
Subversion-Resilient Enhanced
Privacy ID

Antonio Faonio1(B), Dario Fiore2, Luca Nizzardo4, and Claudio Soriente3

1 EURECOM, Sophia Antipolis, France
faonio@eurecom.fr

2 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

3 NEC Labs Europe, Madrid, Spain
claudio.soriente@neclab.eu

4 Protocol Labs, Madrid, Spain
luca@proto.ai

Abstract. Anonymous attestation for secure hardware platforms lever-
ages tailored group signature schemes and assumes the hardware to be
trusted. Yet, there is an increasing concern on the trustworthiness of
hardware components and embedded systems. A subverted hardware
may, for example, use its signatures to exfiltrate identifying information
or even the signing key. We focus on Enhanced Privacy ID (EPID)—a
popular anonymous attestation scheme used in commodity secure hard-
ware platforms like Intel SGX. We define and instantiate a subversion
resilient EPID scheme (or SR-EPID). In a nutshell, SR-EPID provides
the same functionality and security guarantees of the original EPID,
despite potentially subverted hardware. In our design, a “sanitizer”
ensures no covert channel between the hardware and the outside world
both during enrollment and during attestation (i.e., when signatures are
produced). We design a practical SR-EPID scheme secure against adap-
tive corruptions and based on a novel combination of malleable NIZKs
and hash functions modeled as random oracles. Our approach has a num-
ber of advantages over alternative designs. Namely, the sanitizer bears
no secret information—hence, a memory leak does not erode security.
Also, we keep the signing protocol non-interactive, thereby minimizing
latency during signature generation.

1 Introduction

Anonymous attestation is a key feature of secure hardware platforms, such as
Intel SGX1 or the Trusted Computing Group’s Trusted Platform Module2. It
allows a verifier to authenticate a party as member of a trusted set, while keeping
the party itself anonymous (within that set). This functionality is realized by
1 https://www.intel.com/content/www/us/en/architecture-and-technology/

software-guard-extensions.html.
2 https://trustedcomputinggroup.org/resource/tpm-library-specification/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. D. Galbraith (Ed.): CT-RSA 2022, LNCS 13161, pp. 562–588, 2022.
https://doi.org/10.1007/978-3-030-95312-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95312-6_23&domain=pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1007/978-3-030-95312-6_23


Subversion-Resilient Enhanced Privacy ID 563

using a privacy-enhanced flavor of group signatures in which signatures cannot
be traced, not even by the group manager.

Given such realization paradigm, the security of anonymous attestation sche-
mes is grounded on the trustworthiness of the signer. In particular, anonymity
and unforgeability definitions assume that the signer is trusted and does not exfil-
trate any information via its signatures. Yet, in most applications, the signer is
a small piece of hardware with closed-source firmware (e.g., a smart card) to
which a user has only black-box access. In such a scenario, trusting the hard-
ware to behave honestly may be too strong of an assumption for at least two
reasons. First, having only black-box access to a piece of hardware makes it
virtually impossible to verify whether the hardware provides the claimed guar-
antees of security and privacy. Second, recent news on state-level adversaries
corrupting security services3 have shown that subverted hardware is a realistic
threat. In the context of anonymous attestation, if the hardware gets subverted
(e.g., via firmware bugs or backdoors), it may output valid, innocent-looking sig-
natures that, in reality, covertly encode identifying information (e.g., using spe-
cial nonces). Such signatures may allow a remote adversary to trace the signer,
thereby breaking anonymity. Using a similar channel, a subverted signer could
also exfiltrate its secret key, and this would enable an external adversary to
frame an honest signer, for example by signing bogus messages on its behalf.

1.1 Our Contribution

We continue the study of subversion-resilient anonymous attestation and we
focus on Enhanced Privacy ID (EPID) [9,10], an anonymous attestation scheme
that is currently deployed on commodity trusted execution environments like
Intel SGX. Our contribution is twofold: we first formalize the notion of
Subversion-Resilient EPID (SR-EPID), and we propose a realization in bilin-
ear groups.

The Model of Subversion-Resilient EPID. Enhanced Privacy ID is essentially
a privacy-enhanced group signature where the group manager cannot trace a
signature but signers can be revoked. In the context of remote attestation, a
group member is instantiated by its signing component (the “signer”), which is
typically a piece of hardware.

To counter subverted signers, our idea is to enhance the model by adding a
“sanitizer” party whose goal is to ensure that no covert channel is established
between a potentially subverted signer and external adversaries.4 In practical
application scenarios, the sanitizer could run on the same host of the signer
(e.g., on a phone to sanitize signatures issued by the SIM card), or on a separate
one (e.g., on a corporate firewall to sanitize signatures issued by local machines).

Compared to a subversion-resilient anonymous attestation scheme that uses
split-signatures [11], our approach comes with multiple benefits. First, signature
3 https://snowdenarchive.cjfe.org/.
4 Adding a party between the potentially subverted signer and the outside world is

necessary, as the signer could exfiltrate arbitrary information otherwise [11].

https://snowdenarchive.cjfe.org/


564 A. Faonio et al.

generation is non-interactive and the communication flow is unidirectional from
the signer to the sanitizer, on to the verifier. Thus, our design decreases signing
latency and provides more flexibility as the sanitization of a signature does not
need to be done online. Another benefit of our design is the fact that the sanitizer
holds no secret. This means that if a memory leak occurs on the sanitizer, one
has nothing to recover but public information. Differently, in a split signature
approach, security properties no longer hold if the TPM is subverted and the
key share of its host is leaked.

The idea of adding a sanitizer to mitigate subversion attacks in anonymous
attestation is inspired by that of using a cryptographic reverse firewall of Mironov
and Stephens-Davidowitz [29]. Besides subversion-resilient unforgeability (as in
Ateniese, Magri and Venturi [3]), in an EPID scheme we have to guarantee
additional properties such as anonymity and non-frameability, as well as to deal
with the complications of supporting revocation. Formalizing all these properties
in rigorous definitions is a significant contribution of this paper.

We acknowledge that adding a sanitizer in this unidirectional communication
channel also comes with the drawback that, when the signer is honest (i.e., not
subverted), then for anonymity to hold we still need the sanitizer to be trusted.
This is an inherent limitation of our model since the sanitizer is the last to speak
in the protocol and can always establish a channel with the adversary5. Since our
sanitizer does not hold a secret, a potential way to reduce trust on it can be to
distribute its re-randomization procedure across multiple parties. Designing such
a protocol does not seem straightforward as one should consider, for example,
rushing adversaries and therefore it is left as future work.

As a byproduct of our new definitions of SR-EPID, we obtain a careful for-
malization of the notion of unforgeability for (non-subversion-resilient) EPID
schemes, or more broadly, for group signature schemes with both key-revocation
mechanisms and a blind join protocol. Compared to the previous definition
of [10], ours formalizes several technical aspects that in [10] were essentially
expressed only in words and left to the reader’s interpretation. See the full ver-
sion of this paper [20] for more details.

Our SR-EPID in Bilinear Groups. Our next contribution is an efficient construc-
tion of a SR-EPID based on bilinear pairings. Our starting point is the classical
blueprint of group signature schemes where: (I) the group manager holds the
secret key of a signature scheme; (II) during the join protocol the group man-
ager creates a blind signature σy on a value y private to the prospective group
member, and both σ and y are the group member’s secret key; (III) a signature
σM on message M is a signature of knowledge for M of a σy that verifies for
y and the group public key. (IV) Finally, to support revocation and linkability,
a signature σM is bound to an arbitrary basename B and contains a pseudo-
random token RB = fy(B). Without knowing y the token looks random (and
thus hides the signer’s identity) but, at the same time, can be efficiently checked

5 This is not the case for the unforgeability and non-frameability properties for which
we do consider the case of malicious sanitizers for honest signers.



Subversion-Resilient Enhanced Privacy ID 565

against a revoked key y∗. That is, the verifier checks if RB = fy∗(B) for all
the y∗ in the revocation list. Similarly, a signer that allows for linkability of its
signatures may accept to produce multiple signatures on the same basename;
such signatures could be easily linked as they carry the same token.

Our first idea to contrast subversion attacks is to let the sanitizer re-
randomize every signature σM produced by the signer, sanitizing in this way
the (possibly malicious) randomness chosen by the signer encodes a covert chan-
nel. We achieve this by employing re-randomizable NIZKs in step (III).

