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Abstract

Federated Learning (FL) is a collaborative machine learning
approach allowing participants to jointly train a model with-
out having to share their private, potentially sensitive local
datasets with others. Despite its benefits, FL is vulnerable to
so-called backdoor attacks, in which an adversary injects ma-
nipulated model updates into the federated model aggregation
process so that the resulting model will provide targeted false
predictions for specific adversary-chosen inputs. Proposed
defenses against backdoor attacks based on detecting and
filtering out malicious model updates consider only very spe-
cific and limited attacker models, whereas defenses based on
differential privacy-inspired noise injection significantly dete-
riorate the benign performance of the aggregated model. To
address these deficiencies, we introduce FLAME, a defense
framework that estimates the sufficient amount of noise to be
injected to ensure the elimination of backdoors. To minimize
the required amount of noise, FLAME uses a model cluster-
ing and weight clipping approach. This ensures that FLAME
can maintain the benign performance of the aggregated model
while effectively eliminating adversarial backdoors. Our eval-
uation of FLAME on several datasets stemming from appli-
cation areas including image classification, word prediction,
and IoT intrusion detection demonstrates that FLAME re-
moves backdoors effectively with a negligible impact on the
benign performance of the models.

1 Introduction
Federated learning (FL) is an emerging collaborative machine
learning trend with many applications, such as next word
prediction for mobile keyboards [39], medical imaging [49],
and intrusion detection for IoT [44] to name a few. In FL,
clients locally train models based on local training data and
then provide these model updates to a central aggregator who
combines them into a global model. The global model is then
propagated back to the clients for the next training iteration.

∗Emails: {ducthien.nguyen, ahmad.sadeghi}@trust.tu-darmstadt.de

FL promises efficiency and scalability as the training is
distributed among many clients and executed in parallel.
In particular, FL improves privacy by enabling clients to
keep their training data locally [38]. Despite its benefits,
FL has been shown to be vulnerable to so-called poisoning
attacks where the adversary manipulates the local models
of a subset of clients participating in the federation so that
the malicious updates get aggregated into the global model.
Untargeted poisoning attacks merely aim at deteriorating
the performance of the global model and can be defeated by
validating the performance of uploaded models [12]. In this
paper, we therefore focus on the more challenging problem
of backdoor attacks [7, 45, 57, 59], i.e., targeted poisoning
attacks in which the adversary seeks to stealthily manipulate
the resulting global model in a way that attacker-controlled
inputs result in incorrect predictions chosen by the adversary.
Deficiencies of existing defenses. Existing defenses against
backdoor attacks can be roughly divided into two cate-
gories: The first one comprises anomaly detection-based ap-
proaches [4,9,22,51] for identifying and removing potentially
poisoned model updates. However, these solutions are effec-
tive only under very specific adversary models, as they make
detailed assumptions about the attack strategy of the adversary
and/or the underlying distribution of the benign or adversarial
datasets. If these very specific assumptions do not hold, the
defenses may fail. The second category is inspired by differen-
tial privacy (DP) techniques [7,56], where individual weights1

of model updates are clipped to a maximum threshold and
random noise is added to the weights for diluting/reducing
the impact of potentially poisoned model updates on the ag-
gregated global model. In contrast to the first category, DP
techniques [7,56] are applicable in a generic adversary model
without specific assumptions about adversarial behavior and
data distributions and are effective in eliminating the impact
of malicious model updates. However, straightforward ap-
plication of DP approaches severely deteriorates the benign

1Parameters of neural network models typically consist of ’weights’ and
’biases’. For the purposes of this paper, however, these parameters can be
treated identically and we will refer to them as ’weights’ for brevity.
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performance of the aggregated model because the amount of
noise required to ensure effective elimination of backdoors
also results in significant modifications of individual weights
of benign model updates [7, 57].

In this paper, we develop a resilient defense against back-
doors by combining the benefits of both defense types without
suffering from the limitations (narrow attacker model, assump-
tions about data distributions) and drawbacks (loss of benign
performance) of existing approaches. To this end, we intro-
duce an approach in which detection of anomalous model
updates and tuned clipping of weights are combined to mini-
mize the amount of noise needed for backdoor removal of the
aggregated model while preserving its benign performance.
Our Goals and Contributions. We present FLAME, a re-
silient aggregation framework for FL that eliminates the im-
pact of backdoor attacks while maintaining the benign per-
formance of the aggregated model. This is achieved by three
modules: DP-based noising of model updates to remove back-
door contributions, automated model clustering approach to
identify and eliminate potentially poisoned model updates,
and model weight clipping before aggregation to limit the
impact of malicious model updates on the aggregation result.
The last two modules can significantly reduce the amount of
random noise required by DP noising for backdoor elimina-
tion. In particular, our contributions are as follows:

• We present FLAME, a defense framework against back-
door attacks in FL that is capable of eliminating back-
doors without impacting the benign performance of the
aggregated model. Contrary to earlier backdoor defenses,
FLAME is applicable in a generic adversary model, i.e.,
it does not rely on strong assumptions about the attack
strategy of the adversary, nor about the underlying data
distributions of benign and adversarial datasets (§4.1).

• We show that the amount of required Gaussian noise
can be radically reduced by: a) applying our clustering
approach to remove potentially malicious model updates
and b) clipping the weights of local models at a proper
level to constrain the impact of individual (especially
malicious) models on the aggregated model. (§4.3)

• We provide a noise boundary proof for the amount of
Gaussian noise required by noise injection (inspired by
DP) to eliminate backdoor contributions (§5).

• We extensively evaluate our defense framework on real-
world datasets from three very different application areas.
We show that FLAME reduces the amount of required
noise so that the benign performance of the aggregated
model does not degrade significantly, providing a crucial
advantage over state-of-the-art defenses using straight-
forward injection of DP-based noise (§7).

As an orthogonal aspect, we also consider how the privacy of
model updates against an honest-but-curious aggregator can
be preserved and develop a secure multi-party computation

approach that can preserve the privacy of individual model
updates while realizing our backdoor defense approach (§8).

2 Background and Problem Setting
2.1 Federated Learning
Federated Learning [38, 50] is a concept for distributed ma-
chine learning that links n clients and an aggregator to col-
laboratively build a global model G. In a training iteration
t ∈ {1, . . . ,T}, each client i ∈ {1, . . . ,n} locally trains a local
model Wi with p parameters (indicating both weights and
biases) w1

i , . . . ,w
p
i based on the previous global model Gt−1

using its local data Di and sends it to the aggregator which
aggregates the received models Wi into the global model Gt .

Several aggregation mechanisms have been proposed re-
cently: 1) Federated Averaging (FedAvg) [38], 2) Krum [9],
3) Adaptive Federated Averaging [42], and 4) Trimmed mean
or median [60]. Although we evaluate FLAME’s effective-
ness on several aggregation mechanisms in §7.1, we generally
focus on FedAvg in this work as it is commonly applied
in FL [21, 28, 39, 44, 47, 50, 54] and related work on back-
door attacks [7, 22, 51, 57, 59]. In FedAvg, the global model
is updated by averaging the weighted models as follows:
Gt = Σn

i=1
si×Wi/s, where si = ∥Di∥,s = Σn

i=1si. However, in
practice, a malicious client might provide falsified informa-
tion about its dataset size (i.e., a large number) to amplify
the relative weight of its updates [57]. Previous works often
employed equal weights (si = 1/n) for the contributions of all
clients [7, 51, 59]. We adopt this approach in this paper, i.e.,
we set Gt = Σn

i=1
Wi/n. Further, other state-of-the-art aggrega-

tion rules, e.g., Krum [9], Adaptive Federated Averaging [42],
and Trimmed mean or median [60] also do not consider the
sizes of local training datasets by design.

2.2 Backdoor Attacks on Federated Learning
In backdoor attacks, the adversary A manipulates the local
models Wi of k compromised clients to obtain poisoned mod-
els W ′i that are then aggregated into the global model Gt and
thus affect its properties. In particular, A wants the poisoned
model G′t to behave normally on all inputs except for spe-
cific attacker-chosen inputs x ∈ IA (where IA denotes the
so-called trigger set) for which attacker-chosen (incorrect)
predictions should be output. Figure 1 shows common tech-
niques used in FL backdoor attacks, including 1) data poison-
ing, e.g., [45,51,59], where A manipulates training datasets of
models, and 2) model poisoning, e.g., [7, 57] where A manip-
ulates the training process or the trained models themselves.
Next, we will briefly discuss these attack techniques.
Data Poisoning. In this attack, A adds manipulated data
DA to the training datasets of compromised clients i by flip-
ping data labels, e.g., by changing the labels of a street sign
database so that pictures showing a 30 km/h speed limit
are labeled as 80 km/h [51], or, by adding triggers into data
samples (e.g., a specific pixel pattern added to images [59])
in combination with label flipping. We denote the fraction
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Figure 1: An overview of backdoor attacks.

of injected poisoned data DA
i in the overall poisoned train-

ing dataset D′i of client i as Poisoned Data Rate (PDR), i.e.,
PDRi = |D

A
i |/|D′i|.

Model Poisoning. This attack technique requires that A can
fully control a number of clients. A poisons the training
datasets of these clients and manipulates how they execute
the training process by modifying parameters and scaling
the resulting model update to maximize the attack impact
while evading the aggregator’s anomaly detector [7, 57]. This
is done by (1) scaling up the weights of malicious model
updates to maximize attack impact (e.g., model-replacement
attack [7], or, projected gradient descent (PGD) attack with
model replacement [57]), or, scaling down model updates to
make them harder to detect (e.g., train-and-scale [7] ) and
(2) constraining the training process itself to minimize the
deviation of malicious models from benign models to evade
anomaly detection (e.g., constrain-and-scale attack [7]).

2.3 Adversary Goals and Capabilities
The goals of the adversary are two-fold:

Impact: The adversary A aims to manipulate the global
model G so that the modified model G′ provides incorrect pre-
dictions f (G′,x) = c′ ̸= f (G,x) for any inputs x ∈ IA , where
IA is the so-called trigger set consisting of specific attacker-
chosen inputs and c′ denotes the incorrect prediction chosen
by the adversary.

