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Abstract—Network automation is a necessity in order to meet
the unprecedented demand in the future networks and zero touch
network architecture is proposed to cater such requirements.
Closed-loop and artificial intelligence are key enablers in this
proposed architecture in critical elements such as security. Apart
from the arising privacy concerns, machine learning models can
also face resource limitations. Federated learning is a machine
learning-based technique that addresses both privacy and com-
munication efficiency issues. Therefore, we propose a federated
learning-based model incorporating the ZSM architecture for
network automation. The paper also contains the simulations
and results of the proposed multi-stage federated learning model
that uses the UNSW-NB15 dataset.

Index Terms—5G, beyond 5G, Network automation, Security,
Federated learning, ZSM

I. INTRODUCTION

Fifth generation (5G) mobile networks are already evolving
while demanding diverse requirements, including bandwidth,
latency, and reliability. As the networks become more com-
plex, security is another aspect that has gained the most
attention in the networking and telecommunication research
community. Intelligent security and automated security man-
agement are key features considered in the vision of beyond
5G or 6G mobile networks [1]. Myriads of unprecedented
challenges will arise during the deployment of such automated
security solutions and their operations with little or no human
intervention while catering to high-performance expectations.

The European Telecommunications Standards Institute
(ETSI) proposed the Zero-touch Network and Service Man-
agement (ZSM) framework to meet the automation require-
ments of the network management [2]. The ZSM architecture,
where the network is divided into domains based on the
different requirements they have, such as operational, business,
and technological, also incorporates Artificial Intelligence (AI)
and Machine Learning (ML) algorithms along with closed loop
operations [3]. The security considerations can be directly
applicable to the general ZSM architecture and the security
closed loop operations for attack detection, security analytics,
cyber threat intelligence for attack mitigation or prevention,
security orchestration, and security policy updates [4].

As the entry point to the security closed loop (i.e., for
security monitoring and security data collection tasks), there
should be a sufficient number of detectors empowered by

ML algorithms in the network inspired by the ZSM archi-
tecture. However, detectors will encounter constraints such
as processing power and storage. We identify that federated
learning (FL) is a relatively novel form of ML algorithm
that allows decentralized processing with higher privacy and
communication efficiency [5]. In FL, the models are trained
on decentralized devices, which are then aggregated. FL
methods can be directly applicable in networks with a ZSM
architecture due to the domain-based definition with the end-
to-end (E2E) service management domain overlooking all the
other domains.

Therefore, in this paper, we use FL to create a hierarchical
anomaly detection mechanism that can be applied to the ZSM
architecture. In particular, we consider the reference security
architecture proposed by the INSPIRE-5G plus project [6] to
develop the anomaly detection mechanism that consists of two
stages for network traffic analysis. Each stage has an FL-based
detector that removes the network flows that are identified as
anomalies. The complexity of the model and the size of the
detector’s database change depending on the stage. To the best
of our knowledge, this is the first research article that proposes
a hierarchical FL-based anomaly detection mechanism and
validates it with simulations to support the automation of
security management in the ZSM architecture. We train our
model using the UNSW-NB 15 data set and test the trained
model with pre-separated testing data from the same dataset.
We conduct simulations for varying anomaly percentages in
both stages 1 and 2 and demonstrate that the model reaches a
minimum accuracy of 93.6%.

The remainder of the paper is organized as follows. Section
II outlines the existing literature on FL-based anomaly detec-
tion that supports ZSM. Section III describes the proposed
system model, and Section IV explains the simulations in
detail. V discusses the simulation results and Section VI
concludes the paper with future research directions.

II. BACKGROUND AND RELATED WORK

Security automation for network and service management is
an emerging research area which is made possible by AI/ML
related techniques together with closed-loop operation. Each
management domain in the ZSM architecture has incorporated
a data analytic service as a support function for closed-loop



operations for network optimization and security. The project
funded by the European Union called ”Intelligent security and
pervasive trust for 5G and beyond” (INSPIRE-5Gplus) has
proposed a security architecture for the ZSM architecture [6].
As a high-level security architecture, the INSPIRE-5G plus
framework presents a fully automated network and service
security management in the domain-based environment.

