
HED specification
Release 3.1.0

HED Working Group

Apr 05, 2023

CONTENTS:

1 1. Introduction to HED 3
1.1 1.1. Scope of HED . 3
1.2 1.2. Brief history of HED . 4
1.3 1.2. Goals of HED . 5
1.4 1.3. HED design principles . 6
1.5 1.4. Specification organization . 6

2 2. HED terminology 7
2.1 Agent [*] . 7
2.2 Condition-variable [*] . 7
2.3 Control-variable [*] . 7
2.4 Dataset . 7
2.5 Event [*] . 8
2.6 Event-context [*] . 8
2.7 Event marker . 8
2.8 Event-stream [*] . 8
2.9 Experiment-participant [*] . 8
2.10 Experimental-trial [*] . 8
2.11 HED schema [*] . 8
2.12 HED string . 9
2.13 HED tag . 9
2.14 Indicator-variable [*] . 9
2.15 Parameter [*] . 9
2.16 Recording [*] . 9
2.17 Tag-group . 9
2.18 Task [*] . 9
2.19 Temporal scope . 10
2.20 Time-block [*] . 10

3 3. HED formats 11
3.1 3.1. HED schema format . 11

3.1.1 3.1.1. Official schema releases . 11
3.1.2 3.1.2. Schema layout overview . 11

3.1.2.1 3.1.2.1. The header . 12
3.1.2.2 3.1.2.2. The prologue . 13
3.1.2.3 3.1.2.3. The schema section . 13
3.1.2.4 3.1.2.4. Unit classes and units . 13
3.1.2.5 3.1.2.5. Unit modifiers . 14
3.1.2.6 3.1.2.6. Value classes . 14
3.1.2.7 3.1.2.7. Schema attributes . 14

i

3.1.2.8 3.1.2.8. Schema properties . 14
3.1.2.9 3.1.2.9. The epilogue . 15

3.1.3 3.1.3. Naming conventions . 15
3.1.3.1 3.1.3.1. Node elements . 15
3.1.3.2 3.1.3.2. Epilogue and prologue . 15
3.1.3.3 3.1.3.3. Naming in other blocks . 15

3.1.4 3.1.4. Mediawiki schema format . 16
3.1.5 3.1.5. XML schema format . 17

3.2 3.2. HED annotation format . 19
3.2.1 3.2.1. Vocabulary organization . 20
3.2.2 3.2.2. Tag forms . 20
3.2.3 3.2.3. Tag case-sensitivity . 21
3.2.4 3.2.4. Tags that take values . 21
3.2.5 3.2.5. Tag extensions . 22
3.2.6 3.2.6. Tag prefixes . 23
3.2.7 3.2.7. Strings and groups . 23

3.2.7.1 3.2.7.1. Parenthesis and order . 23
3.2.7.2 3.2.7.2. Tag group attributes . 23
3.2.7.3 3.2.7.3. Empty tags and groups . 24
3.2.7.4 3.2.7.4. Repeated expressions . 24

3.2.8 3.2.8. Special tags . 24
3.2.8.1 3.2.8.1. The Definition tag . 24
3.2.8.2 3.2.8.2. Def and Def-expand tags . 24
3.2.8.3 3.2.8.3. Onset and Offset tags . 25
3.2.8.4 3.2.8.4. The Event-context tag . 25

3.2.9 3.2.9. Sidecars . 25
3.2.9.1 3.2.9.1. Sidecar entries . 26
3.2.9.2 3.2.9.2. Sidecar validation . 27

3.2.10 3.2.10. Tabular files . 27
3.2.10.1 3.2.10.1. Tabular annotations . 28
3.2.10.2 3.2.10.2. Event-level processing . 28
3.2.10.3 3.2.10.3 File-level processing . 28

4 4. Basic annotation 29
4.1 4.1. Instantaneous events . 29
4.2 4.2. Sensory presentations . 29
4.3 4.3. Task role . 31
4.4 4.4. Agent actions . 31
4.5 4.5. Experimental control . 32
4.6 4.6. Data features . 33
4.7 4.7. What else? . 34

5 5. Advanced annotation 35
5.1 5.1. Creating definitions . 35
5.2 5.2. Using definitions . 36

5.2.1 5.2.1. The Def tag . 36
5.2.2 5.2.2. The Def-expand tag . 37

5.3 5.3. Temporal scope . 38
5.3.1 5.3.1. Using Onset and Offset . 39
5.3.2 5.3.2. Using Duration . 41
5.3.3 5.3.3. Using Delay . 42

5.4 5.4. Event streams . 43
5.5 5.5. Event contexts . 44
5.6 5.6. Experimental design . 45

ii

5.7 5.7. Specialized annotation . 47
5.7.1 5.7.1. Parameter tags . 47

6 6. Infrastructure and tools 49
6.1 6.1. Basic tag handling . 49

6.1.1 6.1.1. Tag forms . 49
6.1.2 6.1.2. Parentheses and commas . 50
6.1.3 6.1.3. Tag ordering . 50
6.1.4 6.1.4. Definitions . 50

6.2 6.2. File-level handling . 50
6.3 6.3. HED support of BIDS . 51

6.3.1 6.3.1. BIDS tabular files . 51
6.3.2 6.3.2. BIDS sidecars . 51
6.3.3 6.3.3. Annotation assembly . 51
6.3.4 6.3.4. HED version in BIDS . 52
6.3.5 6.3.5. HED in the BIDS validator . 53
6.3.6 6.3.5. HED python tools . 53

7 7. Library schema 55
7.1 7.1. Defining a schema . 56
7.2 7.2. Schema namespaces . 57
7.3 7.3. Library schema layout . 57

7.3.1 7.3.1. Required sections . 57
7.3.2 7.3.2. Relation to standard HED schema . 57
7.3.3 7.3.3. Schema properties . 57
7.3.4 7.3.4. Unit classes . 58
7.3.5 7.3.5. Value classes . 58
7.3.6 7.3.6. Schema attributes . 58
7.3.7 7.3.7. Syntax checking . 58

7.4 7.4. Library schemas in BIDS . 59
7.4.1 7.1. Using library schema in BIDS . 60

8 A. Schema format details 61
8.1 A.1. Auxiliary schema sections . 61

8.1.1 A.1.1. Unit classes and units . 61
8.1.2 A.1.2. Unit modifiers . 62
8.1.3 A.1.3. Value classes . 63
8.1.4 A.1.4. Schema attributes . 63
8.1.5 A.1.5. Schema properties . 65

8.2 A.2. Mediawiki file format . 66
8.2.1 A.2.1. Overall file layout . 66
8.2.2 A.2.2. The header-line . 66
8.2.3 A.2.3. The prologue and epilogue . 67
8.2.4 A.2.4. Schema sections . 67
8.2.5 A.2.5. Auxiliary sections . 68

8.2.5.1 A.2.5.1. Unit classes and units . 69
8.2.5.2 A.2.5.2. Unit modifiers . 69
8.2.5.3 A.2.5.3. Value classes . 69
8.2.5.4 A.2.5.4. Schema attributes . 70
8.2.5.5 A.2.5.5. Schema properties . 70

8.3 A.3. XML file format . 70
8.3.1 A.3.1. Overall file layout . 70
8.3.2 A.3.2. The header . 71
8.3.3 A.3.3. The prologue and epilogue . 72

iii

8.3.4 A.3.4. The schema section . 72
8.3.5 A.3.5. Auxiliary sections . 74

8.3.5.1 A.3.5.1. Unit classes . 74
8.3.5.2 A.3.5.2. Unit modifiers . 75
8.3.5.3 A.3.5.3 Value classes . 75
8.3.5.4 A.3.5.4. Schema attributes . 76
8.3.5.5 A.3.5.5. Schema properties . 76

9 B. HED errors 77
9.1 B.1. HED validation errors . 77

9.1.1 CHARACTER_INVALID . 77
9.1.2 COMMA_MISSING . 77
9.1.3 DEF_EXPAND_INVALID . 78
9.1.4 DEF_INVALID . 78
9.1.5 DEFINITION_INVALID . 78
9.1.6 NODE_NAME_EMPTY . 78
9.1.7 ONSET_OFFSET_ERROR . 79
9.1.8 PARENTHESES_MISMATCH . 79
9.1.9 PLACEHOLDER_INVALID . 79
9.1.10 REQUIRED_TAG_MISSING . 79
9.1.11 SIDECAR_INVALID . 80
9.1.12 SIDECAR_KEY_MISSING* . 80
9.1.13 STYLE_WARNING* . 80
9.1.14 TAG_EMPTY . 80
9.1.15 TAG_EXPRESSION_REPEATED . 80
9.1.16 TAG_EXTENDED* . 80
9.1.17 TAG_EXTENSION_INVALID . 81
9.1.18 TAG_GROUP_ERROR . 81
9.1.19 TAG_INVALID . 81
9.1.20 TAG_NOT_UNIQUE . 81
9.1.21 TAG_PREFIX_INVALID . 81
9.1.22 TAG_REQUIRES_CHILD . 81
9.1.23 TILDES_UNSUPPORTED . 81
9.1.24 UNITS_INVALID . 82
9.1.25 UNITS_MISSING* . 82
9.1.26 VALUE_INVALID . 82
9.1.27 VERSION_DEPRECATED* . 82

9.2 B.2. Schema validation errors . 82
9.2.1 B.2.1. General validation errors . 82

9.2.1.1 LIBRARY_NAME_INVALID . 82
9.2.1.2 SCHEMA_ATTRIBUTE_INVALID . 83
9.2.1.3 SCHEMA_CHARACTER_INVALID . 83
9.2.1.4 SCHEMA_DUPLICATE_NODE . 83
9.2.1.5 SCHEMA_HEADER_INVALID . 83
9.2.1.6 SCHEMA_SECTION_MISSING . 83
9.2.1.7 SCHEMA_VERSION_INVALID . 83

9.2.2 B.2.2. Mediawiki format errors . 83
9.2.2.1 WIKI_DELIMITERS_INVALID . 83
9.2.2.2 WIKI_LINE_START_INVALID . 84
9.2.2.3 WIKI_SEPARATOR_INVALID . 84

9.2.3 B.2.3. XML format errors . 84
9.2.3.1 XML_SYNTAX_INVALID . 84

9.2.4 B.2.4 Schema loading errors . 84

iv

10 Indices and tables 85

v

vi

HED specification, Release 3.1.0

Links

• PDF released version (V3.1.0)

• PDF working version

• Specification source

• Stable specification source

• HED resources

• HED project homepage

The HED specification document formalizes the syntax and behavior of HED (Hierarchical Event Descriptors) vocab-
ulary, annotations, and supporting tools. The specification supports three versions of the specification:

• develop - development branch which is under discussion.

• latest - includes revisions approved by the HED Working Group but not released.

• stable - the latest released form.

For more information about HED see The HED project homepage and the HED resources page.

CONTENTS: 1

https://raw.githubusercontent.com/hed-standard/hed-specification/master/hedspec/HEDSpecification_3_1_0.pdf
https://hed-specification.readthedocs.io/_/downloads/en/latest/pdf/
https://github.com/hed-standard/hed-specification/tree/master/docs/source
https://github.com/hed-standard/hed-specification/tree/stable/docs/source
https://www.hed-resources.org/
https://hedtags.org/
https://hed-specification.readthedocs.io/en/develop/index.html
https://hed-specification.readthedocs.io/en/latest/index.html
https://hed-specification.readthedocs.io/en/stable/index.html
https://www.hedtags.org
https://www.hed-resources.org

HED specification, Release 3.1.0

2 CONTENTS:

CHAPTER

ONE

1. INTRODUCTION TO HED

This document contains the specification for third generation HED or HED-3G. It is meant for the implementers and
users of HED tools. Other tutorials and tagging guides are available to researchers using HED to annotate their data.
This specification applies to HED Schema versions > 8.0.0 and above.

The aspects of HED that are described in this document are supported or will soon be supported by validators and other
tools and are available for immediate use by annotators. The schema vocabulary can be viewed using an expandable
schema viewer.

All HED-related source and documentation repositories are housed on the HED-standard organization GitHub site,
https://github.com/hed-standard, which is maintained by the HED Working Group. HED development is open-
source and community-based. Also see the official HED website https://www.hedtags.org for a list of additional
resources.

The HED Working Group invites those interested in HED to contribute to the development process. Users are en-
couraged to use the issues forum on the hed-specification GitHub repository to report issues with this specification
document.

For requests for additional features and vocabulary enhancements of the HED schema use the issues forum on the
hed-schemas GitHub repository.

Several other aspects of HED annotation are being planned, but their specification has not been fully determined. These
aspects are not contained in this specification document, but rather are contained in ancillary working documents which
are open for discussion. These ancillary specifications include the HED working document on spatial annotation and
the HED working document on task annotation.

1.1 1.1. Scope of HED

HED (an acronym for Hierarchical Event Descriptors) is an evolving framework that facilitates the description and for-
mal annotation of events identified in time series data, together with tools for validation and for using HED annotations
in data search, extraction, and analysis. HED allows researchers to annotate what happened during an experiment,
including experimental stimuli and other sensory events, participant responses and actions, experimental design, the
role of events in the task, and the temporal structure of the experiment. The resulting annotation is machine-actionable,
meaning that it can be used as input to algorithms without manual intervention. HED facilitates detailed comparisons
of data across studies.

As the name HED implies, much of the HED framework focuses on associating metadata with the experimental timeline
to make datasets analysis-ready and machine-actionable. However, HED annotations and framework can be used to
incorporate other types of metadata into analysis by providing a common API (Application Programming Interface)
for building inter-operable tools.

This specification describes the official release of third generation of HED or HED-3G, which is HED version 8.0.0.
Third generation HED represents a significant advance in documenting the content and intent of experiments in a format

3

https://www.hedtags.org/display_hed.html
https://github.com/hed-standard
https://www.hedtags.org
https://github.com/hed-standard/hed-specification/issues
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-schemas/issues
https://github.com/hed-standard/hed-schemas
https://docs.google.com/document/u/0/d/1jpSASpWQwOKtan15iQeiYHVewvEeefcBUn1xipNH5-8/edit
https://docs.google.com/document/u/0/d/1eGRI_gkYutmwmAl524ezwkX7VwikrLTQa9t8PocQMlU/edit

HED specification, Release 3.1.0

that enables large-scale cross-study analysis of time-series behavioral and neuroimaging data, including but not limited
to EEG, MEG, iEEG, fMRI, eye-tracking, motion-capture, EKG, and audiovisual recording.

HED annotations may be included in BIDS (Brain Imaging Data Structure) datasets https://bids.neuroimaging.io as
described in Chapter 6: Infrastructure and tools.

1.2 1.2. Brief history of HED

HED was originally proposed by Nima Bigdely-Shamlo in 2010 to support annotation in HeadIT an early public
repository for EEG data hosted by the Swartz Center for Computational Neuroscience, UCSD (Bigdely-Shamlo et al.,
2013). HED-1G was partially based on CogPO (Turner and Laird, 2012).

Event annotation in HED-1G was organized around a single hierarchy whose root was the Time-Locked Event.
Users could extend the HED-1G hierarchy at its deepest (leaf) nodes. First generation HED (HED-1G, versions <
4.0.0) attempted to describe events using a strictly hierarchical vocabulary.

HED-1G was oriented toward annotating stimuli and responses, but its lack of orthogonality in vocabulary design
presented major difficulties. If Red/Triangle and Green/Triangle are terms in a hierarchy, one is also likely to
need Red/Square and Green/Square as well as other color and shape combinations.

HED-2G (versions 4.0.0 - 7.x.x) introduced a more orthogonal vocabulary, meaning that independent terms were in
different subtrees of the vocabulary tree. Separating independent concepts, such as shapes and colors into separate
hierarchies, eliminates an exponential vocabulary growth due to term duplication in different branches of the hierarchy.
The HED-2G represents a sub-tag system.

Parentheses were introduced so that terms could be grouped. Tools for validation and epoching based on HED tags
were built, and large-scale cross-study “mega-analyses” were performed. However, as more complicated and varied
datasets were annotated using HED-2G, the vocabulary started to become less manageable as HED tried to adapt to
more complex annotation demands.

In 2019, work began on a rethinking of the HED vocabulary design, resulting in the release of the third generation of
HED (HED-3G) in August 2021. HED-3G represents a dramatic increase in annotation capacity, but also a significant
simplification of the user experience.

New in HED (versions 8.0.0+).

1. Improved vocabulary structure

2. Short-form annotation

3. Library schema

4. Definitions

5. Temporal scope

6. Encoding of experimental design

Following basic design principles, the HED Working Group redesigned the HED vocabulary tree to be organized in
a balanced hierarchy with a limited number of subcategories at each node. Use the expandable schema browser to
browser the vocabulary and explore the overall organization. Chapter2:Terminology defines some important HED tags
and terminology used in HED.

A major improvement in vocabulary design was the adoption of the requirement that individual nodes or terms in the
HED vocabulary must be unique. This allows users to use individual node names (short form) rather than the full paths
to the schema root during annotation, resulting in substantially simpler, more readable annotations.

4 Chapter 1. 1. Introduction to HED

https://bids.neuroimaging.io
https://headit.ucsd.edu
https://www.hedtags.org/display_hed.html

HED specification, Release 3.1.0

To enable and regulate the extension process, HED library schemas were introduced to allow detailed annotation of
terms importance to individual user communities without complicating the standard schema. For example, researchers
who design and perform experiments to study brain and language, brain and music, or brain dynamics in natural or
virtual reality environments have specialized vocabulary requirements. The HED library schema concept may also be
used to extend HED annotation to encompass specialized vocabularies used in clinical research and practice.

HED-3G also introduced a number of advanced tagging concepts that allow users to represent events with temporal
duration, as well as annotations that represent experimental design.

1.3 1.2. Goals of HED

An event is a process that unfolds over time and represents something that happens. Events are typically measured by
noting sequences of time points (event markers) marking specific transition points.

HED annotation documents what happens at these event markers in order to facilitate data analysis and interpretation.
Commonly recorded event markers in electrophysiological data collection include the initiation, termination, or other
features of sensory presentations and participant actions.

Other events may be unplanned environmental events such as noise and vibration from construction work unrelated
to the experiment, laboratory device malfunction, changes in experiment control parameters as well as data features
and control mishaps that cause operation to fall outside of normal experiment parameters. The goals of HED are to
provide a standardized annotation and supporting infrastructure.

Goals of HED.

1. Document the exact nature of events (sensory, behavioral, environmental, and other) that occur during recorded
time series data in order to inform data analysis and interpretation.

2. Describe the design of the experiment including participant task(s).

3. Relate event occurrences both to the experiment design and to participant tasks and experience.

4. Provide basic infrastructure for building and using machine-actionable tools to systematically analyze data
associated with recorded events in and across data sets, studies, paradigms, and modalities.

A central goal of HED is to enable building of archives of brain imaging data in a form amenable to new forms of larger
scale analysis, both within and across studies. Such event-related analysis requires that the nature(s) of the recorded
events be specified in a common language. The HED project seeks to formalize the development of this language, to
develop and distribute tools that maximize its ease of use, and to inform new and existing researchers of its purpose
and value.

Most experiments have a limited number of distinct event types, which are often identified in the original experiment
by local event codes. The strategy for assigning local codes to individual events depends on the format of the data
set. However, in practice, HED tagging usually involves annotating a few event types or codes for an entire study, not
tagging individual instances of events in individual data recordings.

1.3. 1.2. Goals of HED 5

HED specification, Release 3.1.0

1.4 1.3. HED design principles

The near decade-long effort to develop effective event annotation for neurophysiological and behavioral data, culmi-
nating to date in HED-3G, has revealed the importance of four principles (aka the PASS principles), all of which have
roots in other fields:

The PASS principles for HED design.

1. Preserve orthogonality of concepts in specifying vocabularies.

2. Abstract functionality into layers (e.g., more general vs. more specific).

3. Separate content from presentation.

4. Separate implementation from the interface (for flexibility).

Orthogonality, the notion of keeping independently applicable concepts in separate hierarchies (1 above), has long been
recognized as a fundamental principle in reusable software design, distilled in the design rule: Favor composition over
inheritance (Gamma et al. 1994).

Abstraction of functionality into layers (2) and separation of content from presentation (3) are well-known principles
in user-interface and graphics design that allow tools to maintain a single internal representation of needed information
while emphasizing different aspects of the information when presenting it to users.

Similarly, making validation and analysis code independent of the HED schema (4) allows redesign of the schema
without having to re-implement the annotation tools. A well-specified and stable API (application program interface)
empowers tool developers.

1.5 1.4. Specification organization

This specification is meant to provide guidelines for tool-builders as well as HED annotators. Chapter 2: Terminology
reviews the basic terminology used in HED, and Chapter 3: HED formats specifies the formats for HED vocabularies
and annotations. Basic and advanced event models and their annotations are explained in Chapter 4: Basic annotation
and Chapter 5: Advanced annotation. Chapter 6: Infrastructure and tools discussions how tags should be handled
by HED-compliant tools. Chapter 7: Library schemas discusses the basic rules for library schema creation.

Appendix A: Schema format provides a reference manual for the HED schema format rules, and Appendix B: HED
errors gives a complete listing of HED error codes and their meanings. A common set of test cases for these errors is
available in error_tests directory of the hed-specification GitHub repository.

Other resources include a comprehensive list of HED resources including additional documentation, tutorials and code
examples.

All HED source code and resources are open-source and staged in the HED Standards Organization GitHub repository
https://github.com/hed-standard.

6 Chapter 1. 1. Introduction to HED

https://github.com/hed-standard/hed-specification/tree/master/docs/source/_static/data/error_tests
https://github.com/hed-standard/hed-specification
https://www.hed-resources.org
https://github.com/hed-standard

CHAPTER

TWO

2. HED TERMINOLOGY

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this specification are to be interpreted as described in [RFC2119].

This specification uses a list of terms and abbreviations whose meaning is clarified here. Note: We here hyphenate
multi-word terms as they appear in HED strings themselves; in plain text usage they may not need to be hyphenated.
Starred variables [*] correspond to actual HED tags.

2.1 Agent [*]

A person or thing, living or virtual, that produces (or appears to participants to be ready and capable of producing)
specified effects. Agents include the study participants from whom data is collected. Virtual agents may be human or
other actors in virtual-reality or augmented-reality paradigms or on-screen in video or cartoon presentations (e.g., an
actor interacting with the recorded participant in a social neuroscience experiment, or a dog or robot active in a live
action or animated video).