Stealthiness: To make the poisoned model G′ hard to detect
by aggregator A, it should closely mimic the behavior of G
on all other inputs not in IA , i.e.:

f (G′,x) =
{

c′ ̸= f (G,x) ∀x ∈ IA
f (G,x) ∀x /∈ IA

(1)

Additionally, to make poisoned models as indistinguishable
as possible from benign models, the distance (e.g., euclidean)
between a poisoned model W ′ and a benign model W must be
smaller than a threshold η denoting the distinction capability
of the anomaly detector of aggregator A, i.e., dist(W,W ′)< η.
The adversary can estimate this distance by comparing the
local malicious model to the global model or to a local model
trained on benign data.

Adversarial Capabilities. In this paper, we make no spe-
cific assumptions about the adversary’s behavior. We assume

that the adversary A has full control over k < n
2 clients and

their training data, processes, and parameters [7, 59]. We de-
note the fraction of compromised clients as Poisoned Model
Rate PMR = k

n . Furthermore, A has full knowledge of the
aggregator’s operations, including potentially applied back-
door defenses. However, A has no control over any processes
executed at the aggregator nor over the honest clients.

2.4 Preliminaries
HDBSCAN [11] is a density-based clustering algorithm
that uses the distance of data points in n-dimensional space
to group data points that are located near each other together
into a cluster. Hereby the number of clusters is determined
dynamically. Data points that do not fit to any cluster are
considered outliers. However, while HDBSCAN’s predeces-
sor DBSCAN [19] uses a predefined maximal distance to
determine whether two points belong to the same cluster,
HDBSCAN determines this maximal distance for each clus-
ter independently, based on the density of points. Thus, in
HDBSCAN, neither the maximal distance nor the total num-
ber of clusters need to be predefined.
Differential Privacy (DP). DP is a privacy technique that
aims to ensure that the outputs do not reveal individual data
records of participants. DP is formally defined as follows:

Definition 1 ((ε,δ)-differential privacy). A randomized al-
gorithm M is (ε,δ)-differentially private if for any datasets
D1 and D2 that differ on a single element, and any subset of
outputs S ∈ Range(M ), the following inequality holds:

Pr[M (D1) ∈ S ]≤ eε ·Pr[M (D2) ∈ S ]+δ.

Here, ε denotes the privacy bound and δ denotes the proba-
bility of breaking this bound [18]. Smaller values of ε and
δ indicate stronger privacy. A commonly used approach to
enforce differential privacy is adding random Gaussian noise
N(0,σ2) to the output of the algorithm [3, 18].

3 Problem Setting and Objectives
Backdoor Characterization. Following common practice
in FL-related papers (e.g., [7, 12, 22]), we represent Neural
Networks (NNs) using their weight vectors, in which the
extraction of weights is done identically for all models by
flattening/serializing the weight/bias matrices in a predeter-
mined order. Figure 2 shows an abstract two-dimensional
representation of the weight vectors of local models com-
pared to the global model Gt−1 of the preceding aggregation
round. Each model Wi can be characterized with two factors:
direction (angle) and magnitude (length) of its weight vector
(w1,w2, . . . ,wp). The angle between two updates Wi and Wj
can be measured, e.g., by using the cosine distance metric ci j
as defined in (2) while their magnitude difference is measured
by the L2-norm ei j as defined in (3).

ci j = 1−
WiWj

∥Wi∥
∥∥Wj

∥∥ = 1−
∑

p
k=1 wk

i wk
j√

∑
p
k=1(w

k
i )

2
√

∑
p
k=1(w

k
j)

2
(2)
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Figure 2: Weight vectors of benign and backdoored models.

ei j =
∥∥Wi−Wj

∥∥=

√
p

∑
k=1

(wk
i −wk

j)
2 (3)

Benign and backdoored local models are shown in blue and
red colors and are labeled with Wi or W ′i , respectively. Note
that the benign models are typically not identical due to the
potentially partially non-iid nature of their training data.

The impact of the adversarial goal (injection of a backdoor)
causes a deviation in the model parameters that manifests
itself as a difference in the direction and/or magnitude of the
backdoored model’s weight vector in comparison to benign
models, e.g., the deviations among local models and to the
global model Gt−1 of the previous aggregation round. Since
the adversary has full control over the training process of
compromised clients, he can fully control these distances, e.g.,
by changing the direction (in the case of W ′1) or magnitude
(in the case of W ′2) of the backdoored models’ weight vectors.

Figure 2 also shows three kinds of backdoored models re-
sulting from different types of backdoor attacks. The first type
W ′1 has a similar weight vector, but a large angular deviation
from the majority of local models and the global model. This
is because such models are trained to obtain high accuracy
on the backdoor task, which can be achieved by using a large
poisoned data rate (PDR) or a large number of local training
epochs (cf. Distributed Backdoor Attack (DBA) [59]). The
second backdoor type W ′2 has a small angular deviation but
a large magnitude to amplify the impact of the attack. Such
models can be crafted by the adversary by scaling up the
model weights to boost its effect on the global model (cf.
Model-replacement attack in [7]). The third backdoor type
W ′3 has a similar weight vector as benign models, the angular
difference and the magnitude are not substantially different
compared to benign models and, thus less distinguishable
from benign models. Such stealthy backdoored models can
be crafted by the adversary by carefully constraining the train-
ing process or scaling down the poisoned model’s weights (cf.
Constrain-and-scale attack [7] or FLIoT attack [45]).
Defense Objectives. A generic defense that can effectively
mitigate backdoor attacks in the FL setting needs to fulfill
the following objectives: (i) Effectiveness: To prevent the
adversary from achieving its attack goals, the impact of back-
doored model updates must be eliminated so that the aggre-
gated global model does not demonstrate backdoor behavior.
(ii) Performance: Benign performance of the global model

must be preserved to maintain its utility. (iii) Independence
from data distributions and attack strategies: The defense
method must be applicable to generic adversary models, i.e.,
it must not require prior knowledge about the backdoor attack
method, or make assumptions about specific data distributions
of local clients, e.g., whether the data are iid or non-iid.

4 FLAME Overview and Design
We present the high-level idea of FLAME and the associated
design challenges to fulfill the objectives identified in §3.

4.1 High-level Idea
Motivation. Earlier works (e.g., Sun et al. [56]) use differen-
tial privacy-inspired noising of the aggregated model for elim-
inating backdoors. They determine the sufficient amount of
noise to be used empirically. In the FL setting this is, however,
challenging, as one cannot in general assume the aggregator to
have access to training data, in particular to poisoned datasets.
What is therefore needed is a generic method for determining
how much noise is sufficient to remove backdoors effectively.
On the other hand, the more noise is injected into the model,
the more its benign performance will be impacted.
FLAME Overview. FLAME estimates the noise level re-
quired for backdoor removal in the FL setting without exten-
sive empirical evaluation and having access to training data
(this noise bound is formally proven in §5). In addition, to
effectively limit the amount of required noise, FLAME uses a
novel clustering-based approach to identify and remove adver-
sarial model updates with high impact and applies a dynamic
weight-clipping approach to limit the impact of models that
the adversary has scaled up to boost their performance. As
discussed in §3, one cannot guarantee that all backdoored
models can be detected since the adversary can fully control
both the angular and magnitude deviation to make the models
arbitrarily hard to detect. Our clustering approach therefore
aims to remove models with high attack impact (having larger
angular deviation) rather than all malicious models. Fig. 3
illustrates the high-level idea of FLAME consisting of the
above three components: filtering, clipping, and noising. We
emphasize, however, that each of these components needs
to be applied with great care, since, a naïve combination of
noising with clustering and clipping leads to poor results as
it easily fails to mitigate the backdoor and/or deteriorates the
benign performance of the model, as we show in §C. We de-
tail the design of each component and its use in the FLAME
defense approach in §4.3.

4.2 Design Challenges
To realize the high-level idea presented above, we need to
solve the following technical challenges.
C1- Filtering out backdoored models with large angular
deviations in dynamic scenarios. As discussed in §3, the
weight vector of a well-trained backdoored model, W ′, has a
higher angular difference in comparison to weight vectors of
benign models W . FLAME deploys a clustering approach to
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Figure 3: High-level idea of FLAME defense.

identify such poisoned models and remove them from FL ag-
gregation (detailed in §4.3.1). The effect of clustering-based
filtering is shown in Fig. 3a where model W ′1 is removed from
the aggregated model as it does not align with the directions
of benign models. In contrast to existing clustering-based de-
fenses, we need an approach that can also work in a dynamic
attack setting, i.e., the number of injected backdoors is un-
known and may vary between training rounds. To this end, we
make a key observation: clustering approaches using a fixed
number of clusters ncluster for identifying malicious models
are inherently vulnerable to attacks with varying numbers of
backdoors2 nbackdoor. This is because the adversary can likely
cause at least one backdoor model to be clustered together
with benign models due to the pigeonhole principle by simul-
taneously injecting nbackdoor ≥ ncluster backdoors. We seek
to solve this challenge by employing a clustering solution
that dynamically determines the clusters for model updates,
thereby allowing it to adapt to dynamic attacks.
C2-Limiting the impact of scaled-up backdoors. To limit
the impact of backdoored models that the adversary artificially
scales up to boost the attack (e.g., W ′2 in Fig. 2), the weight
vectors of models with high magnitudes can be clipped [56].
The effect of clipping is shown in Fig. 3a where the weight
vectors of all models with a magnitude beyond the clipping
bound S (in particular, backdoored model W ′2) are clipped to
S by scaling down the weight vectors. The resulting clipped
weight vectors are shown on the left side of Fig. 3b. The
challenge here is how to select a proper clipping bound with-
out empirically evaluating its impact on the training datasets
(which are not available in the FL setting). If the applied clip-
ping bound is too large, an adversary can boost its model W ′

by scaling its weights up to the clipping bound, thereby maxi-
mizing the backdoor impact on the aggregated global model
G. However, if the applied clipping bound is too small, a large
fraction of benign model updates W will be clipped, thereby
leading to performance deterioration of the aggregated global

2We consider two backdoors to be independent if they use different
triggers.

model G on the main task. We tackle this challenge in §4.3.2,
where we show how to select a clipping bound that can not
be influenced by the adversary and that effectively limits the
impact of scaled-up backdoored models.
C3-Selecting suitable noise level for backdoor elimination.
As mentioned in §4.1, FLAME uses model noising that ap-
plies Gaussian noise with noise level σ to mitigate the ad-
versarial impact of backdoored models (e.g., W ′3 in Fig. 2).
Similar to the clipping bound, however, also here the noise
level σ must be carefully selected, as it has a direct impact on
the effectiveness of the defense and the model’s benign per-
formance. If it is too low, the aggregated model might retain
backdoor behavior after model noising, rendering the defense
ineffective, while excessive noise will degrade the utility of
the aggregated model. To address this challenge, we develop
an approach for reliably estimating a sufficient but minimal
bound for the applied noise in §5.