This is not the only possible attack vector between a subverted signer and an
external adversary. For example, the signer may come with an hardcoded value
y known to the external adversary so that all the (valid) signatures produced by
the signer can be easily traced. To counter this class of attacks we let the sanitizer
contribute with its randomness to the choice of y during the join protocol. Even
further, we require the sanitizer to re-randomize any message sent to the group
manager during the join protocol. Finally, another potential attack is that at
any moment after the join protocol, the signer may switch to creating signatures
by using a hardcoded secret y′, σy′ . As above, an external party equipped with
y′ could track those signatures. To contrast this class of attacks, we require the
signer to produce, along with every signature σM , a proof πσ that is verified
by the sanitizer using a dedicated verification token and that ensures that the
signer is using the same secret y used in the join protocol; if the check passes,
the sanitizer strips off πσ and returns a re-randomization of σM . Our model
diverges from the cryptographic reverse firewall framework of [29] because of
the verification token mechanism. Looking ahead, this is not simply a limitation
of our scheme but more generally we can show that EPID schemes that admit
secret-key based revocation cannot have a cryptographic reverse firewall, we give
more details in Sect. 2.2.

The description above gives an high-level overview of the main ideas that we
introduced in the protocol to counter subversion attacks. A significant techni-
cal contribution in the design of our construction is a set of techniques that we
introduced to reconcile our extensive use of malleable NIZKs (and in particular,
Groth-Sahai proofs [26]) with the goal of obtaining an efficient SR-EPID scheme.
The main problem to prove security of our scheme is that we need the NIZK to be
malleable and to have a flavor of simulation-extractable soundness.6 In the EPID
of [10], simulation-extractable soundness is also needed, but it is obtained for free
by using Fiat-Shamir (Faust et al. [21]). In our case, this approach is not viable
because the Fiat-Shamir compiler breaks any chance for re-randomizability.
One could use a re-randomizable and (controlled) simulation-extractable NIZK
(Chase et al. [16]), but in practice these tools are very expensive—they would
require hundreds of pairings for verification and hundreds of group elements for
the proofs. To overcome this problem, we propose a combination of (plain) GS
proofs with the random oracle model. Briefly speaking, we use the random oracle

6 In fact, on one hand we have to extract the witness from the adversary’s forgery,
while on the other hand we rely on zero-knowledge to disable any covert channel
from subverted signers.



566 A. Faonio et al.

to generate the common reference string that will be used by the GS proof system
and use the property that, in perfectly-hiding mode, this CRS can be created
from a uniform random string7. In this way we can program the random oracle
to produce extractable common reference strings for the forged signature made
by the adversary and for the messages in the join protocol with corrupted mem-
bers, and program the random oracle to have perfectly-hiding common reference
strings for all the material that the reduction needs to simulate. Our technique is
a reminiscence of techniques based on programmable hash functions [14] and lin-
early homomorphic signatures [27]. However, our ROM-based technique enables
for more efficient schemes with unbounded simulation soundness. The resulting
scheme provides the same functionality of EPID, tolerates subverted signers, and
features signatures that are shorter than the ones in [10] for reasonable sizes of
the revocation list: ours have 28 + 2n group elements whereas EPID signatures
have 8+5n, where n is the size of the revocation list (i.e., ours are shorter already
for n ≥ 7).

1.2 Related Work

Subversion-resilient signatures and Cryptographic Reverse Firewalls. Ateniese
et al. [3] study subversion-resilient signature schemes and show that unique sig-
natures as well as the use of a cryptographic reverse firewall (RF) of [29] ensure
unforgeability despite a subverted signing algorithm. Chakraborty et al. [15]
show how to use RF in multi-party settings where the adversary can fully cor-
rupt all but one party, while the remaining parties are corrupt in a functionality-
preserving way. Ganesh, Magri and Venturi [24] study the security properties of
RF for the concrete case of interactive proof systems. Chen et al. [17] intro-
duce malleable smooth projective hash functions and show how to use them in
a modular way to construct RF for several cryptographic protocols.

Our scheme could be interpreted as a new EPID scheme equipped with a
cryptographic reverse firewall for the join protocol that allows a new party to join
the group, and a cryptograhic reverse firewall that protects the signatures sent
by the signer. However, as mentioned in Sect. 1.1, there are some technical details
that differentiate our model to the cryptographic reverse firewall framework.

Subversion-resilient anonymous attestation. Camenisch et al. [12] provide a Uni-
versally Composable (UC) definition for Direct Anonymous Attestation (DAA)
that guarantees privacy despite a subverted TPM. The DAA scheme presented
in [12] leverages dual-mode signatures of Camenisch and Lehmann [13] and builds
upon the ideas of Bellare and Sandhu [7] to provide a signature scheme where
the signing key is split between the host and the TPM. Later on, Camenisch
et al. [11] build on the same idea of [12] and show a UC-secure DAA scheme
that requires only minor changes to the TPM 2.0 interface and tolerates a sub-
verted TPM by splitting the signing key between the host and the TPM.

7 In particular, we need cryptographic hash functions that allow to hash directly on
G1 and on G2, see Galbraith et al. [23].



Subversion-Resilient Enhanced Privacy ID 567

We argue that splitting the signing key between the potentially subverted
hardware (e.g., the TPM) and the host to achieve resilience to subversions
is viable in scenarios where (i) the channel between the two parties has low
latency—because of the interactive nature of the signing protocol—and (ii) the
user can trust the host. Both conditions holds for TPM scenarios. In particular,
a TPM is soldered to the motherboard of the host and has a high-speed bus to
the main processor. Also, the TPM manufacturer is usually different from the
one of the main processor—hence, the user may trust the latter but not the for-
mer. In case of TEEs such as Intel SGX, we note that there is no real separation
between the TEE and the main processor. Thus, it would be hard to justify an
untrusted TEE and a trusted processor since, in reality, they lie on the same
die and are shipped by the same manufacturer. As such, the entity in charge of
preventing the TEE from exfiltrating information (i.e., the one holding a share
of the signing key) must be placed elsewhere along the channel between the TEE
and the verifier, thereby paying a latency penalty to generate signatures.

We think that our solution is more suitable for TEE platforms like Intel
SGX. In particular, the non-interactive nature of the signing protocol allows us
to place the sanitizer “away” from the signer, without impact on performance.
Thus, the sanitizer may be instantiated by a co-processor next to the TEE, or
it may run on a company gateway that sanitizes attestations produced by hosts
within the company network before they are sent out. As the sanitizer and the
potentially subverted hardware may run on different platforms, they may come
from different manufacturers. For example, one could pick an AMD or Risc-V
processor to sanitize an Intel-based TEE such as SGX. A sanitizer may even be
built by combining different COTS hardware as [28].

Other models for subversion resilience. Fischlin and Mazaheri introduce “self-
guarding” cryptographic protocols [22] based on the assumption of a secure ini-
tial phase where the algorithm was genuine. Kleptograpic attacks, introduced
by Young and Yung [32], assume subverted implementations of standard cryp-
tographic primitives. Later on, Bellare et al. [6] and Russell et al. [30] studied
subverted symmetric encryption schemes and subverted key-generation routines,
respectively. Russell et al. [31] propose for the first time an IND-CPA-secure
encryption scheme that remains secure even in case of a subversion-capable adver-
sary. Ateniese et al. [2] introduce an “immunizer” that takes as input a crypto-
graphic primitive and augments it with subversion resilience. They introduce an
immunizer in the plain model for a number of deterministic primitives (with a
randomized key generation routine). Chow et al. [18], construct secure digital sig-
nature schemes in the presence of kleptographic attacks, by leveraging an offline
phase to test the potentially subverted implementation in a black-box manner.

2 Subversion-Resilient Enhanced Privacy ID

Background on EPID. Enhanced Privacy ID is essentially a privacy-enhanced
group signature scheme. Compared to classic group signatures (see Bellare
et al. [5]), EPID drops the ability of the group manager to trace signatures, and



568 A. Faonio et al.

adds novel revocation mechanisms. In particular, EPID allows to revoke a group
member by adding its private key to a revocation list named PrivRL; while verify-
ing a signature σ, the verification algorithm checks that none of the private keys in
PrivRL may have produced σ. In case the secret key of a misbehaving group mem-
ber did not leak, EPID can still revoke that member by using one of its signatures.
That is, EPID accounts for an additional revocation list, named SigRL, containing
signatures of revoked members.