2.2 Condition-variable [*]

An aspect of the experiment that is set or manipulated during the experiment to observe an effect or to manage bias.
Condition variables are sometimes called independent variables.

2.3 Control-variable [*]

An aspect of the experiment that is fixed throughout the study and usually is explicitly controlled.

2.4 Dataset

A set of neuroimaging and behavioral data acquired for a purpose of a particular study. A dataset consists of data
recordings acquired from one or more subjects, possibly from multiple sessions and sensor modalities. A dataset is
often referred to as a study.

7

https://www.ietf.org/rfc/rfc2119.txt

HED specification, Release 3.1.0

2.5 Event [*]

Something that happens during the recording or that may be perceived by a participant as happening, to which a time of
occurrence (most typically onset or offset) can be identified. Something expected by a participant to happen at a certain
time that does not happen can also be a meaningful recording event. The nature of other events may be known only to
the experimenter or to the experiment control application (e.g., undisclosed condition changes in task parameters).

2.6 Event-context [*]

Circumstances forming or contributing to the setting in which an event occurs that are relevant to its interpretation,
assessment, and consequences.

2.7 Event marker

A time point relative to the experimental timeline that can be associated with an annotation. Often such a marker
indicates a transition point for some underlying event process.

2.8 Event-stream [*]

A named sequence of events such as all the events that are face stimuli or all of the events that are participant responses.

2.9 Experiment-participant [*]

A living agent, particularly a human from whom data is acquired during an experiment, though in some paradigms
other human participants may also play roles.

2.10 Experimental-trial [*]

A contiguous data period that is considered a unit used to observe or measure something, typically a data period
including an expected event sequence that is repeated many times during the experiment (possibly with variations).
Example: a repeating sequence of stimulus presentation, participant response action, and sensory feedback delivery
events in a sensory judgment task.

2.11 HED schema [*]

A formal specification of the vocabulary and rules of a particular version of HED for use in annotation, validation, and
analysis. A HED schema is given in XML (.xml) format. The top-level versioned HED schema is used for all HED
event annotations. Named and versioned HED library schema may be used as well to make use of descriptive terms
used by a particular research community. (For example, an experiment on comprehension of connected speech might
annotate events using a grammatical vocabulary contained in a linguistics HED schema library.)

8 Chapter 2. 2. HED terminology

HED specification, Release 3.1.0

2.12 HED string

A comma-separated list of HED tags and/or tag-groups.

2.13 HED tag

A valid path along one branch of a HED vocabulary hierarchy. A valid long-form HED tag is a slash-separated path
following the schema tree hierarchy from its root to a term along some branch. Any suffix of a valid long-form
HED tag is a valid short-form HED tag. No white space is allowed within terms themselves. For example, the long
form of the HED tag specifying an experiment participant is: Property/Agent-property/Agent-task-role/
Experiment-participant. Valid short-form tags are Experiment-participant, Agent-task-role/
Experiment-participant, and Agent-property/Agent-task-role/Experiment-participant. HED tools
should treat long-form and short-form tags interchangeably.

2.14 Indicator-variable [*]

An aspect of the experiment or task that is measured or calculated for analysis. Indicator variables, sometimes called
dependent variables, can be data features that are calculated from measurements rather than aspects that are directly
measured.

2.15 Parameter [*]

An experiment-specific item, often a specific behavioral or computer measure, that is useful in documenting the analysis
or assisting downstream analysis.

2.16 Recording [*]

A continuous recording of data from an instrument in a single session without repositioning the recording sensors.

2.17 Tag-group

One or more valid, comma-separated HED tags enclosed in parentheses to indicate that these tags belong together.
Tag-groups may contain arbitrary nestings of other tags and tag-groups.

2.18 Task [*]

A set of structured activities performed by the participant that are integrally related to the purpose of the experiment.
Tasks often include observations and responses to sensory presentations as well as specified actions in response to
presented situations.

2.12. HED string 9

HED specification, Release 3.1.0

2.19 Temporal scope

The time interval between the start and end of an event process. Often the start time is annotated with the Onset tag,
and the end time is annotated with the Offset tag. Since in practical terms the time is measured in discrete samples,
the temporal scope includes the start time sample but does not include the end time sample.

2.20 Time-block [*]

A contiguous portion of the data recording during which some aspect of the experiment is fixed or noted.

10 Chapter 2. 2. HED terminology

CHAPTER

THREE

3. HED FORMATS

This chapter describes the requirements and formats for HED schema and HED annotations.

3.1 3.1. HED schema format

A HED schema is a formal specification of a HED vocabulary and annotation format rules. A HED schema vocabulary
is organized hierarchically so that similar concepts and terms appear close to one another in the organizational hierarchy.

HED schema nodes must satisfy an “is-a” relationship with their parent nodes in the schema. That is, if node A is an
ancestor of node B in the schema, then B is a type of A. This relationship is fundamental to HED and permits search
generality. Searches for A are able to also return instances of B.

A key requirement for third generation HED (versions >=8.0.0) is that all node names (tag terms) in the HED schema
(except for # placeholders) must be unique.

Additional details about HED schema format can be found in appendix A. Schema format details

3.1.1 3.1.1. Official schema releases

The HED ecosystem supports a standard base schema and additional discipline-specific library schemas. (See the
expandable schema viewer to explore existing schemas.)

Releases of the HED standard base schema are stored in standard_schema/hedxml directory of the hed-schemas
repository.

Releases of a HED library schemas are stored in a subdirectory of library_schemas whose name is the library name.

3.1.2 3.1.2. Schema layout overview

Schemas can be specified in either .mediawiki or .xml format. Online tools provide an easy way for users to validate
schema and convert between formats.

HED schema developers usually use .mediawiki format for more convenient editing, display, and viewing on GitHub.
However, the stable links provided for tools to access and download the HED schema are to the XML versions. Both
formats must be available and synchronized in the hed/standard/hed-schemas GitHub repository.

Regardless of the format, a valid HED schema must have the following sections in this order:

Required sections of a HED schema (in the required order):

11

https://www.hedtags.org/display_hed.html
https://github.com/hed-standard/hed-schemas/tree/main/standard_schema/hedxml
https://github.com/hed-standard/hed-schemas
https://github.com/hed-standard/hed-schemas/tree/main/library_schemas
https://hedtools.ucsd.edu/hed/schema
https://github.com/hed-standard/hed-schemas

HED specification, Release 3.1.0

Section Mediawiki format XML format
Header line HED version="8.0.0" <HED version="8.0.0">
Prologue '''Prologue''' <prologue> ... </prologue>
Schema start !# start schema <schema> . . .
Schema end !# end schema </schema>
Unit classes '''Unit classes''' <unitClassDefinitions> . . . </unitClassDefinitions>
Unit modifiers '''Unit

modifiers'''
<unitModifierDefinitions> . . . </
unitModifierDefinitions>

Value classes '''Value classes''' <valueClassDefinitions> . . . <valueClassDefinitions>
Schema at-
tributes

'''Schema
attributes'''

<schemaAttributeDefinitions> . . . </
schemaAttributeDefinitions>

Properties '''Properties''' <propertyDefinitions> . . . </propertyDefinitions>
Epilogue '''Epilogue''' <epilogue> . . . </epilogue>
Ending line !# end hed </HED>

The sections in the .xml version must always be terminated by closing </ > tokens, whereas the sections of the .
mediawiki version, which is line-oriented, are terminated when the next section begins (#!) or a top tag (''') is
encountered.

The actual HED tag specifications (referred to in the discussion as nodes or tag terms) appear in the schema section,
while the remaining sections specify additional information and behavior. These additional sections are required, but
are allowed to be empty.

If any of the required sections of the schema are missing or out of order, a SCHEMA_SECTION_MISSING error
occurs.

Each of the schema sections has “schema attributes”, which are the attributes that may be assigned to ele-
ments in a given section. If a schema attribute is applied improperly to an element in a given section, the
SCHEMA_ATTRIBUTE_INVALID error occurs.

See Appendix A. Schema format details for additional details.

3.1.2.1 3.1.2.1. The header

The schema header line specifies the version, which must satisfy semantic versioning. See
SCHEMA_VERSION_INVALID.

If the schema is a library schema rather than the standard schema, the library name must be included. Library names
should be lowercase and may only contain alphabetic characters. Library names must contain only alphabetic lowercase
characters and should be short and descriptive. See LIBRARY_NAME_INVALID.

A schema’s library name or lack there of is used to locate the schema in the HED schema repository located in the
hed-schemas GitHub repository.

The header line may optionally include an XSD namespace specification. If the schema contains any additional unrec-
ognized attributes, SCHEMA_HEADER_INVALID error occurs.

12 Chapter 3. 3. HED formats

https://github.com/hed-standard/hed-schemas

HED specification, Release 3.1.0

3.1.2.2 3.1.2.2. The prologue

The prologue should contain a concise introduction to the schema and its purpose. Together with the epilogue section,
the contents are used by tools to provide information about the schema to the users.

The prologue may only contain the following: letters, digits, blank, comma, newline, +, -, :, ;, ., /, (,), ?, *, %, $, @ or
a SCHEMA_CHARACTER_INVALID error occurs.

3.1.2.3 3.1.2.3. The schema section

The schema section contains the actual vocabulary contents of the schema. Each element in this section is a node
element, which we will also call a tag term. The location of the node element within the section specifies its relationship
to other tag terms in the schema.

A node element specifies a name, node attributes, and an informative description of the tag term’s meaning.
A node name may only contain alphanumeric characters, hyphen, and underscore. An exception to this is
the # character which is used to represent a placeholder for a value to be provided during annotation. See
SCHEMA_CHARACTER_INVALID and

Each schema node element must be unique or a SCHEMA_DUPLICATE_NODE error is generated.

3.1.2.4 3.1.2.4. Unit classes and units

The unit classes are attributes that modify the # schema placeholder nodes. The unit class definition section specifies
the allowed unit classes for the schema as well as the associated units that can be used with tags that take values.

Only the singular version of each unit is explicitly specified, but the corresponding plurals of the explicitly mentioned
singular version are also allowed (e.g., feet is allowed in addition to foot). HED uses a pluralize function available
in both Python and Javascript to check validity.

Units may be in one of four forms as designated by their unit type attributes:

Unit type Unit type attributes
SI unit only SIUnit
SI unit symbol both SIUnit and unitSymbol
unit that is not an SI unit no unit type attribute
unit symbol is not an SI unit only unitSymbol

Most units appear after the value in annotations. However, certain units such as $ appear before their corresponding
values. These units have the unitPrefix attribute.

If a unit class, SIUnit, or unitPrefix attribute appears in a section other than the unit class definition section of the
schema, a SCHEMA_ATTRIBUTE_INVALID error occurs. See appendix A.1.1. Unit classes and units for additional
details and a listing.

Units are not case-sensitive, but unit symbols maintain their case.

3.1. 3.1. HED schema format 13

HED specification, Release 3.1.0

3.1.2.5 3.1.2.5. Unit modifiers

The unit modifier definition section lists the SI unit multiples and submultiples that are allowed to be prepended to
units that have the SIUnit schema attribute.

Unit modifiers can only be used with SI units and SI unit symbols. SI unit modifiers used with ordinary SI units have
the SIUnitModifier attribute, while unit modifiers used with SI unit symbols have the SIUnitSymbolModifier
attribute.

If a SIUnitModifier, or SIUNitSymbolModifier attribute appears in a section other than `unit modifier section of
the schema, a SCHEMA_ATTRIBUTE_INVALID error occurs.

Unit modifiers are case-sensitive.

See appendix A.1.2. Unit modifiers for additional details and a listing of values for the standard schema.

3.1.2.6 3.1.2.6. Value classes

The value class definition section specifies rules for the values that are substituted for placeholders (#). Examples are
special characters that are allowed for numeric values or dates. Placeholders that have no valueClass attributes, are
assumed to take textClass values.

See appendix A.1.3. Value classes for additional details and a listing of values for the standard schema.

3.1.2.7 3.1.2.7. Schema attributes

The schema attribute definition section lists the schema attributes that may be applied to schema elements in other
sections of the schema (except for the properties section).

The specification of which type of schema elements a particular schema attribute may apply to is speci-
fied by its schema properties. If a schema attribute appears in a section contradicted by its properties, a
SCHEMA_ATTRIBUTE_INVALID error occurs.

See appendices A.1.4. Schema attributes and A.1.5. Schema properties for additional details and a listing for the
standard schema.

3.1.2.8 3.1.2.8. Schema properties

The schema properties section lists the allowed properties of the schema attributes. These properties help tools validate
certain requirements directly based on the HED schema rather than on a hard-coded implementation.

There are two types of properties: form type and section type properties. The boolProperty is a form type property
indicating that a schema attribute does not take a value. Rather, its presence indicates true and absence indicate false.

The section type properties indicate the sections in which a schema attribute may appear. The section properties include
unitClassProperty, unitModifierProperty, unitProperty, and valueClassProperty. Schema attributes
without any section properties are assumed to apply to node elements.

A schema attribute may have multiple section properties, indicating that the attribute may appear as an attribute in
multiple sections of the schema.

See A.1.4 Schema attributes and A.1.5. Schema properties for information and a listing of schema attributes and their
respective properties.

14 Chapter 3. 3. HED formats

HED specification, Release 3.1.0

3.1.2.9 3.1.2.9. The epilogue

The epilogue should give license information, acknowledgments, and references.

The epilogue may only contain the following: letters, digits, blank, comma, newline, +, -, :, ;, ., /, (,), ?, *, %, $, @ or
a SCHEMA_CHARACTER_INVALID error occurs.

3.1.3 3.1.3. Naming conventions

The different parts of the HED schema have different rules for the characters and the names that are allowed.

UTF-8 characters are not supported.

3.1.3.1 3.1.3.1. Node elements

Schema designers and users that extend HED schema or develop library schema will be mainly concerned with nodes
(tag terms) found in the schema section. The names of these elements must conform to the rules for nameClass.

Other conventions and requirements for the contents of schema node elements are as follows:

Naming conventions for nodes (tag terms) in HED schema.

1. By convention, the first letter of a schema node (tag term) should be capitalized with the remainder lower case.

2. Schema node names consisting of multiple words may not contain blanks and should be hyphenated.

3. Schema descriptions should be concise sentences, possibly with clarifying examples.

4. Schema descriptions may include characters allowed by textClass as well as commas. They may not contain
square brackets, curly braces, quotes, or other characters.

3.1.3.2 3.1.3.2. Epilogue and prologue

The epilogue and prologue section text must conform to the rules for textClass. The section text may have new lines,
which are preserved.

3.1.3.3 3.1.3.3. Naming in other blocks

The names of elements corresponding to schema attributes, schema properties, unit classes, and value classes should
start with a lower case letter, with the remainder in camel case.

Units and unit modifiers follow the naming conventions of the units they represent.

Case is preserved for unit modifiers, as uppercase and lowercase versions often have distinct meanings. The case for
unit symbols is also maintained.

3.1. 3.1. HED schema format 15

HED specification, Release 3.1.0

3.1.4 3.1.4. Mediawiki schema format

Mediawiki is a markdown-like format that was selected as the HED schema editing format because of its flexibility
and ability to represent nested or hierarchical relationships.

The format is line-oriented, so each schema entry should be on a single line.

The schema must follow the layout described in the previous section. All sections are required, although they may be
empty.

Top nodes in the schema are enclosed by pairs of three single quotes ('''). The levels of other nodes are designated
by the number of asterisks (*) at the beginning of the respective defining lines. Each term is separated from its level-
indicating asterisks by a single space.

Descriptions, which are enclosed in square brackets ([]), indicate the meaning of the item they modify. The de-
scriptions are displayed to users by schema browsers and other tools, so every effort should be made to make them
informative and clear.

Attributes are enclosed with curly braces ({ }). These attributes provide additional rules about how the item and
modifying values should be used and handled by tools.

If an attribute or property is referenced in the schema, it must be defined in the appropriate definition section of the
schema, or schema processing tools will generate a SCHEMA_ATTRIBUTE_INVALID error.

Allowed HED node attributes include unit class and value class values as well as HED schema attributes that
do not have one of the following modifiers: unitClassProperty, unitModifierProperty, unitProperty, or
valueClassProperty. Note: schema attributes having the elementProperty may apply anywhere in the schema,
including the schema header, schema attributes having the nodeProperty may only apply to node elements.

HED schema attributes that have the boolProperty appear with just their name in the schema element they are mod-
ifying. The presence of such an attribute indicates that it is true or present.

HED schema attributes that do not have the boolProperty are specified in the form of a name=value pair. If multiple
values of a particular attribute are applicable, they should be specified as name-value pairs separated by commas within
the curly braces.

The following example shows a simple HED schema in .mediawiki format.

Example: Example HED schema in .mediawiki format.

HED version="8.0.0"

'''Prologue'''
This prologue introduces the schema.

!# start schema
'''Event''' <nowiki>[Something that happens at a given place and time.]</nowiki>
* Sensory-event <nowiki>{suggestedTag=Task-event-role,suggestedTag=Sensory-presentation}
→˓[Something perceivable by an agent.]</nowiki>

. . .
'''Property'''<nowiki>{extensionAllowed}[A characteristic.] </nowiki>
* Informational-property <nowiki>[A quality pertaining to information.]</nowiki>
** Label <nowiki>[A string of 20 or fewer characters.]</nowiki>
*** <nowiki># {takesValue}</nowiki>
!# end schema

'''Unit classes''' <nowiki>[Unit classes and units for the nodes.]</nowiki>
. . .

(continues on next page)

16 Chapter 3. 3. HED formats

https://www.mediawiki.org/wiki/Cheatsheet

HED specification, Release 3.1.0

(continued from previous page)

'''Unit modifiers''' <nowiki>[Unit multiples and submultiples.]</nowiki>
. . .

'''Value classes''' <nowiki>[Rules for the values provided by users.]</nowiki>
. . .

'''Schema attributes''' <nowiki>[Allowed node attributes.]</nowiki>
* extensionAllowed <nowiki>{boolProperty}[Attribute indicating that users can add child␣
→˓nodes.]</nowiki>
* suggestedTag <nowiki>[Attribute indicating another tag that is often associated with␣
→˓this tag.]</nowiki>
* takesValue <nowiki>{boolProperty}[Attribute indicating a placeholder to be replaced by␣
→˓a user-defined value.] </nowiki>

. . .
'''Properties''' <nowiki>[Properties of the schema attributes.]</nowiki>
* boolProperty <nowiki>[Indicates a schema attribute represents a boolean.]</nowiki>

. . .
'''Epilogue'''
An optional section that is the place for notes and is ignored in HED processing.

!# end hed

In the above example, Property in the schema section is a top node because it appears enclosed by three single quotes,
while Informational-property is a first-level node because its defining line begins with a single asterisk (*).

Sensory-event in the schema section has a suggestedTag attribute (shown in curly braces). Similarly, Property
has an extensionAllowed attribute, and the # placeholder has a takesValue attribute. The schema attributes
section must include definitions of suggestedTag, extensionAllowed and takesValue or the schema will not
validate.

The definition of the takesValue attribute has boolProperty, so a definition of boolProperty must be included
in the Properties section or the schema will not validate.

Everything after each HED node (tag term) must be enclosed by <nowiki></nowiki>markup elements. The contents
within these markup elements include the description and attributes.

Within the HED schema a # node indicates that the user must supply a value consistent with the unit and value class at-
tributes of the # node during annotation. Lines with hashtag (#) placeholders should have everything after the asterisks,
including the # placeholder, enclosed by <nowiki></nowiki> markup elements.

Additional details and rules can be found in appendix A.2 Mediawiki file format

3.1.5 3.1.5. XML schema format

The .xml format directly mirrors the order and information in the .mediawiki version of the schema.

The <node> elements of the schema represent the HED tags (tag terms), with remaining schema elements specifying
additional information and properties.

Each <node> element must have a <name> child element corresponding to the HED tag term that it specifies.

A <node> element should also have a <description> child element whose content corresponds to the text that appears
in square brackets ([]) in the .mediawiki version.

The schema attributes, which appear as name values or name-value pairs enclosed in curly braces ({ }) in the .
mediawiki file, are translated into <attribute> child elements of <node> in the .xml. These <attribute> ele-

3.1. 3.1. HED schema format 17

HED specification, Release 3.1.0

ments always have a <name> element child and also have a <value> element if the corresponding schema attribute
does not have boolProperty.

The following is a translation of the .mediawiki example from the previous section in the HEDXML format.

Example: XML version of the example schema in the previous section.

<?xml version="1.0" ?>
<HED version="8.0.0">

<prologue>This prologue introduces the schema.</prologue>
<schema>

<node>
<name>Event</name>
<description>Something that happens at a given place and time.</description>
<node>

<name>Sensory-event</name>
<description>Something perceivable by an agent.</description>
<attribute>

<name>suggestedTag</name>
<value>Task-event-role</value>

</attribute>
</node>

</node>
. . .

<node>
<name>Property</name>
<description>A characteristic of some entity.</description>
<attribute>

<name>extensionAllowed</name>
</attribute>
<node>

<name>Informational-property</name>
<description>A quality pertaining to information.</description>
<node>

<name>Label</name>
<description>A string of less than 20.</description>
<node>

<name>#</name>
<attribute>

<name>takesValue</name>
</attribute>

</node>
</node>

</node>
</node>

</schema>
<unitClassDefinitions></unitClassDefinitions>
<unitModifierDefinitions></unitModifierDefinitions>
<valueClassDefinitions></valueClassDefinitions>
<schemaAttributeDefinitions>

<schemaAttributeDefinition>
<name>extensionAllowed</name>
<description>Attribute indicating that users can add child nodes.</

(continues on next page)

18 Chapter 3. 3. HED formats

HED specification, Release 3.1.0

(continued from previous page)

→˓description>
<property>

<name>boolProperty</name>
</property>

</schemaAttributeDefinition>
<schemaAttributeDefinition>

<name>suggestedTag</name>
<description>Attribute indicating another tag that is often associated with␣

→˓this tag.</description>
</schemaAttributeDefinition>
<schemaAttributeDefinition>

<name>takesValue</name>
<description>Attribute indicating a placeholder to be replaced by a user-

→˓defined value.</description>
<property>

<name>boolProperty</name>
</property>

</schemaAttributeDefinition>
</schemaAttributeDefinitions>
<propertyDefinitions>

<propertyDefinition>
<name>boolProperty</name>
<description>Attribute indicating a placeholder to be replaced by a user-

→˓defined value.</description>
</propertyDefinition>

</propertyDefinitions>
<epilogue>This epilogue is a place for notes and is ignored in HED processing.</

→˓epilogue>
</HED>

Additional details and rules can be found in appendix A.3 XML file format

3.2 3.2. HED annotation format

HED annotations are comma-separated strings of HED tags drawn from a HED schema vocabulary. HED validators
and other tools use the information encoded in the relevant schema when performing validation and other processing
of HED annotations.