4.3 FLAME Design
As discussed in §4.1, our defense consists of three main com-
ponents: filtering, clipping, and noising. Figure 4 shows these
components and the workflow of FLAME during training
round t. Algorithm 1 outlines the procedure of FLAME. In
the rest of this section, we detail the design of these compo-
nents to resolve the challenges in §4.2.
Algorithm 1 FLAME

1: Input: n, G0, T ▷ n is the number of clients, G0 is the initial
global model, T is the number of training iterations

2: Output: G∗T ▷ G∗T is the updated global model after T iterations
3: for each training iteration t in [1,T ] do
4: for each client i in [1,n] do
5: Wi← CLIENTUPDATE(G∗t−1) ▷ The aggregator

sends G∗t−1 to Client i who trains G∗t−1 using its data Di locally
to achieve local modal Wi and sends Wi back to the aggregator.

6: (c11, . . . ,cnn)← COSINEDISTANCE(W1, . . . ,Wn) ▷
∀i, j ∈ (1, . . . ,n), ci j is the cosine distance between Wi and W j

7: (b1, . . . ,bL)← CLUSTERING(c11, . . . ,cnn) ▷ L is the
number of admitted models, bl is the index of the lth model

8: (e1, . . . ,en) ← EUCLIDEANDIS-
TANCES(G∗t−1,(W1, . . . ,Wn)) ▷ ei is the Euclidean distance
between G∗t−1 and Wi

9: St ←MEDIAN(e1, . . . ,en) ▷ St is the adaptive clipping
bound at round t

10: for each client l in [1,L] do
11: W c

bl
← Gt−1 +(Wbl −Gt−1) ·MIN(1,γ) ▷ Where γ

(= St/ebl ) is the clipping parameter, W c
bl

is the admitted model
after clipped by the adaptive clipping bound St

12: Gt ← ∑
L
l=1 W c

bl
/L ▷ Aggregating, Gt is the plain global

model before adding noise

13: σ← λ ·St where λ = 1
ε
·
√

2ln 1.25
δ

▷ Adaptive noising level

14: G∗t ← Gt +N(0,σ2) ▷ Adaptive noising

4.3.1 Dynamic Model Filtering
The Model Filtering component of FLAME utilizes a dy-
namic clustering technique based on HDBSCAN [11] that
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Figure 4: Illustration of FLAME’s workflow in round t.
identifies poisoned models with high angular deviations
from the majority of updates (e.g., W ′1 in Fig. 3a). Existing
clustering-based defenses [9, 51] identify potentially mali-
cious model updates by clustering them into two groups where
the smaller group is always considered malicious and thus
removed. However, if no malicious models are present in the
aggregation, this approach may lead to many models being
incorrectly removed and thus a reduced accuracy of the ag-
gregated model. These approaches also do not protect against
attacks in which adversary A simultaneously injects multi-
ple backdoors by using different groups of clients to inject
different backdoors. If the number of clusters is fixed, there
is the risk that poisoned and benign models end up in the
same cluster, in particular, if models with different backdoors
differ significantly. Consequently, existing model clustering
methods do not adequately address challenge C1 (§4.2). Fig. 5
shows the behavior of different clustering methods on a set of
model updates’ weight vectors. Fig. 5a shows the ground truth
of an attack scenario where A uses two groups of clients: one
group is used to inject a backdoor, whereas the other group
provides random models with the goal of fooling clustering-
based defenses. Fig. 5b shows how in this setting, K-means
(as used in Auror [51]) fails to successfully separate benign
and poisoned models as all poisoned models end up in the
same cluster with the benign models.

To overcome the limitations of existing defenses, we de-
sign our clustering solution and ensure that: (i) it is able to
handle dynamic attack scenarios where multiple backdoors
are injected simultaneously, and (ii) it minimizes false posi-
tives of poisoned model identification. In contrast to existing
approaches that try to place poisoned models into one cluster,
our approach considers each poisoned model individually as
an outlier, so that it can gracefully handle multiple simultane-
ous backdoors and thus address challenge C1.

FLAME uses pairwise cosine distances to measure the
angular differences between all model updates and applies the
HDBSCAN clustering algorithm [11]. The advantage here is
that cosine distances are not affected even if the adversary
scales up model updates to boost their impact as this does not
change the angle between the updates’ weight vectors. Since
the HDBSCAN algorithm clusters the models based on their
density of the cosine distance distribution and dynamically
determines the required number of clusters, we leverage it for

Benign

BackdooredRandom

(a) Ground truth

Accepted

Rejected

(b) K-means

Cluster A

Cluster BCluster C

(c) HDBSCAN

Accepted

Rejected (Outliers)

(d) FLAME
Figure 5: Comparison of clustering quality for (a) ground truth, (b)
using K-means with 2 clusters as in Auror [51], (c) straightforward
applied HDBSCAN and (d) our approach as in FLAME.

our dynamic clustering approach. We describe HDBSCAN
and how we apply it in detail in §E. In particular, HDBSCAN
labels models as outliers if they do not fit into any cluster.
This allows FLAME to effectively handle multiple poisoned
models with different backdoors by labeling them as outliers.
To realize this, we set the minimum cluster size to be at least
50% of the clients, i.e., n

2 + 1, so that the resulting cluster
will contain the majority of updates (which we assume to
be benign, cf. §2.3). All remaining (potentially poisoned)
models are marked as outliers. This behavior is depicted in
Fig. 5d where all the models from Clusters B and C from
Fig. 5c are considered as outliers. Hence, to the best of our
knowledge, our approach is the first FL backdoor defense that
is able to gracefully handle also dynamic attacks in which the
number of injected backdoors may vary. The clustering step
is shown in lines 6-7 of Alg. 1 where L models are retained
after clustering.

4.3.2 Adaptive Clipping and Noising
As discussed in §4.2 (challenges C2 and C3), determining
a proper clipping bound and noise level for model weight
clipping and noising is not straightforward. We present our
new approach for selecting an effective clipping bound and
reliably estimating a sufficient noise level that can effectively
eliminate backdoors while preserving the performance of the
main task. Furthermore, our defense approach is resilient to
adversaries that dynamically adapt their attacks.
Adaptive Clipping. Fig. 6 shows the variation of the average
L2-norms of model updates of benign clients in three differ-
ent datasets (cf. §6) over subsequent training rounds. We can
observe that the L2-norms of benign model updates become
smaller in later training rounds. To effectively remove back-
doors while minimizing the impact on benign updates, the
clipping bound S needs to be dynamically adapted to this
decreasing trend of the L2-norm. Recall that clipping is per-
formed after clustering by scaling down model weights so that
the L2-norm of the scaled model becomes smaller or equal
to the clipping threshold. We describe how FLAME deter-
mines a proper scaling factor for each model update Wi in
tth training round as follows: Given the index set (b1, . . .bL)
of the models admitted by the clustering method (line 7 of
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Figure 6: L2-norms of model updates depending on the num-
ber of training rounds for different datasets.
Alg. 1), the aggregator first computes the clipping bound
St as the median of the L2-norms of all n model updates:
St = MEDIAN(e1, . . . ,en). It should be noted that for deter-
mining the clipping bound, the rejected models are also con-
sidered to ensure that even if benign models were filtered,
the computed median St is still determined based on benign
values. However, after determining the clipping bound, only
the admitted models W1, . . . ,WL are considered for later pro-
cessing. The scaling factor for the lth admitted model is com-
puted as γ = St

ebl
where ebl is the L2-norm of the model up-

date Wbl . Clipping scales down model updates as follows:
W c

bl
= Gt−1 +(Wbl −Gt−1) ·MIN(1,γ) (detailed in line 8-11

of Alg. 1) where the multiplication is computed coordinate-
wise. It is worth noting that weighting contributions (i.e.,
adjusting scaling factor) based on client data sizes is insecure.
As we point out in §2.1, the reported dataset sizes by clients
cannot be trusted, i.e., the adversary can lie about their dataset
sizes to maximize attack impact [57]. Hence, we follow com-
mon practice in literature and weight the contributions of all
clients equally regardless of their dataset size [7,9,12,59]. By
using the median as the clipping bound St , we ensure that St is
always in the range of the L2-norms between benign models
and the global model since we assume that more than 50% of
clients are benign (cf. §2.3). We evaluate the effectiveness of
the clipping approach in §B.2.

Adaptive Noising. It has been shown that by adding noise
to a model’s weights, the impact of outlier samples can be
effectively mitigated [17]. Noise can also be added to poi-
soned samples (special cases of outliers) used in backdoor
injection. The more noise is added to the model during the
training process, the less responsive the model will be to the
poisoned samples. Thus, increasing model robustness against
backdoors. Eliminating backdoors utilizing noise addition
is conceptually the same in a centralized or federated set-
ting (e.g., [7, 17]): In both cases, noise is added to the model
weights to smooth out the effect of poisoned data (cf. Eq. 5).
The challenge is to determine as small a noise level as possible
to eliminate backdoors and at the same time not deteriorate
the benign performance of the model. As we discuss in detail
in §5.1, the amount of noise is determined by estimating the
sensitivity based on the differences (distances) among local
models, which can be done without access to training data.
We then add Gaussian noise to the global model Gt to yield
a noised global model G∗t as follows: G∗t = Gt +N(0,σ2),
see Lines 13-14 of Alg. 1 for more details. This ensures

that backdoor contributions are effectively eliminated from
the aggregated model. In particular, we show in §5.1 how
the noise-based backdoor elimination technique can be trans-
ferred from a centralized to a federated setting by analysing
the relationship between aggregated Gaussian noise applied to
the global model and individual noising of each local model.