Security notions for EPID include anonymity and unforgeability. Informally,
anonymity ensures that signatures are not traceable by any party, including
the group manager. Unforgeability ensures that only non-revoked group mem-
bers can generate valid signatures. We note that EPID does not account for
pseudonymous signatures. The latter allow for a sort of controlled linkability as
each signature is bound to a “basename”, and one can easily tell—via a Link
algorithm— whether two signatures on the same basename where produced by
the same group member. This signature mode is actually available in DAA and in
the version of EPID used by Intel SGX. Further, DAA defines a security property
tailored to pseudonymous signatures called non-frameability. Informally, non-
frameability ensures that an adversary that corrupts the group manager cannot
create a signature on a message M and basename bsn, that links to a signature
of an honest group member. Given the usefulness of pseudonymous signatures
in real-world deployments, we decide to include them—along with a definition
of non-frameability—in our definition of subversion-resilient EPID. The study
of subversion-resilient non-frameability can be found in the full version [20].

2.1 Subversion-Resilient EPID

For simplicity, we assume each signer to be paired with a sanitizer and we denote
a pair of signer-sanitizer as a “platform”.8 In the security experiments we denote
with I the issuer, with S the sanitizer, with M the signer, and with P the
platform. Very often we refer to the signer as the “hardware” or the “machine”
(thus the letter M for our notation). We assume group members to be platforms
and gear security definition towards them.9 Our notion of SR-EPID is designed
so that (i) the sanitizer participates to the join protocol obtaining a verification
token as output, and (ii) the sanitizer sanitizes signatures to avoid covert channel
based on maliciously-sampled randomness using such verification token. The
resulting syntax is a generalization of EPID that adds a Sanitize algorithm and
modifies the original Join and Sig algorithms.

Syntax of Subversion-Resilient EPID. We denote by 〈d, e, f〉 ← PA,B,C〈a, b, c〉 an
interactive protocol P between parties A, B and C where a, b, c (resp. d, e, f) are

8 In practical deployments a sanitizer may sanitize signatures of multiple signers and
a single signer may have multiple sanitizers.

9 For example, the anonymity definition focuses on an adversary that must tell which,
out of two platforms, outputs the challenge signature.



Subversion-Resilient Enhanced Privacy ID 569

the local inputs (resp. outputs) of A, B and C, respectively. An SR-EPID consists
of an interactive protocol Join and algorithms: Init, Setup, Sig, Ver, Sanitize.
All the algorithms (and the protocol) but Init take as input public parameters
(generated by Init); for readability reasons, we keep this input implicit.

Init(1λ) → pub. This algorithm takes as input the security parameter λ and
outputs public parameters pub.

Setup(pub) → (gpk, isk). This algorithm takes the public parameters pub and
outputs a group public key gpk and an issuing secret key isk for the issuer I.

JoinI,Si,Mi
〈(gpk, isk), gpk, gpk)〉 → 〈b, (b, svti), ski〉. This is a protocol between

the issuer I, a sanitizer Si and a signer Mi. The issuer inputs (gpk, isk),
while the other parties only input gpk. At the end of the protocol, I obtains
a bit b indicating if the protocol terminated successfully, Mi obtains private
key ski, and Si obtains a sanitizer verification token svti and the same bit b
of I.

Sig(gpk, ski, bsn,M,SigRL) → ⊥/(σ, πσ). The signing algorithm takes as input
gpk, ski, a basename bsn, a message M , and a signature based revocation list
SigRL. It outputs a signature σ and a proof πσ, or an error ⊥.

Ver(gpk, bsn,M, σ,SigRL,PrivRL) → 0/1. The verification algorithm takes as
input gpk, bsn, M , σ, a signature based revocation list SigRL, and a private
key based revocation list PrivRL. It outputs a bit.

Sanitize(gpk, bsn,M, (σ, πσ),SigRL, svti) → ⊥/σ′. The sanitization algorithm
takes as input gpk, a basename bsn, a message M , a signature σ with cor-
responding proof πσ, a signature based revocation list SigRL, and a sanitizer
verification token svti. It outputs either ⊥ or a sanitized signature σ′.

Link(gpk, bsn,M1, σ1,M2, σ2) → 0/1. The linking algorithm takes as input gpk,
a basename bsn, and two tuples M1, σ1 and M2, σ2 and output a bit.

The last algorithm outputs 1 if the two signatures were generated by the same
signer using the same basename (we call such property linking correctness).

In our syntax, we assume PrivRL to be a set of private keys {ski}i, and
SigRL to be a set of triples {(bsni,Mi, σi)}i, each consisting of a basename,
a message and a signature. We define two forms of correctness. To keep the
syntax more light we let Sig(gpk, sk, bsn,M) be equal to Sig(gpk, sk, bsn,M, ∅),
and Ver(gpk, bsn,M, σ) be equal to Ver(gpk, bsn,M, σ, ∅, ∅).

Definition 1 (Correctness, without revocation lists). We say that an
SR-EPID scheme satisfies standard correctness if for any pub ← Init(1λ), any
(gpk, gsk) ← Setup(pub), any 〈b, (b, svt), sk〉 ← Join〈(gpk, gsk), gpk, gpk)〉 such
that b = 1, and for any bsn, M , (σ, πσ) ← Sig(gpk, sk, bsn,M), and any
σ′ ← Sanitize(gpk, bsn,M, (σ, πσ), svt) we have that both Ver(gpk, bsn,M, σ) = 1
and Ver(gpk, bsn,M, σ′) = 1.

Let Σgpk,sk be the set of triples for any basename, message and signature where
the signature algorithm can produce the signature with input gpk and the secret
key sk (thus enumerating over all possible basenames and messages).



570 A. Faonio et al.

Definition 2 (Correctness, with revocation lists). We say that an
SR-EPID scheme satisfies correctness if for any pub ← Init(1λ), any
(gpk, gsk) ← Setup(pub), any 〈b, (b, svt), sk〉 ← Join〈(gpk, gsk), gpk, gpk)〉
such that b = 1, and for any bsn,M , for any PrivRL and SigRL, any
(σ0, πσ) ← Sig(gpk, sk, bsn,M,SigRL) and any σ1 ← Sanitize(gpk, bsn,M,
(σ0, πσ),SigRL, svt) we have:

Σgpk,sk ∩ SigRL = ∅ ⇒ σ0 �= ⊥ (1)
sk /∈ PrivRL ⇒ ∀b′ ∈ {0, 1} : Ver(gpk, bsn,M, σb′ ,SigRL,PrivRL) = 1 (2)

2.2 Subversion-Resilient Security

The security of an SR-EPID scheme is defined by three main properties, namely
anonymity, unforgeability, and non-frameability. We consider subverted signers
that can arbitrarily behave during the join protocol and, in particular, abort
the execution of the protocol. However, once the join protocol is completed
we assume that signers, although subverted, maintain a correct “input-output
behavior”. That is, a subverted signer produces a valid signature to a message
and basename, namely a signature that verifies if the signer were not revoked,
but that could be arbitrarily (and maliciously) distributed over the set of all
valid signatures. We formalize this idea in the following assumption.

Assumption 1. Let Π be a SR-EPID. We assume that for any public param-
eter pub, any adversary A, any gpk and auxiliary information aux, and any
(possibly adaptively chosen) sequence of tuples (bsn1,M1), . . . , (bsnq,Mq), let
〈b, (b′, svt), state1〉 be a possible output of the join protocol JoinA,S,M〈(gpk, aux),
gpk, (gpk, aux)〉 conditioned on b′ = 1 or a possible output of the join protocol
JoinI,A,M〈(gpk, aux), gpk, (gpk, aux)〉 conditioned on b = 1 and let σi, statei ←
Mi(statei−1,Mi, bsni) for i = 1, . . . , q then ∀i ∈ [q] : Ver(gpk,M1, bsn1, σi) = 1.

The assumption models the fact that, if signers can be subverted, a signer should
be considered safe as long as it does not return errors when it comes to generating
signatures. The occurrence of such an error should alert a sanitizer anyway. First,
such an error can occur if one of the signatures produced by the signer was
included in the signature based revocation list: if the list was honestly created,
it means that the signer has been revoked; if the list was maliciously crafted,
then the signature request may constitute an attempt to deanonymize the signer.
Second, if the errors are arbitrary then they inevitably enable to signal any kind
of information from the signer.