Users must provide the version of the HED schema they are using when creating an annotation.

3.2. 3.2. HED annotation format 19

HED specification, Release 3.1.0

3.2.1 3.2.1. Vocabulary organization

HED (Hierarchical Event Descriptors) are nodes (tag terms) organized hierarchically under their respective root or top
nodes. In HED versions >= 8.0.0 these top nodes are: Event, Agent, Action, Item, Property, and Relation. Each
top node and its subtree represent distinct is-a relationships for the vocabulary schema.

The Event subtree tags indicate the general event category, such as whether it is a sensory event, an agent action, a
data feature, or an event indicating experiment control or structure.

The HED annotations describing each event may be assembled from a number of sources during processing and the
annotations associated with a single event marker may represent multiple events.

Many analysis tools use the Event tags as a primary means of segregating, epoching, and processing the data. Ideally,
tags from the Event subtree should appear at the top level of the HED annotation describing an event to facilitate
analysis.

The Agent subtree tags indicate the types of agents (e.g., persons, animals, avatars) that take an active role or produce
a specified effect. An Agent tag should be grouped with property tags that provide information about the agent, such
as whether the agent is an experiment participant.

The Action subtree tags indicate actions performed by agents. Generally these are grouped in a triple (A, (Action, B))
which is interpreted as A does Action on B. If the action does not have a target, it should be annotated (A, (Action)),
meaning A does Action.

The Item subtree tags represent things with (actual or virtual) physical existence such as objects, sounds, or language.

Descriptive tags are organized in the Property subtree. These descriptive tags should always be grouped with the tags
they describe using parentheses.

Binary relations are in the Relation subtree. Like items from the Action subtree, these should be annotated using
(A, (Relation, B)).

3.2.2 3.2.2. Tag forms

A HED tag is a term in the HED vocabulary identified by a path consisting of the individual node names from some
branch of the HED schema hierarchy separated by forward slashes (/).

Valid HED tags do not have leading or trailing forward slashes (/). A HED tag path may also not have consecutive
forward slashes.

An important requirement of third generation HED (versions >= 8.0.0) is that the node names in the HED schema must
be unique. As a consequence, the user may specify as much of the path to the root as desired when using the tag in
annotation.

The full path version is referred to as long form, and the version with only the final tag element (excluding placeholder)
is called short form.

Any intermediate form of the tag path is also allowed as illustrated by this example:

Examples of allowed forms of HED tags with and without values.

Short-
form

Intermediate form(s) Long-form

Cough Move/Breathe/Cough Breathe/Cough Action/Move/Breathe/Cough
Weight/3
lbs

Data-property/Data-value/Physical-value/Weight/3 lbs Data-
value/Physical-value/Weight/3 lbs Physical-value/Weight/3 lbs

Property/Data-property/Data-
value/Physical-value/Weight/3
lbs

20 Chapter 3. 3. HED formats

HED specification, Release 3.1.0

HED tools are available to map between shortened and long forms as needed. The tag must be associated with a schema
and must correspond to a path in the schema (excluding any extension or value).

See NODE_NAME_EMPTY for errors involving forward slashes (/) and TAG_INVALID for other types of tag syntax
errors.

3.2.3 3.2.3. Tag case-sensitivity

Although by convention tag terms start with a capital letter with the remainder being lower case, tag processing is
case-insensitive. This convention makes annotation strings more readable and is recommended for tag extensions.
Validators and other tools must treat tags containing the same characters, but different variations in capitalization as
equivalent.

The only exception to the case-insensitive processing rule is that the correct case of units should be preserved, both
during schema processing and during annotation processing. This rule is required because SI distinguishes symbols
and unit modifiers that differ in case.

3.2.4 3.2.4. Tags that take values

A HED tag that takes a value corresponds to a schema node whose unique child is a # leaf node. The actual schema
takesValue attribute appears on the # placeholder rather than on the tag itself.

These tags may appear with or without a value. When used with a value, the tag term is followed by a slash, followed
by a value.

A placeholder or its direct parent tag may not be extended in any other way. Thus, tags that have placeholder children
cannot be extended even if they inherit an extensionAllowed attribute from an ancestor. The parsers treat any child
of these tags as a value substituted for the placeholder rather than as a tag extension.

If a unitClass is specified as an attribute of the # node, then the units specified must be valid units for that unitClass.

The characters that may be used in the value that replaces the # placeholder must be in the union of the values allowed
by the valueClass attributes of the# node. If units are given, they may place additional restrictions on the allowed
values.

Units with the unitPrefix attribute, such as $, appear before the value. Units without the unitPrefix attribute
appear after the value. HED parsers assume that units are separated from values by a single blank regardless of
the position of the units.

Some unit classes have the defaultUnits attribute specifying the units that downstream analysis tools should assume
if units are omitted.

Additional checks may be made on the substituted values depending on the valueClass

valueClass Additional value checks
numericClass Must be a valid floating point number.
dateTimeClass Must be a valid ISO8601 value.

The values of HED tag placeholders cannot stand alone, but must include the parent when used in a HED string. For
example, the Label node in the HED schema has the # child. Thus, the value myLabel meant to substitute for the #
child of the Label node must include Label term when used in a HED tag (e.g., Label/myLabel not myLabel).

The values substituted for # may themselves be schema node names provided they conform with any value class re-
quirements associated with that #. Thus, Label/Item is a valid HED tag event though Item, itself, is a valid top tag.

3.2. 3.2. HED annotation format 21

HED specification, Release 3.1.0

It is the Label tag with its value Item and is unrelated to the Item HED tag. However, Data-maximum/Item is not
valid because the # child of Data-maximum has a valueClass=numericClass attribute and the Item value is not
numeric.

Certain unit classes allow other special characters in their value specification. These special characters are specified
in the schema with the allowedCharacter attribute. An example of this is the colon in the dateTimeClass value
class.

See VALUE_INVALID and UNITS_INVALID for information on the specific validation errors associated with tags
that take values.

3.2.5 3.2.5. Tag extensions

A tag extension, in contrast to a value, is a tag that users add as a child of an existing schema node as a more specific
term for an item already in the schema. For example, a user might want to use Helicopter instead of the more general
term Aircraft. Since Aircraft inherits the extensionAllowed attribute, users may use extended tags such as
Aircraft/Helicopter in their annotation. The requirements for such an extension are:

Warning: Requirements for tag extensions by users:

1. Unlike values, an extension term must not already be a node in the schema.

2. The extension term must only have alphanumeric, hyphen, or underbar characters so that it conforms to the
rules for a nameClass value.

3. The parent of the tag extension must always be included with the extended tag in annotation.

4. The extension term must satisfy the “is-a” relationship with its parent node.

5. The # placeholder cannot be used as an extension – in particular it cannot be used as a placeholder in defini-
tions or as value annotations in sidecars.

Note: The is-a relationship is not checked by validators. It is needed so that term search works correctly.

Tag extensions should follow the same naming conventions as those for schema nodes. See 3.1.3. Naming conventions
for more information about HED naming conventions. A STYLE_WARNING warning is issued for extension tags that
do not follow the HED naming convention.

Users should not use tag extension unless necessary for their application, as this breaks the commonality among anno-
tations across datasets. Please open an issue proposing that the new term be added to the schema in question, if you
think the term would be useful to other users.

See TAG_EXTENSION_INVALID for information on the specific validation errors associated invalid tag extensions.

Note: User tag extensions are sometimes accidental and due to misspelling, particularly when a long or intermediate
form of the tag is used. For this reason the TAG_EXTENDED warning is issued for extended tags during validation.

22 Chapter 3. 3. HED formats

https://github.com/hed-standard/hed-examples/issues

HED specification, Release 3.1.0

3.2.6 3.2.6. Tag prefixes

Users may select tags from multiple schemas, but additional schemas must be included in the HED version specification.

Users are free to use any alphabetic prefix and associate it with a specific schema in the HED version specification.
Tags from the associated schema must be prefixed with this name (followed by a colon) when used in annotation.

Terms from only one schema can appear in the annotation without a namespace prefix followed by a colon.

See TAG_PREFIX_INVALID for information on the specific validation errors associated with missing schemas.

See 7.4. Library schema in BIDS for an example of how the prefix notation is used in BIDS.

3.2.7 3.2.7. Strings and groups

A HED string is an unordered, comma-separated list of HED tags and/or HED tag groups.

A HED tag group is an unordered, comma-separated list of HED tags and/or tag groups enclosed in parentheses. Tag
groups may include other tag groups.

The validation errors for HED tags and HED strings are summarized in Appendix B: HED errors.

3.2.7.1 3.2.7.1. Parenthesis and order

Any ordering of HED tags and HED tag groups at the same level within a HED string is equivalent. Valid HED strings
may have parentheses nested to arbitrary levels (nested groups). The parentheses must be properly nested and matched.

Parentheses are meaningful and convey association. If A and B represent HED expressions, (A, B) is not equivalent to
the HED string A, B. The distinction should be preserved if possible. (A, B) means that HED tag A and HED tag B are
associated with each other, whereas A, B means that A and B are each annotating some larger construct.

Specific rules of association will be encoded in a future version of the HED specification.

See PARENTHESES_MISMATCH for validation errors result from improper use of parentheses.

3.2.7.2 3.2.7.2. Tag group attributes

A HED tag corresponding to a schema node with the tagGroup attribute must appear inside parentheses (e.g., must
be in HED tag group).

A HED tag corresponding to a schema node with the topLevelTagGroup must appear in an unnested HED group in
an assembled HED annotation. Only one tag with the topLevelTagGroup attribute may appear in the same top-level
group. The topLevelTagGroup attribute is usually associated with tags that have special meanings in HED such as
Definition and Onset.

See TAG_GROUP_ERROR for information on the group errors detected based on schema attributes.

3.2. 3.2. HED annotation format 23

HED specification, Release 3.1.0

3.2.7.3 3.2.7.3. Empty tags and groups

Empty parentheses and multiple commas with no intervening tags represent empty tags and are invalid, as are HED
strings with leading or trailing commas. Hence, if A and B are any HED expressions,
(A, ((B))) is valid but (A, ()) is not.

See TAG_EMPTY for information on the validation errors due to empty tags or groups. Some of these errors may be
reported as *COMMA_MISSING

3.2.7.4 3.2.7.4. Repeated expressions

Duplicated tag expressions at the same level in a HED tag group or HED string are not allowed. For example, the
expressions (Red, Blue, Red) and (Red, Blue), (Red, Blue) have duplicated tag expressions at the same level and are
hence invalid.

See TAG_EXPRESSION_REPEATED for more details on validation errors due to repeated tag expressions.

3.2.8 3.2.8. Special tags

3.2.8.1 3.2.8.1. The Definition tag

A HED definition is a tag group consist of a Definition tag that takes a value representing the definition’s name
and a tag group defining the concept. Each definition is independent and stands alone. The definition must contain a
non-empty tag group.

The Definition tag corresponds to a schema node with the topLevelTagGroup attribute, assuring that definitions
cannot be nested.

HED definitions may not contain any Def or Def-expand tags and must contain exactly one Definition tag. Multiple
definitions with the same definition name are not allowed.

The Definition tag must be extended with a value representing the definition name and may be additionally extended
by a # placeholder. If the definition name includes the # placeholder extension, then the defining tags must include
exactly one tag that takes a value along with its # placeholder.

Definitions with the same name are considered duplicate definitions regardless of whether one has a placeholder and
another does not. However, each distinct substituted value represents a distinct definition name for purposes of
Onset/Offset processing.

See DEFINITION_INVALID for a listing of situations in which a definition may be invalid.

See also Chapter 5.1 Creating definitions for more details and examples.

3.2.8.2 3.2.8.2. Def and Def-expand tags

A definition is incorporated into annotations using the tag Def/xxx where xxx is the definition’s name.

Alternatively, the annotator may use an expanded form (Def-expand/xxx, yyy) where xxx is the definition’s name
and yyy is a tag group containing the definitions contents.

The two usages are equivalent, and tools should be able to transform between the two representations. Note, how-
ever, that transforming from a Def to a Def-expand-group requires the definition, while transforming from a
Def-expand-group to Def form does not.

For definitions that include a placeholder, a value must be substituted for the # placeholder in Def and
Def-expand-group when final annotation assembly occurs.

24 Chapter 3. 3. HED formats

HED specification, Release 3.1.0

See DEF_INVALID and DEF_EXPAND_INVALID for details on the types of errors that occur with Def and
Def-expand.

See also Using definitions for more details and examples.

3.2.8.3 3.2.8.3. Onset and Offset tags

The Onset and Offset tags are used to represent the temporal extent of events that have non-zero duration. Each of
these tags must appear in a top level tag group with a Def or Def-expand-group anchor.

A tag group with an Onset represents the start of an event that extends over time. A tag group with an Offset represents
the end of an event that was previously initiated by an Onset group. A given event of temporal extent is also terminated
by the appearance of another Onset group with the same Def or Def-expand-group anchor.

The Onset tag group may only contain its Def or Def-expand-group anchor and at most one additional inner tag
group in addition to the Onset tag.

The Offset tag group may only contain its Def or Def-expand-group anchor in addition to the Offset tag.

These requirements imply that Onset and Offsetmust be the only tags in their tag group with the topLevelTagGroup
attribute. Onset and Offset tags correspond to schema nodes with the topLevelTagGroup attribute. This implies,
for example, that HED definition’s contents may not include Onset or Offset tags.

See ONSET_OFFSET_ERROR and TAG_GROUP_ERROR and for a listing of specific errors associated with onsets
and offsets.

Chapter 5.3.1 Using Onset and Offset in Chapter 5 gives examples of usage and additional details.

3.2.8.4 3.2.8.4. The Event-context tag

The Event-context tag corresponds to a schema node with both the topLevelTagGroup and unique attributes.
This implies that there can be only one Event-context group in each assembled event-level HED string. The
Event-context group contains information about what other events are ongoing at the time point associated with
the event marker for which the annotation is included.

In general, the Event-context group is not included in annotations, but is generated by tools during downstream
event processing.

See TAG_GROUP_ERROR and TAG_NOT_UNIQUE for additional information on validation errors related to
Event-context.

Additional details and examples for Event-context can be found in 5.5. Event contexts.

3.2.9 3.2.9. Sidecars

A sidecar is a dictionary that can be used to associate tabular file columns and their values with HED annotations. The
rows of tabular event files represent time markers on the experimental timeline, and the assembled annotations for each
row describe what happened at that time marker. A sidecar containing annotations associated with the columns of such
an event file allows HED tools to assemble HED annotations for each row in the file.

The rows of tabular files representing other types of information can also be annotated in the same way.

The “HED” key, which may only appear at the second level in the JSON dictionary, designates an entry that contains
HED annotations. “HED” keys that appear at other levels of the JSON sidecar are considered to be in error.

HED sidecar validation assumes that the dictionary is saved in JSON format and complies with the BIDS sidecar
format.

3.2. 3.2. HED annotation format 25

https://bids-specification.readthedocs.io/en/stable/appendices/hed.html

HED specification, Release 3.1.0

3.2.9.1 3.2.9.1. Sidecar entries

A BIDS sidecar is dictionary with many possible types of entries, three of which are relevant to HED. These entries all
have "HED" as a key in one or more second-level dictionaries.

Three types of JSON sidecar entries of interest to HED tools

• Categorical entries: are associated with a particular event file column and provide individual annotations for
each column value. The dictionary is not required to provide annotations for every possible value a categorical
column, although tools may choose to issue a warning if appropriate. The dictionary may also include annotations
for values that do not appear in the associated event file column.

• Value entries: are associated with a particular event file column and provide an annotation that applies to any
entry in the column. The HED annotation must contain a single # placeholder, and each individual column value
is substituted for the # in the annotation when the annotation for the entire row is assembled.

• Dummy entries: are similar in format to categorical entries, but are not associated with any event file columns.
Rather these annotations are mainly used to gather HED definitions.

HED definitions are required to be separated into dummy sidecar column entries. They may not appear in sidecar
entries containing tags other than definitions.

The sidecar does not have to provide a HED-relevant entry for every event file column. Columns with no corresponding
sidecar entry are skipped during assembly of the HED annotation for an event file row.

For compatibility with BIDS, tabular file column entries containing n/a are ignored. The sidecar is not permitted to
provide an annotation for n/a. Further, "HED" can only appear as a second-level dictionary key.

The following example illustrates the three types of JSON sidecar entries that are relevant to HED. Entries without a
"HED" key in the second level entry dictionaries are ignored.

Examples of the three types of sidecar annotation entries relevant to HED

{
"trial_type": {
"LongName": "Event category",
"Description": "Indicator of type of action that is expected",
"HED": {

"go": "Sensory-event, Visual-presentation, (Square, Blue)",
"stop": "Sensory-event, Visual-presentation, (Square, Red)"

}
},
"response_time": {

"LongName": "Response time after stimulus",
"Description": "Time from stimulus presentation until subject presses button",
"HED": "(Delay/# ms, Agent-action, (Experiment-participant, (Press, Mouse-

→˓button)))"
},
"dummy_defs": {

"HED": {
"MyDef1": "(Definition/Cue1, (Buzz))",
"MyDef2": "(Definition/Image/#, (Image, Face, Label/#))"

}
}

}

26 Chapter 3. 3. HED formats

https://bids.neuroimaging.io/

HED specification, Release 3.1.0

In the example, the trial_type key references a categorical entry. Categorical entries have keys corresponding to
the event file column names. The value of a categorical entry is a dictionary which has a "HED" key. In the above
example, the keys of this second dictionary are the values (go and stop) that appear in the trial_type column
of the event file. The values are the HED annotations associated with those values. Thus, the "Sensory-event,
Visual-presentation, (Square, Blue)" is the HED annotation associated with a go value in the trial_type
column of the associated event file.

The response_time key references a value annotation. Value entries have keys, one of which is "HED". Associated
with the "HED" key is a HED annotation value. There must be exactly one # placeholder in the annotation. The actual
value in the response_time column is substituted for the # when the annotation is needed.

The dummy_defs is an example of a dummy annotation. The value of this entry is a dictionary with a "HED" key
pointing to a dictionary. A dummy annotation is similar in form to a categorical annotation, but its keys do not
correspond to any event file column names. Rather it is used as a container to organize HED definitions.

In the example, Definition/Cue1 is a definition that does not use a placeholder (#) modifier in its name, while
Definition/Image/# is a definition whose name Image is modified by a placeholder value. Notice that Image is
both a definition name and an actual tag in the schema in this example. This is permitted.

3.2.9.2 3.2.9.2. Sidecar validation

As with other entities definitions should be removed from sidecars and validated separately, although validation error
messages for such definitions should be associated with the locations of the definitions in the sidecars.

HED categorical sidecar entries contain HED strings and should be validated in the same way.

HED value sidecar entries must contain exactly one # placeholder in the HED string annotation associated with the
entry. The # placeholder should correspond to a # in the HED schema, indicating that the parent tag (also included in
the annotation) expects a value.

If the placeholder is followed by a unit designator, the validator checks that these units are consistent with the unit class
of the corresponding # in the schema. The units are not mandatory.

Errors that are particularly relevant to sidecars include PLACEHOLDER_INVALID and SIDECAR_INVALID.

If the sidecar is missing an annotation for a categorical column value, the SIDECAR_KEY_MISSING warning is
generated.

3.2.10 3.2.10. Tabular files

A tabular file is a text file in which each line represents a row in a table. The column entries in a given row are separated
by tabs. Further, the first line of the file must contain a tab-separated list of column names, which should be unique.
This description of tabular file conforms to that used by BIDS.

Generally each row in a tabular file represents an item and the columns values provide properties of that item. The
most common HED-annotated tabular file represents event markers in an experiment. In this case each row in the file
represents a time at which something happened.

Another common HED-annotated tabular file represents experiment participants. In this case each row in the file
represents a participant, and the columns provide characteristics or other information about the participant identified
in that row.

In any case, the general strategy for validation or other processing is:

1. Process the individual components of the HED annotation (tag and string level processing).

2. Assemble the component annotations for a row (event or row level processing).

3.2. 3.2. HED annotation format 27

https://bids.neuroimaging.io/

HED specification, Release 3.1.0

3. Check consistency and relationships among the row annotations (file-level processing).

3.2.10.1 3.2.10.1. Tabular annotations

HED annotations in tabular files can occur both in a HED column within the file and in an associated JSON sidecar.

The HED strings that appear in a HED column must be valid HED strings.

Definitions many not appear in the HED column of a tabular file. Definitions may not appear in any entry of a JSON
sidecar corresponding to a column of the tabular file.

3.2.10.2 3.2.10.2. Event-level processing

After individual HED tags and HED strings in the HED column of tabular files and in the associated sidecars are validated
or otherwise processed, the HED strings associated with each row of the tabular file must be assembled to provide an
overall annotation for the row. We refer to this as event-level or row processing.

General procedure for event-level (row) processing.

1. Start with an empty list.

2. For each categorical column, the column value for the row is looked up in the sidecar. If an annotation for that
column value is available it is concatenated to the list.

3. For each value column, if a column an associated value entry in the sidecar, the row value is substituted for #
placeholder in the annotation and the result concatenated to the list.

4. If a HED column annotation exists for that row, it is concatenated to the list.

5. Finally, all the entries of the list are joined using a comma (,) separator.

In all cases n/a column values are skipped.

For an example, see How HED works in BIDS tutorial.

If the HED schema used for processing contains a schema node that has the required attribute, then the assembled
HED annotations for each row must include that tag. Currently, HED schema versions >= 8.0.0 do not contain any
nodes with the required attribute, and this attribute may be deprecated in future versions of the schema.

If the HED schema used for processing contains a schema node that has the unique attribute, then the assembled HED
annotations for each row must contain no more than one occurrence of that tag. Currently, only Event-context has
the unique attribute for HED schema versions >= 8.0.0.

See REQUIRED_TAG_MISSING and TAG_NOT_UNIQUE for information on the validation errors that may occur
with tags that have the required or unique schema attributes, respectively.