5 Security Analysis

5.1 Noise Boundary Proof of FLAME
In this section, we provide a proof to corroborate that
FLAME can neutralize backdoors in the FL setting by apply-
ing strategical noising with bound analysis on the noise level.
We first formulate the noise boundary guarantee of FLAME
in Theorem 1. Subsequently, we explain related parameters
and prove how the noise level bound for σ can be estimated.
This is done by generalizing theoretical results from previous
works [17,18] to the FL setting. Then, we show how the filter-
ing and clipping component of FLAME helps to effectively
reduce the noise level bound in Theorem 2. We provide a
formal proof for linear models and extend the proof to DNNs
using empirical evaluation. This is because providing formal
proof for DP-based backdoor security for DNN models is still
an open research problem even for centralized settings.

Theorem 1. A (ε,δ)-differentially private model with param-
eters G and clipping bound St is backdoor-free if random
Gaussian noise is added to the model parameters yielding a
noised version G∗ of the model: G∗← G+N(0,σ2

G) where
the noise scale σG is determined by the clipping bound St and

a noise level factor λ: σG← λ ·St and λ = 1
ε
·
√

2ln 1.25
δ

.

We explore the key observation that an ML model with a
sufficient level of differential privacy is backdoor-free. With
this new definition of backdoor-free models in the DP domain,
the main challenge to defeat backdoors in the FL setting is
to decide a proper noise scale for the global model without
knowledge of the training datasets. Furthermore, we need
to minimize the amount of noise added to the global model
to preserve its performance on the main task. None of the
prior DP-based FL backdoor defense techniques provide a
solution to the noise determination problem [56]. For the first
time, FLAME presents an approach to estimate the proper
noise scale that ensures the global model is backdoor-free.
The noise boundary proof in Theorem 1 consists of two steps:
Step 1 (S1). By introducing the data hiding property of DP
(Def. 1) and its implication as the theoretical guarantee for
backdoor-free models. We also discuss function sensitivity
(Def. 2) which is an important factor for selection of the DP
parameters (ε,δ).
Step 2 (S2). We show how FLAME generalizes backdoor
elimination from centralized setting to federated setting with
theoretical analysis of the noise boundary (Eq. 5 and 6).
FLAME is the first FL defense against backdoors that pro-
vides noise level proof with bounded backdoor effectiveness.
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(S1) DP foundations and re-interpretation as Backdoor-
free. As discussed in §2.4, by definition, DP makes the differ-
ence between data points indistinguishable. FLAME lever-
ages this property of DP for backdoor elimination. In par-
ticular, we can consider D1 and D2 in Def. 1 as the benign
and backdoored dataset. The inequality of DP suggests that
algorithm M has a high probability of producing the same
outputs on the benign and the poisoned dataset, meaning that
the backdoor is eliminated. The noise level σ is determined
based on the DP parameters (ε,δ) and the sensitivity of the
function f defined below:

Definition 2 (Sensitivity). Given the function f : D → Rd

where D is the data domain and d is the dimension of the
function output, the sensitivity of the function f is defined as:

∆ = max
D1, D2 ∈ D

|| f (D1)− f (D2)||2, (4)

where D1 and D2 differs on a single element ||D1−D2||1 = 1.

As shown in Lemma 1 [18], this definition can be extended
to datasets differing by more than one element, i.e., can be
generalized to the DP in the multiple-point-difference setting.
(S2) Generalizing backdoor resilience from centralized to
federated setting (FLAME). In the centralized setting, the
defender has access to the model to be protected, the benign
dataset, and the outlier (backdoored) samples. As such, he
can estimate the sensitivity ∆ for (ε,δ)-DP. When applying

Gaussian noise with the noise scale σ = ∆

ε

√
2ln 1.25

δ
, the de-

fender can enforce a lower bound on the prediction loss of the
model on the backdoored samples for backdoor elimination
[28]. However, this robustness rationale cannot be directly
transferred from the centralized setting to the FL setting since
the defender in the federated scenario (i.e., aggregator) only
has access to received model updates, but not the datasets to
estimate the sensitivity ∆ for the global model.

FLAME extends DP-based noising for backdoor elimina-
tion to the federated setting based on the following observa-
tion: if one can ensure that all aggregated models are benign
(i.e., backdoor-free), then it is obvious that the aggregated
global model will also be backdoor-free. This intuition can
be formally proven if the FL aggregation rule is Byzantine-
tolerant. To ensure that any backdoor potentially present in
the model is eliminated and the aggregated model is benign,
a sufficient DP noise level is added to individual local mod-
els. However, since the local models are independent, adding
noise to each local model is mathematically equivalent to
the case where aggregated noise is added to the global model.
This is conceptually equivalent to the conventional centralized
setting, for which it has been formally shown that DP noise
can eliminate backdoors [17]. In the following, we therefore
show that adding DP noise to local models is equivalent to
adding ‘aggregated’ DP noise to the global model.

We write the standard deviation of noise for the local mod-
els in the form σi← αi·ei

ε
·
√

2ln 1.25
δ

where αi =
∆i
ei

, ∆i and ei

is the sensitivity and the L2 norm of the model Wi, respectively.
Mathematically, the FL system with FLAME has:

G∗ =
1
n

Σ
n
i=1W ∗i =

1
n
[ Σ

n
i=1 Wi +N(0,σ2

i )]

=
1
n

Σ
2
i=1Wi +

1
n

Σ
n
i=1N(0,σ2

i )

=
1
n

Σ
2
i=1Wi +N(0,

1
n

Σ
n
i=1σ

2
i )

= G+N(0,σ2
G)

(5)

in which W ∗i are local models and G∗ the global model after
adding noise N(0,σ2

i ). Equation 5 represents the fact that
adding DP noise to each local model (i.e., Wi +N(0,σ2

i )) is
equivalent to adding an ‘aggregated’ DP noise on the global
model (i.e., G+N(0,σ2

G)). More specifically, this equivalent
Gaussian noise on the global model is the sum of Gaus-
sian noise applied on each local model with a scaling factor
NG = 1

n Σn
i=1Ni. Here, NG and Ni are random variables with

distribution N(0,σ2
G) and N(0,σ2

i ), respectively. As such, we
can compute the equivalent noise scale for the global model:

σ
2
G =

1
n2 Σ

n
i=1σ

2
i = (

1
ε

√
2ln

1.25
δ

)2 · 1
n2 Σ

n
i=1∆

2
i

= (
1
ε

√
2ln

1.25
δ

)2 · 1
n2 Σ

n
i=1α

2
i e2

i . (6)

Equation 6 describes the relation between the DP noise added
on FLAME’s global model and the DP noise added on each
local model. This noise scale relation in Eq. 6 together with
the transformation in Eq. 5 enable FLAME to provide guaran-
teed security for the global model against backdoors, thereby
addressing Challenge C3 .

In Alg. 1, we use the median of Euclidean distances ei as the
upper bound St to clip the admitted local models (line 9-11).
We hypothesize that the sensitivity of a model Wi is positively
correlated with its weight magnitude |Wi| (see Theorem 2
for details). In the case of linear models, the sensitivity ∆

has a linear relation with the model weight |−→w | (see Eq. 8).
Therefore, we use the following approximation:

1
n2 Σ

n
i=1α

2
i e2

i =
1
n2 Σ

n
i=1∆

2
i ≈ S2

t ,

where St is the weight clipping bound. Having substituted the
above approximation into Eq. 6, we can compute the noise
scale of DP that FLAME deploys on the global model NG:

σG ≈
St

ε

√
2ln

1.25
δ

(7)

This concludes the proof of Theorem 1.
FLAME’s adaptive noising step applies the Gaussian noise
with the noise scale computed in Eq. 7 on the global model
for backdoor elimination as shown in Alg. 1, line 13-14. Note
that FLAME’s noising scheme is adaptive since the clipping
bound St is obtained dynamically in each tth epoch.

Next, we present Theorem 2 and justify how FLAME de-
sign reduces the derived noise level with step 3 (S3) below.
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(S3) Clustering and clipping components in FLAME help
to reduce the DP noise boundary. Recall that FLAME pro-
tects the FL system against backdoor attacks using three steps:
clustering, clipping, and adding DP noise. The overall work-
flow of FLAME is shown in Fig. 4. If multiple backdoors
exist in the FL system, the first two steps (clustering and clip-
ping) can remove a subset of backdoors as shown in Fig. 3a.
Note that the remaining backdoors are ‘closer’ to the benign
model updates in terms of both magnitude and direction. This
gives us the intuition that removing the remaining backdoors
by adding DP noise becomes easier (i.e., the noise scale σG
is smaller) after the first two steps of FLAME.

We can see from Theorem 1 that the Gaussian noise scale σ

required for backdoor resilience increases with the sensitivity
of each local model ∆i. We describe two characteristics of the
model parameter W , i.e., direction and magnitude in §4. We
discuss how these two factors impact the sensitivity of the
model defined in Eq. 4 below.
Theorem 2. Backdoor models with large angular deviation
from benign ones, or with large parameter magnitudes have
high sensitivity values ∆.

Proving DP-based backdoor security for DNN models is
still an open problem, even in the centralized setting. We,
therefore, adopt a common approach in literature (e.g., [17])
by providing theoretical proof for linear models and validating
it for DNNs empirically.