Macros for the Join Protocol and Signature generation. As mentioned, the join
protocol is a three-party protocol with the sanitizer being in the middle. To
simplify the already heavy notation, we define the macro Join(M, stateS , stateM,
γI) which identifies one full round of the join protocol from the issuer point of
view with an honest sanitizer and a machine M. In more detail, the macro takes



Subversion-Resilient Enhanced Privacy ID 571

as input the description of the (possibly subverted) machine M, the state of the
sanitizer stateS , the state of the machine stateM and the message sent by the
issuer γI , and it identifies the following set of actions:

Join(M, stateS , stateM, γI):
1. (γ′

S , state′
S) ← S.Join(gpk, stateS , γI);

2. (γM, state′
M) ← M.Join(gpk, stateM, γ′

S);
3. (γS , state′′

S) ← S.Join(gpk, state′
M, γM);

4. Output (state′′
S , state′

M, γS).

Notice the procedures additionally take as input the group public key gpk, which
we keep implicit. Similarly, the signature procedure is a two-phase protocol
between the signer and the sanitizer for which we define the macro:

Sig(M, stateM, svt, bsn,M,SigRL):
1. (σ′, π′

σ, state′
M) ← M.Sig(stateM, bsn,M,SigRL);

2. if svt �=⊥ then σ ← Sanitize(gpk, bsn,M∗, (σ′, π′
σ),SigRL, svt);

3. else σ ← σ′;
4. Output (state′

M, σ).

The macro additionally checks in step 2 that svt is a valid string. We use this
check to discriminate the case when the sanitizer is corrupted.

Subversion-Resilient Anonymity. This notion formalizes the idea that an
adversarial issuer cannot identify a group member through the signatures it pro-
duces. Recall that we assume a signer Mi to be paired with a sanitizer Si; we
denote the platform constituted by Mi and Si with Pi. We assume Mi to be
subverted, i.e., it runs an adversarially specified program, while Si is honest. The
case when both Mi and Si are corrupted is meaningless for anonymity since the
adversary controls all the relevant parties. The remaining case in which Mi is
honest but Si is corrupted is also hopeless for anonymity since a corrupted san-
itizer could always maul the outputs of the signer in order to reveal its identity.

We formalize subversion-resilient anonymity for SR-EPID in a security exper-
iment that appears in Fig. 1, and we formally define anonymity as follows.

Definition 3. Consider the experiment described in Fig. 1. We say that an SR-
EPID Π is anonymous if and only if for any PPT adversary A:

Advanon
A,Π(λ) :=|Pr

[
Expanon

A,Π(λ, 0) = 1
]
− Pr

[
Expanon

A,Π(λ, 1) = 1
]
| ∈ negl(λ).

Here we provide an intuitive explanation of the anonymity experiment. The
idea is that the adversary plays the role of the issuer, i.e., it selects the group
public key, and it can do the following: (1) ask platforms with subverted signers
to join the system; (2) ask platforms with subverted signers to sign messages;
(3) corrupt platforms. For (1), it means that the adversary specifies the code



572 A. Faonio et al.

of a signer Mi that, together with an honest sanitizer Si, run the Join protocol
with the adversary playing the role of the issuer. For (2), a subverted signer Mi

produced a signature that is sanitized by Si and then delivered to the adversary.
Finally, (3) models a full corruption of the platform in which the adversary learns
the secret key ski obtained by Mi at the end of its Join protocol.

The adversary can choose two platforms (Pi0 ,Pi1), a basename bsn∗, and a
message M∗ and it receives a sanitized signature on M∗, bsn∗ produced by one
of the two platforms. The goal of the adversary is to figure out which platform
produced the signature. In order to avoid trivial attacks the two “challenge”
platforms must be non-corrupted and none of their signatures can be included in
the SigRL used to produce the challenge signature. Further, if the adversary has
previously requested a signature with bsn∗ form either platform, the challenger
aborts. Similarly, after seeing the challenge signature, the adversary may not ask
for a signature by any of the challenge platforms on basename bsn∗.

Technical details. The structure is the one depicted earlier: the adversary chooses
the group public key on input the public parameters and then starts interacting
with the oracle C. The experiment maintains lists Ljoin, Lusr, Lcorr to book-
keep information on the state of the Join protocol sessions, and the list of non-
corrupted and corrupted platforms, respectively. Also, it maintains a flag Bad,
initialized to false, which is turned to true whenever the adversary violates the
rules of the experiments (see below). At some point the adversary outputs a
message M∗, a basename bsn∗, and two indices i0, i1, along with a signature
revocation list SigRL∗; it receives a sanitized signature generated using the sub-
verted signer Mib . In line 8 of Expanon

A,Π(λ, b) we ensure that the adversary did
not previously query for a signature with basename bsn∗ by one of the challenge
platforms; if that is the case, the adversary could trivially win by using the Link
algorithm. In line 11 of Expanon

A,Π(λ, b) we ensure that both challenge platforms
generate valid signatures, after sanitization. Indeed if a difference would occur
(e.g., one of them is ⊥), the adversary could trivially win the game. For exam-
ple, this would be the case if the SigRL chosen by A would contain a signature
from, e.g., Mi0 . Similar checks are done in lines 16–20 of the C oracle upon a
signing query that involves one of the challenge platforms, say i1−β . The code
of those lines essentially ensure that the queried basename is not the challenge
one, and that the other challenge platform iβ would generate a signature on the
same message M that is valid iff so is the one generated by i1−β . Again if such
a difference would occur the adversary could trivially distinguish and win the
experiment. Similarly to the other case, this could occur if the queried SigRL
contains a signature of (only) one of the challenge platforms.

We stress that the mechanism that uses the verification tokens is necessary10.
Indeed, consider the definition above where the svt and the proof πσ are missing:
An attacker can first performs two join protocols one with a subverted machine
M̃ with hardcoded a secret key s̃k that during joining time acts honestly, thus

10 Here is where our model diverges from the cryptographic reverse firewall framework
of [29].



Subversion-Resilient Enhanced Privacy ID 573

Fig. 1. Subversion-resilient anonymity experiment.



574 A. Faonio et al.

obtaining a new fresh secret key, but that computes valid signature using the
hardcoded secret key. Suppose the scheme has a secret-key based revocation
mechanism, then the adversary that knows s̃k can easily distinguish the subverted
machine from an honest machine. In particular, it could verify the challenge
signature using the revocation list {s̃k}. The sanitizer, which only posses public
information, has no way to identify that a different secret key has been used
and avoid this attack. We formalize the above intuition in the full version of this
paper. Another aspect of the anonymity experiment that we would like to point
out is that the adversary receives the verification token immediately after the
Join protocol is over. This models the fact the adversary could have access to
the internal state of an honest sanitizer (except for its random tape), and this
does not break anonymity.

Subversion-Resilient Unforgeability. This notion formalizes the idea that
an adversary who does not control the issuer cannot generate signatures on new
messages on behalf of non-corrupted platforms. To model subversion attacks, we
let the platform signer Mi be an adversarially specified program. The sanitizer
Si is instead honest (unless the platform is fully corrupted).

Here we provide an intuition of the notion. The adversary receives the group
public key, and it can do the following: (1) ask platforms with subverted signers to
join the system; (2) ask corrupted platforms to join the system; (3) ask platforms
with subverted signer to sign messages; (4) corrupt platforms. For (1), it means
that the adversary specifies the code of a signer Mi and that signer together with
sanitizer Si, run the Join protocol where both the issuer and Si are controlled by
the challenger. For (2), the adversary runs the Join protocol with the challenger
playing the role of the issuer, whereas both the signer Mi and the sanitizer Si

are fully controlled by the adversary. For (3), the adversary asks a platform that
joined the system to create a signature using the subverted signing algorithm
(specified in Mi at Join time), this signature is sanitized by Si and given to the
adversary. Finally, (4) simply models a full corruption of the platform in which
the adversary learns the secret key ski obtained by Mi at the end of its Join
protocol11.

The adversary’s goal is to produce a valid signature on a basename-message
tuple bsn∗,M∗. On the one hand, we cannot require the tuple bsn∗,M∗ to be
fresh, since it is reasonable to assume that multiple platforms may sign the same
bsn∗,M∗. On the other hand, strong unforgeability is impossible, as we require
that the signatures must be valid before and after sanitization. To satisfy these
two apparently contrasting requirements simultaneously, we instead require that
the adversary’s forgery does not link to any of the other queried signatures on
the same basename-message tuple. This essentially guarantees that the forgery
is not a trivial rerandomization of signature obtained through a signing query.