Fig. 1: INSPIRE-5G plus Security Framework - High Level
Architecture (HLA) [6]

In accordance with the ZSM architecture, a management
domain in Figure 1 consists of services and resources federated
together based on different constraints such as operational,
deployment, and functional. The end-to-end management do-
main manages the service or resource requests among such
domains. The domain and inter-domain integration fabrics
respectively facilitate the communication inside the domains
and between domains and the E2E management domain. As
given in Figure 1, the INSPIRE-5G plus security architecture
of a management domain contains a security data collector,
a security analytics engine, a security orchestrator, a decision
engine, a SSLA manager, and a trust manager.

In the ZSM architecture, closed loop operations are a critical
enabler of network automation, network optimization, and
behavior adaptation [2]. As illustrated in Figure 1, the domain
level security closed loop has five stages called observe,
orient, decide, act, and knowledge [6]. In a closed loop,
data is observed and collected from relevant resources, which
are then oriented so that their meaning and significance can
be understood. Analysing or orientation may include filter-
ing, correlation, or any other similar mechanism based on
application. Decisions are taken using AI/ML mechanisms

with their capabilities to recognize patterns or trends and
make predictions. The decision-making component also makes
plans, determines root causes, or does similar processes based
on the circumstances, which are then implemented. It is also
possible to collaborate with other closed loops based on the
situation [2].

As shown in Figure 1, the security agents residing in
multiple locations within the network collect data and submit
it to the security data collector, which observes the data.
The security analytic service performs data processing and
data analysis. The inferred information is then provided to
the decision engine, which has the capability to decide the
course of action required to operate the network optimally,
mitigating any risk signalled by the data. Subsequently, the
security orchestrator will enforce the recommendations of the
decision engine on the relevant entities. The consequences will
then be observed by the data analytic engine through the data
collected by security agents and security data collectors [6].
As Benzaid et al. have mentioned, open API security threats,
intent-based interface security threats, security threat-driven
network automation, artificial intelligence, ML-based attacks,
and security threats due to the adaptation of programmable
network technologies are the threat surfaces in the ZSM
architecture.

According to the proposed architecture, AI models are also
deployed for network resource optimization and proactive
and reactive incident analysis services in the domain analytic
service, in addition to security. Service management can be
empowered by AI and Rizwan et al. [7] demonstrate method-
ology that employs AI-enabled CDR analysis for service
management in ZSM networks. They have used k-means clus-
tering, support vector mechanisms, and their own algorithm for
identifying suboptimal network performances and root causes.

Wang et al. [8] have presented a hierarchical FL anomaly
detection mechanism for industrial IoT devices, and the local
model at each device is trained by deep reinforcement learning.
Nguyen et al. [9] also propose a FL-based solution for anomaly
detection in IoT applications, and their mechanism is based
on calculating the probabilities related to the communication
patterns of devices. Yadav et al. [10] also present an unsu-
pervised FL-based IoT intrusion detection system. They have
used an auto encoder and an ANN model for detection and
the CICIDS 2017 data set for testing and training the proposed
model. Apart from IoT applications, Wei et al. [11] present an
FL-based anomaly detection solution for 5G heterogeneous
networks that consists of three main parts: user end devices,
the edge, and the cloud. They have also used reinforcement
learning based anomaly detection in devices deployed in the
mentioned locations, and the parameter server is located in the
cloud. Liu et al. [12] use a FL framework to collaboratively
train a Deep Anomaly Detection (DAD) model in industrial
IoT applications. Li et al. [13] present DeepFed, which is
a system for utilizing federated deep learning for intrusion
detection in industrial cyber–physical systems. They have used
the Paillier encryption mechanism and FL to develop a scheme
that collaborates with multiple industrial CPS owners to build



a deep learning intrusion detection model while preserving pri-
vacy. The proposed model in [14] is a deep learning-based self-
adaptive algorithm for detecting anomalies with two stages. A
simple anomaly classification is done by a combination of a
flow collector and an ML-empowered classifier. If it suspects
that an anomaly has happened, network flow will be redirected
to a network anomaly detection system placed in the evolved
packet core. Monitors placed in the network for anomalies are
utilized for their proposed self-adaptive algorithm.