Proof : for a linear model f where the function output is
determined by the inner product of model weight vector −→w
and the data vector −→x , we have

f (w; x) =−→w ·−→x = |w| · |x| · cosθ, (8)
where θ =<−→w ,−→x > is the angle between two vectors. In this
case, it is straightforward to see that if the backdoor attack
changes the parameter magnitude |w| or the direction θ of
the model f , the resulting poisoned model f ′ has a large
sensitivity value based on the definition in Eq. 4.

This analysis suggests that backdoor models with large an-
gular deviations or with large weight magnitudes have a high
sensitivity value ∆. Recall that FLAME deploys dynamic
clustering (§4.3.1) to remove poisoned models with large
cosine distances, and employs adaptive clipping (§4.3.2) to
remove poisoned models with large magnitudes. Therefore,
the sensitivity of the remaining backdoor models is lower
compared to the one before applying these two steps. As a re-
sult, FLAME can use a small Gaussian noise to eliminate the
remaining backdoors after applying clustering and clipping,
which is beneficial for preserving the main task accuracy.

We empirically show how the noise scale for backdoor
elimination changes after applying each step of FLAME. Par-
ticularly, we measure the smallest Gaussian noise scale σ

required to defeat all backdoors (i.e., BA = 0%) in three set-
tings: i) No defense components applied (which is equivalent
to the previous DP-based defense [7, 18]); ii) After applying
dynamic clustering; iii) After applying both dynamic cluster-
ing and adaptive clipping (which is the setting of FLAME).

Table 1: Effect of clustering and clipping in FLAME on
minimal Gaussian noise level σ for backdoor elimination in
the NIDS scenario, in terms of Backdoor Accuracy (BA) and
Main Task Accuracy (MA).

σ

Only
Noising

After
Clustering

After Clustering
& Clipping

BA MA BA MA BA MA
0.01 100.0% 100.0% 0.0% 80.5% 0.0% 100.0%
0.08 3.5% 66.7% 0.0% 66.7% 0.0% 100.0%
0.10 0.0% 54.2% 0.0% 66.1% 0.0% 87.6%

We conduct this comparison experiment on the IoT-Traffic
dataset (cf. §6). For each communication round, 100 clients
are selected where k = 40 are adversaries. We remove the
backdoor by adding Gaussian noise N(0,σ2) to the aggre-
gated model. Table 1 summarizes the evaluation results in the
above three settings. We can observe from the comparison
results that the noise scale required to eliminate backdoors de-
creases after individual deployment of clustering and clipping.
This corroborates the correctness of Theorem 2.

5.2 Attack and Data Distribution Assumption
In FLAME, we do not make specific assumptions about
the attack and data distribution compared to the existing
clustering-based defenses. Let X = (X1, . . . ,Xb) be a set of dis-
tributions of benign models (W1, . . . ,Wn−k) where b≤ n− k.
The deviation in X is caused by the diversity of the data. Let
X ′ = (X ′1, . . . ,X

′
a) be a set of distributions of poisoned mod-

els (W ′1, . . . ,W
′
k) where a≤ k. The deviation in X ′ is caused

by the diversity of the benign data and backdoors (e.g., poi-
soned data or model crafting). Existing works assume that
X ′i ≈X ′j (∀i, j : 1≤ i, j≤ a) (see e.g., [22] or X ′ ̸=X [9,51]).
However, this assumption does not hold in many situations
because (i) there can be one or multiple attackers injecting
multiple backdoors [7], or (ii) the adversary can inject one
or several random (honeypot) models having a distribution
X ′r that is significantly different from X ∪ (X ′ \X ′r), and (iii)
the adversary can control how much the backdoored mod-
els deviate from benign ones as discussed in §3. Therefore,
approaches that purely divide models into two groups, e.g.,
K-means [51] will incorrectly classify models having distri-
bution X ′r into the malicious group and all remaining models
(having distributions drawn from (X ∪ (X ′ \X ′r)) into the be-
nign group. As a result, all backdoored models having dis-
tributions drawn from (X ′ \X ′r) are classified as benign, as
demonstrated in Fig. 5b. In contrast, FLAME does not rely
on such specific assumptions (the adversary can arbitrarily
choose X ′). If the distribution X ′i of a poisoned model is simi-
lar to benign distributions in X , FLAME will falsely classify
X ′i as being. But if the distribution X ′j of a poisoned model is
different from the distributions in X , FLAME will identify X ′j
as an outlier and classify the associated model as malicious.
To identify deviating and thus potentially malicious models,
FLAME leverages the HDBSCAN algorithm to identify re-
gions of high density in the model space. Any models that are
not located in the dense regions will be categorized as out-
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liers, as shown in Fig. 5d. As discussed in §3, FLAME aims
to remove models with distributions X ′j that have a higher
attack impact compared to models with distribution X ′i . It is
worth noting, however, that the impact of such remaining back-
doored models will be eliminated by the noising component
as shown in §5.1
Striking a balance between accuracy and security: Clus-
tering and DP-based approaches affect model accuracy as
discussed in §4.2 (Challenges C2 and C3). In particular, an ap-
proach that aims to maximize the number of filtered malicious
models may lead to many false positives, i.e., many benign
models being filtered out. Moreover, applying a very low clip-
ping bound or a very high level of injected noise will degrade
model accuracy. To address these problems, FLAME is con-
figured so that the clustering component removes only models
with high attack impact rather than all malicious models, i.e.,
it aims to remove the first backdoor type W ′1 as shown in
Fig. 3. In addition, FLAME carefully estimates the clipping
bound and noise level to ensure backdoor elimination while
preserving model performance. As discussed in §4.3.2, the
L2-norms of model updates depend on the number of training
rounds, dataset types, and type of backdoors. Consequently,
the clipping threshold and noise level should be adapted to
L2-norms. We therefore apply the median of the L2-norms of
model updates as the clipping bound St (cf. Lines 9-11 of Alg.
1). This ensures that St is always computed between a benign
local model and the global model since we assume that more
than 50% of clients are benign (cf. §2.3). Further, estimating
noise level based on St (cf. Lines 13-14 of Alg. 1) also pro-
vides a noise boundary that ensures that the global model is
resilient against backdoors as discussed in §5.1. Moreover,
our comparison of potential values for St presented in §B.2
and §B.3 shows that the chosen clipping bound and noise
level provide the best balance between accuracy and security,
i.e., FLAME eliminates backdoor while retaining the global
model’s performance on the main task.

6 Experimental Setup
We conduct all the experiments using the PyTorch deep learn-
ing framework [2] and use the source code provided by Bag-
dasaryan et al. [7], Xie et al. [59] and Wang et al. [57] to
implement the attacks. We reimplemented existing defenses
to compare them with FLAME.
Datasets and Learning Configurations. Following recent
research on poisoning attacks on FL, we evaluate FLAME
in three typical application scenarios: word prediction [35,
38–40], image classification [13, 49, 50], and an IoT intrusion
detection [44,47,48,54] as summarized in Tab. 2. Verification
of the effectiveness of FLAME against state-of-the-art attacks
in comparison to existing defenses (cf. Tab. 3 and Tab. 4) are
conducted on these three datasets in the mentioned application
scenarios. Experiments for evaluating specific performance
aspects of FLAME are performed on the IoT dataset as it
represents a very diverse and real-world setting with clear

Table 2: Datasets used in our evaluations.
Application Datasets #Records Model #params
WP Reddit 20.6M LSTM ∼20M
NIDS IoT-Traffic 65.6M GRU ∼507k

IC
CIFAR-10 60k ResNet-18 Light ∼2.7M
MNIST 70k CNN ∼431k
Tiny-ImageNet 120k ResNet-18 ∼11M

security implications.
Evaluation Metrics. We consider a set of metrics for evalu-
ating the effectiveness of backdoor attack and defense tech-
niques as follows: BA - Backdoor Accuracy indicates the
accuracy of the model in the backdoor task, i.e., it is the frac-
tion of the trigger set for which the model provides the wrong
outputs as chosen by the adversary. The adversary aims to
maximize BA, while an effective defense prevents the adver-
sary from increasing it. MA - Main Task Accuracy indicates
the accuracy of a model in its main (benign) task. It denotes
the fraction of benign inputs for which the system provides
correct predictions. The adversary aims at minimizing the
effect on MA to reduce the chance of being detected. The
defense system should not negatively impact MA. TPR - True
Positive Rate indicates how well the defense identifies poi-
soned models, i.e., the ratio of the number of models correctly
classified as poisoned (True Positives - TP) to the total num-
ber of models being classified as poisoned: TPR = T P

T P+FP ,
where FP is False Positives indicating the number of benign
clients that are wrongly classified as malicious. TNR - True
Negative Rate indicates the ratio of the number of models
correctly classified as benign (True Negatives - TN) to the
total number of benign models: TNR = T N

T N+FN , where FN is
False Negatives indicating the number of malicious clients
that are wrongly classified as benign.

7 Experimental Results
In this section, we evaluate FLAME against backdoor attacks
in the literature (§7.1) and demonstrate that our defense mech-
anism is resilient to adaptive attacks (§7.2). In addition, we
show the effectiveness of each of FLAME’s components in
§B and FLAME overhead in §D. Finally, we evaluate the
impact of the number of clients (§7.3) as well as the degree
of non-IID data (§7.4).

7.1 Preventing Backdoor Attacks
Effectiveness of FLAME. We evaluate FLAME against
the state-of-the-art backdoor attacks called constrain-and-
scale [7], DBA [59], PGD and Edge-Case [57] and an untar-
geted poisoning attack [20] (cf. §F) using the same attack
settings as in the original works with multiple datasets. The
results are shown in Tab. 3. FLAME completely mitigates the
constrain-and-scale attack (BA = 0%) for all datasets. More-
over, our defense does not affect the Main Task Accuracy
(MA) of the system as MA reduces by less than 0.4% in all
experiments. The DBA attack as well as the Edge-Case at-
tack [57] are also successfully mitigated (BA = 3.2%/4.0%).
Further, FLAME is also effective against PGD attacks (BA =
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Table 3: Effectiveness of FLAME against state-of-the-art
attacks for the respective dataset, in terms of Backdoor Accu-
racy (BA) and Main Task Accuracy (MA). All metric values
are reported as percentages.