11 Here the corruption is adaptive in the sense that the platform first joined honestly
and later can be corrupted by the adversary but we assume secure erasure of the
previous states of the sanitizer.



Subversion-Resilient Enhanced Privacy ID 575

Since an SR-EPID is a (kind of) group signature and in the above game the
adversary may have learnt the secret keys of some group members, we add some
additional checks to formalize what is a forgery, so to avoid trivial unavoidable
attacks. Intuitively, we want that the signature must verify with respect to a
private-key revocation list PrivRL∗ (resp. signature-based revocation list SigRL∗)
that includes the secret keys of (resp. a signature from) all corrupted group mem-
bers. These corrupted group members include both the ones that honestly joined
the system and were later corrupted, and those that were already corrupted (i.e.,
adversarially controlled) at join time. Modeling which keys should be revoked is
not straightforward though. The first issue is that in case of a corrupted platform
joining the group, the challenger does not know what is the key obtained by the
adversary. Essentially, unless we revoke exactly that key or a signature produced
with that key, the adversary is able to create valid signatures on any message of
its choice. The second issue is similar and involves cases when a platform with a
subverted signer joins the group: the challenger obtains a secret key ski from the
signer Mi at the end of the Join protocol, but Mi is subverted and thus we have
no guarantee that ski is the “real” secret key.12 To define forgeries, we solve these
issues by assuming the existence of an extractor that, by knowing a trapdoor and
seeing the transcript of the Join protocol between the issuer and the sanitizer,
can extract a token uniquely linkable (via an efficient procedure) to the secret
key that is supposed to correspond to such transcript. This definition is close to
the notion of uniquely identifiable transcripts used by [8] for DAA schemes. We
stress that the extractor does not exist in the real world and is only an artifact
of the security definition.13 A practical interpretation of our definition is that
unforgeability is guaranteed under the assumption that the revocation system
is “perfect”, namely that one revokes all the secret keys, or signatures produced
by those secret keys, that an adversary obtained by interacting with the issuer
in the Join protocol.

Definition 4. Consider the experiment described in Fig. 2. We say that an SR-
EPID Π is unforgeable if there exist PPT algorithms CheckTK, CheckSig, and a
PPT extractor E = (E0, E1) such that the following properties hold:

1. For any pair of keys (gpk, isk) in the support of Setup(pub) and for
any (even adversarial) tk, sk1, sk2 it holds (CheckTK(gpk, sk1, tk) = 1 ∧
CheckTK(gpk, sk2, tk) = 1) ⇒ sk1 = sk2. (Namely, any tk is associated to
one and only one sk.)

2. For any pair of keys (gpk, isk) in the support of Setup(pub) and for
any (even adversarial) tk, sk,M, bsn, σ,SigRL,PrivRL such that Ver(gpk, bsn,
M, σ,SigRL,PrivRL) = 1 and Ver(gpk, bsn,M, σ,SigRL,PrivRL ∪ {sk}) = 0, it
is always the case that CheckTK(gpk, sk, tk) = 0 ∨ CheckSig(gpk, tk, σ) = 1.
(Namely, the token tk and the algorithm CheckSig allow to verify if a signature
comes from a specific secret key.)

12 For instance, Mi may store locally only an obfuscated or encrypted version of the
secret key.

13 More precisely, an extractor does not exist if in the real world the Init algorithm is
realized in a trusted manner, akin to CRS generation in NIZK proof systems.



576 A. Faonio et al.

3. For any PPT adversary A, Advunf
A,E,Π(λ) := Pr

[
Expunf

A,E,Π(λ) = 1
]

∈ negl(λ).
4. The distribution {pub $← Init(1λ)}λ∈N and {pub|pub, tp $← E0(1λ)}λ∈N are

computationally indistinguishable.

Technical details. Besides the use of the extractor, the security experiment is
rather technical in some of its parts. Here we explain the main technicalities. As
mentioned earlier, the structure of the experiment is that the adversary receives
the group public key and then starts interacting with the oracle. The exper-
iment maintains lists Ljoin, Lusr, Lcorr, Lmsg to bookkeep information on the
state of the Join protocol sessions, the list of uncorrupted and corrupted plat-
forms respectively, and the list of the messages on which the adversary obtained
signatures. After interacting with the oracle, the adversary outputs a message
M∗, a basename bsn∗, a signature σ∗ and revocation lists PrivRL∗,SigRL∗. The
adversary wins if either event (4), or the conjunction of events (1), (2) and (3)
occur. Intuitively, event (4) means that the adversary has “fooled” the extrac-
tor. Namely, the adversary produced a secret key sk (provided in the private-key
revocation list PrivRL∗) that the algorithm CheckTK recognizes as associated to
a token tk extracted by E1, but sk is not a valid signing key. In other words,
our definition requires that any secret key14 extracted by E1 should be valid. For
the other winning case, events (2) and (3) are a generalization of the classical
winning condition of digital signatures, i.e. where the adversary returns a valid
signature on a new message. The conjunction of event (2) and (3) are more gen-
eral than the classical unforgeability notion because instead of considering as
new just the message, we also include the basename, and, more importantly, the
fact that the forged signature apparently comes from a machine that either has
never been set up or that has never signed the basename-message tuple. Event
(1) instead is there to avoid trivial attacks due to the possibility of corrupting
group members. Basically, (1) ensures that for any corrupted platform we have
either its secret key in PrivRL∗ or a signature produced by that platform in
SigRL∗. For the latter statement to be efficiently checkable in the experiment we
require the existence of an algorithm CheckSig for this purpose and that works
with the token tk extracted by E1. With honest join queries the adversary spec-
ifies the code of a signer Mi, which then runs the Join protocol with an honest
issuer and an honest sanitizer controlled by the challenger. At the end, if the
issuer accepts, we extract a secret-key token tki from the transcript τ of the Join
protocol, and we store information about Mi, its state, the verification token
and the extracted secret-key token. The verification token svti is also returned
to the adversary. With dishonestP join queries the adversary can let a fully
corrupted platform (i.e., both Mi and Si are under its control) join the group.
In this case, the adversary runs the join protocol with the honest issuer con-
trolled by the challenger: the oracle allows the adversary to start a Join session
and then sends one message, γ, at a time; lines 9–11 formalize this step-by-step
execution of the honest issuer on each message sent by the adversary on behalf
14 Precisely, E extracts a token tk linked to sk.



Subversion-Resilient Enhanced Privacy ID 577

Fig. 2. Subversion-resilient unforgeability experiment. The algorithm CheckSK(gpk, sk)
is a shorthand for the following process: sample a random message, generate a signature
on it using sk and output 1 iff the signature verifies. The symbol ξ denotes the empty
string.



578 A. Faonio et al.

of Si. At the end, if the issuer accepts, we extract a secret-key token tki from
the transcript τ of the Join protocol, and we store this token in the list Lcorr of
corrupted users. With dishonestS join queries we consider the case in which
the adversary fully controls the sanitizer but the signer is not subverted. In this
case, the oracle allows the adversary to run in the Join protocol with the honest
issuer and honest signer. This is done by letting the adversary send messages to
either M or I; lines 15–17 formalize this step-by-step execution of the honest
issuer and honest signer on each message γ sent by the corrupted sanitizer. At
the end, if the issuer accepts, we extract a secret-key token tki from the tran-
script τ of the Join protocol, and we store all the relevant information in the list
Lusr of honest platforms. Note that in this case we do not necessarily know the
verification token since this is received by the sanitizer, which is the adversary.
For sign queries, the oracle first checks that the platform has joined the system
and if so it lets the (possibly subverted) signer Mi generate a signature σ′ and
corresponding proof π′

σ. Next, if svti �= ⊥ the signature is sanitized and given
to the adversary, otherwise a non-sanitized signature is returned. Notice that
the case svti = ⊥ (when i is in Lusr) can occur only if the platform joined the
system using a dishonestS join query, in which case the sanitizer is controlled
by the adversary but – we recall – the signer is not subverted. Finally corrupt
queries allow the adversary to corrupt an existing platform, which may have
joined through either a honest join or dishonestS join query. As a result,
the adversary learns the internal state of the signer, which is supposed to con-
tain the secret key (note that the state of the sanitizer, that is the verification
token, was already returned after the Join).