As discussed here, most of the studies have been conducted
extensively to develop FL-based anomaly detectors for IoT-
based applications. There are very few applications introduced
for areas concerning the security of automated networks or the
ZSM architecture. However, FL-based solutions can be effec-
tively used for security applications while adhering to privacy
and communication efficiency. To fill the void left by the lack
of an FL-based detector for security in automated networks,
we have presented a detector that effectively employs the FL-
based model for detecting network anomalies.

III. PROPOSED MODEL

Our proposed model is an FL-based hierarchical security
scheme that detects anomalies in network traffic in two stages.
Each of the two stages has a different ML model, and the
idea is inspired by two reference security schemes presented
in [11], [14]. Each anomaly detector is accompanied by an FL-
based model and a database, along with two types of parameter
aggregating servers, which are positioned for detection. As
illustrated in Figure 2 and in accordance with the ZSM
architecture, the aggregation server for anomaly detectors is
performed at the management domain level and the E2E
management domain level.

The network flow that enters the network with the goal of
reaching its destination will pass through two anomaly detec-
tors. The first anomaly detector in the security management
domain has a simple ML model with a relatively smaller
database, allowing for a sufficient number of detectors to be
placed throughout the network while meeting any network
resource constraints. All of the A-type anomaly detectors
are linked to the aggregation server located in the security
management domain. The portion of the network flows that
are confirmed to be anomalous will be removed by stage 1,
anomaly detector A, and the remaining data will be analyzed
at stage 2, detector B. For the purpose of the simulation, a
neural network was used for both detectors, as it generated
sufficient accuracy. However, the proposed system imposes no
restrictions on other network types.

In stage 2, detector B has a more complex ML model and
a relatively larger database compared with stage 1, detector
A. Stage 2, detector B, placed higher in the hierarchy of
the proposed system, serves a group of lower-level anomaly
detectors (stage 1, detector A), making it possible to function
with a low number of detectors. The aggregation servers
of stage 1 and stage 2 detectors are respectively placed in
the management domains and the E2E management domain.
The filtered flow from stage 1 will undergo another filtering

mechanism in stage 2. If there is any flow that is confirmed to
be an anomaly, it will be immediately removed and only the
remaining flow will be continued to its destination.

A training mechanism, in addition to the detection mech-
anism, will be implemented within the network to generate
the network model used at each detector. This procedure
is similar to that of an FL-based model, in which model-
generated parameters are aggregated at the servers according
to a predefined criterion. Initially, each anomaly detector will
store a set of data in the database, and the model parameters
will be computed by training the model, which will be shared
with the aggregation server. As proposed in the algorithm,
the aggregation server will collect the parameters from each
detector and calculate the average of the parameters, which
will then be sent back to the detectors as a new set of
parameters that can be used for detection.

The ZSM architecture is expected to experience unprece-
dented events, and it is possible that it will be subjected
to unknown security threats. In the event that an unknown
anomaly is observed that is filtered through both the anomaly
detectors, we propose a mechanism to update the detectors
accordingly within the closed-loop cycle such that recurrence
does not take place.

The security data analytics component has the potential
to generate network alarms and notifications on the network
based on predefined criteria. If the anomaly detector fails
to identify a disturbance, an alarm will be generated in the
security data analytic component in the domain where the
event has taken place. The security data analytics component
will notify both the stage 1 aggregation server and the E2E
security orchestration engine. The aggregation server will
instruct the detectors to capture the network flows within the
duration of the event that occurred and to train the model
again. The E2E security orchestration engine will notify both
the security analytics engines of other domains and the stage 2
aggregation server. The stage 2 aggregation server will request
the detectors to train the model. The security analytics engine
in other domains will scan the domain for anomalies and begin
training if an anomaly is identified.

IV. SIMULATION

This section describes the setup we used for the simulation
of a two-stage anomaly detection mechanism. The dataset
UNSW-NB 15 was used for model training and testing in
simulation [15]. Each stage in the system needs an FL-based
model that will be used for detection, and first, these models
need to be developed and trained. Then the generated models
were used for the detection process. The parameters, such
as the anomaly percentage of the data used for training the
models, were varied to observe the effect of each on the
overall accuracy of the proposed system. Tensorflow federated
libraries were used for the simulation.