Dataset No Defense FLAME
Attack BA MA BA MA

Constrain-and-scale [7] Reddit 100 22.6 0 22.3
CIFAR-10 81.9 89.8 0 91.9
IoT-Traffic 100.0 100.0 0 99.8

DBA [59] CIFAR-10 93.8 57.4 3.2 76.2
Edge-Case [57] CIFAR-10 42.8 84.3 4.0 79.3
PGD [57] CIFAR-10 56.1 68.8 0.5 65.1
Untargeted Poisoning [20] CIFAR-10 - 46.72 - 91.31

Table 4: Effectiveness of FLAME in comparison to state-of-
the-art defenses for the constrain-and-scale attack on three
datasets, in terms of Backdoor Accuracy (BA) and Main Task
Accuracy (MA). All values are percentages.

Defenses Reddit CIFAR-10 IoT-Traffic
BA MA BA MA BA MA

Benign Setting - 22.7 - 92.2 - 100.0
No defense 100.0 22.6 81.9 89.8 100.0 100.0
Krum [9] 100.0 9.6 100.0 56.7 100.0 84.0
FoolsGold [22] 0.0 22.5 100.0 52.3 100.0 99.2
Auror [51] 100.0 22.5 100.0 26.1 100.0 96.6
AFA [42] 100.0 22.4 0.0 91.7 100.0 87.4
DP [18] 14.0 18.9 0.0 78.9 14.8 82.3
Median [60] 0.0 22.0 0.0 50.1 0.0 87.7
FLAME 0.0 22.3 0.0 91.9 0.0 99.8

0.5 %). It should be noted that suggesting words is a quite
challenging task, causing the MA even without attack to be
only 22.7%, aligned with previous work [7].

We extend our evaluation to various backdoors on three
datasets. For NIDS, we evaluate 13 different backdoors (Mirai
malware attacks) and 24 device types (78 IoT devices). The
results show that FLAME is able to mitigate all backdoor
attacks completely while achieving a high MA=99.8%. We
evaluate 5 different word backdoors for WP, and 90 differ-
ent image backdoors for IC, which change the output of a
whole class to another class. In all cases, FLAME success-
fully mitigates the attack while still preserving the MA.
Comparison to existing defenses. We compare FLAME
to existing defenses: Krum [9], FoolsGold [22], Auror [51],
Adaptive Federated Averaging (AFA) [42], Median [60] and a
generalized differential privacy (DP) approach [7, 40]. Tab. 4
shows that FLAME is effective for all 3 datasets, while pre-
vious works either fail to mitigate backdoors or reduce the
main task accuracy. Krum, FoolsGold, Auror, and AFA do not
effectively remove poisoned models and BA often remains
at 100%. Also, some defenses make the attack even more
successful than without defense. Since they remove many
benign updates (cf. §B) but fail to remove a sufficient number
of poisoned updates, these defenses increase the PMR and,
therefore, also the impact of the attack. Some defenses, e.g.,
Krum [9], Auror [51] or AFA [42] are not able to handle
non-iid data scenarios like Reddit. In contrast, FoolsGold is
only effective on the Reddit dataset (TPR = 100%) because
it works well on highly non-independent and identically dis-

tributed (non-IID) data (cf. §9). Similarly, AFA only mitigates
backdoors on the CIFAR-10 dataset since the data are highly
IID (each client is assigned a random set of images) such that
the benign models share similar distances to the global model
(cf. §9). Additionally, the model’s MA is negatively impacted.
The DP-based defense is effective, but it significantly reduces
MA. For example, it performs best on the CIFAR-10 dataset
with BA = 0, but MA decreases to 78.9% while FLAME in-
creases MA to 91.9% which is close to the benign setting (no
attacks), where MA = 92.2%.
Effectiveness of FLAME’s Components. Further, we have
also conducted an extensive evaluation of the effectiveness of
each of FLAME’s components. Due to space limitations, we
would like to refer to §B for the details.

7.2 Resilience to Adaptive Attacks
Given sufficient knowledge about FLAME, an adversary may
seek to use adaptive attacks to bypass the defense components.
In this section, we analyze such attack scenarios and strategies
including changing the injection strategy, model alignment,
and model obfuscation.
Changing the Injection Strategy. The adversary A may at-
tempt to inject several backdoors simultaneously to execute
different attacks on the system in parallel or to circumvent the
clustering defense (cf. §2.2). FLAME is also effective against
such attacks (cf. Fig. 5). To further investigate the resilience of
FLAME against such attacks, we conduct two experiments:
1) assigning different backdoors to malicious clients and 2)
letting each malicious client inject several backdoors. To
ensure that each backdoor is injected by a sufficient number
of clients, we increased the PMR for this experiment. We
conducted these experiments with n = 100 clients of which
k = 40 are malicious on the IoT-Traffic dataset with each type
of Mirai attack representing a backdoor. First, we evaluate
FLAME for 0,1,2, 4, and 8 backdoors, meaning that the num-
ber of malicious clients for each backdoor is 0,40,20,10, and
5. Our experimental results show that our approach is effec-
tive in mitigating the attacks as BA = 0%±0.0% in all cases,
with TPR = 95.2%±0.0%, and TNR = 100.0%±0.0%. For
the second experiment, 4 backdoors are injected by each of
the 40 malicious clients. Also, in this case, the results show
that FLAME can completely mitigate the backdoors.
Model Alignment. Using the same attack parameter values,
i.e., PDR (cf. §2.2), for all malicious clients can result in high
distances between benign and poisoned models. Those high
distances can be illustrated as a gap between poisoned and be-
nign models, s.t. the clustering can separate them. Therefore,
a sophisticated adversary can generate models that bridge the
gap between them such that they are merged to the same clus-
ter in our clustering. We evaluate this attack on the IoT-Traffic
dataset for k = 80 malicious clients and n = 200 clients in
total. To remove the gap, each malicious client is assigned a
random amount of malicious data, i.e., a random PDR ranging
from 5% to 20%. As Tab. 5 shows, when we apply model
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Table 5: Resilience to model alignment attacks in terms of
Backdoor Accuracy (BA), Main Task Accuracy (MA), True
Positive Rate (TPR), True Negative Rate (TNR) in percent.

BA MA TPR TNR
Model Filtering 100.0 91.98 0.0 33.04
FLAME 0.0 100.0 5.68 33.33

filtering only, our clustering component cannot identify the
malicious clients well (TPR = 0%), resulting in BA = 100%.
However, when we apply FLAME, although TPR remains
low (5.68%) FLAME still mitigates the attack successfully
(BA reduces from 100% to 0%). This can be explained by the
fact that when the adversary A tunes malicious updates to be
close to the benign ones, the attack’s impact is reduced and
consequently averaged out by our noising component.
Model Obfuscation. A can add noise to the poisoned models
to make them difficult to detect. However, our evaluation
of such an attack on the IoT-Traffic dataset shows that this
strategy is not effective. We evaluate different noise levels to
determine a suitable standard deviation for the noise. Thereby,
we observe that a noise level of 0.034 causes the models’
cosine distances in clustering to change without significantly
impacting BA. However, FLAME can still efficiently defend
this attack: BA remains at 0% and MA at 100%.

7.3 Effect of Number of Clients
Impact of Number of Malicious Clients. We assume that
the number of benign clients is more than half of all clients
(cf. §2.2) and our clustering is only expected to be successful
when PMR = k

n < 50% (cf. §4.3.1). We evaluate FLAME for
different PMR values. Figure 7 shows how BA, TPR, and TNR
change in the IC, NIDS, and WP applications for PMR values
from 25% to 60%. It shows that FLAME is only effective
if PMR < 50% so that only benign clients are admitted to
the model aggregation (TNR = 100%) and thus BA = 0%.
However, if PMR > 50%, FLAME fails to mitigate the attack
because the majority of poisoned models will be included
resulting in low TNR. Interestingly, FLAME accepted all
models for PMR = 50% (TPR = 0% and TNR = 100%). For
the IC application, since the IC data are non-IID, poisoned
models are not similar. Therefore, some poisoned models
were excluded from the cluster resulting in a high TPR even
for PMRs higher than 50%. However, the majority of poisoned
models were selected resulting in the drop in the TNR.

Varying number of clients in different training rounds.
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Figure 7: Impact of the poisoned model rate PMR = k

n on the
evaluation metrics. PMR is the fraction of malicious clients k
per total clients n.
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Figure 8: Impact of the number of clients on FLAME

In general, FLAME is a round-independent defense, i.e., it
does not use information from previous rounds such as which
clients were excluded in which rounds. Therefore, FLAME
will not be affected if the number of clients or number of
malicious clients varies as long as the majority of clients
remain benign. To demonstrate this, we simulate realistic sce-
narios in which clients can join and drop out dynamically.
We conducted an experiment where during each round, the
total number of available clients is randomly selected. As the
result, the number of malicious clients will also be random.
In this experiment, we used a population of 100 clients in

total, out of which 25 are malicious. In each round, a ran-
dom number (from 60 to 90) of clients are selected, so that
the fraction of malicious clients (PMR) varies in each round.
Figure 8 shows the experimental results. One can see that
the proportion of malicious clients (PMR) does not affect the
effectiveness of FLAME, i.e., the backdoor is completely re-
moved (BA = 0%) in every round. Since all poisoned models
are detected, their negative effect on the aggregated model
is removed. Therefore, the MA with FLAME is better than
the one without defense, and is almost always 100 % aligned
with the results in Tab. 4.