3.2.10.3 3.2.10.3 File-level processing

HED versions >= 8.0.0 allow annotation of relationships among rows in a tabular file. Hence, processing generally
requires that annotations for all the rows be assembled so that consistency can be checked.

To validate temporal scope, the validator must assure that each Onset and Offset tag is associated with an appropri-
ately defined identifier corresponding to a definition name. The validator must also check to make sure that Onset and
Offset tags are properly matched within the data recording. In particular every Offset tag group must correspond to
a preceding Onset tag group.

See ONSET_OFFSET_ERROR for details on the type of errors that are generated due to Onset and Offset errors.

28 Chapter 3. 3. HED formats

https://www.hed-resources.org/en/latest/BidsAnnotationQuickstart.html#how-hed-works-in-bids

CHAPTER

FOUR

4. BASIC ANNOTATION

This section illustrates the use of HED tags and discusses various tags that are used to document the structure and
organization of electrophysiological experiments. The simplest annotations treat each event as happening at a single
point in time. The annotation procedure for such events involves describing what happened during that event.

This chapter illustrates basic HED descriptions of four types of events that are often annotated using single event
markers: stimulus events, response events, experiment control events, and data features.

HED also allows more sophisticated models of events that unfold over time using multiple event markers. Downstream
analyses often look for neurological effects directly following (or preceding) event markers. The addition of HED
context, allows information about events that occur over extended periods of time to propagate to intermediate time
points. Chapter 5: Advanced annotation develops the HED concepts needed to capture these advanced models of
events as well as event and task inter-relationships.

4.1 4.1. Instantaneous events

This section describes HED annotation of events that are modeled as happening at an instant in time. Sometimes the
event marker corresponding to such an event is inserted in the data or held in an external event file containing the onset
time of some action, relative to the beginning of the data recording. We refer to these events as time-marked events.
The event marker may also point to the end/offset of some happening or to time between the onset and offset (for
example, the maximum velocity point in a participant arm movement or the maximum potential peak of an eye-blink
artifact).

A typical example of an experiment using time-marked event annotation is simple target in which geometric shapes
of different colors are presented on a computer screen at two-second intervals. After every visual shape presentation,
the subject is asked to press the left mouse button if the shape is a green triangle or the right mouse button otherwise.
After a block of 30 such presentation-response sequences (trials), the control software sounds a buzzer to indicate that
the subject can rest for 2 minutes before continuing to the next block of trials. After the experiment is completed, the
experiment runs an eyeblink-detection tool on the EEG data and inserts an event marker at the amplitude maximum of
each detected blink artifact.

4.2 4.2. Sensory presentations

The target detection experiment described above is an example of a stimulus-response paradigm: perceptually distinct
sensory stimuli are presented at precisely recorded times (typically with abrupt onsets) and ensuing and/or preceding
precisely-timed changes in the behavioral and physiological data streams are annotated or analyzed. Stimulus onsets
(typically) are annotated with the Sensory-event tag. Additional tags indicate task role. Separation of what an event
is (as designated by a tag from the Event subtree) from its task role (as indicated by other descriptive tags) is an
important design change that distinguishes HED-3G from earlier versions of HED and enables effective annotation in
more complex situations.

29

HED specification, Release 3.1.0

A stimulus event can be annotated at different levels of detail. When not needed, fine details can generally be ignored,
but once annotated can provide valuable information for later, possibly unanticipated analysis purposes. In a series
of examples, we will annotate successively more details about the experiment events. Each example shows both the
short form and long form. The elements in the long form that correspond to the short form are shown in bold-face. In
addition, the long form includes a Description tag, which is omitted from the short-form for readability.

The following example illustrates a very basic annotation of a stimulus event, indicating the stimulus is a green triangle
presented visually. The annotation states that this is a visual sensory event intended to be an experiment stimulus.
Sensory-event is in the Event rooted tree and indicates the general class that this event falls into.

Example: Version 1 of a visual stimulus annotation.

Short form:

Sensory-event, Experimental-stimulus, Visual-presentation, (Green, Triangle)

Long form:

Event/Sensory-event,
Property/task-property/Task-event-role/Experimental-stimulus,
Property/Sensory-property/Visual-presentation,
(Property/Sensory-property/Sensory-attribute/Visual-attribute/Color/CSS-color/Green-color/Green,
Item/Object/Geometric-object/2D-shape/Triangle),
Property/Informational-property/Description/An experimental stimulus consisting of
a green triangle is displayed on the center of the screen.

The example HED string above illustrates the most basic form of point event annotation. In general, the annotation for
each event should include at least one tag from the Event tree. If there are multiple sensory presentations in the same
event, a single Sensory-event tag covers the general category for all presentations in the event. The individual pre-
sentations (which may include different modalities) are grouped with their descriptive tags, while the Sensory-event
tag applies overall. In this case there is only one, so the grouping is not necessary.

The Experimental-stimulus is a Task-property tag. Whether a particular sensory event is an experiment stim-
ulus depends on the particular task, hence Experimental-stimulus is a Task-property. Sensory events that are
extraneous to the task can also occur, so it is important to distinguish those that are related to the intent of the task.

The remaining portion of the annotation describes what the sensory presentation is. The Green and Triangle tags are
grouped to indicate specifically that a green triangle is presented. Visual-presentation is a Sensory-property
tag from the Property rooted tree. The senses are impacted by the Sensory-event should always be indicated, even
if it appears to be obvious to the reader. The goal is to facilitate machine-actionable analysis.

HED has a number of qualitative relational tags designating spatial features such as Center-of, which should always
be included if possible. These qualitative terms provide clear search anchors for tools looking for general positional
characteristics. Hemispheric and vertical distinctions have particular neurological significance. More detailed size,
shape, and position information enhances the annotation. However, actual detailed information requires the specifica-
tion of a frame of reference, a topic not addressed by the current HED specification.

The order of the tags does not matter. HED strings are unordered lists of HED tags and tag groups. Where the
grouping of associated tags needs to be indicated, most commonly in the case of tags with modifiers, the related tags
should be put in a tag group enclosed by parentheses (as above).

Notice that the long form version also includes a Description tag that gives a text description of the event. The
Description tag is omitted for readability in the short form examples. As a matter of practice, however, users should
start with a detailed text description of each type of event before starting the annotation. This description can serve as
a check on the consistency and completeness of the annotation. Generally users annotate using the short form for HED
tags and use tools to map the short form into the long form during validation or analysis.

30 Chapter 4. 4. Basic annotation

HED specification, Release 3.1.0

4.3 4.3. Task role

In deciding what additional information should be included, the annotator should consider how to convey the nature
and intent of the experiment and the EEG responses that are likely to be elicited. The brief description suggests that
green triangles are something “looked for”, within the structure of the task that participants are asked to perform during
the experiment. The following annotation of the green triangle presentation includes information about the role this
stimulus appears in the task.

Example: Version 2 of a visual stimulus annotation.

Short form:

Sensory-event, Experimental-stimulus, Visual-presentation,
(Green, Triangle), (Intended-effect, Oddball), (Intended-effect, Target)

Long form:

Event/Sensory-event,
Property/Task-property/Task-event-role/Experimental-stimulus,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Property/Sensory-property/Sensory-attribute/Visual-attribute/Color/CSS-color/Green-color/Green,
Item/Object/Geometric-object/2D-shape/Triangle),
(Property/Task-property/Task-effect-evidence/Intended-effect,
Property/Task-property/Task-stimulus-role/Oddball),
(Property/Task-property/Task-effect-evidence/Intended-effect,
Property/Task-property/Task-stimulus-role/Target),
Property/Informational-property/Description/A green triangle target oddball is presented
in the center of the screen with probability 0.1.

The Intended-effect tag is a Task-effect-evidence tag that describes the effect expected to be elicited from the
participant experiencing the stimulus. This tag indicates, that based on the specification of the task, we can conclude
that the subject will be looking for the triangle (Target) and that its appearance is unusual (Oddball).

Three other tags in the Task-effect-evidence are Computational-evidence, External-evidence, and
Behavioral-evidence. In many experiments, a subject indicates that something occurs by performing an action
such as pushing the left mouse button for a green triangle and the right button otherwise. When the left-mouse button
is pushed, one may conclude that the participant has behaved as though the green triangle appears. If the button push
is tagged with Behavioral-evidence, automated tools can check whether the intended effect agrees with subject be-
havior. An example of External-evidence is annotation by a speech therapist about whether the participant stuttered
in a speech experiment. Computational-evidence might be generated from BCI annotation.

HED-3G has more sophisticated methods of specifying the relationships of events and tasks. These require more
advanced tagging mechanisms that are discussed later in this document.

4.4 4.4. Agent actions

In many experiments, the participant is asked to press (or select and press) a finger button to indicate their perception
of or judgment concerning the stimulus. These types of events, as well as participant actions not related to the task, are
annotated as Agent-action events. Agent-action events can be annotated with varying levels of detail, as illustrated
by the next two examples.

Example: Version 1 of button press annotation.

Short form:

4.3. 4.3. Task role 31

HED specification, Release 3.1.0

Agent-action, (Participant-response, (Press, Mouse-button))

The Participant-response tag indicates that this event represents a task-related response to a stimulus. The Press
tag is from the Action subtree and is grouped with the Mouse-button to indicate the pressing of a button. In general,
Action elements can be considered verbs, while Item and Agent elements can be considered nouns. These elements
form a natural sentence structure: (subject, (verb, direct object)), with the subject and direct object being formed
by noun elements. Property elements are the adjectives, adverbs, and prepositions that modify and connect these
elements.

Example: Version 2 of a button press annotation.

Short form:

Agent-action, Participant-response,
((Human-agent, Experiment-participant), (Press, Mouse-button)),
(Behavioral-evidence, Oddball), (Behavioral-evidence, Target)

Long form:

Event/Agent-action,
Property/Task-property/Task-event-role/Participant-response,
((Agent/Human-agent,
Property/Agent-property/Agent-task-role/Experiment-participant),
(Action/Move/Move-body-part/Move-upper-extremity/Press,
Item/Object/Man-made-object/Device/IO-Device/Input-device/Computer-mouse/Mouse-button)),
(Property/Task-property/Task-effect-evidence/Behavioral-evidence,
Property/Task-property/Task-stimulus-role/Oddball),
(Property/Task-property/Task-effect-evidence/Behavioral-evidence,
Property/Task-property/Task-stimulus-role/Target),
Property/Informational-property/Description/The subject pushes the left mouse button
to indicate the appearance of an oddball target using index finger on the left hand.

The Participant-response tag is modified by tags that indicate that the participant is reacting by responding as
though the stimulus were an oddball target. Specifically the Behavioral-evidence tag documents that the subject
gave a response indicating an oddball target. In other words, the participant pressed the left mouse button indicating
an oddball target, which may or may not match the stimulus that was presented.

Other details should be annotated, including whether the subject’s left, right, or dominant hand was used to press the
mouse button and whether the left mouse button or right mouse button was pressed. (This factor was indicated in the
description, but not in the machine-actionable tags.)

4.5 4.5. Experimental control

Experiments may have experiment control events written into the event record, often automatically by the presentation
or control software. In the illustration provided above, a buzzer sounded by the control software indicates that the
subject should rest.

Example: Version 1 of a simple feedback event.

Short form:

Sensory-event, Instructional, Auditory-presentation,
(Buzz, (Intended-effect, Rest))

32 Chapter 4. 4. Basic annotation

HED specification, Release 3.1.0

Long form:

Event/Sensory-event,
Property/Task-property/Task-event-role/Instructional,
Property/Sensory-property/Sensory-presentation/Auditory-presentation,
(Item/Sound/Named-object-sound/Buzz,
(Property/Task-property/Task-effect-evidence/Intended-effect,
Action/Perform/Rest)),
Property/Informational-property/Description/A buzzer sounds indicating a rest period.

4.6 4.6. Data features

Another type of tagging documents computed data features and expert annotations that have been inserted post-hoc
into the experimental record as events. The Computed-feature and Observation tags designate whether the event
came from a computation or from manual evaluation. The following example illustrates a HED annotation computed
from a program.

Example: Annotation of an inserted computed feature.

Short form:

Data-feature, (Computed-feature, Label/Blinker_BlinkMax)

Long form:

Event/Data-feature,
(Property/Data-property/Data-source-type/Computed-feature,
Property/Informational-property/Label/Blinker_BlinkMax),
Property/Informational-property/Description/Event marking the maximum signal
deviation caused by blink inserted by the Blinker tool.

As shown by this example, the Computed-feature tag is grouped with a label of the form toolName_featureName,
in this case the Blinker tool for detecting eye-blinks in EEG. The computed property is just a marker of where a feature
was detected. If a value was computed at this point, an additional Data-value tag would be included.

Clinical evaluations are observational features, and many fields have standardized names for these features. Although
the HED standard itself does not specify these names, library schema representing terminology in clinical or application
subfields may provide the vocabulary. Chapter 7: Library schemas presents some rules for schema developers.

The following example illustrates how annotation from a human expert can be annotated in HED.

Example: Annotator AJM identifies a K-complex in a sleep record.

Short form:

Data-feature, (Observation, Label/AnnotatorAJM_K-complex)

Long form:

Event/Data-feature,
(Property/Data-property/Data-source-type/Observation,
Property/Informational-property/Label/AnnotatorAJM_K-complex),
Property/Informational-property/Description/K-complex defined by AASM guide.

4.6. 4.6. Data features 33

HED specification, Release 3.1.0

4.7 4.7. What else?

Most event annotation focuses on basic identification and description of stimuli and the participant’s direct response
to that stimuli. However, for accurate comparisons across studies, much more information is required and should be
documented with HED tags rather than just with text descriptions. This is particularly true if this information is relevant
to the experimental intent, varied during the experiment, or likely to evoke a neural response.

The example of Chapter 4.1:Instantaneous events, models the sensory presentation of the stimulus images happening
at a single point in time. More realistically, the green triangle might be displayed for an extended period (during which
other events might occur). Further, the disappearance of the triangle is likely to elicit a neural response. Exactly how
this information should be represented is discussed in Chapter 5.3: Temporal scope.

Even for a standard setup, aspects such as the screen size, the distance and position of the participant relative to the
screen and the stimulus, as well as other details of the environment, should be documented as part of the overall
experiment context. These details allow analysis tools to compare and contrast studies or to translate visual stimuli
into visual field information. Event-context tags, which are introduced in Chapter 5.5: Event contexts, allow this
information to be propagated to recording events in a manner that is convenient for analysis.

HED also allows the embedding of annotations for the design of the experiment, documenting how and when condition
variables and other aspects of an experiment are changed.
Chapter 5.6: Experimental design describes HED mechanisms for annotating this information.

34 Chapter 4. 4. Basic annotation

CHAPTER

FIVE

5. ADVANCED ANNOTATION

5.1 5.1. Creating definitions

HED version 8.0.0 introduced the Definition tag to facilitate tag reuse and to allow implementation of concepts such
as temporal scope. The Definition tag allows researchers to create a name to represent a group of tags and then
use the name in place of these tags when annotating data. These short-cuts make tagging easier and reduce the chance
of errors. Often laboratories have a standard setup and event codes with particular meanings. Researchers can define
names and reuse them for multiple experiments.

Another important role of definitions is to provide the structure for implementing temporal scope as introduced in
Chapter 5.3: Temporal Scope.

A HED definition is a tag group that includes one Definition tag whose required child value is the definition’s
name. The definition tag group also includes an internal tag-group specifying the definition’s content. The following
summarizes the syntax of HED definitions.

Syntax summary for HED definitions.

Short forms:
(Definition/xxx, (definition-content))

(Definition/xxx/#, (definition-content))

Long forms:
(Property/Organizational-property/Definition/xxx, (definition-content))

(Property/Organizational-property/Definition/xxx/#, (definition-content))

Notes:

1. xxx is the name of the definition, and (definition-content) is a tag group containing the tags representing the
definition’s contents.

2. If the xxx/# form is used, then the (definition-content) MUST contain a single # representing a value to be
substituted for when the definition is used.

The following example defines the PlayMovie term.

Example: PlayMovie defines the playing a movie on a computer screen.

Short form:

(Definition/PlayMovie, (Visual-presentation, Movie, Computer-screen))

35

HED specification, Release 3.1.0

Long form:

(Property/Organization-property/Definition/PlayMovie,
(Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Media/Visualization/Movie,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen))

The next example gives a definition that uses a placeholder representing a presentation rate, for example, to annotate
events in which a presentation rate is varied at random. Usually the specific value substituted for the # will come from
one of the columns in the events.tsv file.

Example: Use definition with placeholder to annotate a variable presentation rate.

Short form:

(Definition/PresentationRate/#,
(Visual-presentation, Experimental-stimulus, Temporal-rate/# Hz))

Long form:

(Property/Organizational-property/Definition/PresentationRate/#,
(Property/Sensory-property/Sensory-presentation/Visual-presentation,
Property/Task-property/Task-event-role/Experimental-stimulus,
Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/# Hz))

Definitions may only appear in dummy entries of JSON sidecars and as external dictionaries. Definitions cannot be
nested. Further, definitions must appear as top-level tag groups.

The validation checks made by the HED validator when assembling and processing definitions are summarized in
Appendix B: HED errors. In addition to syntax checks, which occur in early processing passes, HED validators check
that the definition names have unique definitions. Additional checks for temporal scope are discussed in Chapter 5.2:
Using definitions and Chapter 5.3: Temporal scope.

5.2 5.2. Using definitions

This section describes how to use definitions to assist in annotation.

5.2.1 5.2.1. The Def tag

When a definition name such as PlayMovie or PresentationRate is used in an annotation, the name is prefixed
by the Def tag to indicate that the name represents a defined name. In other words, Def/PlayMovie is shorthand for
(Visual-presentation, Movie, Computer-screen).

The following summarizes Def tag syntax rules.

Syntax summary for the Def tag:

Short forms:
Def/xxx

Def/xxx/yyy

Long forms:
Property/Organizational-property/Def/xxx

36 Chapter 5. 5. Advanced annotation

HED specification, Release 3.1.0

Property/Organizational-property/Def/xxx/yyy

Notes:

1. xxx is the name of the definition.

2. yyy is the value that is substituted for the definition’s placeholder if it has one.

3. If the xxx/yyy form is used, then the corresponding definition’s tag-group MUST contain a single # representing
a value to be substituted for when the definition is used.

The following example shows how Def is used in annotation.

Example: Use PresentationRate to annotate a presentation rate of 1.5 Hz.

Short form:
Def/PresentationRate/1.5 Hz

Long form:
Property/Organizational-property/Def/PresentationRate/1.5 Hz

5.2.2 5.2.2. The Def-expand tag

The Def-expand tag provides an alternative to Def tag in annotations. Unlike the Def tag, a Def-expand tag must be
in a tag group that includes an inner tag group with the definition’s contents. If the definition includes a placeholder,
that must be replaced with these contents by the appropriate value.

The following summarizes Def-expand tag syntax rules.

Syntax summary for the Def-expand tag:

Short forms:
(Def-expand/xxx, (definition-contents))

(Def-expand/xxx/yyy, (definition-contents))

Long forms:
(Property/Organizational-property/Def-expand/xxx, (definition-contents))

(Property/Organizational-property/Def-expand/xxx/yyy, (definition-contents))

Notes:

1. xxx is the name of the definition.

2. yyy is the replacement value for the # placeholder.

3. If the xxx/yyy form is used in the definition, then the replacement value (yyy above) must replace placeholders
both in the definition’s name and its contents.

The following example shows how Def-expand is used in an annotation.

Example: Use PresentationRate to annotate a presentation rate of 1.5 Hz.

5.2. 5.2. Using definitions 37

HED specification, Release 3.1.0

Short form:

(Def-expand/PresentationRate/1.5 Hz,
(Visual-presentation, Experimental-stimulus, Temporal-rate/1.5 Hz))

Long form:

(Property/Organizational-property/Def-expand/PresentationRate/1.5 Hz,
(Property/Sensory-property/Sensory-presentation/Visual-presentation,
Property/Task-property/Task-event-role/Experimental-stimulus,
Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/1.5 Hz))

During analysis, tools may replace Def/PlayMovie with a fully expanded tag string. Tools sometimes need to retain
the association of the expanded tag string with the definition name for identification during searching and substitution.

5.3 5.3. Temporal scope

Events are often modeled as instantaneous occurrences that occur at single points in time (i.e., time-marked or point
events). In reality, many events unfold over extended time periods. The interval between the initiation of an event and
its completion is called the temporal scope of the event. HED events are assumed to be point events unless they are
given an explicit temporal scope (i.e., they are “scoped” events).

Some events, such as the setup and initiation of the environmental controls for an experiment, may have a temporal
scope that spans the entire data recording. Other events, such as the playing of a movie clip or a participant performing
an action in response to a sensory presentation, may last for seconds or minutes. Temporal scope captures the effects
of these extended events in a machine-actionable manner. HED has two distinct mechanisms for expressing temporal
scope: Onset/Offset and Duration/Delay. Tools can transform between one representation and the other. However,
transform from the Duration/Delay representation to the Onset/Offset representation may require the addition of
additional rows (time markers) in the events file.

The mechanisms are summarized in the following table and discussed in more detail in the following sections.

Tag Meaning Usage
Onset Marks start of

event
Used with a Def tag or Def-exand group anchor. The corresponding end is marked
using Onset or Offset with same anchor.

Offset Marks end of
event

Used with a Def tag or Def-exand group anchor. Must be preceded by an Onset
anchored by the same definition.

Inset Marks event
intermediate
pt

New in standard schema 8.2.0. Used with a Def tag or Def-exand group anchor. Must
be within the event markersfor an Onset marked-event with the same anchor.

Duration Marks end of
an event.

Doesn’t use a definition anchor.Starts at the current event marker unless Delay.If
Delay included, start = current marker + delay. The offset = start + duration.

Delay Marks delayed
onset.

Doesn’t use a definition anchor.If no Duration, treated as point event.Commonly for
delayed response times.

Event-contextContext of on-
going events.

Should only be inserted by tools.Each unique event marker can have only one
Event-context group.

All of these tags must appear in a topLevelTagGroup, which implies that they can’t be nested. Delay and Duration
will not be fully supported until HED standard schema version 8.2.0.

The Inset tag will also not be included until HED standard schema version 8.2.0, but is listed here for completeness.

38 Chapter 5. 5. Advanced annotation

HED specification, Release 3.1.0

5.3.1 5.3.1. Using Onset and Offset

The most direct HED method of specifying scoped events combines Onset and Offset tags with defined names. Using
this method, an event with temporal scope actually corresponds to two point events.

