselves here? We can create a lot more invasive functions that read some
local variables in the calling functions (unless they are primitive, because this is R and
there always have to be exceptions to general rules…).

Here is an operator, thanks to which we can select a range of columns in a data frame
between two given labels:
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`%:%` <- function(e1, e2)

{

# get the `x` argument in the caller (hoping its `[`)

x <- get("x", envir=sys.frame(sys.nframe()-1))

n <- names(x)

from <- pmatch(substitute(e1), n)

to <- pmatch(substitute(e2), n)

from:to

}

head(iris[, Sepal.W%:%Petal.W])

## Sepal.Width Petal.Length Petal.Width

## 1 3.5 1.4 0.2

## 2 3.0 1.4 0.2

## 3 3.2 1.3 0.2

## 4 3.1 1.5 0.2

## 5 3.6 1.4 0.2

## 6 3.9 1.7 0.4

This function operates under the assumption that it is called as an argument to a non-
primitive function which took the `x` argument being a named vector.

Exercise 17.22 Make the abovemore foolproof:

• if `%:%` is used outside of `[` or `[<-`, raise a polite error,

• allow `x` to be amatrix (is it possible?),

• prepare better for the case of less expected inputs.

Exercise 17.23 Modify the definition of the above operator so that both:

iris[, -Sepal.W%:%Petal.W]

iris[, -(Sepal.W%:%Petal.W)]

mean “select everything except”.

Exercise 17.24 Define `%:%` for data frames so that:

• x[%:%3, ]means “select the first three rows”,

• x[3%:%, ]means “select from the third to the end”,

• x[-3%:%, ]means “select from the third last to the end”,

• x[%:%-10, ]means “select all but last 9”.

The ceiling is the limit. Just please, do not use the above in production.
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17.6 Processing formulae, `~` (*)
Formulae were introduced to S in the early 1990s, see [13], originally with the purpose
of specifying statistical models; compare Section 10.3.4.

From the language perspective, they aremerely unevaluated calls to the `~` (tilde) op-
erator. When creating them, we do not even have to apply quote explicitly. For in-
stance:

f <- (y ~ x1 + x2) # or: `~`(y, x1+x2)

mode(f)

## [1] "call"

class(f)

## [1] "formula"

Hence, formulae are compound objects in the sense given in Chapter 10.

Usually, formulae are equipped with an additional attribute:

attr(f, ".Environment")

## <environment: R_GlobalEnv>

Exercise 17.25 Create a function that generates a list of formulae of the form “y ~ x1+x2+...

+xk”, for all possible combinations x1, x2, …, xk (of any cardinality) of elements in a given set of
xs. For instance:

formula_allcomb <- function(y, xs, env=parent.frame()) ...to.do...

str(formula_allcomb("len", c("supp", "dose")))

## List of 3

## $ :Class 'formula' language len ~ supp + dose

## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

## $ :Class 'formula' language len ~ dose

## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

## $ :Class 'formula' language len ~ supp

## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

str(formula_allcomb(

"y",

c("x1", "x2", "x3"),

env=NULL

))

## List of 7

## $ :Class 'formula' language y ~ x1 + x2 + x3

## $ :Class 'formula' language y ~ x2 + x3

## $ :Class 'formula' language y ~ x1 + x3

## $ :Class 'formula' language y ~ x3

(continues on next page)
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(continued from previous page)

## $ :Class 'formula' language y ~ x1 + x2

## $ :Class 'formula' language y ~ x2

## $ :Class 'formula' language y ~ x1

As they are unevaluated expressions, functions can assign any fantastic meaning to
formulae, and we cannot really do anything about it. However, many functions, es-
pecially in the stats and graphics packages, rely on a call to model.frame and related
routines. Thanks to this, we can at least find some behavioural patters. In particular,
help("formula") lists some typical meanings of operators that can be used in a for-
mula.

Example 17.26 Here are a few examples (executing the expressions below is left as an exercise).

• Draw a box-and-whisker plot for iris[["Sepal.Length"]] split by iris[["Species"]]:

boxplot(Sepal.Length~Species, data=iris)

• Draw a box plot for ToothGrowth[["len"]] split by a combination of levels in Tooth-

Growth[["supp"]] and ToothGrowth[["dose"]]:

boxplot(len~supp:dose, data=ToothGrowth)

• Split the given data frame by a combination of values in two specified columns therein:

split(ToothGrowth, ~supp:dose)

• Fit a linear regressionmodel of the form 𝑦 = 𝑎 + 𝑏𝑥, where 𝑦 is iris[["Sepal.Length"]]
and 𝑥 is iris[["Petal.Length"]]:

lm(Sepal.Length~Petal.Length, data=iris)

• Fit a linear regressionmodel of the form𝑧 = 𝑎𝑥+𝑏𝑦,where𝑧 isiris[["Sepal.Length"]],
𝑥 is iris[["Petal.Length"]], and 𝑦 is iris[["Sepal.Width"]] (without the intercept
term):

lm(Sepal.Length~Petal.Length+Sepal.Width+0, data=iris)