7.4 Impact of the Degree of non-IID Data
Since clustering is based on measuring differences between
benign and malicious updates, the distribution of data among
clients might affect our defense. We conduct two experiments
for both Constrain-and-scale and Edge-Case PGD on the
CIFAR-10 dataset. For Reddit and IoT datasets, changing the
degree of non-IID data is not meaningful since the data have a
natural distribution as every client obtains data from different
Reddit users or traffic chunks from different IoT devices.
Following previous works [20,57], we vary the degree of non-
IID data DegnIIDby changing the fraction of images belonging
to a specific class assigned to clients. In particular, we divide
the clients into 10 groups corresponding to the 10 classes of
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Figure 9: Impact of degree of non-IID data on FLAME for
constrain-and-scale using the DegnIID and for the Edge-Case
PGD attack using the α parameter of the Dirichlet distribution.
CIFAR-10. The clients of each group are assigned a fixed
fraction of DegnIIDof the images from its designated image
class, while the rest of the images will be assigned to it at
random. Consequently, the data distribution is random, i.e.,
completely IID if DegnIID = 0% (all images are randomly
assigned) and completely non-IID if DegnIID = 100% (a client
only gets images from its designated class).

Figure 9a shows the evaluation results for the constrain-
and-scale attacks. Although FLAME does not detect the poi-
soned models for very non-IID scenarios, it still mitigates the
attack as the BA remains 0% for all values of DegnIID. For low
DegnIID, FLAME effectively identifies the poisoned models
(T NR = 100%) and the MA remains on almost the same level
as without defense. As shown in Fig. 9b, FLAME also miti-
gates the Edge-Case PGD attack effectively for all α values of
the Dirichlet distribution and the MA also stays on the same
level as without defense. However, since not all poisoned
models are detected, a higher σ is determined dynamically
to mitigate the constrain-and-scale backdoor, resulting in a
slightly reduced MA for DegnIID ≥ 0.7 (MA is 91.9% for
DegnIID = 0.6, and is reduced to 91.0% for DegnIID = 1.0).
Note that Fig. 9 shows the evaluation results in a training
round t where the global model Gt is close to convergence [7],
thus even though the TNR decreases with a large value of
DegnIID, the drop of MA with FLAME is not substantial.

8 Privacy-preserving Federated Learning
A number of attacks on FL have been proposed that aim to
infer from parameters of a model the presence of a specific
training sample in the training dataset (membership inference
attacks) [41, 46, 52], properties of training samples (property
inference attacks) [23,41], try to assess the proportion of sam-
ples of a specific class in the data (distribution estimation
attacks) [58]. Inference attacks by the aggregator As are sig-
nificantly stronger, as As has access to the local models [43]
and can also link gained information to a specific user, while
the global model anonymizes the individual contributions.
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Figure 10: Overview of private FLAME in round t using
Secure-Two-Party Computation (STPC).
Therefore, enhanced privacy protection for FL is needed that
prohibits access to the local model updates.
Adversary Model (privacy). In this adversary type, As at-
tempts to infer sensitive information about clients’ data Di
from their model updates Wi [23, 41, 46, 52] by maximizing
the information φi = INFER(Wi) that As gains about the data
Di of client i by inferring from its corresponding model Wi.
Deficiencies of existing defenses. Generally, there are two ap-
proaches to protect the privacy of clients’ data: differential pri-
vacy (DP; [18]) and cryptographic techniques such as homo-
morphic encryption [24] or multi-party computation [14]. DP
is a statistical approach that can be efficiently implemented,
but it can only offer high privacy protection at the cost of
a significant loss in accuracy due to the noise added to the
models [6, 61]. In contrast, cryptographic techniques provide
strong privacy guarantees as well as high accuracy at the cost
of reduced efficiency.
Private FLAME. To securely implement FLAME using
STPC, we use an optimized combination of three promi-
nent STPC techniques as implemented with state-of-the-art
optimizations in the ABY framework [14]. Fig. 10 shows
an overview of private FLAME. It involves n clients and
two non-colluding servers, called aggregator A and external
server B. Each client i ∈ {1, ...,n} splits the parameters of its
local update Wi into two Arithmetic shares ⟨X⟩Ai and ⟨X⟩Bi ,
such that Wi = ⟨X⟩Ai + ⟨X⟩Bi , and sends ⟨X⟩Ai to A and ⟨X⟩Bi
to B. A and B then privately compute the new global model
via STPC. We co-design the distance calculation, clustering,
adaptive clipping, and aggregation of FLAME (cf. Alg. 1)
of FLAME as efficient STPC protocols.To further improve
performance, we approximate HDBSCAN with the simpler
DBSCAN [10] to avoid the construction of the minimal span-
ning tree in HDBSCAN as it is very expensive to realize with
STPC. See §G for more details on private FLAME evaluation
of its accuracy and performance.

9 Related Work
In general, existing backdoor defenses can roughly be divided
into two main categories. The first one aims to distinguish
malicious updates and benign updates by 1) clustering model
updates [9,15,22,29,33,34,51], 2) changing aggregation rules
[25, 60], and 3) using root dataset [4]. The second category is
based on differential privacy techniques [7,56]. Next, we will
discuss these points in detail.
Clustering model updates. Several backdoor defenses, such
as Krum [9], AFA [42], and Auror [51], aim at separat-
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ing benign and malicious model updates. However, they
only work under specific assumptions about the underly-
ing data distributions, e.g., Auror and Krum assume that
data of benign clients are iid. In contrast, FoolsGold and
AFA [42] assume that benign data are non-iid. In addition,
FoolsGold assumes that manipulated data are iid. As a re-
sult, these defenses are only effective under specific circum-
stances (cf. §7.1) and cannot handle the simultaneous in-
jection of multiple backdoors (cf. §4.3.1). Moreover, such
defenses cannot detect stealthy attacks, e.g., where the ad-
versary constrains their poisoned updates within benign up-
date distribution such as Constrain-and-scale attacks [7]. In
contrast, FLAME does not make any assumption about the
data distribution, clipping, and noising components can also
mitigate stealthy attacks, and FLAME can defend against
injection of multiple backdoors (cf. §4.3.1).
Changing aggregation rules. Instead of using FedAvg [38],
Yin et al. [60] and Guerraoui et al. [25] propose using the
median parameters from all local models as the global model
parameters, i.e., Gt = MEDIAN(W t

1 , . . . ,W
t
n). However, the

adversary can bypass it by injecting stealthy models like W ′3
(cf. Fig. 2), in which the parameters of poisoned model will
be selected to be incorporated into the global model. Further,
our evaluation in §7.1 shows that Median also reduces the
performance of the model significantly.
Using root data. Although FLTrust [12] can defend against
byzantine clients (with arbitrary behavior) and detect poison-
ing attacks including backdoors, it requires the aggregator to
have access to a benign root dataset. Baffle [4] utilizes clients
using their own data to evaluate the performance of the ag-
gregated model to detect backdoors. However, this approach
has two limitations, e.g., (i) the backdoor triggers are only
known to the attacker, i.e., one cannot ensure that the benign
clients would have such trigger data to activate the backdoor,
and (ii) Baffle does not work in a non-IID data scenario with
a small number of clients as clients cannot distinguish deficits
in model performance due to the backdoor from lack of data.
Differential Privacy-based approaches. Clipping and nois-
ing are known techniques to achieve differential privacy
(DP) [18]. However, directly applying these techniques to
defend against backdoor attacks is not effective because
they significantly decrease the Main Task Accuracy (§7.1)
[7]. FLAME tackles this by i) identifying and filtering out
potential poisoned models that have a high attack impact
(cf. §4.3.1), and ii) eliminating the residual poison with an
appropriate adaptive clipping bound and noise level, such that
the Main Task Accuracy is retained (cf. §4.3.2).

10 Conclusion
In this paper, we introduce FLAME, a resilient aggregation
framework for FL that eliminates the impact of backdoor at-
tacks while maintaining the performance of the aggregated
model on the main task. We propose a method to approximate
the amount of noise that needs to be injected into the global

model to neutralize backdoors. Furthermore, in combination
with our dynamic clustering and adaptive clipping, FLAME
can significantly reduce the noise scale for backdoor removal
and thus preserve the benign performance of the global model.
In addition, we design, implement, and benchmark efficient se-
cure two-party computation protocols for FLAME to ensure
the privacy of clients’ training data and to impede inference
attacks on client updates.
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A Datasets and Learning Configurations
Word Prediction (WP). We use the Reddit dataset of Novem-
ber 2017 [1] with the same settings as state-of-the-art works
[7, 38, 40] for comparability. In particular, each user in the
dataset with at least 150 posts and not more than 500 posts is
considered as a client. This results in 80 000 clients’ datasets
with sizes between 298 and 32 660 words.

The model consists of two LSTM layers and a linear output
layer [7, 38]. To be comparable to the attack setting in [7],
we evaluate FLAME on five different backdoors, each with
a different trigger sentence corresponding to a chosen output.
Image Classification (IC). For image classification, we use
mainly the CIFAR-10 dataset [31], a standard benchmark
dataset for image classification, in particular for FL [38] and
backdoor attacks [7, 8, 42]. It consists of 60 000 images of
10 different classes. The adversary aims at changing the pre-
dicted label of one class of images to another class of images.
We use a lightweight version of the ResNet18 model [26] with
4 convolutional layers with max-pooling and batch normaliza-
tion [7]. The experimental setup consists of 100 clients and
uses a PMR of 20%. In addition to the CIFAR-10 dataset, we
also evaluate FLAME’s effectiveness on two further datasets
for image classification. The MNIST dataset consists of 70 000
handwritten digits [32]. The learning task is to classify images
to identify digits. The adversary poisons the model by misla-
beling labels of digit images before using it for training [51].
We use a convolutional neural network (CNN) with 431000
parameters. The Tiny-ImageNet 3 consists of 200 classes and
each class has 500 training images, 50 validation images, and
50 test images. We used ResNet18 [26] model.
Network Intrusion Detection System (NIDS). We test
backdoor attacks on IoT anomaly-based intrusion detec-
tion systems that often represent critical security applica-
tions [5, 16, 27, 30, 44, 45, 55]. Here, the adversary aims at
causing incorrect classification of anomalous traffic patterns,
e.g., generated by IoT malware, as benign patterns. Based
on the FL anomaly detection system DÏoT [44], we use
three datasets called DIoT-Benign, DIoT-Attack, and UNSW-
Benign [44,53] from real-world home and office deployments
(four homes and two offices located in Germany and Aus-
tralia). DIoT-Attack contains the traffic of 5 anomalously
behaving IoT devices, infected by the Mirai malware [44].
Moreover, we collected a fourth IoT dataset containing com-
munication data from 24 typical IoT devices (including IP
cameras and power plugs) in three different smart home set-
tings and an office setting. Following [44], we extracted

3https://tiny-imagenet.herokuapp.com
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Table 6: Effectiveness of the clustering component, in terms
of True Positive Rate (TPR) and True Negative Rate (TNR), of
FLAME in comparison to existing defenses for the constrain-
and-scale attack on three datasets. All values are in percentage
and the best results of the defenses are marked in bold.