The initiation event is tagged by a (Def/xxx, Onset) where xxx is a defined name. The end of the event’s temporal
scope is marked either by a (Def/xxx, Offset) or by another (Def/xxx, Onset). The Def/xxx is said to anchor
the definition. The Onset tag group may contain an additional internal tag group in addition to the anchor Def tag.
This internal tag group usually contains annotations specific to this instance of the event. As with all HED tags and
groups, order does not matter.

Event initiations identified by definitions with placeholders are handled similarly. Suppose the initiation event is tagged
by a (Def/xxx/yyy, Onset) where xxx is a defined name and yyy is the value substituted for the # placeholder.
The end of this event’s temporal scope is marked either by (Def/xxx/yyy, Offset) or by another (Def/xxx/yyy,
Onset). An intervening (Def/xxx/zzz, Onset), where yyy and zzz are different, is treated as a completely distinct
temporal event.

The following table summarizes Onset and Offset usage. Note: A Def-expand/xxx tag group can be used inter-
changeably with the Def/xxx.

Syntax summary for Onset and Offset.

Short forms:
(Def/xxx, Onset, (tag-group))

(Def/xxx/yyy, Onset, (tag-group))

(Def/xxx, Offset)

(Def/xxx/yyy, Offset)

Long forms:
(Property/Organizational-property/Def/xxx,
Property/Data-property/Data-marker/Temporal-marker/Onset, (tag-group)

(Property/Organizational-property/Def/xxx/#,
Property/Data-property/Data-marker/Temporal-marker/Onset, (tag-group)

(Property/Organizational-property/Def/xxx, Property/Data-property/Data-marker/Temporal-marker/Offset)

(Property/Organizational-property/Def/xxx/#, Property/Data-property/Data-marker/Temporal-marker/Offset)

Notes:

1. xxx is the name of the definition anchoring the scoped event.

2. yyy is the value substituted for a definition’s placeholder if it has one.

3. The (tag-group) contains optional tags specific to that temporal event. This tag group is not the tag group speci-
fying the contents of the definition..

4. The additional tag-group is only in effect for that particular scoped event and not for all events anchored by
Def/xxx.

5. If the Def/xxx/# form is used, the # must be replaced by an actual value.

6. The entire definition identifier Def/xxx/#, including the value substituted for the #, is used as the anchor for
temporal scope.

5.3. 5.3. Temporal scope 39

HED specification, Release 3.1.0

For example, the PlayMovie definition of the previous section just defines the playing of a movie clip on the screen.
The (tag-group) might include tags identifying which clip is playing in this instance. This syntax allows one definition
name to be used to represent the playing of different clips.

Example: The playing of a Star Wars clip using PlayMovie.

Short form:

[event 1]
Sensory-event, (Def/PlayMovie, Onset, (Label/StarWars, (Media-clip, ID/3284)))

.... [The Star Wars movie clip is playing]

[event n]
Sensory-event, (Def/PlayMovie, Offset)

Long form:

[event 1]
Event/Sensory-event,
(Attribute/Informational/Def/PlayMovie,
Data-property/Data-marker/Temporal-marker/Onset,
(Attribute/Informational/Label/StarWars,
(Item/Object/Man-made-object/Media/Media-clip,
Properity/Informational-property/ID/3284)))

.... [The Star Wars movie clip is playing]

[event n]
Event/Sensory-event,
(Attribute/Informational/Def/PlayMovie,
Data-property/Data-marker/Temporal-marker/Offset)

The PlayMovie scoped event type can be reused to annotate the playing of other movie clips. However, scoped events
with the same defined name (e.g., PlayMovie) cannot be nested. The temporal scope of a PlayMovie event ends with
a PlayMovie offset or with the onset of another PlayMovie event.

In the previous example, the Def/PlayMovie “anchors” the temporal scope, and the appearance of another Def/
PlayMovie indicates the previous movie has ceased. The Label tag identifies the particular movie but does not affect
the Onset/Offset determination.

If you want to have interleaved movies playing, use definitions with placeholder values as shown in the next example.
The example assumes a definition Definition/MyPlayMovie/# exists.

Example: The interleaved playing of Star Wars and Forrest Gump.

Short form:

[event 1]
Sensory-event, (Def/MyPlayMovie/StarWars, Onset, (Media-clip, ID/3284))

.... [The Star Wars movie clip is playing]

[event n1] Sensory-event, (Def/MyPlayMovie/ForrestGump, Onset, (Media-clip, ID/5291))

.... [Both Star Wars and Forrest Gump are playing]

40 Chapter 5. 5. Advanced annotation

HED specification, Release 3.1.0

[event n2]
Sensory-event, (Def/MyPlayMovie/StarWars, Offset)

.... [Just Forrest Gump is playing]

[event n3]
Sensory-event, (Def/MyPlayMovie/ForrestGump, Offset)

Because tools need to have the definitions in hand when fully expanding during validation and analysis, tools must
gather applicable definitions before final processing. Library functions in Python, Matlab, and JavaScript are available
to support gathering of definitions and the expansion. These definitions may be given in JSON sidecars or provided
externally.

5.3.2 5.3.2. Using Duration

The Duration tag is an alternative method for specifying an event with temporal scope. The start of the temporal
scope is the event in which the Duration tag appears. The end of the temporal scope is implicit and may not coincide
with an actual event appearing in the recording. Instead, tools calculate when the scope ends (i.e., the event offset) by
adding the value of the duration to the onset of the event marker associated with that Duration tag. As with all HED
tags and groups, order does not matter.

The following table summaries the syntax for Duration.

Syntax summary for Duration.

Short forms:
(Duration/xxx, (tag-group))

(Duration/xxx, Delay/yyy, (tag-group))

Long forms:
(Property/Data-property/Data-value/Spatiotemporal-value/Temporal-value/Duration/xxx,
(tag-group)

(Property/Data-property/Data-value/Spatiotemporal-value/Temporal-value/Duration/xxx, (Property/Data-
property/Data-value/Spatiotemporal-value/Temporal-value/Delay/yyy,
(tag-group))

Notes:

1. xxx is a time value for the duration.

2. yyy is a time value for the delay if given.

3. The (tag-group) contains the additional tags specific to the temporal event whose duration is specified.

Duration tags do not use a definition anchor. Duration should be grouped with tags representing additional infor-
mation associated with the temporal scope of that event.

The Duration tag must appear in a top level tag group that may include an additional Delay tag. If the Duration
appears with Delay, the end of the temporal event is the onset of the current event plus the delay value plus the duration
value.

Several events with temporal-scopes defined by Duration tag groups may appear in the annotations associated with
the same event marker.

5.3. 5.3. Temporal scope 41

HED specification, Release 3.1.0

Example: Use the Duration tag to annotate the playing of a 2-s movie clip of Star Wars.

Short form:

(Duration/2 s, (Sensory-event, Visual-presentation, (Movie, Label/StarWars)))

Long form:

(Property/Data-value/Spatiotemporal-value/Temporal-value/Duration/2 s,
(Event/Sensory-event,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Man-made-object/Media/Visualization/Movie,
Property/Informational-property/Label/StarWars)))

The Duration tag has the same effect on event context as the Onset/Offset mechanism explained in 5.5. Event
contexts

The Duration tag is convenient because its use does not require a definition. However, the ending time point of events
whose temporal scope is defined with Duration is not marked by an explicit event in the data recording. This has
distinct disadvantages for analysis if the offset is expected to elicit a neural response, which is the case for many events
involving visual or auditory presentations. The use of the Duration tag will not be fully supported by validators until
HED standard schema version 8.2.0.

5.3.3 5.3.3. Using Delay

The Delay tag is grouped with an inner tag group to indicate that the associated tag-group is actually an implicit event
that occurs at a time offset from the current event. Delay tags do not use a definition anchor.

If the tag group containing the Delay also contains a Duration tag, then the tag group represents an event with
temporal extent. Otherwise, it is considered a point event. As with all HED tags and groups, order does not matter.

The following table summarizes the syntax for Delay.

Syntax summary for Delay.

Short forms:
(Delay/xxx, (tag-group))

(Delay/xxx, Duration/yyy, (tag-group))

Long forms:
(Property/Data-property/Data-value/Spatiotemporal-value/Temporal-value/Delay/xxx,
(tag-group)

(Property/Data-property/Data-value/Spatiotemporal-value/Temporal-value/Duration/xxx, (Property/Data-
property/Data-value/Spatiotemporal-value/Temporal-value/Delay/yyy,
(tag-group))

Notes:

1. xxx is a time value for the duration.

2. yyy is a time value for the delay if given.

3. The (tag-group) contains the additional tags specific to the temporal event whose duration is specified.

42 Chapter 5. 5. Advanced annotation

HED specification, Release 3.1.0

A typical use case for Delay is when a secondary stimulus appears offset from the first. A typical use case for Delay
combined with Duration is the encoding of a participant response, where the reaction time is measured relative to a
secondary stimulus (such as a ‘go’).

In the following example, a trial consists of the presentation of a cross in the center of the screen. The participant
responds with a button press upon seeing the cross. The response time of the button push is recorded relative to the
stimulus presentation as part of the stimulus event.

Example: Use the delay mechanism for a participant response.

Short form:

(Sensory-event, (Experimental-stimulus, Visual-presentation, Cross))
(Delay/2.83 ms, (Agent-action, Participant-response, (Press, Mouse-button)))

Long form:

(Event/Sensory-event,
Property/Task-property/Task-event-role/Experimental-stimulus,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Geometric-object/2D-shape/Cross)),
(Property/Data-property/Data-value/Spatiotemporal-value/Temporal-value/Delay/2.83 ms, (Event/Agent-
action,
(Property/Task-property/Task-event-role/Participant-response,
(Action/Move/Move-body-part/Move-upper-extremity/Press/,
Item/Object/Man-made-object/Device/IO-device/Input-device/Computer-mouse/Mouse-button))),

Notice that the Agent-action tag from the Event subtree is included in the Delay tag-group. This allows tools to
identify this tag group as a distinct event. For BIDS datasets, such response delays would be recorded in a column of
the events.tsv event files. The HED annotation for the JSON sidecar corresponding to these files would contain a #.
At HED expansion time, tools replace the # with the column value (2.83) corresponding to each event.

The Delay tag can also be used in the same top level tag group as the Duration tag to define an event with temporal
extent. HED tools are being developed to support the expansion of delayed events to have their own event markers
without the delay tag. However, use of the Delay tag will not be fully supported by validators until HED standard
schema version 8.2.0.

5.4 5.4. Event streams

An event stream is a sequence of events in a data recording. The most obvious event stream is the sequence consisting
of all the events in the recording, but there are many other possible streams such as the stream consisting o f all sensory
events or the stream consisting of all participant response events.

Event streams can be identified and tagged using the Event-stream tag, allowing annotators to more easily identify
subsets of events and interrelationships of events within those event sequences.

An event having the tag Event-stream/xxx indicates that event or marker is part of event stream xxx.

Example: Tag a face event as part of the Face-stream event stream.

Short form:

Sensory-event, Event-stream/Face-stream, Visual-presentation, (Image, Face)

Long form:

5.4. 5.4. Event streams 43

HED specification, Release 3.1.0

Event/Sensory-event,
Property/Organizational-property/Event-stream/Face-stream,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Man-made-object/Media/Visualization/Image,
Item/Biological-item/Anatomical-item/Body-part/Head/Face)

Using a tag to identify an event stream makes it easier for downstream tools to compute relationships among subsets
of events.

Note: Event streams are still under development.

5.5 5.5. Event contexts

Event annotations generally focus on describing what happened at the instant an event was initiated. However, the
details of the setting in which the event occurs also influence neural responses. For the PlayMovie example of the
previous section, events that occur between the Onset and Offset pairs for PlayMovie should inherit the information
that a particular movie is playing without requiring the user to explicitly enter those tags for every intervening event.

The process of event context mapping should be deferred until analysis time because other events might be added to
the event file after the initial annotation of the recording. For example, a user might run a tool to mark blink or other
features as events prior to doing other analyses. HED uses the Event-context tag to accomplish the required context
mapping.

In normal usage, the Event-context tag is not used directly by annotators. Rather, tools insert the Event-context
tag at analysis time to handle the implicit context created by enduring or scoped events. However, annotators may use
the tag when an event has explicit context information that must be accounted for. Tools are available to insert the
appropriate Event-context at analysis time. The Event-context has the unique attribute, implying that only one
Event-context tag group may appear in the assembled HED annotation corresponding to each time-marker value.

Syntax summary for Event-context.

Short form:
(Event-context, other-tag-groups)

Long form:
(Property/Organizational-property/Event-context, other-tag-groups)

Notes:

1. The Event-context may only appear in a top-level tag group of an assembled HED string.

2. An event can have at most one Event-context tag group in its assembled HED annotation.

3. HED-compliant analysis tools should insert the annotations describing each temporally scoped event into the
Event-context tag group of the events within its temporal scope during final assembly before analysis of the
event.

4. Each of these internal annotations should be in a group, indicating that they represent a distinct event process.

44 Chapter 5. 5. Advanced annotation

HED specification, Release 3.1.0

5.6 5.6. Experimental design

Most experiments are conducted by varying certain aspects of the experiment and measuring the resulting re-
sponses while carefully controlling other aspects. The intention of the experiment is annotated using the HED
Condition-variable, Control-variable, and Indicator-variable tags.

The Condition-variable tag is used to mark the independent variables of the experiment – those aspects of an
experiment that are explicitly varied in order to observe an effect or to control bias. Contrasts, a term that appears
in the neuroscience and statistical literature, are examples of experimental conditions as are factors in experimental
designs.

The Indicator-variable tag is used to mark quantities that are explicitly measured or calculated to evaluate the
effect of varying the experimental conditions. Indicator variables often fall into the Event/Data-feature category.
Sometimes the values of these data features are explicitly annotated as events. Researchers should provide a sufficiently
detailed description of how to compute these data features so that they can be reproduced.

The Control-variable tag represents an aspect of the experiment that is held constant throughout the experiment,
often to remove variability.

Researchers should use Condition-variable, Control-variable, and Indicator-variable tags to capture the
experiment intent and organization in as much detail as possible. Consistent and detailed description allows tools to
extract the experiment design from the data in a machine-actionable form. Good tagging processes suggest creating def-
initions with understandable names to define these aspects of the dataset. This promotes easy searching and extraction
for analyses such as regression or other modeling of the experimental design.

To illustrate the use of condition-variables to document experiment design, consider an experiment in which one of the
conditions is the rate of presentation of images displayed on the screen. The experiment design compares responses
under slow and fast image presentation rate conditions. To avoid unfortunate resonances due to a poor choice of rates,
the “slow” and “fast” rate conditions each consist of three possible rates. Selection among the three eligible rates for
the given condition is done randomly.

In analysis, the researcher would typically combine the “slow presentation” trials into one group and the “fast presen-
tation” trials into another group even though the exact task condition varies within the group varies according This
type of grouping structure is very common in experiment design and can be captured by HED tags in a straightforward
manner by defining condition variables for each group and using the # to capture variability within the group.

Example: Condition variables for slow and fast visual presentation rates.

Short form:

(Definition/SlowPresentation/#,
(Condition-variable/Presentation, Visual-presentation, Computer-screen, Temporal-rate/#))

(Definition/FastPresentation/#,
(Condition-variable/Presentation, Visual-presentation, Computer-screen, Temporal-rate/#))

Long form:

(Property/Informational-property/Definition/SlowPresentation/#,
(Property/Organizational-property/Condition-variable/Presentation,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/#))

(Property/Informational-property/Definition/FastPresentation/#,
(Property/Organizational-property/Condition-variable/Presentation,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/#))

5.6. 5.6. Experimental design 45

HED specification, Release 3.1.0

Organizational-property tags such as Condition-variable are often used in the tag-groups of temporally
scoped events. The Onset of such an event represents the start of theCondition-variable. The corresponding
Offset marks the end of the period during which this condition is in effect. This type of annotation makes it straight-
forward to extract the experimental design from the events.

Example: Annotation using SlowPresentation condition.

Short form:

Sensory-event, (Def/SlowPresentation/1 Hz, Onset)

Long form:

Event/Sensory-event,
(Property/Organizational-property/Def/SlowPresentation/1 Hz,
Property/Data-property/Data-marker/Temporal-marker/Onset)

During analysis, the Def tags may be replaced with the actual definition’s tag group with an included Def-expand tag
giving the definition’s name. Note: expansion is done by tools at analysis time.

Example: Expanded form of the previous example.

Short form with expansion:

Sensory-event,
((Def-expand/SlowPresentation, Condition-variable/Presentation,
Visual-presentation, Computer-screen, Temporal-rate/1 Hz), Onset)

Long form with expansion:
Event/Sensory-event,*

((Property/Organizational/Def-expand/SlowPresentation,
Property/Organizational/Condition-variable/Presentation,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/1 Hz),
Property/Data-property/Data-marker/Temporal-marker/Onset)

Properly annotated condition variables and response variables can allow researchers to understand the details of the
experiment design and perform analyses such as ANOVA (ANalysis Of VAriance) or regression to extract the depen-
dence of responses on the condition variables. The time-organization of an experiment can be annotated with the
Organizational tags Time-block and Task-trial and used for visualizations of experimental layout.

A typical experiment usually consists of a sequence of subject task-related activities interspersed with rest periods
and/or off-line activities such as filling in a survey. The Time-block tag is used to mark a contiguous portion of
the data recording during which some aspect of the experiment conditions is fixed. Time-block tags can be used
to represent temporal organization in a manner similar to the way Condition-variable tags are used to represent
factors in an experiment design.

46 Chapter 5. 5. Advanced annotation

HED specification, Release 3.1.0

5.7 5.7. Specialized annotation

5.7.1 5.7.1. Parameter tags

The Parameter tag and its children Parameter-label and Parameter-value are general-purpose tags designed to
fill the missing term gap. They can be used to tag important specific concepts in a way that can be used for automated
tools without triggering problems of accretion. For example, consider the problem of how to annotate repetition lag
between successive presentations of a particular face image. There are several ways to annotate, but annotating with
Parameter is a good compromise between clarity and machine-actionability.

Example: Annotate face repetition and interval using Parameter-value.

Short form:

(Parameter-label/Count-of-this-face, Parameter-value/2)
(Parameter-label/Face-count-since-this-face-last-shown, Parameter-value/15)

Annotate the number of times a face image has appeared and the interval since last time this face was shown using
more specific tags for the value Parameter-value:

Example: Annotate the number of times a face image has appeared.

Short form:

(Parameter-label/Count-of-this-face, Item-count/2),
(Parameter-label/Face-count-since-this-face-last-shown,Item-count-interval/15),

Long form:

(Property/Informational-property/Parameter/Parameter-label/Count-of-this-face,
Property/Data-property/Data-value/Quantitative-value/Item-count/2),
(Property/Informational-property/Parameter/Parameter-label/Face-count-since-this-face-last-shown
Property/Data-property/Data-value/Quantitative-value/Item-count-interval/15)

Using more specific tags as in the second version allows downstream tools to treat the value as numeric integers,
facilitating automated processing. The use of Parameter alerts downstream tools that this entity represents something
that annotators regard as important to compute or record for analysis. Summary tools can extract the experimental
parameters and their values, while statistical tools can look for dependencies on these variables. The parameter names
are designed to be self-documenting. Parameters are often used for derived values such as response times that are used
as indicator variables in the experiment. They are also sometimes used as part of control variable definitions.

Note: Parameters and related annotations are still under development.

5.7. 5.7. Specialized annotation 47

HED specification, Release 3.1.0

48 Chapter 5. 5. Advanced annotation

CHAPTER

SIX

6. INFRASTRUCTURE AND TOOLS

The HED infrastructure includes libraries written in Python, Matlab, and JavaScript that support the use of HED in val-
idation and/or applications. This section describes the expected behavior of the HED infrastructure and its integration
into other systems such as BIDS.

In general, tools should either explicitly call HED validation to assure that the input tag strings are valid or should make
explicit that they assume the HED has already been validated. Most tools will use the later approach.

See 3.2. HED annotation format for more detailed specifications of HED formats.

See 4. Basic annotation and 5. Advanced annotation for examples and usage.

6.1 6.1. Basic tag handling

HED-compliant tools should be able to a handle HED string in its equivalent forms and using various valid syntax as
described in this section.

6.1.1 6.1.1. Tag forms

Warning: HED-compliant tools should be able to handle tags in long-form, short-form or any valid
intermediate-form.

Tools may assume that validated HED tags do not have leading, trailing, or consecutive forward slashes in their names.

In addition to being property formed, validated HED strings will correspond to terms in the schemas under which they
were validated.

Tools should not distinguish between variations in case for the same tag term. Only units must have their cases pre-
served.

Tools may assume that the individual tags within validated HED strings have values of the proper form and that the
units, if provided, are consistent with any unit classes

Note: At this time it is not required that terms with specified unit classes always have associated units. However, it is
implicitly assumed that if the units are omitted in this case, the value has the default units.

See 3.2.2. Tag forms for more information on tag forms.

49

https://bids.neuroimaging.io/

HED specification, Release 3.1.0

6.1.2 6.1.2. Parentheses and commas

Tools may assume that validated HED strings have no duplicates, empty tags, empty groups (parentheses enclosing
only whitespace), or mismatched parentheses.

Grouping with parentheses in HED means that the tags are associated.

Warning: HED-compliant tools should be able to handle arbitrary correctly nested parentheses and correctly
distinguish differences in grouping.

6.1.3 6.1.3. Tag ordering

Any ordering of HED tags and HED tag groups at the same level within a HED tag group is equivalent.

Any ordering of top-level HED tags and HED tag groups in a HED string is equivalent.

Warning: HED-compliant tools should not rely on the order that HED tags appear within a string or group during
processing.

6.1.4 6.1.4. Definitions

Warning: HED-compliant tools should be able to expand, shrink, or remove definitions.

HED definitions should only appear in sidecars in dummy entries or in an accompanying definition list. Actual
Definition groups should not appear in the HED column of event files.

6.2 6.2. File-level handling

Dataset formats such as BIDS (Brain Imaging Data Structure) allow users to provide HED tags in multiple places. For
example, BIDS dataset event files often use local codes to identify event markers in tabular (events.tsv) files and
then provide dictionaries called JSON sidecars to map local codes to annotations.