Subversion-Resilient Unforgeability in the Random Oracle Model. To capture
also constructions in the random oracle model (ROM) we provide a suitable
adaptation of the unforgeability definition. A dedicated ROM-based definition
is needed in order to consider extractors that may simulate, and program, the
random oracle. The ROM definition is the same as Definition 4, except that
condition (3) accounts for the ROM-programmability granted to the extractor.

Comparison with Unforgeability of EPID. The notion of unforgeability defined
above closely follows the one defined for EPID in [9], with the following main
differences. First, in [9] there is no sanitizer. Second, in [9] the adversary cannot
specify a subverted signer, namely honest join and sign queries are executed
according to the protocol description. Third, valid forgeries in [9] include fresh
signatures on messages already signed by the oracle. Such a forgery is not valid
in our case since signatures are sanitizable (essentially re-randomizable).

Notice that the unforgeability definition of [9] requires the adversary to return
the secret key obtained via dishonest join queries (called Join of type (i) in [9]).
Nevertheless, the definition does not enforce at any point that the adversary is
returning the correct key. It is possible that the authors are implicitly making
the assumption that the adversary is honest at this stage, and this what seems to
be used in the security proof (where the reduction does not even look at the key
returned by the adversary but uses the key extracted from the PoK made by A



Subversion-Resilient Enhanced Privacy ID 579

during the Join protocol). This is a quite strong assumption. If this assumption
is not made we can show an attack. A first performs a dishonest join query
by playing honestly (the same works if this query is honest join followed by
corrupt), it obtains a key sk1. Next A performs another dishonest join query
where it plays honestly in the Join protocol, it obtains another key sk2 but
returns to the challenger sk1. When it comes to the forgery step, from the point
of view of the challenger the key that must be in PrivRL∗ is sk1 (maybe twice).
This means that technically sk2 is not revoked and thus the adversary can use it
to create a signature that would pass the forgery checks and win the game. Note
that this attack works even if the forgery checks ensure that all sk in PrivRL∗

must be “valid” (this check was proposed as part of the Revoke algorithm of the
EPID construction).

In our definition of unforgeability we avoid the above attack by requiring a
security property of the Join protocol. Specifically, the join protocol is such that,
if the execution of the protocol ends successfully, then the platform must have
learnt one (and only one) secret key. We formalize this by requiring the existence
on an extractor that can find this key by only looking at the transcript. In this
way, we avoid the unrealistic requirement that the adversary surrenders all the
corrupted secret keys. Notice that the existence of the extractor is only for defini-
tional purpose, namely, only to asses the security statement that “unforgeability
holds if all the corrupted secret keys are revoked”.

3 Building Blocks

An asymmetric bilinear group generator is an algorithm G that upon input a
security parameter 1λ produces a tuple bgp = (p,G1,G2,GT , e,P1,P2), where
G1,G2 and GT are groups of prime order p ≥ 2λ, the elements P1,P2 are gen-
erators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable,
non-degenerate bilinear map. In our construction we use Type-3 groups in which
it is assumed that there is no efficiently computable isomorphism between G1 and
G2. We use the bracket notation introduced in [19]. Elements in Gi, are denoted
in implicit notation as [a]i := aPi, where i ∈ {1, 2, T} and PT := e(P1,P2).
Given a, b ∈ Zq we distinguish between [ab]i, namely the group element whose
discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the multi-
plication of [a]i and b, and [a]1 · [b]2 = [a · b]T , namely the execution of a pairing
between [a]1 and [b]2. Vectors and matrices are denoted in boldface. We extend
the pairing operation to vectors and matrices as e([A]1, [B]2) = [A� · B]T . All
the algorithms take implicitly as input the public parameters bgp.

Structure-Preserving Signatures. A signature scheme over groups generated by G
is a triple of efficient algorithms (KGen,Sig,Ver). Algorithm KGen outputs a pub-
lic verification key vk and a secret signing key sk. Algorithm Sig takes as input
a signing key and a message m in the message space, and outputs a signature σ.
Algorithm Ver takes as input a verification key vk, a message m and a signature
σ, and returns either 1 or 0 (i.e., “accept” or “reject”, respectively). The scheme



580 A. Faonio et al.

(KGen,Sig,Ver) is correct if for every correctly generated key-pair vk, sk, and for
every message m in the message space, we have Ver(vk,m,Sig(sk,m)) = 1. We
consider the standard notion of existential unforgeability under chosen-messages
attacks. For space reason, formal definition is omitted from the manuscript.
Finally, a signature scheme over groups generated by G is structure-preserving
[1] if (1) the verification key, the messages, and signatures consist of solely ele-
ments of G1,G2, and (2) the verification algorithm evaluates the signature by
deciding group membership of elements in the signature and by evaluating pair-
ing product equations.

Non-Interactive Zero-Knowledge Proof of Knowledge. A non-interactive zero-
knowledge (NIZK) proof system for a relation R is a tuple NIZK = (Init,P,V)
of PPT algorithms such that: Init on input the security parameter outputs a
(uniformly random) common reference string crs ∈ {0, 1}λ; P(crs, x, w), given
(x,w) ∈ R, outputs a proof π; V(crs, x, π), given instance x and proof π outputs
0 (reject) or 1 (accept). In this paper we consider the notion of NIZK with labels,
that are NIZKs where P and V additionally take as input a label L ∈ L (e.g.,
a binary string). A NIZK (with labels) is correct if for every crs

$← Init(1λ), any
label L ∈ L, and any (x,w) ∈ R, we have V(crs, L, x,P(crs, L, x, w)) = 1. As for
security we consider the standard notions of adaptive composable zero-knowledge
and adaptive perfect knowledge soundness [25].

Malleable and Re-Randomizable NIZKs. We use the definitional framework of
Chase et al. [16] for malleable proof systems. For space reason we introduce only
informally the framework here. A malleable NIZK comes with an NP relationship
R and a set of allowable transformations T . An allowable transformation T =
(Tx, Tw) ∈ T maps tuple (x,w) ∈ R to another tuple (Tx(x), Tw(w)) ∈ R,
namely, the transformations are closed under R. Additionally, a malleable NIZK
has an algorithm ZKEval that upon input x, π and transformation T returns a
new proof π′ which is a valid proof for the instance Tx(x). The work of [16]
defines the notion of strong derivation privacy which informally states that,
for any tuple x, π and transformation T adaptively chosen by the adversary, the
proof π′ is indistinguishable from a fresh simulated proof for the statement Tx(x).
In the special case of a malleable NIZK where the allowable transformation is
the identity function we simply say that it is a re-randomizable NIZK and we
omit the transformation from the inputs of ZKEval.

4 Our SR-EPID Construction

An Overview of Our Scheme. We elaborate further on the overview from
Sect. 1.1. Recall that our construction follows the classical template similar to
many group signature schemes to prove in zero-knowledge the knowledge of a
signature originated by the issuer. In particular: (I) The issuer I keeps a secret
key isk of a (structure-preserving) signature scheme. (II) The secret key of a plat-
form is a signature σsp on a Pedersen commitment [t]1 whose opening y is known



Subversion-Resilient Enhanced Privacy ID 581

to the signer only. Following the description given in Sect. 1.1, the conjunction of
σsp and [t]1 forms a blind signature on y. (III) The signer generates a signature
on a message M and basename bsn by creating a NIZK with label (bsn,M) of
the knowledge of a valid signature σsp made by I on message a commitment [t]1
and the knowledge of the opening of such commitment to a value y. To realize
the NIZK, our idea is to use a random oracle H to hash the string bsn,M and use
the output string as the common-reference string of a (malleable) NIZK for the
knowledge of the σsp, the commitment [t]1 and the opening y = (y0, y1). Further-
more, to be able to re-randomize the signature, we make use the re-randomizable
NIZK. (IV) To support revocation and linkability the final signature addition-
ally contains the pseudorandom value [c1]1 := K(bsn) · y0, where K is a random
oracle. More in details, linkability is trivially obtained, as two signatures by the
same signer and for the same basename share the same value for [c1]1, while
for (signature-based) revocation we additionally let the signer prove that all the
revoked signatures contain a [c1]1 of the form K(bsn) · y′

0 where y′
0 �= y0.

Specific Building Blocks. Our scheme makes use of the following building blocks:

– A structure-preserving signature scheme SS = (KGensp,Sigsp,Versp) where
messages are elements of G1 and signatures are in G

�1
1 × G

�2
2 .