Defenses Reddit CIFAR-10 IoT-Traffic
TPR TNR TPR TNR TPR TNR

Krum 9.1 0.0 8.2 0.0 24.2 0.0
FoolsGold 100.0 100.0 0.0 90.0 32.7 84.4
Auror 0.0 90.0 0.0 90.0 0.0 70.2
AFA 0.0 88.9 100.0 100.0 4.5 69.2
FLAME 22.2 100.0 23.8 86.2 59.5 100.0
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Figure 11: Effectiveness of FLAME’s clipping bound in
terms of Backdoor Accuracy (BA) and Main Task Accuracy
(MA). S is the clipping bound and med the L2-norm median.
device-type-specific datasets capturing the devices’ commu-
nication behavior. We simulate the FL setup by splitting
each device type’s dataset among several clients (from 20
to 200). Each client has a training dataset corresponding to
three hours of traffic measurements containing samples of
roughly 2 000-3 000 communication packets. The learning
model consists of 2 GRU layers and a fully connected layer.

B Effectiveness of FLAME’s Components
B.1 Effectiveness of the Clustering Component
We show the results for the clustering component in Tab. 6.
As shown there, our filtering achieves TNR = 100% for the
Reddit and IoT-Traffic datasets, i.e., FLAME only selects
benign models in this attack setting. Recall that the goal of
clustering is to filter out the poisoned models with high attack
impact, i.e., not necessarily all poisoned models (cf. §4.1).
This allows FLAME to defend backdoor attacks effectively,
even if not all poisoned models are filtered. For example,
although for the CIFAR-10 dataset in Tab. 6 the TNR is not
100 % (86.2%), the attack is still mitigated by the noising
component, such that the BA is 0 % (cf. Tab. 4).

B.2 Effectiveness of Clipping
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Figure 12: Impact of different noise level factors on the Back-
door Accuracy (BA) and Main Task Accuracy (MA).
Fig. 11 demonstrates the effectiveness of FLAME’s dynamic
clipping where S is the median of L2-norms compared to a
static clipping bound [7] and different choices for a dynamic
clipping boundary (i.e., median, half of median, median mul-
tiplied by 1.5). The experiments are conducted for the IoT-
Traffic dataset, which is non-iid. Fig. 11a and Fig. 11b show
that a small static bound S = 0.5 is effective to mitigate the
attack (BA = 0%), but MA drops to 0% rendering the model
useless. Moreover, a higher static bound like S = 10 is ineffec-
tive as BA = 100% if the Poisoned Data Rate (PDR) ≥ 35%.
In contrast, FLAME’s dynamic clipping threshold performs
significantly better as BA consistently remains at 0% while
MA remains high (cf. Fig. 11c and Fig. 11d).

B.3 Effectiveness of Adding Noise
Fig. 12 shows the impact of adding noise to the intermediate
global models with respect to different noise level factors λ to
determine the standard deviation of the noise σ dynamically
based on the median L2-norm of the updates St as σ = λSt .
As it can be seen, increasing λ reduces the BA, but it also
negatively impacts the performance of the model in the main
task (MA). Therefore, the noise level must be dynamically
tuned and combined with the other defense components to
optimize the overall success of the defense. The noise level

factor is determined by λ = 1
ε

√
2ln 1.25

δ
for (ε,δ)-DP. We use

standard DP parameters and set ε = 3705 for IC, ε = 395 for
the NIDS and ε = 4191 for the NLP scenario. Accordingly,
λ = 0.001 for IC and NLP, and λ = 0.01 for the NIDS sce-
nario. The DP budget is dependent on the considered dataset
scenario. It is determined based on the median of the dataset
sizes of the clients and the size of the model used. It can thus
be empirically determined by the aggregator. Analogous to
determining the clipping boundary S (cf. 4.3.2), using the
median ensures that the used dataset size is within the range
of benign values.

C Naïve Combination
Furthermore, we test a naïve combination of the defense com-
ponents by stacking clipping and adding noise (using a fixed
clipping bound of 1.0 and a standard deviation of 0.01 as
in [7]) on top of a clustering component using K-means. How-
ever, this naïve approach still allows a BA of 51.9% and a MA
of 60.24%, compared to a BA of 0.0% and a MA of 89.87%
of FLAME in the same scenario for the CIFAR-10 dataset.
Based on our evaluations in §7.1, it becomes apparent that
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FLAME’s dynamic nature goes beyond previously proposed
defenses that consist of static baseline ideas, which FLAME
significantly optimizes, extends, and automates to offer a com-
prehensive dynamic and private defense against sophisticated
backdoor attacks.

D Overhead of FLAME
We evaluated FLAME for 6 different device types from the
IoT dataset. In this experiment, only benign clients partici-
pated and the model was randomly initialized. The highest
observed overhead was 4 additional rounds. In average, 1.67
additional training rounds were needed to achieve at least 99%
of the MA that was achieved without applying the defense,
i.e., FLAME does not prevent the model from converging.

E HDBSCAN
HDBSCAN [11] is a density-based clustering technique that
classifies data samples in different clusters without prede-
fined the maximum distance and the number of clusters. In
the following, we describe HDBSCAN in detail, following
the implementation of McInnes et al. [36, 37]. However,
we focus on the behavior of HDBSCAN for the parame-
ters that FLAME uses, i.e., when min_cluster_size=N/2+
1 and min_samples=1, e.g., because of the choice for
min_cluster_size we skip parts that deal with multiple
clusters. HDBSCAN first uses the given distances to build a
minimal spanning tree (MST), where the vertices represent
the individual data points and the edges are weighted by the
distances between the respective points. Then it uses the MST
to build a binary tree where the leaf nodes represent the ver-
tices of the MST and the non-leaf nodes represent the edges of
the MST. For this, first, all vertices are considered as separate
trees (of size 1). For this, first, all vertices are considered as
separate trees (of size 1) and then, starting from the edge with
the lowest weight, iteratively the trees are merged by creating
a non-leaf-node for each edge of the MST and set the (previ-
ously not connected) subtrees containing the endpoints of the
edge as children for the new node (represented by calling the
function make_binary_tree. In the next step, HDBSCAN
collects all nodes of the binary tree as candidates, that cover
at least N/2+1 data points. Since only non-leaf nodes fulfill
the requirement of covering at least N/2+1 data points, each
cluster candidate is based on a node, representing an edge in
the MST. It uses the weight of the edge and the number of
covered points to calculate a so-called stability value. Then
HDBSCAN uses the stability value to determine the cluster
candidate with the most homogeneous density and returns this
candidate as majority cluster. Finally, it assigns the cluster
label to all data points inside this cluster and labels all points
outside of this cluster as noise.

F Effectiveness of FLAME against untargeted
poisoning attacks

Another attack type related to backdooring is untargeted poi-
soning [8, 9, 20]. Unlike backdoor attacks that aim to incorpo-
rate specific backdoor functionalities, untargeted poisoning
aims at rendering the model unusable. The adversary uses
crafted local models with low Main Task Accuracy to dam-
age the global model G. Fang at el. [20] propose such an
attack bypassing state-of-the-art defenses. Although we do
not focus on untargeted poisoning, our approach intuitively
defends it since, in principle, this attack also trade-offs attack
impact against stealthiness. To evaluate the effectiveness of
FLAME against this attack, we test the Krum-based attack
proposed by [20] on FLAME. Since [20]’s evaluation uses
image datasets, we evaluate FLAME’s resilience against it
with CIFAR-10. The evaluation results show that although
the attack significantly damages the model by reducing MA
from 92.16% to 46.72%, FLAME can successfully defend
against it and MA remains at 91.31%.

G Performance of Private FLAME
For our implementation, we use the STPC framework
ABY [14] which implements the three sharing types, includ-
ing state-of-the-art optimizations and flexible conversions and
the open-source privacy-preserving DBSCAN by Bozdemir
et al. [10]. All STPC results are averaged over 10 experiments
and run on two separate servers with Intel Core i9-7960X
CPUs with 2.8 GHz and 128 GB RAM connected over a 10
Gbit/s LAN with 0.2 ms RTT.
Approximating HDBSCAN by DBSCAN. We measure the
effect of approximating HDBSCAN by DBSCAN including
the binary search for the neighborhood parameter ε. The
results show that our approximation has a negligible loss
of accuracy. For some applications, the approximation even
performs slightly better than the standard FLAME, e.g., for
CIFAR-10, private FLAME correctly filters all poisoned mod-
els, while standard FLAME accepts a small number (TNR =
86.2%), which is still sufficient to achieve BA = 0.0%.
Runtime of Private FLAME. We evaluate the runtime in
seconds per training iteration of the cosine distance, Euclidean
distance + clipping + model aggregation, and clustering steps
of Alg. 1 in standard (without STPC) and in private FLAME
(with STPC). The results show that private FLAME causes a
significant overhead on the runtime by a factor of up to three
orders of magnitude compared to the standard (non-private)
FLAME. However, even if we consider the largest model
(Reddit) with K = 100 clients, we have a total server-side
runtime of 22 081.65 seconds (≈ 6 hours) for a training itera-
tion with STPC. Such runtime overhead would be acceptable
to maintain privacy, especially since mobile phones, which
would be a typical type of clients in FL [38], are not always
available and connected so that there will be delays in syn-
chronizing clients’ model updates in FL. These delays can
then also be used to run STPC. Furthermore, achieving prov-
able privacy by using STPC may even motivate more clients
to contribute to FL in the first place and provide more data.
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