The introduction of definitions and temporal scope for HED versions >= 8.0.0 has added additional complexity to
validation and processing. Instead of being able to validate the HED string for each event individually, HED validators
must now also check consistency across all events in the data-recording.

Tools should make explicit whether they support temporal scope. Tools that support temporal scope should be able to
add scoped event information to the Event-context tag group of the intermediate events upon request.

Tools should make explicit whether they support insertion of actual events for Delay tag expansions and for the offsets
of Duration tags. This information will allow analysts to call HED tools that support these operations to appropriately
modify event files as a preamble to processing if the tool does not support these tags.

50 Chapter 6. 6. Infrastructure and tools

https://bids.neuroimaging.io/

HED specification, Release 3.1.0

6.3 6.3. HED support of BIDS

BIDS (Brain Imaging Data Structure) is a widely-adopted specification and supporting tools for organizing and de-
scribing brain imaging and behavioral data.

BIDS dataset events are stored in tab-separated value files whose names end in events.tsv. HED’s use of tabular
files and sidecars closely aligns with BIDS and its requirements. HED has been incorporated into the BIDS standard
as the mechanism for annotating tabular files.

6.3.1 6.3.1. BIDS tabular files

The following shows an excerpt from a BIDS event file:

Example: Excerpt from a BIDS event file.

onset duration trial_type response_time HED
1.2 0.6 go 1.435 Label/Starting-point, Quiet
5.6 0.6 stop 1.739 n/a

The first two columns in a BIDS events file are required to be onset and duration, respectively. The onset is the time
in seconds of an event marker relative to the start of its corresponding data recording, while the duration represents
the duration in seconds of some aspect of the event. The remaining columns in this event file are optional.

BIDS reserves an optional column named HED to contain HED strings relevant for the event instance. In the above
example, the first row HED column contains Label/Starting-point, Quiet, while the second row contains n/a,
indicating that entry should be ignored.

HED annotations can also be associated with entries in other columns of the event file through an associated JSON
sidecar as described in the next section.

6.3.2 6.3.2. BIDS sidecars

BIDS also recommends data dictionaries in the form of JSON sidecars to document the meaning of the data in the event
files. HEDTools supports BIDS dataset format, where event metadata is contained in compatibly-named sidecars. See
the example sidecar in Chapter 3 for an explanation of the different sidecar entries.

6.3.3 6.3.3. Annotation assembly

HED tools are available to assemble the annotations associated with each row in a tabular file using its HED column
and the sidecar information associated with other columns of the events file.

For example, the annotations for the first row of the example event file above can be assembled using the example
sidecar in Chapter 3 to give the following annotation:

Example assembled HED annotation for one event marker.

Sensory-event, Visual-presentation, (Square, Blue), (Delay/1.435 ms, Agent-action,
(Experiment-participant, (Press, Mouse-button))), Label/Starting-point, Quiet

The process is to look up the appropriate row annotation for each column in the sidecar and append these with an
annotation in the HED column if available.

6.3. 6.3. HED support of BIDS 51

https://bids.neuroimaging.io/

HED specification, Release 3.1.0

6.3.4 6.3.4. HED version in BIDS

The HED version is included as the value of the "HEDVersion" key in the dataset_description.json metadata
file located at the top level in a BIDS dataset. HEDTools retrieve the appropriate HED schema directly from GitHub
or from locally cached versions when needed.

The following example dataset_description.json specifies that HED version 8.0.0 is used for a dataset called “A
wonderful experiment”.

Example: BIDS dataset description using HED version 8.0.0.

{
"Name": "A wonderful experiment",
"BIDSVersion": "1.4.0",
"HEDVersion": "8.0.0"

}

It is possible to include library schema in the HED version specification of the dataset_description.json file as
shown by the following example:

Example: BIDS dataset description using HED version 8.1.0 and score library 1.0.0.

{
"Name": "A great experiment",
"BIDSVersion": "1.7.0",
"HEDVersion": ["8.1.0", "sc:score_1.0.0"]

}

The version specification indicates that tags from the score library must be prefixed with sc: in dataset HED anno-
tations.

The prefix notation (such as the sc: prefix for the score library in the previous example is required when more than
one schema is used in the annotation. However, prefixes can be used with the standard schema as well as library schemas
as illustrated by the following example.

Example: Prefixed standard schema in BIDS dataset description version specification.

{
"Name": "A great experiment",
"BIDSVersion": "1.7.0",
"HEDVersion": ["st:8.1.0", "score_1.0.0"]

}

For this specification tags from the standard schema must be prefixed by st:, while tags from the score library are
unprefixed. The sc: and st: prefixes are arbitrary (usually short) alphabetic strings chosen by the annotation and are
specific to each dataset based on its version specification.

Warning: HED-compliant tools must be able to handle multiple schemas and prefixed tags.

52 Chapter 6. 6. Infrastructure and tools

HED specification, Release 3.1.0

6.3.5 6.3.5. HED in the BIDS validator

HED provides a JavaScript validator in the hed-javascript repository, which is available as an installable package via
npm. The BIDS validator incorporates calls to this package to validate HED tags in BIDS datasets.

6.3.6 6.3.5. HED python tools

The hedtools package includes input functions that use Pandas data frames to construct internal representations of
HED-annotated event files.

HED schema developers generally do initial development of the schema using .mediawiki format. The tools to convert
schema between .mediawiki and .xml format are located in the hed.schema module of the hedtools project of the
hed-python GitHub repository. All conversions are performed by converting the schema to a HedSchema object. Then
modules wiki2xml.py and xml2wiki.py provide top-level functions to perform these conversions.

6.3. 6.3. HED support of BIDS 53

https://github.com/hed-standard/hed-javascript
https://www.npmjs.com/
https://github.com/bids-standard/bids-validator
https://pypi.org/project/hedtools/
https://pandas.pydata.org/
https://github.com/hed-standard/hed-python/tree/master/hedtools
https://github.com/hed-standard/hed-python

HED specification, Release 3.1.0

54 Chapter 6. 6. Infrastructure and tools

CHAPTER

SEVEN

7. LIBRARY SCHEMA

The variety and complexity of events in electrophysiological experiments makes full documentation challenging. As
more experiments move out of controlled laboratory environments and into less controlled virtual and real-world set-
tings, the terminology required to adequately describe events has the potential to grow exponentially.

In addition, experiments in any given subfield can contribute to pressure to add overly-specific terms and jargon to the
schema hierarchy—for example, adding musical terms to tag events in music-based experiments, video markup terms
for experiments involving movie viewing, traffic terms for experiments involving virtual driving, and so forth.

Clinical fields using neuroimaging also have their own specific vocabularies for describing data features of clinical
interest (e.g., seizure, sleep stage IV). Including these discipline-specific terms quickly makes the standard HED schema
unwieldy and less usable by the broader user community.

Third generation HED instead introduces the concept of the HED library schema. To use a programming analogy,
when programmers write a Python module, the resulting code does not become part of the Python language or core
libraries. Instead, the module becomes part of a library used in conjunction with core modules of the programming
language.

Similar to the design principles imposed on function names and subclass organization in software development, HED
library schemas must conform to some basic rules:

Rules for HED library schema design.

1. A library schema must be given a name containing only alphabetic chararacters. This name must appear in the
schema header line in the required format.

2. A library library must use semantic versioning and follow the versioning update rules used by the HED standard
schema.

3. Every term must be unique within the library schema and must conform to the rules for HED schema terms.

4. Schema terms should be readily understood by most users. The terms should not be ambiguous and should be
meaningful in themselves without reference to their position in the schema hierarchy.

5. If possible, no schema sub-tree should have more than 7 direct subordinate sub-trees.

6. Terms that are used independently of one another should be in different sub-trees (orthogonality).

7. The schema should include the schema attributes, unit classes, unit modifiers, value classes, and schema proper-
ties present in the HED standard schema.

As in Python programming, we anticipate that many HED schema libraries may be defined and used, in addition to the
standard HED schema. Libraries allow individual research communities to annotate details of events in experiments
designed to answer questions of interest to particular research or clinical communities. Since it would be impossible
to avoid naming conflicts across schema libraries that may be built in parallel by different user communities, HED
supports schema library namespaces (the prefix notation described in the previous section). Users will be able to add

55

HED specification, Release 3.1.0

library tags qualified with namespace designators. All HED schemas, including library schemas, adhere to semantic
versioning.

In general, library schema developers should include the auxiliary schema classes from the standard HED schema:
the schema attributes, unit classes, unit modifiers, value classes, and schema properties. The HED tools support these
auxiliary classes but in general would not support special handling of added classes beyond basic verification.

If your application requires schema classes that are not available in the standard HED schema and would like these
classes to be supported, please make a request using the HED examples issues forum.

A schema should not duplicate tags found in the standard schema.

7.1 7.1. Defining a schema

A HED library schema is defined in the same way as the standard HED schema except that it has an additional attribute
name-value pair library="xxx" in the schema header. We will use as a library schema for driving as an illustration.
Syntax details for a library schema are similar to those for the standard HED schema.

Example: Driving library schema (MEDIAWIKI template).

HED library="driving" version="1.0.0"
!# start schema
[... contents of the HED driving schema ...]

!# end schema
[... required sections specifying schema attribute definitions ...]

!# end hed

The required sections specifying the schema attributes are unit-class-specification, unit-modifier-specification, value-
class-specification, schema-attribute-specification, and property-specification.

Example: Driving library schema (XML template).

<?xml version="1.0" ?>
<HED library="driving" version="1.0.0">

[... contents of the HED_DRIVE schema ...]
</HED>

During annotation tags from different library schemas can be intermixed with those of the standard schema. Since
the node names within a library must be unique, annotators can use short form as well as fully expanded tag paths for
library schema tags as well as those from the standard HED schema.

The schema XML file should be saved as HED_driving_1.0.0.xml so that tools can locate them. The official location
of HED standard and library schemas is the hed-schemas GitHub repository.

56 Chapter 7. 7. Library schema

https://semver.org/
https://semver.org/
https://github.com/hed-standard/hed-examples/issues
https://github.com/hed-standard/hed-schemas

HED specification, Release 3.1.0

7.2 7.2. Schema namespaces

As part of the HED annotation process, users must associate one or more HED schemas with their datasets. If multiple
schemas are used, users must define a local prefix for each additional schema and prefix the tags from each of these
additional schemas by their respective prefix in annotations. The local names should be strictly alphabetic with no
blanks or punctuation. If a tag prefix is invalid in the version specification, a schema loading error occurs.

Example: Driving library schema example tags.

dp:Drive-action/Change-lanes
dp:Drive/Change-lanes
dp:Change-lanes

A colon (:) is used to separate the qualifying local name from the remainder of the tag.

7.3 7.3. Library schema layout

In addition to the specification of tags in the main part of a schema, a HED schema has sections that specify unit classes,
unit modifiers, value classes, schema attributes, and properties. The rules for the handling of these sections for a library
schema are as follows:

7.3.1 7.3.1. Required sections

The required sections of a library schema are the same as those for the standard schema. These sections are listed in
3.1.2. Schema layout overview. The library schema must include all required schema sections even if the content of
these sections is empty.

7.3.2 7.3.2. Relation to standard HED schema

Any schema attribute, unit class, unit modifier, value class, or property used in the library schema must be specified in
the appropriate section of the library schema regardless of whether these appear in the standard HED schema. Validators
check the library schema strictly on the basis of its own specification without reference to another schema.

7.3.3 7.3.3. Schema properties

HED only supports the schema properties listed in A.1.5. Schema properties. If the library schema uses one of these in
the library schema specification, then its specification must appear in the property-specification section of the library
schema.

7.2. 7.2. Schema namespaces 57

HED specification, Release 3.1.0

7.3.4 7.3.4. Unit classes

The library schema may define unit classes and units as desired or include unit classes or units from the standard HED
schema. Similarly, library schema may define unit modifiers or reuse unit modifiers from the standard HED schema.
HED validation and basic analysis tools validate these based strictly on the schema specification and do not use any
outside information for these.

7.3.5 7.3.5. Value classes

The standard value classes listed in [A.1.3. Value classes](./Appendix_A.md#(a-13-value-classes) are the only value
classes that should be used in designing library schemas as these are the only ones that general tools will support. If
additional value classes are needed, they should be proposed on hed-schemas repository issue forum.

Library schema may define additional value classes and specify their allowed characters, but no additional hard-coded
behavior will be available in the standard toolset. This does not preclude special-purpose tools from incorporating their
own behavior.

7.3.6 7.3.6. Schema attributes

The standard schema attributes listed in [A.1.4. Schema attributes](./Appendix_A.md#(allowedCharacter, default-
Units, extensionAllowed, recommended, relatedTag, requireChild, required, SIUnit, SIUnitModifier, SIUnitSymbol-
Modifier, suggestedTag, tagGroup, takesValue, topLevelTagGroup, unique, unitClass, unitPrefix, unitSymbol, value-
Class) should have the same meaning as in the standard HED schema. The hard-coded behavior associated with the
schema attributes will be the same. Library schema may define additional schema attributes. They will be checked
for syntax, but no additional hard-coded behavior will be available in the standard toolset. This does not preclude
special-purpose tools from incorporating their own behavior.

7.3.7 7.3.7. Syntax checking

Regardless of whether an entity is in the standard HED schema or a library schema, HED schema validation tools
perform basic syntax checking.

Basic syntax checking for HED schemas.

1. All attributes used in the schema proper must be defined in the schema attribute section of the schema.

2. Undefined attributes cause an error in schema validation.

3. Similar rules apply to unit classes, unit modifiers, value classes, and properties.

4. Actual handling of the semantics by HED tools only occurs for entities appearing in the standard HED schema.

58 Chapter 7. 7. Library schema

https://github.com/hed-standard/hed-schemas/issues

HED specification, Release 3.1.0

7.4 7.4. Library schemas in BIDS

The most common use case (for 99.9% of the HED users) is to tag events using a standard HED schemas
(preferably the latest one) available in the standard_schema/hedxml directory of the hed-schemas repository
of the hed-standard organization on GitHub. The standard schemas are available at: https://github.com/hed-
standard/hed-schemas/tree/main/standard_schema.

The official library schemas are available at https://github.com/hed-standard/hed-
schemas/tree/main/library_schemas.

Standard schemas are referenced by their version number (e.g., 8.0.0), while library schema are referenced by a
combination of library name and version number (e.g., score_1.0.0).

The following example specifies that version 8.0.0 of the standard HED schema is to be used in addition to two library
schemas: the score library version 1.0.0 and the testlib library version 1.0.2.

Example: An example specification with multiple schemas.

{
"Name": "A wonderful experiment",
"BIDSVersion": "1.8.0",
"HEDVersion": ["8.0.0", "sc:score_1.0.0", "ts:testlib_1.0.2"]

}

Based on the above description tools will download:

1. The standard HED schema:
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/standard_schema/hedxml/HED8.0.0.xml.

2. The HED score library schema version 1.0.0:
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/score/hedxml/HED_score_1.0.0.xml.

3. The HED testlib library schema version 1.0.2:
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/testlib/hedxml/HED_
testlib_1.0.2.xml.

A schema browser is available for each library. For example the schema browser for the score library schema is
available at https://www.hedtags.org/display_hed_score.html.

Given the HEDVersion specification from the previous example, annotators can use any combination of tags from the
three indicated schemas. In this example the standard HED schema version appears without a prefix in the version
specification, so tags from this schema may appear directly in the annotation.

The sc and ts are local names used to distinguish tags from the additional schema. Tags from the score library
schema are of the form sc:xxx where xxx is a tag from the score schema. Similarly, tags from the testlib library
schema are of the form ts:yyy where yyy is a tag from the testlib schema.

The array specification of the schema versions can have at most one version appearing without a colon prefix.

7.4. 7.4. Library schemas in BIDS 59

https://github.com/hed-standard/hed-schemas/tree/main/standard_schema
https://github.com/hed-standard/hed-schemas/tree/main/standard_schema
https://github.com/hed-standard/hed-schemas/tree/main/library_schemas
https://github.com/hed-standard/hed-schemas/tree/main/library_schemas
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/standard_schema/hedxml/HED8.0.0.xml
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/score/hedxml/HED_score_0.0.1.xml
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/testlib/hedxml/HED_testlib_1.0.2.xml
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/testlib/hedxml/HED_testlib_1.0.2.xml
https://www.hedtags.org/display_hed_score.html

HED specification, Release 3.1.0

7.4.1 7.1. Using library schema in BIDS

The following datset_description.json of a BIDS dataset indicates that HED standard schema version 8.1.0
should be used alone with SCORE library schema 1.0.0. The tags are. . . .

Illustration of using the namespace prefix for tagging.

{
"Name": "A great experiment",
"BIDSVersion": "1.8.0",
"HEDVersion": ["8.1.0", "sc:score_1.0.0"]

}

"Data-feature, sc:Photomyogenic-response, sc:Wicket-spikes"

Additional information can be found in HED schema format of Chapter 3 and Appendix A: Schema format details
for additional information.

Schema developers should also consult the HED schema development guide.

60 Chapter 7. 7. Library schema

https://www.hed-resources.org/en/latest/HedSchemaDevelopmentGuide.html

CHAPTER

EIGHT

A. SCHEMA FORMAT DETAILS

This appendix augments the discussion of HED schema formats presented in Chapter 3: HED formats of the HED
specification. The appendix presents additional details on the rules with examples for standard HED schema and HED
library schema in .mediawiki and .xml formats.

8.1 A.1. Auxiliary schema sections

This section gives information about how the various auxiliary sections of the HED schema are used to specify the
behavior of the schema elements.

8.1.1 A.1.1. Unit classes and units

Unit classes allow annotators to express the units of values in a consistent way. The plurals of the various units are not
explicitly listed, but are allowed as HED tools uses standard pluralize functions to expand the list of allowed units.

Units corresponding to unit symbols (i.e., have a unitSymbol attribute) represent abbreviated versions of units and
cannot be pluralized.

Elements with the SIUnit modifier may be prefixed with a multiple or a sub-multiple modifier. If the SI unit does not
also have the unitSymbol attribute, then multiples and sub-multiples with the SIUnitModifier attribute are used for
the expansion.

On the other hand, units with both SIUnit and unitSymbol attributes are expanded using multiples and sub-multiples
having the SIUnitSymbolModifier attribute.

Note that some units such as byte are designated as SI units, although they are not part of the SI standard. However,
they follow the same rules for unit modifiers as do SI units.

61

HED specification, Release 3.1.0

Table 1: Unit classes and units in HED 8.0.0 (* indicates unit symbol).

Unit class Default units Units
accelerationUnits m-per-s^2 m-per-s^2*
angleUnits rad radian, rad*, degree
areaUnits m^2 metre^2, m^2*
currencyUnits $ dollar, $, point
frequencyUnits Hz hertz, Hz*
intensityUnits dB dB, candela, cd*
jerkUnits m-per-s^3 m-per-s^3*
memorySizeUnits B byte, B
physicalLength m metre, m*, inch, foot, mile
speedUnits m-per-s m-per-s*, mph, kph
timeUnits s second, s*, day, minute, hour
volumeUnits m^3 metre^3, m^3*
weightUnits g gram, g*, pound, lb

8.1.2 A.1.2. Unit modifiers

A unit modifier can be applied to SI base units to indicate a multiple or sub-multiple of the unit. Unit symbols are
modified by unit symbol modifiers, whereas SI units that are not unit symbols are modified by unit modifiers.

Table 2: SI unit modifiers

Modifier Symbol modifier Description
deca da Multiple representing 10 to power 1
hecto h Multiple representing 10 to power 2
kilo k Multiple representing 10 to power 3
mega M Multiple representing 10 to power 6
giga G Multiple representing 10 to power 9
tera T Multiple representing 10 to power 12
peta P Multiple representing 10 to power 15
exa E Multiple representing 10 to power 18
zetta Z Multiple representing 10 to power 21
yotta Y Multiple representing 10 to power 24
deci d Submultiple representing 10 to power 1
centi c Submultiple representing 10 to power -2
milli m Submultiple representing 10 to power -3
micro u Submultiple representing 10 to power -6
nano n Submultiple representing 10 to power 9
pico p Submultiple representing 10 to power 12
femto f Submultiple representing 10 to power 15
atto a Submultiple representing 10 to power 18
zepto z Submultiple representing 10 to power 21
yocto y Submultiple representing 10 to power 24

62 Chapter 8. A. Schema format details

HED specification, Release 3.1.0

8.1.3 A.1.3. Value classes

HED has very strict rules about what characters are allowed in various elements of the HED schema, HED tags, and
the substitutions made for # placeholders. These rules are encoded in the schema using value classes. When a node
name extension or placeholder substitution is given a particular value class, that name or substituted value can only
contain the characters allowed for by that value class.

Warning: Note: A placeholder # specification may include multiple value class attributes.

Tools check the value in question against the union of an element’s valueClass allowed characters and any addi-
tional characters allowed by a particular unit type.

The allowed characters for a value class are specified in the definition of each value class. The HED validator and other
HED tools may hardcode information about behavior of certain value classes (for example the numericClass value
class).

Table 3: Allowed characters for value classes.

Value class Allowed characters
dateTimeClass digits T : -
nameClass alphanumeric - _
numericClass digits . - + E e
posixPath As yet unspecified
textClass alphanumeric blank + - : ; . / () ? * % $ @ ^ _

Notes on rules for allowed characters in the HED schema.

1. Commas or single quotes are not allowed in any values with the exception of the Prologue, Epilogue, or term
descriptions in the HED schema. These characters are not allowed in substitutions for # placeholders.

2. Date-times should conform to ISO8601 date-time format YYYY-MM-DDThh:mm:ss.

3. Any variation on the full form of ISO8601 date-time is allowed.

4. The nameClass is for schema nodes and labels.

5. Values of numericClass must be equivalent to a valid floating point value.

6. Scientific notation is supported with the numericClass.

7. The textClass is for descriptions, mainly for use with the Description tag or schema element descriptions.

8. The posixPath class is as yet unspecified and currently allows any characters except commas.

8.1.4 A.1.4. Schema attributes

The type of schema element that a schema attribute may apply to is indicated by its schema type property values. Tools
hardcode processing based on the schema attribute name. Only the schema attributes listed in the following table can
be handled by current HED tools.

8.1. A.1. Auxiliary schema sections 63

HED specification, Release 3.1.0

Table 4: Schema attributes (* indicates attribute has a value).

Attribute Target Description
allowedCharacter* valueClass Specifies a character used in values of this class.
conversionFactor unit, unitModifier Multiplicative factor to multiply by to convert to default units.