There are 257673 data flows in the UNSW-NB 15 dataset.
Before starting the simulation, a randomly selected 10,000
samples of the data set were allocated for testing, and the
rest of the data was used for training the two models. The



Fig. 2: Proposed hierarchical FL based anomaly detection mechanism and its mapping with the ZSM architecture.
number of samples used for training stage 1 is in the range
of 6000–14000, and around 99,000 samples were used for
training the stage 2 model. The data set has 42 features of nine
types of attacks along with normal traffic. The features include
source and destination IP addresses, source and destination
port numbers, protocols, destination to source and source to
destination transaction bytes, etc.

FL was used to train the models in stages 1 and 2. Devices
(also known as clients) have a small data set and train models
for a small number of local rounds. The number of rounds
is also known as epochs. Then each client shares parameters
with a central server, which aggregates the model parameters
and redistributes them to the client. Clients train the model
again, starting from the model created based on the parameters
sent by the central server, and they again share the parameters
with the central server. A simulation round is defined as the
process of generating model parameters from clients, sharing
them with the central server, and aggregating them. 100 such
rounds were used for each case.

The ML model used for stage 1 has four layers, with
two hidden layers. For training model 1, the number of data
samples was independently and identically divided into ten
groups. Each client trains a model upon receiving a set of
data, and the parameters generated are shared with a central
server. Each client uses five epochs for training. The central
server aggregates the parameters and calculates the average
of the parameters and sends them back to the devices. We
have recorded the model parameters for 100 such rounds for

each case. Cases are generated by varying the percentage of
anomalies in the training data set for stages 1 and 2.

Stage 2 was approached in a similar manner. The second-
stage model has six layers with four hidden layers, and 99,200
samples are used for training. Therefore, each client gets
around 9920 data flows, which are used for training with five
epochs to generate model parameters. In the next step, it will
be shared with the central server for aggregation. 100 such
rounds are used for each case, which is generated by changing
the anomaly percentage of the training data.

In the final stage, after generating the model for both
stages for different cases, test data was sent through both
stages for detection. A model for each stage was chosen from
parameter sets generated during the training. A set of data that
is confirmed to be anomalies will be dropped from stage 1,
and only the data that is categorized as normal traffic will be
sent to the second stage. In the second stage, the data is again
categorized as an anomaly or normal. The table I shows how
the overall testing accuracy varies with the anomaly percentage
in the training data on stages 1 and 2. Table II demonstrates
how the overall system accuracy changes from stage 1 to 2.

Figure 3 shows how the overall system accuracy after 100
rounds behaves when the anomaly percentage of the training
data in stage 1 is varied. Anomaly percentages in the training
data of stages 1 and 2 in all cases used for the Figure 3 and
figure 4 are shown in the table III.

The figure 4 shows how the overall accuracy of the model
changes when the percentages of anomalies in the training data



TABLE I: Overall Testing accuracy against anomaly data
percentage in training data stage 1 and stage 2.

Anomaly data
percentage in
training data
of Stage 2

Anomaly data percentage in training data-Stage 1

20% 30% 40% 50% 60% 70%
20% 90.5% 91.0% 92.0% 92.2% 92.4% 91.9%
30% 91.9% 92.3% 92.4% 92.8% 92.8% 91.3%
40% 92.7% 92.6% 92.7% 92.6% 92.7% 91.9%
50% 93.2% 93.4% 93.2% 93.1% 92.7% 91.9%
60% 93.6% 93.5% 93.4% 93.2% 93.0% 91.7%
70% 93.0% 93.1% 93.0% 92.8% 92.7% 91.6%

93.1-:94.0% 92.1-93.0% 90.0-92.0%

TABLE II: Overall Testing accuracy increase after stage 2
against anomaly data percentage in training data stage 1 and
stage 2.

Anomaly data
percentage in

training
data-Stage 2

Anomaly data percentage in training data-Stage 1

20% 30% 40% 50% 60% 70%
20% 3.6% 1.7% 1.5% 0.8% 0.4% 0%
30% 5.7% 3.6% 2.3% 1.3% 0.7% 0.3%
40% 6.4% 3.6% 2.7% 1.6% 0.8% 0.3%
50% 6.5% 3.6% 2.2% 1.9% 0.9% 0.6%
60% 5.5% 4.4% 3.1% 1.5% 1.1% 0.4%
70% 6.3% 4.3% 2.6% 1.5% 0.1% -0.5%

-1.0-1.0% 1.1-3.0% 3.0-5.0% 5.0-7.0%

of the stage 2 model are varied.
The figure 5 shows how the testing accuracy changes along

with the number of rounds when the number of training
samples in stage 1 is varied.