• Fit a linear regressionmodel of the form 𝑧 = 𝑎+𝑏𝑥+𝑐𝑦 +𝑑𝑥𝑦, where 𝑧 is iris[["Sepal.
Length"]]+e (with `e` fetched fromtheassociated environment), and𝑥and𝑦 are likeabove:

e <- rnorm(length(iris[["Sepal.Length"]]), 0, 0.05)

lm(I(Sepal.Length+e)~Petal.Length*Sepal.Width, data=iris)

• Draw scatter plots of warpbreaks[["breaks"]] vs their indexes for data grouped by a com-
bination of warpbreaks[["wool"]] and warpbreaks[["tension"]]:
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Index <- seq_len(nrow(warpbreaks))

coplot(breaks ~ Index | wool * tension, data=warpbreaks)

From the perspective of this book, which focuses on more universal aspects of the R
language, formulae are not interesting enough to describe them in any more detail.
However, the kind reader is now equipped with all the necessary knowledge to solve
the following very educative exercises.

Exercise 17.27 Study the source code of graphics:::boxplot.formula, stats::lm, and
stats:::t.test.formula and take note of how they prepare and process the calls to model.
frame, model.matrix, model.response, model.weights, etc.

Note that their main aim is to prepare data to be passed to boxplot.default, lm.fit (it is just
a function with such a name, not an S3method), and t.test.default

Exercise 17.28 Write a function similar to curve, but one that allows to specify the function to
plot using a formula.

17.7 Exercises
Exercise 17.29 Answer the following questions.

• What is the role of promises?

• Why do we generally discourage the use of functions relying onmetaprogramming?

• How are default arguments evaluated?

• Is there anything special about formulae, from the language perspective?

• Revaluates functionarguments lazily.Does itmeanthat “y[c(length(y)+1, length(y)+1,

length(y)+1)] <- list(1, 2, 3)” extends a list `y` by three elements?Or are there cases
where evaluation is eager?

Exercise 17.30 Given:

test <- function(x, y=deparse(substitute(x)), force_first=FALSE)

{

if (force_first) y # just force the evaluation of y here

x <- x**2

print(y)

}

Why the two following calls give different results?

test(1:5)

## [1] "c(1, 4, 9, 16, 25)"

(continues on next page)
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(continued from previous page)

test(1:5, force_first=TRUE)

## [1] "1:5"

17.8 Outro
Let us recall our first approximation to the classification of R data types that we
presented in the Preface. As a summary of what we have covered in this book, let us
contemplate upon Figure 17.2, which gives a much broader picture.

R Data Types

Basic

Atomic

NULL
logical
raw

numeric
integer
double

complex
character

Recursive

list
pairlist

function
closure
primitive:
special/builtin

environment

Language Objects
symbol (name)
call
expression

Internal

promise
externalptr
S4
...

Compound

factor
matrix
array
data.frame
formula
Date
kmeans
...

Figure 17.2: R data types
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Ifwe omitted something, itwasmost likely onpurpose– eitherwe cannowstudy it on
our own easily, it is not really worth our attention, or it violates ourminimalist design
principles that we explained in the Preface.

Now that we have reached the end of this course, we might be interested in reading
the followingmaterials:

• R Language Definition [63],

• R Internals [62],

• Writing R Extensions [59],

• R’s source code available at https://cran.r-project.org/src/base/.

What is more, the NEWS files available at https://cran.r-project.org/doc/manuals/
r-release/ will keep us up to date with new features, bug fixes, and deprecated func-
tionality; see also the news function.

Please spread thenewsabout thisbook.Also, checkout theotheropen-access textbook
by yours truly,Minimalist data wrangling with Python3 [25].Thank you.

Good luck in your further projects!

3 https://datawranglingpy.gagolewski.com/

https://cran.r-project.org/src/base/
https://cran.r-project.org/doc/manuals/r-release/
https://cran.r-project.org/doc/manuals/r-release/
https://datawranglingpy.gagolewski.com/




Changelog

Note that the most up-to-date version of this book can be found at https://deepr.
gagolewski.com/.

Important This book is still a work in progress. The first twelve chapters are already
quite readable, but there will be more (I might be busy with other projects, though).
Stay tuned.

Any bug/typos reports/fixes4 are appreciated.

Below is the list of the most noteworthy changes:

• 2023-04-27 (v0.2.1):

– Chapter on graphics drafted.

• 2023-04-09 (v0.2.0):

– NewHTML theme (featuring light and dark mode).

– Chapter on unevaluated expressions drafted.

– Chapter on environments and evaluation drafted.

– Chapter on lazy evaluation drafted.

• 2022-12-29 (v0.1.12):

– First public release at https://deepr.gagolewski.com.

– Chapters 1–12 (basic and compound types, functions, control flow, etc.)
drafted.

– Preface drafted.

– ISBN 978-0-6455719-2-9 reserved.

– Cover.

4 https://github.com/gagolews/deepr/issues

https://deepr.gagolewski.com/
https://deepr.gagolewski.com/
https://github.com/gagolews/deepr/issues
https://deepr.gagolewski.com
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