(Added in version 8.1.0.)
defaultUnits* unitClass Specifies units to use if placeholder value has no units.
extensionAllowed node A tag can have unlimited levels of child nodes added.
recommended node Event-level HED strings should include this tag.
relatedTag* node A HED tag closely related to this HED tag.
requireChild node A child of this node must be included in the HED tag.
required node Event-level HED string must include this tag.
SIUnit unit This unit represents an SI unit and can be modified.
SIUnitModifier unitModifier Modifier applies to base units.
SIUnitSymbolModifier unitModifier Modifier applies to unit symbols.
suggestedTag* node Tag could be included with this HED tag.
tagGroup node Tag can only appear inside a tag group.
takesValue node # Placeholder (#)should be replaced by a value.
topLevelTagGroup node Tag (or its descendants) can be in a top-level tag group.
unique node Tag or its descendants can only occur once in an event-level

HED string.
unitClass* node # Unit class this replacement value belongs to.
unitPrefix unit Unit is a prefix (e.g., $ in the currency units).
unitSymbol unit Tag is an abbreviation representing a unit.
valueClass* node # Type of value this is.

The allowedCharacter attribute should appear separately for each individual character to be allowed. However, the
following group designations are allowed as values for this attribute:

• letters designates upper and lower case alphabetic characters.

• blank indicates a space is an allowed character.

• digits indicates the digits 0-9 may be used in the value.

• alphanumeric indicates letters and digits

If placeholder (#) has a unitClass, but the replacement value for the placeholder does not have units, tools may
assume the value has defaultUnits if the unit class has them. For example, the timeUnits has the attribute
defaultUnits=s in HED versions >=8.0.0. Tools may assume that tag Duration/3 is equivalent to Duration/
3 s because Duration has defaultUnits of s.

The extensionAllowed tag indicates that descendents of this node may be extended by annotators. However, any
node that has a placeholder (#) child cannot be extended, regardless of the extensionAllowed attribute, since the
node’s single child is always interpreted as a user-supplied value.

Tags with the required or unique attributes cannot appear in definitions.

In addition to the attributes listed above, some schema attributes have been deprecated and are no longer supported in
HED, although they are still present in earlier versions of the schema. The following table lists these.

64 Chapter 8. A. Schema format details

HED specification, Release 3.1.0

Table 5: Schema attributes deprecated for versions >=8.0.0 (* indicates
attribute has a value).

Schema attribute Target Description
default node # Indicates a default value used if no value is provided.
position* node Indicates where this tag should appear during display.
predicateType node Indicates the relationship of the node to its parent.

The default attribute was not implemented in existing tools. The attribute is not used in HED-3G. Only the
defaultUnits for the unit class will be implemented going forward.

The position attribute was used to assist annotation tools, which sought to display required and recommend tags
before others. The position attribute value is an integer and the order can start at 0 or 1. Required or recommended tags
without this attribute or with negative position were to be shown after the others in canonical ordering. The tagging
strategy of HED versions >= 8.0.0 using decomposition and definitions does not permit this type of ordering. The
position attribute is not used for HED versions >= 8.0.0.

The predicateType attribute was introduced in HED-2G to facilitate mapping to OWL or RDF. It was needed be-
cause the HED-2G schema had a mixture of children that were properties and subclasses. The possible values of
predicateType were propertyOf, subclassOf, or passThrough to indicate which role each child node had with
respect to its parent. In HED versions >= 8.0.0, the parent-child relationship MUST be subclassOf to allow search
generality. The attribute is ignored by tools.

8.1.5 A.1.5. Schema properties

The property elements apply to schema attribute elements to indicate how and where these attributes apply to other
elements in the schema. Their meanings are hard-coded into the schema processors. The following is a list of schema
attribute properties.

Table 6: Summary of schema attribute properties for HED Version >=
8.0.0.

Property Description
boolProperty A schema attribute’s value is either true or false.Presence indicates true, absence

false.
unitClassProperty A schema attribute only applies to unit classes.
unitModifierProperty A schema attribute only applies to unit modifiers.
unitProperty A schema attribute only applies to units.
valueClassProperty A schema attribute only applies to value classes.

The element that a schema attribute can apply to is controlled by the unitClassProperty, unitModifierProperty,
unitModifierProperty, unitProperty, and valueClassProperty schema properties. A schema attribute that
doesn’t have one of these properties only applies to node elements in the schema section.

The boolProperty controls the form of the schema attribute.

Format for schema attributes.

• Schema attributes with the boolProperty:

– In .xml, appear as a <name> element with the property, but no <value> in an <attribute> section of
the schema element.

– In .mediawiki, the attribute has the {name} in the element’s specification line.

8.1. A.1. Auxiliary schema sections 65

HED specification, Release 3.1.0

– In either case, presence of the property indicates true and absence indicates false.

• Schema attributes without the boolProperty:

– In .xml, appear with both <name> and <value> in the <attribute> section of the schema element.

– In .mediawiki, the schema element has the {name =value} in the element’s specification line.

– These schema attributes may appear multiple times in an element with different values if appropriate.

8.2 A.2. Mediawiki file format

The rules for creating a valid .mediawiki specification of a HED schema are given below. The format is line-oriented,
meaning that all information about an individual entity should be on a single line. Empty lines and lines containing
only blanks are ignored.

8.2.1 A.2.1. Overall file layout

Overall layout of a HED MEDIAWIKI schema file.

header-line
prologue

. . .
!# start schema
schema-specification
!# end schema
unit-class-specification
unit-modifier-specification
value-class-specification
schema-attribute-specification
property-specification
!# end hed
epilogue

8.2.2 A.2.2. The header-line

The first line of the .mediawiki file should be a header-line that starts with the keyword HED followed by a blank-
separated list of name-value pairs.

Table 7: Allowed HED schema header parameters

Name Level Description
library optional Name of library used in XML file names.

The value should only have lowercase alphabetic characters.
version required A valid semantic version number of the schema.
xmlns optional xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”.
xsi optional xsi:noNamespaceSchemaLocation points to an XSD file.

The following example gives a sample header-line for standard schema version 8.0.0 in .mediawiki format.

66 Chapter 8. A. Schema format details

HED specification, Release 3.1.0

Example: Sample header-line for version 8.0.0 in .mediawiki format.

HED version="8.0.0"

The schema .mediawiki file specified in this example is named HED8.0.0.mediawiki and can be found in the
standard_schema/hedwiki directory of the hed-schemas GitHub repository.

The versions of the schema that use XSD validation to verify the format (versions 8.0.0 and above) have xmlns:xsi
and xsi:noNamespaceSchemaLocation attributes. The xsi attribute is required if xmlns:xsi is given. The XSD
file allows validators to check the format of the .xml using standard XML validators.

The following example shows a sample header-line for testlib library schema version 1.0.2 in .mediawiki format.

Example: Sample header-line for testlib library version 1.0.2 in .mediawiki format.

HED library="testlib" version="1.0.2"

The library and version values are used to form the official file name HED_testlib_1.0.2.mediawiki. The file
is found in library_schemas/testlib/hedwiki directory of the hed-schemas GitHub repository.

A warning is generated when unknown header-line attributes are translated as attributes of the HED line during .
mediawiki file validation.

8.2.3 A.2.3. The prologue and epilogue

The prologue is an optional paragraph of text appearing after the header-line. The prologue is used by tools for help
and display purposes.

Early versions of HED use the prologue section to record a CHANGE_LOG as well as information about the syntax
and rules. HED versions >= 8.0.0 include a separate change log file for released versions.

Similar to the prologue section, the epilogue is an optional paragraph of text, usually containing references and license
information. The epilogue appears directly before the ending line of the file.

Both the prologue and epilogue may contain commas and new lines in addition to the characters specified by the
textClass.

8.2.4 A.2.4. Schema sections

The beginning of the actual specification of the HED vocabulary is marked by the start-line:

!# start schema

The end of the main HED-specification is marked by the end-line:

!# end schema

A section separator is a line starting with !#. The section separator lines (!# start schema, !# end schema, !#
end hed) must only appear once in the file and must appear in that order within the file.

The body of the HED specification is located between the !# start schema and !# end schema section separators.
Each specification is a single line in the .mediawiki file.

8.2. A.2. Mediawiki file format 67

https://github.com/hed-standard/hed-schemas/tree/main/standard_schema/hedwiki
https://github.com/hed-standard/hedschemas
https://github.com/hed-standard/hed-schemas/blob/main/standard_schema/hedxml/HED8.0.0.xsd
https://github.com/hed-standard/hed-schemas/blob/main/standard_schema/hedxml/HED8.0.0.xsd
https://github.com/hed-standard/hed-schemas/tree/main/library_schemas/testlib/hedwiki
https://github.com/hed-standard/hedschemas

HED specification, Release 3.1.0

The three types of lines in the main specification section are top-nodes, normal-nodes, and placeholders, respectively.

Empty lines or lines containing only blanks are ignored.

The basic format for a node-specification is:

node-name <nowiki>{attributes}[description]</nowiki>

Top node names are enclosed in triple single quotes (e.g., '''Event'''), while other types of nodes have at least one
preceding asterisk (*) followed by a blank and then the name.

The number of asterisks indicates the level of the node in the subtree. The attributes are in curly braces ({ }) and the
description is in square brackets ([]).

Node names in HED versions >= 8.0.0 can only contain alphanumeric characters, hyphens, and under-bars (i.e., they
must be of type nameClass. They cannot contain blanks and must be unique.

HED versions < 8.0.0 allow blanks in node names and also have some duplicate node names. Use of HED versions <
8.0.0 is deprecated, although validators still support them at this time.

For top nodes and normal nodes, everything after the node name must be contained within <nowiki></nowiki> tags.
The # is included within the <nowiki></nowiki> tags in placeholder nodes.

Example: Different types of HED node specifications in .mediawiki format.

Top node:

'''Property''' <nowiki>{extensionAllowed} [Subtree of properties.]</nowiki>

Normal node:

***** Duration <nowiki>{requireChild} [Time extent of something.]</nowiki>

Placeholder node:

****** <nowiki># {takesValue, unitClass=time,valueClass=numericClass}</nowiki>

The Duration tag of this example is at the fifth level below the root (top node) of its subtree. The tag: Property/
Data-property/Data-value/Spatiotemporal-value/Temporal-value/Duration is the long form. The
placeholder in the example is the node directly below Duration in the hierarchy.

8.2.5 A.2.5. Auxiliary sections

After the line marking the end of the schema (!# end schema), the .mediawiki file contains the unit class definitions,
unit modifier definitions, value class definitions, the schema attribute definitions, and property definitions. All of these
sections are required starting with HED version 8.0.0 and must be given in this order.

68 Chapter 8. A. Schema format details

HED specification, Release 3.1.0

8.2.5.1 A.2.5.1. Unit classes and units

Unit classes specify the types of units allowed to be used with a value substituted for a # placeholder.

The unit class specification section starts with '''Unit classes''' and lists the types of units (the unit classes) at
the first level and the specific units corresponding to those unit classes at the second level.

Example: Part of the HED unit class for time in .mediawiki format.

'''Unit classes'''
* time <nowiki>{defaultUnits=s}</nowiki>
** second <nowiki>{SIUnit}</nowiki>
** s <nowiki>{SIUnit, unitSymbol}</nowiki>

8.2.5.2 A.2.5.2. Unit modifiers

The SI units can be modified by SI (International System Units) sub-multiples and multiples. All unit modifiers are at
level 1 of the .mediawiki file.

Example: Part of the HED unit modifier in .mediawiki format.

'''Unit modifiers'''
* deca <nowiki>{SIUnitModifier} [SI unit multiple for 10 raised to power 1]</nowiki>
* da <nowiki>{SIUnitSymbolModifier} [SI unit multiple for 10 raised to power 1]</nowiki>

A unit must have the SIUnit attribute in order to be used with modifiers. If the unit has both the SIUnit and
unitSymbol attributes, then it only can be used with SIUnitSymbolModifier modifiers. If the unit has only the
SIUnit attribute, then it only can be used with the SIUnitModifer.

For example the unit second is an SIUnit but not a symbol, so second, seconds, decasecond and decaseconds
are all valid units.

The unit s is both a SIUnit and a unitSymbol, so s and das are valid units. Note that rules about pluralization do
not apply to unit symbols.

8.2.5.3 A.2.5.3. Value classes

Value classes give rules about what kind of value is allowed to be substituted for # placeholder tags.

Example: Part of the HED value class for date-time in .mediawiki format.

'''Value classes'''
* dateTimeClass <nowiki>{allowedCharacter=digits,allowedCharacter=T,allowedCharacter=-,
→˓allowedCharacter=:}[Should conform to ISO8601 date-time format YYYY-MM-DDThh:mm:ss.]</
→˓nowiki>

8.2. A.2. Mediawiki file format 69

HED specification, Release 3.1.0

8.2.5.4 A.2.5.4. Schema attributes

The schema attributes specify other characteristics about how particular tags may be used in annotation. These attributes
allow validators and other tools to process tag strings based on the HED schema specification, thus avoiding hard-coding
particular behavior.

Example: HED schema attributes allowedChaaracter and defaultUnits in .mediawiki format.

'''Schema attributes'''
* allowedCharacter <nowiki>{valueClassProperty}[Value may contain this character.]</
→˓nowiki>
* extensionAllowed <nowiki>{boolProperty}[This schema node may be extended.]</nowiki>

The schema attributes, themselves, have attributes referred to asschema properties. These schema properties are listed
in the Properties section of the schema. The example indicates that allowedCharacter is associated with value
classes, while defaultUnits is associated with unit classes.

8.2.5.5 A.2.5.5. Schema properties

Properties apply only to schema attributes. The following example defines the valueClassProperty in .mediawiki
format.

Example: HED schema property valueClassProperty in .mediawiki format.

'''Properties'''
* valueClassProperty <nowiki>[Attribute is meant to be applied to value classes.]</
→˓nowiki>

8.3 A.3. XML file format

This section describes details of the XML schema format.

8.3.1 A.3.1. Overall file layout

The XML schema file format has a header, prologue, main schema, definitions, and epilogue sections. The general
layout is as follows:

XML layout of the HED schema.

<?xml version="1.0" ?>
<HED library="test" version="0.0.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
→˓" xsi:noNamespaceSchemaLocation="https://github.com/hed-standard/hed-specification/raw/
→˓master/hedxml/HED8.0.0-beta.3.xsd">
<prologue>unique optional text blob</prologue>
<schema>

... schema specification ...
(continues on next page)

70 Chapter 8. A. Schema format details

HED specification, Release 3.1.0

(continued from previous page)

</schema>
<unitClassDefinitions>
<unitClassDefinition> ... </unitClassDefinition>

...
<unitClassDefinition> ... </unitClassDefinition>

</unitClassDefinitions>
<unitModifierDefinitions>
<unitModifierDefinition> ... </unitModifierDefinition>

...
<unitModifierDefinition> ... </unitModifierDefinition>

</unitModifierDefinitions>

<valueClassDefinitions>
<valueClassDefinition> ... </valueClassDefinition>

...
<valueClassDefinition> ... </valueClassDefinition>

</valueClassDefinitions>

<schemaAttributeDefinitions>
<schemaAttributeDefinition> ... </schemaAttributeDefinition>

...
<schemaAttributeDefinition> ... </schemaAttributeDefinition>

</schemaAttributeDefinitions>

<propertyDefinitions>
<propertyDefinition> ... </propertyDefinition>

...
<propertyDefinition> ... </propertyDefinition>

</propertyDefinitions>

<epilogue>unique optional text blob</epilogue>
</HED>

8.3.2 A.3.2. The header

The HED node is the root node of the XML schema.

Example: Header for Version 8.0.0 of the standard HED XML schema.

<HED version="8.0.0">

The file name corresponding to this example is HED8.0.0.xml. The file is found in the standard_schema/hedxml
directory of the hed-schemas GitHub repository.

Library schemas must include the library attribute with the library name in their header line as shown in the following
example.

Example: Version 1.0.2 of HED testlib library schema in .xml format.

8.3. A.3. XML file format 71

https://github.com/hed-standard/hed-schemas/tree/main/standard_schema/hedxml
https://github.com/hed-standard/hedschemas

HED specification, Release 3.1.0

<HED library="testlib" version="1.0.2">

The library and version values are used to form the official xml file name HED_testlib_1.0.2.xml. The file is
found in library_schemas/testlib/hedxml directory of the hed-schemas GitHub repository.

Unknown header-line attributes are translated as attributes of the HED root node of the .xml version, but a warning is
issued when the .mediawiki file is validated.

8.3.3 A.3.3. The prologue and epilogue

The <prologue>...</prologue> and <epilogue>...</epilogue> elements are meant to be treated as opaque
as far as schema processing goes.

HED versions < 8.0.0 contained a Change Log for the HED schema in the prologue section as well as some basic
documentation of syntax. The epilogue section contained additional metadata to be ignored during processing.

8.3.4 A.3.4. The schema section

The schema section of the HED XML document consists of an arbitrary number of <node></node> elements enclosed
in a single <schema></schema> element.

Top-level XML layout of the HED schema.

<schema>
<node> ... </node>

...
<node> ... </node>

</schema>

A <node> element contains a required <name> child element, an optional <description> child element, and an
optional number of additional <attribute> child elements:

XML layout HED node element.

<node>
<name>xxx</name>
<description>yyy</description>
<attribute> ... </attribute>
<attribute> ... </attribute>
<attribute> ... </attribute>
<node> ... <node>

</node>

The <name> element text must conform to the rules for naming HED schema nodes. It corresponds to the node-name
in the mediawiki specification and must not be empty. A # value is used to represent value place-holder elements.

The <description> element has the text contained in the square brackets [] in the .mediawiki node specification.
If the .mediawiki description is missing or has an empty [], the <description> element is omitted.

72 Chapter 8. A. Schema format details

https://github.com/hed-standard/hed-schemas/tree/main/library_schemas/testlib/hedxml
https://github.com/hed-standard/hedschemas

HED specification, Release 3.1.0

The optional <attribute> elements are derived from the attribute list contained in curly braces { } of the .
mediawiki specification. An <attribute> element has a single non-empty <name></name> child element whose
text value corresponds to the node-name of attribute in the corresponding .mediawiki file. If the attribute does not
have the boolProperty, then the <attribute> element should also have one or more child <value></value> ele-
ments giving the value(s) of the attribute.

Example: The requireChild attribute represents a boolean value. In the .mediawiki representation this attribute
appears as {requireChild} if present and is omitted if absent.

The format of the XML attributes was changed with HED versions > 8.0.0. The old version is deprecated, but still
supported for validation.

The requireChild attribute represents a boolean value.

Old xml if true:

<node requireChild="true"><name>xxx</name></node>

New xml if true:

<node>
<name>xxx</name>
<attribute>
<name>requireChild</name>

</attribute>
</node>

Example: The suggestedTag is a schema attribute that has a value. The attribute is meant to be used by tagging tools
to suggest additional tags that a user might want to include. Notice that the suggestedTag values are valid HED tags
in any form (short, long, or intermediate).

The suggestedTag old format.

Old xml if present:

<node suggestedTag="Sweet,Gustatory-attribute/Salty">
<name>xxx</name>

</node>

New xml if present:

<node>
<name>xxx</name>
<attribute>
<name>suggestedTag</name>

<value>Sweet</value>
<value>Gustatory-attribute/Salty</value>

</attribute>
</node>

8.3. A.3. XML file format 73

HED specification, Release 3.1.0

8.3.5 A.3.5. Auxiliary sections

The auxiliary sections define various aspects of behavior of various types of elements in the schema.

8.3.5.1 A.3.5.1. Unit classes

The unit classes are defined in the <unitClassDefinitions> section of the XML schema file, and the unit modifiers
are defined in the <unitModifierDefinitions> section. These sections follow a format similar to the <node>
element in the <schema> section.

The <unitClassDefinition> elements have a required <name>, an optional <description>, and an arbitrary num-
ber of additional <attribute> child elements. These <attribute> elements describe properties of the unit class
rather than of individual unit types. In addition, <unitClassDefinition> elements may have an arbitrary number
of <unit> child elements as shown in the following example.

Example XML layout of the unit class definitions.

<unitClassDefinition>
<name>time</name>
<description>Temporal values except date and time of day.</description>
<attribute>
<name>defaultUnits</name>
<value>s</value>

</attribute>
<unit>
<name>second</name>
<description>SI unit second.</description>
<attribute>
<name>SIUnit</name>

</attribute>
</unit>
<unit>
<name>s</name>
<description>SI unit second in abbreviated form.</description>
<attribute>
<name>SIUnit</name>

</attribute>
<attribute>
<name>unitSymbol</name>

</attribute>
</unit>

</unitClassDefinition>

74 Chapter 8. A. Schema format details

HED specification, Release 3.1.0

8.3.5.2 A.3.5.2. Unit modifiers

Unit modifiers are defined in the <unitModifierDefinitions> section of the XML schema file. The following
shows the layout of an example unit modifier definitions:

Example XML layout of the unit modifier definition

<unitModifierDefinitions>
<unitModifierDefinition>

<name>deca</name>
<description>SI unit multiple representing 10^1.</description>
<attribute>
<name>SIUnitModifier</name>

</attribute>
<attribute>
<name>conversionFactor</name>
<value>10.0</value>

</attribute>
</unitModifierDefinition>

. . .
</unitModifierDefinitions>

8.3.5.3 A.3.5.3 Value classes

Value classes are defined in the <valueClassDefinitions> section of the XML schema file. These sections follow
a format similar to the <node> element in the <schema>:

Example XML layout of the unit class definitions.

<valueClassDefinitions>
<valueClassDefinition>

<name>dateTimeClass</name>
<description>Should conform to ISO8601 date-time format YYYY-MM-DDThh:mm:ss.</

→˓description>
<attribute>

<name>allowedCharacter</name>
<value>digits</value>
<value>T</value>
<value>-</value>
<value>:</value>

</attribute>
</valueClassDefinition>

</valueClassDefinitions>

8.3. A.3. XML file format 75

HED specification, Release 3.1.0

8.3.5.4 A.3.5.4. Schema attributes

The <schemaAttributeDefinitions> section specifies the allowed attributes of the other elements including
the <node>, <unitClassDefinition>, <unitModifierDefinition>, and <valueClassDefinition> elements.
The specifications of individual attributes are given in <schemaAttributeDefinition> elements.

Example XML layout of the schema attribute definitions.