V. DISCUSSION

As per the data shown in the table I, when the amount
of anomaly in stage 1 training data is varied from 20–70%,
accuracy has peaked when the percentage is around 50–60%
for most of the cases. However, when the stage 2 anomaly
percentage is set at 60%, the accuracy value initially increases,
and it gradually reduces when the stage 1 percentage is
increased. We have included Figure 3 to show how the overall
accuracy of the model changes along with the number of
rounds when only the anomaly percentage of training data
in stage 1 is varied. It shows behavior similar to the pattern
shown in the table I throughout 100 rounds. When the stage
1 anomaly data rate is maintained at a fixed value and the
anomaly ratio of training data in stage 2 is varied, accuracy
shows a maximum value of 60% and it drops slightly after-
wards. The figure 4 shows how the accuracy behaves during
100 rounds. The same patterns observed in the table I can be
seen in the figure 4 as well.

Testing data was selected randomly from the set of data, of
which 50 – 60% of the data were anomalies. Therefore, testing
data is expected to have the same distribution. We believe
that accuracy has increased when the training data for stage
1 has the same composition. Maximum accuracy is shown

TABLE III: Set of cases shown in Figure 3 and 4

Case Anomaly data percentage in training data
Stage 1 Stage 2

Case ST1 20 ST2 60 20% 60%
Case ST1:30 ST2:60 30% 60%
Case ST1:40 ST2:60 40% 60%
Case ST1:50 ST2:60 50% 60%
Case ST1:60 ST2:60 60% 60%
Case ST1:70 ST2:60 70% 60%
Case ST1 20 ST2 20 20% 20%
Case ST1:20 ST2:30 20% 30%
Case ST1:20 ST2:40 20% 40%
Case ST1:20 ST2:50 20% 50%
Case ST1:20 ST2:60 20% 60%
Case ST1:20 ST2:70 20% 70%

Fig. 3: Overall Testing accuracy against anomaly data percent-
age in training data stage 1

when stage 2 percentage is around 60%. Number of training
samples in stage 2 is 99,200, which is 10 times the number of
data samples in stage 1. We believe that when 60% anomalies
are taken, the majority of the anomalies are included in the
training data, making it possible to detect a maximum number
of anomalies accurately. When the anomaly percentage is 70%,
not enough normal data is captured in the training data. Hence,
the accuracy decreases. The Table II shows that overall system
accuracy has increased after the two stages, and the increment
takes a higher value when the anomaly data ratio of stage 1
is lower.

As per the results, an adequate number of cases of different
anomaly cases should be included in the training data. The
method proposed allows having a larger database at the second
stage, which allows covering all possible scenarios. Therefore,
even if any abnormal flow is sent to the 2nd stage marked
as normal data, the 2nd stage is capable of detecting it.
Thus, the two-stage model enhances the detector accuracy
while preserving the privacy of the data and maintaining
communication efficiency. Apart from the advantages inherited
from using the FL model, it allows catering to inevitable
resource constraints as well.



Fig. 4: Overall Testing accuracy against anomaly data percent-
age in training data stage 2.

Fig. 5: Testing accuracy vs Number of rounds obtained from
varying the number of Training samples in stage 1

VI. CONCLUSION

FL is a distributed ML technique with the features of
enabling privacy and enhancing communication efficiency. In
this paper, we presented a multi-stage model developed with
FL to identify the anomalies and their applicability in the ZSM
architecture. Moreover, we simulated the proposed system
using the networking dataset UNSW-NB 15. The presented
results demonstrate how the system accuracy has changed
when the composition of the training data changes. It is also
visible from the results how the two-stage model improves the
accuracy. In particular, the composition of training data of the
used model should cover enough cases to facilitate adequate
detection. In the current setup, the maximum accuracy we
received was around 94%. In future work, we expect to
increase the accuracy of the model and apply it in a security
analytics framework in the ZSM security architecture.
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