

NSDF Development at CHESS

Devin Bougie, CHESS

Cornell High Energy Synchrotron Source

Devin Bougie, CHESS

NSDF All-Hands Meeting

13 April 2023

Cornell Laboratory for Accelerator-based ScienceS and Education

CLASSE

• CHESS X-Ray user facility

- Seven beam lines
- Three sub-facilities, supported by the NSF, NIH, and AFRL
- Macromolecular crystallography, structural biology, chemistry, quantum materials, and material science
- New Experimental Hall to house the 20 Tesla High Magnetic Field beamline
- Accelerator Physics
 - CESR, CesrTA, SRF, ERL
- Particle Physics and Astrophysics
 - CMS, Cosmology, Muon g-2, HEP Theory, Theoretical Astrophysics
- Center for Bright Beams

https://www.chess.cornell.edu https://www.classe.cornell.edu/Research/

CLASSE Cyberinfrastructure

Research projects

CMS g-2 CESR CBETA CHESS CBB Cosmology OSC SRF HEP Theory Photocathodes Astro Theory

> Instrumentation Control systems Software development Code management Data acquisition/processing

Filesystems and backups (~2 Pl Samba, Globus, VPN, remote acces Windows application server (WinAPF Automatic system updates/configuratic

CLASSE computer accounts Active Directory domain controllers Kerberos, firewalls Security groups, file permissions

Physical infrastructure

(Wilson, Newman, PSB)

Server rooms Cooling, UPSs Power distribution Temperature monitoring

	Central
lickets/year	
isitors/year	
-campus users	

Authentication

& authorization

Some statistics:

- 500+ computers/servers
- 3 major OSs
- 3 major buildings
- 60+ networks
- 250 on-
- 1000 vi
- 3000+

End users (incl. CHESS users, visitors, remote users)	Main activities: • Responding to service requests
Computers, software, Accessories Service requests	 Maintaining infrastructure and service Protecting against security threats Researching/developing new capab
User resources Help Desk, training Weekly newsletter, online docs Printers, A/V equipment	
B) Compute Farm SVN, el ss Print server Wiki, Ind P) Databases Softwar on Virtual machines Autodes	log, EDMS dico, websites re licenses sk Inventor, Vault
Security Policy compliance, antivirus Security reviews/audits Incident response	Linux clusters (System administration) CESR CLASSE CHESS Virtualization Test
Routers Name servic Switches IP addresse Cables Private subr VLANs Network mo	ces es, DHCP Networking nets (Wilson, Newman, PSB) onitoring

IT@Cornell: email/calendaring, wi-fi, Workday, off-campus networking

CHESS Cyberinfrastructure

High-performance computing at CHESS:

- Core infrastructure and experimental control systems: Linux high-availability clusters
- Dedicated private networks, highly segmented for performance, security, and personal and equipment protection
- Station computers and dedicated GPU and CPU analysis nodes, supporting in-line analysis, reduction, and processing
- GridEngine queuing system supporting batch, GPU, interactive, and parallel jobs.
- Managed end-user computers (Windows, Linux, Mac) for data collection, hardware control, and personal productivity

CHESS Cyberinfrastructure

CHESS User Workflow

Three run cycles per year, on average providing 125 days of beam time to users.

- 24/7 user operations during run, typically one user group per beam line per week.
- Users can apply for beamtime each cycle through general user proposals and beamtime requests (BTRs) in the web-based user portal.
- On average ~150TB of raw data collected each run

Three extended downs each year

- Maintenance and upgrades.
- Machine Studies.
- Archival and rotation of raw data from previous run.
 - 2023-1 archived to tape
 - 2022-3 removed from disk
 - Directories initialized for 2023-2
- Alignment.

Initial exploration and development

- CLASSE accounts created for developers and collaborators, with access to a login node for initial development.
- Initial deployments using docker and singularity.
- Data accessed locally over NFS, and transferred between sites using Globus.

NSDF Entry Point - <u>nsdf01.classe.cornell.edu</u>

- Standard CLASSE Scientific Linux 7 OS install
- 131TB RAID6 (with one hot spare) using mdadm, from twelve 16TB drives
 - XFS filesystem mounted at /mnt/data1/, exported internally at /nfs/chess/nsdf01/
 - Data accessed locally over NFS, and transferred between sites using Globus
- Two INTEL XEON GOLD 6252N 2.3GHZ processors
- 512MB PC4-23400 2933MHz memory
- One Broadcom P425G 25GbE 4xSFP28 PCI4 card
 - 10Gb connection to CLASSE Public subnet nsdf01.classe.cornell.edu

• Accessible through firewall via https, ssh, sftp, and scp Devin Bougie, CHESS

NSDF Development at CHESS

Software and Service Installation

OpenVisus installation

- nsdf security group for managing docker containers • nsdf service account for managing centralized installations and configurations, and for running production
- services
- Developing visualizations to be used in real time during data taking

Apache mod_visus deployment

- Server installation of OpenVisus
- sudo privileges granted to nsdf security group for updating configuration, restarting apache, and viewing log files
- Apache basic password authentication.

Visualizing CHESS data with OpenVisus on the Entry Point

0.01

0.005

-0.005

-0.01

-0.015

def MyApp(doc):

db=ov.LoadDataset(idx_filename)
<pre>slices=Slices(doc,sizing_mode='stretch_width')</pre>
<pre>slices.setPalette(palette, palette_range=(m,M))</pre>
<pre>slices.setTimestep(db.getTime())</pre>
<pre>slices.setField(db.getField().name)</pre>
<pre>doc.add_root(slices.layout)</pre>
<pre>doc.add_timeout_callback(lambda: slices.setDataset(db),100)</pre>

ShowApp(MyApp)

jupyter https:/ Layout	r01.classe.co //jupyter01.c Palette	ornell.edu classe.corr	nell.edu/us	er/wms8/proxy/3	7187				
3 ▼ Direction	Viridis256	▼ 65							
Z	▼								
400 -									
200									
0			400	500		600	700	 900 • 2 09 1 0 0	

css_classes=['panel-widget-box'], sizing_mode='stretch_width', width_policy='max')

Scalar fields names= ['data']
Dataset [x,y,z] dimensions= [1193, 402, 330]
db.read returned shape (42, 51, 299) dtype float32

lice: 21			
lice: 25			
		0	
slice: 149			
Show Volume	Show Slices		
Address.			
a second			
4983022	The second		

CIT has 100Gb connection to Internet 2, but CLASSE initially at 10Gbps

100Gb Internet2 Cornell IT (CIT)

Devin Bougie, CHESS

CHESS Network Layout

Upgrading nsdf01 to 25Gbps

- Install additional 25Gb connection from nsdf01 to DMZ

Cyberinfrastructure Upgrades

- Upgrade nsdf01 entry point to 100Gb connection to Internet2
- Upgrade internal backbone to 25Gb or above
- Migrate to Ceph storage cluster
- Upgrading to Alma 9
- Kubernetes

Data Visualization

in real time during data taking by remote experimenters.

NSDF part of concerted scientific computing efforts initiated in 2021

- AI/ML, HPC/HTC
- Exponential growth in data volume
- Complexity of user experiments and analysis software

• Gathering requirements from scientists in efforts to develop OpenVisus based visualization to be used

Workflows/services, metadata mangement, large-scale code design, statistical models/algorithms,

https://www.chess.cornell.edu

Deputy IT Director @ CLASSE devin.bougie@cornell.edu

Devin Bougie, CHESS

Devin Bougie

Werner Sun

CLASSE IT Director wms8@cornell.edu