<schemaAttributeDefinitions>
<schemaAttributeDefinition>

<name>allowedCharacter</name>
<description>Value may contain this character.</description>
<property>

<name>valueClassProperty</name>
</property>

</schemaAttributeDefinition>
<schemaAttributeDefinition>

<name>extensionAllowed</name>
<description>This schema node may be extended.</description>
<property>

<name>boolProperty</name>
</property>

</schemaAttributeDefinition>
. . .

</schemaAttributeDefinitions>

8.3.5.5 A.3.5.5. Schema properties

The following is an example of the layout of the valueClassProperty in .xml format.

Example XML layout of the schema property definitions.

<propertyDefinitions>
. . .

<propertyDefinition>
<name>valueClassProperty</name>
<description>Indicates that the schema attribute is meant to be applied to␣

→˓value classes.</description>
</propertyDefinition>

</propertyDefinitions>

76 Chapter 8. A. Schema format details

CHAPTER

NINE

B. HED ERRORS

This appendix summarizes the error codes used by HED validators and other tools.

HED-compliant tools may assume that it if a HED annotation has been properly validated, it will comply with the
rules of the HED specification. Annotators and analysts are mainly concerned with HED validation errors relating to
incorrectly annotated events. See B.1: HED validation errors for a listing of errors keyed to the HED specification.

HED-compliant tools assume that the HED schemas available on the hed-standard/hed-schemas GitHub repository
are error-free, and that schema errors can only occur due to failure to locate or read a HED schema.

HED schema developers are mainly concerned with errors and inconsistencies in the schema itself. Schemas under
development should be validated at all stages of development. See B.2: Schema validation errors for a listing of errors
keyed to the HED specification.

9.1 B.1. HED validation errors

9.1.1 CHARACTER_INVALID

A HED string contains an invalid character.

a. The HED string contains a UTF-8 character.

b. An extension or a value substituted for a # is not allowed by its value class.

Notes:

• HED uses ANSI encoding and does not support UTF-8.

• Different parts of a HED string have different rules for acceptable characters.

See 3.2.4 Tags that take values and 3.2.5: Tag extensions for an explanation of the rules for tag values and extensions.

9.1.2 COMMA_MISSING

HED tag groups and tags must be separated with commas. In the following A, B, C, and D represent HED expressions.

a. Two tag groups are not separated by commas: (A, B)(C, D).
b. A tag and a tag group are not separated by commas: A(B,D).

Note: Commas missing between two HED tags are generally detected as invalid HED tags, rather than as missing
commas.

See 3.2.7.3. Empty tags and groups for an explanation of the rules for empty tags.

See also TAG_EMPTY .

77

https://github.com/hed-standard/hed-schemas

HED specification, Release 3.1.0

9.1.3 DEF_EXPAND_INVALID

a. A Def-expand tag’s name does not correspond to a definition.
b. A Def-expand is missing an expected placeholder value or has an unexpected placeholder value.
c. A Def-expand has a placeholder value of incorrect format or units for definition.
d. The tags within a Def-expand do not match the corresponding definition.
e. A Def-expand tag group is missing its inner tag group.
f. A Def-expand tag group has extra tags or groups.

See 3.2.8.2. The Def and Def-expand tags for an explanation of the rules for Def-expand and 5.2. Using definition
for more details and examples.

9.1.4 DEF_INVALID

a. A Def tag’s name does not correspond to a definition.
b. A Def tag is missing an expected placeholder value or has an unexpected placeholder value.
c. A Def has a placeholder value of incorrect format or units for definition.

See 3.2.8.2. The Def and Def-expand tags for an explanation of the rules for Def and 5.2. Using definition for more
details and examples.

9.1.5 DEFINITION_INVALID

A definition is a tag group containing a Definition tag and a single tag group with the definition’s contents.

a. A Definition tag does not appear in a tag group at the top level in an annotation.
b. A definition’s enclosing tag group is missing the inner tag group (.i.e., the definition’s contents).
c. A definition’s enclosing tag group contains more than a Definition tag and an inner group.
d. A definition’s inner tag group contains Definition, Def or Def-expand tags.
e. A definition that includes a placeholder (#) does not have exactly two # characters.
f. A definition has placeholders (#) in incorrect positions.
g. Definitions of the same name appear with and without a #.
h. Multiple Definition tags with same name are encountered. i. A tag with a required or unique attribute appears
in a definition. j. A definition appears in an unexpected place such as an events file.

See 3.2.8.1. The Definition tag for an explanation of the rules for definitions. See also 5.1. Creating definitions and
5.2. Using definitions for more details and examples of definition syntax.

9.1.6 NODE_NAME_EMPTY

a. A tag has one or more forward slashes (/) at beginning or end (ignoring whitespace).
b. A tag contains consecutive forward slashes (ignoring whitespace).

See 3.2.3 Tag forms for more information.

78 Chapter 9. B. HED errors

HED specification, Release 3.1.0

9.1.7 ONSET_OFFSET_ERROR

Note: For the purpose of Onset/Offset matching, Def or Def-expand tags with different placeholder substitutions
are considered to be different.

a. An Onset or Offset tag does not appear in a tag group.
b. An Onset or Offset tag appears in a nested tag group (not a top-level tag group).
c. An Onset or Offset tag is not grouped with exactly one Def tag or Def-expand-group.
d. An Onset group has more than one additional tag group.
e. An Offset appears with one or more tags or additional tag groups.
f. An Offset tag appears before an Onset tag associated with the same definition.
g. An Offset tag associated with a given definition appears after a previous Offset tag. without the appearance of
an intervening Onset of the same name.
h. An Onset tag group with has tags besides the anchor Def or Def-expand-group that are not in a tag group.
i. An Onset or an Offset with a given Def or Def-expand-group anchor appears in the same event marker with
another Onset or Offset that uses the same anchor.

Note: if the Onset tag group’s definition is in expanded form, the Def-expandwill be an additional internal tag group.

See 3.2.8.3 Onset and Offset tags for a specification of the required behavior of Onset and Offset.

5.3.1. Using Onset and Offset in Chapter 5 gives examples of usage and additional details.

9.1.8 PARENTHESES_MISMATCH

a. A HED string does not have the same number of open and closed parentheses.
b. The open and closed parentheses are not correctly nested in the HED string.

See 3.2.7.1. Parentheses and order for the rules for parentheses in HED.

9.1.9 PLACEHOLDER_INVALID

a. A # appears in a place that it should not (such as in the HED column of an events file).
b. A JSON sidecar has a placeholder (#) in the HED dictionary for a categorical column.
c. A JSON sidecar does not have exactly one placeholder (#) in each HED string representing a value column.
d. A placeholder (#) is used in JSON sidecar or definition, but its parent in the schema does not have a placeholder
child.

See 3.2.4. Tags that take values and 3.2.9.1. Sidecar entries for information on the use of placeholders in HED.

9.1.10 REQUIRED_TAG_MISSING

a. An event-level annotation does not have a tag corresponding to a node with the required schema attribute.

Note: An assembled event string must include all tags having the required schema attribute.

See 3.2.10.2. Event-level processing for additional information on the required tag.

9.1. B.1. HED validation errors 79

HED specification, Release 3.1.0

9.1.11 SIDECAR_INVALID

a. The "HED" key is not a second-level dictionary key. b. An annotation entry is provided for n/a.

See 3.2.9.2. Sidecar validation for a general explanation of sidecar requirements.

9.1.12 SIDECAR_KEY_MISSING*

(WARNING)

a. A value in a categorical column does not have an expected entry in a sidecar.

Note: This warning is only triggered if the categorical column in which the value appears does have HED annotations.

See 3.2.9. Sidecars for a general explanation of sidecar requirements.

9.1.13 STYLE_WARNING*

(WARNING) a. An extension or label does not follow HED naming conventions.

See 3.1.3. Naming conventions for an explanation of HED naming conventions.

9.1.14 TAG_EMPTY

a. A HED string has extra commas or parentheses separated by only white space, indicating empty tags.
b. A HED string begins or ends with a comma (ignoring white space), indicating an empty string.
c. A tag group is empty (i.e., empty parentheses are not allowed).

See 3.2.7.3. Empty tags and groups for the rules on empty tags and groups.

9.1.15 TAG_EXPRESSION_REPEATED

a. A tag is repeated in the same tag group or level.

Suppose A, B, and C represent HED expressions. HED strings are not ordered, so (B, C) is equivalent to (B, C). Thus,
(A, (A, B)) is not a duplicate, but (A, (B, C), A) and (A, (B, C), (C, B)) are duplicates.

See 3.2.7.4. Repeated expressions for additional information on the rules for duplication.

9.1.16 TAG_EXTENDED*

(WARNING)

a. A tag represents an extension from the schema.

Note: Often such extensions are really spelling errors and not meant to extend the schema.

Note: Annotators are discouraged from extending the schema unless absolutely necessary. If an extension tag is needed,
annotators should consider posting an issue explaining the tag extension so that an addition to the respective schema
might be considered.

See 3.2.5 Tag extensions for additional information on the tag extension rules.

80 Chapter 9. B. HED errors

https://github.com/hed-standard/hed-schemas/issues

HED specification, Release 3.1.0

9.1.17 TAG_EXTENSION_INVALID

a. A tag extension term is already in the schema.
b. A tag extension term does not comply with rules for schema nodes.

See 3.2.5 Tag extensions for additional information on the tag extension rules.

9.1.18 TAG_GROUP_ERROR

a. A tag has tagGroup or topLevelTagGroup attribute, but is not enclosed in parentheses.
b. A tag with the topLevelTagGroup does not appear at a HED tag group at the top level in an assembled HED
annotation. c. Multiple tags with the topLevelTagGroup attribute appear in the same top-level tag group.

See 3.2.7.2. Tag group attributes for additional information on the rules for group errors due to schema attributes.

9.1.19 TAG_INVALID

a. The tag is not valid in the schema it is associated with.

See 3.2.2. Tag forms for a discussion of tag forms and their relationship to the HED schema.

9.1.20 TAG_NOT_UNIQUE

a. A tag with unique attribute appears more than once in an event-level HED string.

See 3.2.10.2. Event-level processing for additional information on the unique tag.

9.1.21 TAG_PREFIX_INVALID

a. A tag starting with name: does not have an associated schema. b. A tag prefix has invalid characters.

See 3.2.6. Tag prefixes and 7. Library schema for additional information on using multiple schemas in annotation.

9.1.22 TAG_REQUIRES_CHILD

a. A tag has the requireChild schema attribute but does not have a child.

See 3.2.4. Tags that take values for an explanation of the requireChild attribute.

9.1.23 TILDES_UNSUPPORTED

The tilde notation is not supported.

a. The tilde syntax is no longer supported for any version of HED.
Annotators should replace the syntax (A ~ B ~ C) with (A, (B, C)).
b. The tilde (~) is considered an invalid character in all versions of the schema.

9.1. B.1. HED validation errors 81

HED specification, Release 3.1.0

9.1.24 UNITS_INVALID

a. A tag has a value with units that are invalid or not of the correct unit class for the tag.
b. A unit modifier is applied to units that are not SI units.

9.1.25 UNITS_MISSING*

(WARNING)

a. A tag that takes value and has a unit class does not have units.

See 3.2.4 Tags that take values for more information.

9.1.26 VALUE_INVALID

a. The value substituted for a placeholder (#) is not valid.
b. A tag value is incompatible with the specified value class.
c. A tag value with no value class is assumed to be a text and contains invalid characters. d. The units are not separated
from the value by a single blank.

See 3.2.4 Tags that take values for more information.

9.1.27 VERSION_DEPRECATED*

(WARNING)

a. The HED schema version being used as been deprecated.

It is strongly recommended that a current schema version be used as these deprecated versions may not be supported
in the future. Deprecated versions can be found in the standard_schema/hedxml/deprecated subdirectory or the
corresponding subdirectory for individual library schemas in the hed-standard/hed-schemas GitHub repository.

Note: Support for versions of the schema less than 8.0.0 is being phased out. If you are using a deprecated version,
you may need to switch to an earlier version of the HED validators.

9.2 B.2. Schema validation errors

This section is organized by the type of schema format that results in the error. Errors that might be detected regard-
less of the schema format start with HED_SCHEMA. Errors that are specific to the .mediawiki format start with
HED_WIKI. Errors that occur in the construction of the XML version or that are detected by XML validators when
the planned XSD validation is implemented start with HED_XML.

9.2.1 B.2.1. General validation errors

9.2.1.1 LIBRARY_NAME_INVALID

a. The specified library name is not alphabetic or lowercase.

82 Chapter 9. B. HED errors

https://github.com/hed-standard/hed-schemas/tree/main/standard_schema/hedxml/deprecated
https://github.com/hed-standard/hed-schemas

HED specification, Release 3.1.0

9.2.1.2 SCHEMA_ATTRIBUTE_INVALID

a. An attribute is used in the schema, but is not defined in the schema attribute section.
b. A schema attribute is applied to the incorrect type (e.g., an element with the unit definition does appear under an
appropriate unit class).

Note:

• A unitClass attribute must be defined in the unitClassDefinitions section of the schema.

• A valueClass attributes must be defined in the valueClassDefinitions section of the schema.

• A schemaAttribute must be defined in the schemaAttributeDefinitions section of the schema.

9.2.1.3 SCHEMA_CHARACTER_INVALID

a. The specification contains an invalid character for the section in which it appears.

9.2.1.4 SCHEMA_DUPLICATE_NODE

a. A schema node name appears in the schema more than once.

9.2.1.5 SCHEMA_HEADER_INVALID

a. The schema header has invalid characters or format.
b. The schema header has unrecognized attributes.

9.2.1.6 SCHEMA_SECTION_MISSING

a. A required schema section is missing.
b. The required sections (corresponding to the schema, unit classes, unit modifiers, value classes, schema attributes,
and properties) are not in the correct order and hence not detected.

Note: Required schema sections may be empty, but still be given.

9.2.1.7 SCHEMA_VERSION_INVALID

a. The schema version in the HED line or element is invalid.
b. A HED version specification does not have the correct syntax for the schema file format.
c. A HED schema version does not comply with semantic versioning.

9.2.2 B.2.2. Mediawiki format errors

9.2.2.1 WIKI_DELIMITERS_INVALID

a. Delimiters used in the wiki are invalid.
b. Schema line content after node name is not enclosed with <nowiki></nowiki> delimiters.
c. A line has unmatched or multiple <nowiki></nowiki>, [], or { } delimiters.

9.2. B.2. Schema validation errors 83

HED specification, Release 3.1.0

9.2.2.2 WIKI_LINE_START_INVALID

a. Start of body line not ''' or *.

9.2.2.3 WIKI_SEPARATOR_INVALID

a. Required wiki section separator is missing or misplaced.
b. A required schema separator is missing. (The required separators are: !# start schema, !# end schema, and
!# end hed.)

9.2.3 B.2.3. XML format errors

9.2.3.1 XML_SYNTAX_INVALID

a. XML syntax or does not comply with specified XSD.

9.2.4 B.2.4 Schema loading errors

Schema loading errors can occur because the file is inaccessible or is not proper XML. Schema loading errors are
handled in different ways by the Python and JavaScript tools.

Python tools generally raise a HedFileError exception when a failure to load the schema occurs. The calling programs
are responsible for deciding how to handle such a failure.

JavaScript tools in contrast are mainly used for validation in HED validation BIDS and are mainly called by the BIDS
validator. Usually BIDS datasets provide a HED version number to designate the version of HED to be used, and the
HED JavaScript validator is responsible for locating and loading schema.

BIDS validator users do not always have unrestricted access to the Internet during the validation process. The HED
JavaScript tools have a fallback of the loading of the specified schema fails. The validator loads an internal copy of
the most recent version of the HED schema and loads it. However, it also reports a SCHEMA_LOAD_FAILED issue to
alert the user that the schema used for validation may not be the one designated in the dataset. However, validation will
continue with the fallback schema.

If the fallback schema stored with the HED validator fails to load, the SCHEMA_LOAD_FAILED issue will also be reported
and no additional HED validation will occur.

84 Chapter 9. B. HED errors

https://bids.neuroimaging.io/

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

85

	1. Introduction to HED
	1.1. Scope of HED
	1.2. Brief history of HED
	1.2. Goals of HED
	1.3. HED design principles
	1.4. Specification organization

	2. HED terminology
	Agent [*]
	Condition-variable [*]
	Control-variable [*]
	Dataset
	Event [*]
	Event-context [*]
	Event marker
	Event-stream [*]
	Experiment-participant [*]
	Experimental-trial [*]
	HED schema [*]
	HED string
	HED tag
	Indicator-variable [*]
	Parameter [*]
	Recording [*]
	Tag-group
	Task [*]
	Temporal scope
	Time-block [*]

	3. HED formats
	3.1. HED schema format
	3.1.1. Official schema releases
	3.1.2. Schema layout overview
	3.1.2.1. The header
	3.1.2.2. The prologue
	3.1.2.3. The schema section
	3.1.2.4. Unit classes and units
	3.1.2.5. Unit modifiers
	3.1.2.6. Value classes
	3.1.2.7. Schema attributes
	3.1.2.8. Schema properties
	3.1.2.9. The epilogue

	3.1.3. Naming conventions
	3.1.3.1. Node elements
	3.1.3.2. Epilogue and prologue
	3.1.3.3. Naming in other blocks

	3.1.4. Mediawiki schema format
	3.1.5. XML schema format

	3.2. HED annotation format
	3.2.1. Vocabulary organization
	3.2.2. Tag forms
	3.2.3. Tag case-sensitivity
	3.2.4. Tags that take values
	3.2.5. Tag extensions
	3.2.6. Tag prefixes
	3.2.7. Strings and groups
	3.2.7.1. Parenthesis and order
	3.2.7.2. Tag group attributes
	3.2.7.3. Empty tags and groups
	3.2.7.4. Repeated expressions

	3.2.8. Special tags
	3.2.8.1. The Definition tag
	3.2.8.2. Def and Def-expand tags
	3.2.8.3. Onset and Offset tags
	3.2.8.4. The Event-context tag

	3.2.9. Sidecars
	3.2.9.1. Sidecar entries
	3.2.9.2. Sidecar validation

	3.2.10. Tabular files
	3.2.10.1. Tabular annotations
	3.2.10.2. Event-level processing
	3.2.10.3 File-level processing

	4. Basic annotation
	4.1. Instantaneous events
	4.2. Sensory presentations
	4.3. Task role
	4.4. Agent actions
	4.5. Experimental control
	4.6. Data features
	4.7. What else?

	5. Advanced annotation
	5.1. Creating definitions
	5.2. Using definitions
	5.2.1. The Def tag
	5.2.2. The Def-expand tag

	5.3. Temporal scope
	5.3.1. Using Onset and Offset
	5.3.2. Using Duration
	5.3.3. Using Delay

	5.4. Event streams
	5.5. Event contexts
	5.6. Experimental design
	5.7. Specialized annotation
	5.7.1. Parameter tags

	6. Infrastructure and tools
	6.1. Basic tag handling
	6.1.1. Tag forms
	6.1.2. Parentheses and commas
	6.1.3. Tag ordering
	6.1.4. Definitions

	6.2. File-level handling
	6.3. HED support of BIDS
	6.3.1. BIDS tabular files
	6.3.2. BIDS sidecars
	6.3.3. Annotation assembly
	6.3.4. HED version in BIDS
	6.3.5. HED in the BIDS validator
	6.3.5. HED python tools

	7. Library schema
	7.1. Defining a schema
	7.2. Schema namespaces
	7.3. Library schema layout
	7.3.1. Required sections
	7.3.2. Relation to standard HED schema
	7.3.3. Schema properties
	7.3.4. Unit classes
	7.3.5. Value classes
	7.3.6. Schema attributes
	7.3.7. Syntax checking

	7.4. Library schemas in BIDS
	7.1. Using library schema in BIDS

	A. Schema format details
	A.1. Auxiliary schema sections
	A.1.1. Unit classes and units
	A.1.2. Unit modifiers
	A.1.3. Value classes
	A.1.4. Schema attributes
	A.1.5. Schema properties

	A.2. Mediawiki file format
	A.2.1. Overall file layout
	A.2.2. The header-line
	A.2.3. The prologue and epilogue
	A.2.4. Schema sections
	A.2.5. Auxiliary sections
	A.2.5.1. Unit classes and units
	A.2.5.2. Unit modifiers
	A.2.5.3. Value classes
	A.2.5.4. Schema attributes
	A.2.5.5. Schema properties

	A.3. XML file format
	A.3.1. Overall file layout
	A.3.2. The header
	A.3.3. The prologue and epilogue
	A.3.4. The schema section
	A.3.5. Auxiliary sections
	A.3.5.1. Unit classes
	A.3.5.2. Unit modifiers
	A.3.5.3 Value classes
	A.3.5.4. Schema attributes
	A.3.5.5. Schema properties

	B. HED errors
	B.1. HED validation errors
	CHARACTER_INVALID
	COMMA_MISSING
	DEF_EXPAND_INVALID
	DEF_INVALID
	DEFINITION_INVALID
	NODE_NAME_EMPTY
	ONSET_OFFSET_ERROR
	PARENTHESES_MISMATCH
	PLACEHOLDER_INVALID
	REQUIRED_TAG_MISSING
	SIDECAR_INVALID
	SIDECAR_KEY_MISSING*
	STYLE_WARNING*
	TAG_EMPTY
	TAG_EXPRESSION_REPEATED
	TAG_EXTENDED*
	TAG_EXTENSION_INVALID
	TAG_GROUP_ERROR
	TAG_INVALID
	TAG_NOT_UNIQUE
	TAG_PREFIX_INVALID
	TAG_REQUIRES_CHILD
	TILDES_UNSUPPORTED
	UNITS_INVALID
	UNITS_MISSING*
	VALUE_INVALID
	VERSION_DEPRECATED*

	B.2. Schema validation errors
	B.2.1. General validation errors
	LIBRARY_NAME_INVALID
	SCHEMA_ATTRIBUTE_INVALID
	SCHEMA_CHARACTER_INVALID
	SCHEMA_DUPLICATE_NODE
	SCHEMA_HEADER_INVALID
	SCHEMA_SECTION_MISSING
	SCHEMA_VERSION_INVALID

	B.2.2. Mediawiki format errors
	WIKI_DELIMITERS_INVALID
	WIKI_LINE_START_INVALID
	WIKI_SEPARATOR_INVALID

	B.2.3. XML format errors
	XML_SYNTAX_INVALID

	B.2.4 Schema loading errors

	Indices and tables