– An re-randomizable NIZK NIZKsign for the relationship Rsign defined as:
⎧
⎪⎪⎨

⎪⎪⎩

(gpk, [b]1,SigRL),
([t]1, σsp, [y]2)

:

[b]1 ∈ span([1, y0]T1 )
[t]t = [hT · y]t
Versp(pksp, [t]1, σsp) = 1
∀i : [bi]1 �∈ span([1, y0]T1 )

⎫
⎪⎪⎬

⎪⎪⎭

where SigRL = {[bi]1}r
i=1, gpk = ([h]1, pksp), and y = (y0, y1)T. To simplify

the exposition, in the description of the protocol below we omit gpk (the
public key of the scheme) from the instance and we consider ([b]1,SigRL) as
an instance for the relation.

– A malleable and re-randomizable NIZK NIZKcom for the following relation-
ship Rcom and set of transformations Tcom defined below:

Rcom := {([h]1, [t]1), [y]2 : [t]t = e([h]1, [y]2)}

Tcom :=
{

T = (Tx, Tw) :
Tx([h]1, [t]1) = [h]1, [t + h2 · y′]1

Tw([y]2) = [y0, y1 + y′]T2

}

Namely, the relation proves the knowledge of the opening of a Pedersen’s com-
mitment (in G1) whose commitment key is [h]1. The transformation allows
to re-randomize the commitment by adding fresh randomness.

– A NIZKsvt for the relation Rsvt = {[x, xy, z, zy]1, y : x, y, z ∈ Zp}.
– Three cryptographic hash functions H, J and K modeled as random oracles,

where H : {0, 1}∗ → {0, 1}λ, J : {0, 1}∗ → {0, 1}λ and K : {0, 1}λ → G1.



582 A. Faonio et al.

Our SR-EPID Scheme. We describe our scheme based on building block
described above. For an instantiation and its efficiency see the full version [20].

Init(1λ) → pub: Generate description of a type-3 bilinear group bgp
$← G(1λ), the

common reference string crssvt
$← NIZKsvt.Init(bgp), and sample h $← Z

2
p.

Output pub = (bgp, crssvt, [h]1)15

Setup(pub) → (gpk, isk): sample (sksp, pksp)
$←KGensp(bgp), and set isk := sksp,

gpk := pksp.
JoinI,S,M〈(gpk, isk), gpk, gpk〉 → 〈b, (b, svt), (sk, svt)〉: the platform P = (M,S)

and issuer I start an interactive protocol that proceeds as described below:
1. I samples id

$←{0, 1}λ, sends id to S and M. Parties compute crscom ←
J(id).

2. M samples y0,M, cM
$← Zp, set svt′ := [cM, cMy0,M]1 and sends svt′ to

S.
3. S parses svt′ = (svt′0, svt

′
1), checks that svt′0, svt

′
1 �= [0]1 and if so it sets

svt := cS · (svt′ + ([0]1, y0,S · svt′0))= [cScM, cScM(y0,S + y0,M)]1

and sends (y0,S , svt, [cS ]2) to M.
4. M does as described below:

– Parse svt′ = (svt′0, svt
′
1), svt = (svt0, svt1) and assert e(svt′0, [cS ]2) =

e(svt0, [1]2) and e(svt′1 + [cM · y0,S ], [cS ]2) = e(svt1, [1]2)
– Set y0 = y0,M + y0,S , sample y1,M

$← Zp and compute [tM]1 :=
(y0, y1,M) · [h]1;

– πM ← NIZKcom.P(crscom, ([h]1, [tM]1), [y0, y1,M]2);
– Send ([tM]1, πM) to S.

5. S checks NIZKcom.V(crscom, ([h]1, [tM]1), πM) = 1; if the check passes:
– Sample y1,S

$← Zp and set [t]1 := [tM + h2 · y1,S ]1;
– Compute πS ← NIZKcom.ZKEval(crscom, πM, [y1,S ]1);
– Send y1,S to M and ([t]1, πS) to I.

6. I checks NIZKcom.V(crscom, ([h]1, [t]1), πS) = 1, and if the check passes
then I computes σsp ← Sigsp(sksp, [t]1) and sends σsp to M (through S).

7. M does as described below:
– Compute y1 = y1,M + y1,S , y0 = y0,M + y0,S , and set y := (y0, y1)T;
– Verify (1) [h]T1 · y = [t]1 and (2) Versp(pksp, [t]1, σsp) = 1
– If so, send the special message completed to I (through S) and output

sk := ([t]1, σsp,y) and svt.
8. S outputs svt.
9. If I receives the special message completed then outputs it.

15 Notice that we could consider a stronger model of subversion where the adversary
could additionally subvert the public parameters. Our scheme, indeed, could be
proved secure under this stronger model if we generate [h]1 using the ROM and use
NIZKsvt with subversion-resistant soundness [4].



Subversion-Resilient Enhanced Privacy ID 583

Sig(gpk, sk, svt, bsn,M,SigRL) → (σ, πσ): On input gpk, sk = ([t]1, σsp,y), the
base name bsn ∈ {0, 1}λ, the message M ∈ {0, 1}m, and a signature revocation
list SigRL = {(bsni,Mi, σi)}i∈[n], generate a signature σ and a proof πσ as
follows:
1. Set [c]1 ← K(bsn) and set [c]1 := [c, c · y0]1;
2. Compute π ← Πsign.P(H(bsn,M), ([c]1,SigRL), ([t]1, [σsp]1, [y]2));
3. Compute πσ ← Πsvt.P(crssvt, (svt, [c]1), y0);
4. Output σ := ([c]1, π) and πσ.

Sanitize(gpk, bsn,M, (σ, πσ),SigRL, svt): Parse σ = ([c]1, π) and proceed as
follows:
1. If Πsign.V(crssign,H(bsn,M), ([c]1,SigRL), π) = 0 or Πsvt.V(crssvt, (svt,

[c]1), πσ) = 0 then output ⊥.
2. Re-randomize π by computing π′ ← Πsign.ZKEval(H(bsn,M), ([c]1,

SigRL), π)
3. Output σ′ := ([c]1, π′).

Ver(gpk, bsn,M, σ,PrivRL,SigRL): Parse σ = ([c]1, π) and PrivRL := {f1, . . . ,
fn1}. Return 1 if and only if:
1. K(bsn) = [c]1,
2. Πsign.V(H(bsn,M), ([c]1,SigRL), π) and
3. for ∀sk ∈ PrivRL : let sk = ([t]1, σsp, (y0, y1)) check (−y0, 1) · [c]1 �= [0]1.

Link(gpk, bsn,M1, σ1,M2, σ2): Parse σi = ([ci]1, πi) for i = 1, 2. Return 1 if and
only if [c1]1 = [c2]1 and both signatures are valid, i.e., Ver(gpk, bsn,M1, σ1) =
1 and Ver(gpk, bsn,M2, σ2) = 1.

Remark 1 (On correctness without verification list). Additionally, we assume
that for any crs, (gpk, [b]1,SigRL) and π if NIZKsign.V(crs, (gpk, [b]1,
SigRL), π) = 1 then NIZKsign.V(crs, (gpk, [b]1, ∅), π) = 1. We notice that, by
only minor modifications of the verification algorithm, this property holds for
GS-NIZK proof system for the relation Rsign. The reason is that GS-NIZK is
a commit-and-prove NIZK system where each group element of the witness is
committed separately, and where there are different pieces of proof for each of
the equation in the conjunction defined by the relation.

Assumption 2 (XDH Assumption). Given a bilinear group description
bgp

$← G(1λ), we say that the External Diffie-Hellman (XDH) assumption holds
in Gβ where β ∈ {1, 2} if the distribution [x, y, xy]β and the distribution [x, y, z]β
where (x, y, z) $← Z

3
p are computationally indistinguishable.

Theorem 1. If SS is EUF-CM secure, both NIZKsign and NIZKcom are adap-
tive extractable sound, perfect composable zero-knowledge and strong derivation
private, NIZKsvt is adaptive extractable sound, composable zero-knowledge, and
both the XDH assumption holds in G1 and the Assumption 1 holds, the SP-EPID
presented above is unforgeable in the ROM.



584 A. Faonio et al.

To prove unforgeability we need to define an extractor: the main idea is to
program the random oracle J to output strings (used as common reference strings
in the protocol) that come with extraction trapdoors. Recall that by the proper-
ties of the NIZK, such strings are indistinguishable from random strings. Then,
whenever required, the extractor can run the NIZK extractor over the NIZK
proof provided by the platform during the join protocol to obtain a value [y]2.
Finally, looking at the transcript of the join protocol, the extractor can produce
the token tk = ([t]1, σsp, [y]2). Notice that the created token looks almost like
the secret key with the only difference that, in the secret key, the value y is given
in Z

2
q.

16 It is clear that the token is uniquely linked to the secret key.
With this extractor, we proceed with a sequence of hybrid experiments to

prove unforgeability. In the first part of the hybrid argument we exploit the pro-
grammability of the random oracle to puncture the tuple (bsn∗,M∗) selected by
the adversary for its forgery. In particular, we reach a stage where we can always
extract the witnesses from valid signatures for (bsn∗,M∗), while for all the other
basename-message tuples the challenger can always send to the adversary sim-
ulated signatures. To reach this point, we make use of the strong derivation
privacy property of the NIZK proof system (which states that re-randomization
of valid proofs are indistinguishable from brand-new simulated proofs for the
same statement). Specifically, we can switch from signatures produced by the
subverted hardware and re-randomized by the challenger of the experiment to
signatures directly simulated by the challenger. The latter cutoff any possible
channels that the subverted machines can setup with the adversary using biased
randomness. At this point we can define the set Qsp of all the messages [t]1 signed
by the challenger (impersonating the issuer) using the structure-preserving sig-
nature scheme. Notice that our definition allows the adversary to query the
challenger for a signature on the message (bsn∗,M∗) itself. As the signatures
for such basename-message tuple are always extractable, the challenger has no
chances to simulate such signatures. However, by the security definition, the
adversary is bound to output a forgery that does not link to any of the signa-
tures for (bsn∗,M∗) output by the challenger. We exploit this property together
with the fact that two not-linkable signatures must have different value for y0, to
show that the forged signature must be produced with a witness that contains
a fresh value [t∗]1 that is not in Qsp. More technically, we can reduce this to the
binding property of the Pedersen’s commitment scheme that we use.

Now, we can divide the set of the adversaries in two classes: the ones which
produce a forged signature where [t∗]1 is in Qsp and the ones where [t∗]1 is not
in Qsp. For the latter, we can easily reduce to the unforgeability of the structure
preserving signature scheme. For the former, instead, we need to proceed with
more caution. First of all, we are assured by the previous step that adversaries
from the first class of adversaries would never query the signature oracle on
(bsn∗,M∗). Secondly, we use the puncturing technique again, however, this time
we select the platform (let it be the platform number j∗) that is linked to the

16 In our concrete instantiation we use GS-NIZK proof system, for which extraction
in the source groups is more natural and efficient.



Subversion-Resilient Enhanced Privacy ID 585

forged signature. By the definition of the class of adversaries this platform always
exists. For this platform we switch the common-reference string used in the
join protocol to be zero-knowledge. Once we are in zero-knowledge mode, we
can use strong derivation privacy to make sure that the join protocol does not
leak any information about the secret key that the platform computes (even if
the machine is corrupted). At this point the secret key of the j∗-th platform
is apparently completely hidden from the view of the adversary, in fact: (1)
all the signatures are simulated and (2) the join protocol of the j-th platform
is simulated. However, the j∗-th platform is still using a subverted machine,
which, although cannot communicate anymore using biased randomness with the
outside adversary, still receives the secret key. We show that we can substitute
this subverted machine with a well-behaving machine that might abort during
the join protocol but that, if it does not so then it always sign every basename-
message tuple received (here we rely on Assumption 1). The last step is to show
that such forgery would break the hiding property of the Pedersen’s commitment
scheme that we make use of.

Theorem 2. If NIZKsign and NIZKcom are strongly derivation private, adap-
tively extractable sound and adaptively composable perfect zero-knowledge, both
the XDH assumption in G1 holds and the Assumption 1 holds, and NIZKsvt is
adaptively sound, then the SR-EPID described above is anonymous in the ROM.

First we notice that adaptive corruption and selective corruption for
anonymity are equivalent up to a polynomial degradation of the advantage of
the adversary. In particular, we can assume that the adversary corrupts all the
platforms but the i1-th and the i2-th platforms used for the challenge of secu-
rity game. The idea of the reduction is to switch to zero-knowledge the common
reference strings used in the join protocols for the platforms i1 and i2 by pro-
gramming the random oracle. Similarly, switch to zero-knowledge and simulate
all the signatures output by the two platforms (again by programming the ran-
dom oracle). Thus using the strong derivation privacy property of NIZKsign and
NIZKcom to make sure that no information about the platform keys is exfil-
trated. Notice that at this point the machines cannot communicate any informa-
tion using biased randomness, on the other hand, they could still communicate
using valid/invalid signatures. Although, the definition of anonymity disallows
telling apart i1 from i2 using this channel, for technical reasons, in the last step
of the proof (when we reduce to XDH) we need to completely disconnect the
subverted machines and, again, substitute them with well-behaving machines,
thus here we need to rely on Assumption 1. At this point the element y

(1)
0 (resp.

y
(2)
0 ) of the key y(1) of the platform i1 (resp. key y(2) of the platform i2) are

almost hidden to the view of the adversary. However, the challenge signature
σ = ([c∗]1, π) still contains the value [c∗

1]1 = K(bsn∗) · y
(b)
0 . The last step of the

proof of anonymity is to change the way the challenge signature is computed. In
particular, the value above is computed as K(bsn∗) · x for a uniformly sampled
x. This step is proved indistinguishable using the XDH assumption on G1.



586 A. Faonio et al.

Acknowledgements. This work has received funding in part from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program under project PICOCRYPT (grant agreement No. 101001283), by
the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), CRYP-
TOEPIC (ref. EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), and by
the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339).
This work has been supported by SPATIAL project. SPATIAL has received funding
from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 101021808. This work has been partially funded by the EU H2020-
SU-ICT-03-2018 Project No. 830929 CyberSec4Europe. The first author was a postdoc-
toral fellow at the IMDEA Software Institute where he performed the research leading
to this paper.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against
complete subversion without random oracles. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 465–485. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 23

3. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
ACM CCS 2015 (2015)

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 26

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 1

7. Bellare, M., Sandhu, R.: The security of practical two-party RSA signature
schemes. Cryptology ePrint Archive, Report 2001/060 (2001). https://eprint.iacr.
org/2001/060

8. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

9. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: ACM WPES (2007)

10. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Sec. Comput. 9(3),
345–360 (2011)

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://eprint.iacr.org/2001/060
https://eprint.iacr.org/2001/060


Subversion-Resilient Enhanced Privacy ID 587

11. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One
TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation.
In: 2017 IEEE S&P, pp. 901–920 (2017)

12. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 427–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 15

13. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental
databases. In: ACM CCS 2015 (2015)

14. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 13

15. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for actively
secure MPCs. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 732–762. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56880-1 26

16. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

17. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 31

18. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.-S.: Let a non-
barking watchdog bite: cliptographic signatures with an offline watchdog. In: Lin,
D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 221–251. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 8

19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

20. Faonio, A., Fiore, D., Nizzardo, L., Soriente, C.: Subversion-resilient enhanced
privacy ID. Cryptology ePrint Archive (2020). https://ia.cr/2020/1450

21. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

22. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks (2018)

23. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

24. Ganesh, C., Magri, B., Venturi, D.: Cryptographic reverse firewalls for interactive
proof systems. Theor. Comput. Sci. 855, 104–132 (2021)

25. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://ia.cr/2020/1450
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/11935230_29


588 A. Faonio et al.

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

27. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

28. Mavroudis, V., Cerulli, A., Svenda, P., Cvrcek, D., Klinec, D., Danezis, G.: A
touch of evil: high-assurance cryptographic hardware from untrusted components.
In: ACM CCS, pp. 1583–1600 (2017)

29. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

30. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 2

31. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a
kleptographic adversary. In: ACM CCS 2017 (2017)

32. Young, A., Yung, M.: The dark side of “black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/3-540-68697-5_8

	Subversion-Resilient Enhanced Privacy ID
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Subversion-Resilient Enhanced Privacy ID
	2.1 Subversion-Resilient EPID
	2.2 Subversion-Resilient Security

	3 Building Blocks
	4 Our SR-EPID Construction
	References




