Linking scientific instruments and computation: Patterns, technologies, and experiences

Kyle Chard University of Chicago Argonne National Laboratory

chard@uchicago.edu

globus

Towards self-driving instruments

Exponential growth in the rate that instruments perform measurements

- Data generated at GB+/s and 100+TB/day
- Analysis requires significant online computing capacity
 - HPC resources, GPUs, AI accelerators
- Computation (and AI) can steer experiments

 Workflows involve both humans and machines

→ We need new methods to automate these workflows and coordinate actions and resources across experiment and compute environments

Example instrument patterns

Ptychography

Reconstruction algorithms applied to data as they are acquired

Serial Crystallography

Data are reduced and made available to scientists and collaborators

HEDM

Models trained on acquired data and deployed at the edge for fast inference

COVID

Data replicated across sites to apply AI screening methods and AIguided simulation

These patterns highlight diverse automation needs

Support various actions

 Transfer, compute, ingest in a search index, associate a persistent identifier, modify access permissions

Robust orchestration spanning several locations
 – Enable remote control of actions in different places

 Authentication/authorization model to provide secure management of remote operations across the computing continuum

Timer Service

Scheduled and recurring transfers (*a.k.a. Globus cron*)

Globus Flows service

Comprehensive task (data and compute) orchestration with human in the loop interactions

The Globus Flows service

- A platform for defining, executing, and sharing distributed research automation flows
- Flows comprise **Actions**
- Action Providers: Called by Flows to perform tasks

Create and deploy flows

- Use declarative language (JSON or YAML)
- Set input schema
- Set policy for use of the flow

```
"States": {
  "SetPermission": {
    "End": true,
    "Type": "Action",
    "Comment": "Grant read permission on the data to a Globus user or group",
    "ActionUrl": "https://actions.automate.globus.org/transfer/set_permission",
    "Parameters": {
      "path.$": "$.input.destination.path",
      "operation": "CREATE",
      "permissions": "r",
      "principal.$": "$.input.principal_identifier",
     "endpoint_id.$": "$.input.destination.id",
     "principal_type.$": "$.input.principal_type"
    },
    "ResultPath": "$.SetPermission"
 },
  "TransferFiles": {
    "Next": "SetPermission",
    "Type": "Action",
    "Comment": "Transfer to a guest collection",
    "WaitTime": 60,
    "ActionUrl": "https://actions.automate.globus.org/transfer/transfer",
    "Parameters": {
      "transfer items": [
          "recursive.$": "$.input.recursive_tx",
          "source_path.$": "$.input.source.path",
          "destination_path.$": "$.input.destination.path"
     "source_endpoint_id.$": "$.input.source.id",
     "destination_endpoint_id.$": "$.input.destination.id"
    "ResultPath": "$.TransferFiles"
},
"Comment": "Transfer files to a quest collection and set access permissions".
"StartAt": "TransferFiles"
```

Start flows: Guided input

Start - Two Stage Globus Transfer 🔊		لمنافع Guided	Advanced	
Guided Advanced			of layout and function	
	Source Globus-provided flows require that at least one collection is managed und subscription. Collection mid UChicago RCC Midway Owner: ucrcc@globusid.org University of Chicago Research	ler a		 ✓ Timeout This is an example property description for sleep (number) ✓ Label
	Computing Center Midway cluster server Image: Computing Center Midway Cluster server Image: Computing Center Midway3 Owner: ucrcc@globusid.org University of Chicago Research Computing Center Midway3 Cluster Computing Center Midway3 Cluster Path /~/my-data-for-sharing	Browse	 Notify user true false Choose input type: null o boolean o string o array o number 	

* Destination

Globus-provided flows require that at least one collection is managed under a subscription.

Dynamic forms generated from input schema

Collection

Managing runs at scale

S Running flows across the computing continuum requires a universal data and compute fabric

Globus Auth:

standards compliant identity and access management platform

Ptychography at 26ID

- Ptychography is a computational microscopy technique for reconstructing the complex-valued transmission function of an object
- Diffraction patterns are recorded at many overlapping scan positions
- Flow:
 - Ptychodus monitors the local filesystem to trigger flows as data are collected
 - Scans are reconstructed at ALCF using on-demand queue
 - Results returned to APS where Ptychodus loads them for visualization
 - Users can customize where the compute needs to run via flow configuration

Full automation using service accounts; on-demand queue for timely runs

Solving Protein Structures an Order of Magnitude Faster

- **Flow:** collect data, analyze and visualize the data, solve protein structure and load results into a searchable portal for real-time feedback
- Achieved >order of magnitude speed up in time to solution of protein structures at APS
- Leveraged unique DOE facilities at Advanced Photon Source (SBC Sector 19) and ALCF (Theta/ ThetaGPU, Petrel, and Data Portals)

Deposited results in open repositories

"These data services have taken the time to solve a structure from weeks to days and now to hours"

Darren Sherrell, SBC beamline scientist APS Sector 19

(R. Chard, Vescovi, Foster, Blaiszik, Sherrell, Joachimiak, et al.)

X-ray Photon Correlation Spectroscopy (XPCS)

 XPCS studies dynamical properties of materials by recording speckle patterns over time, constructing a time correlation function, and measuring processes of interest (e.g., diffusion)

• Flows:

- Integrated with APS's Data Management system to automatically invoke flows
- Data analyzed and published to a searchable ALCF portal
- HTTPS-enabled portals to visualize results
- Reprocessing capabilities in portal to invoke flows

High-Energy X-ray Diffraction Microscopy (HEDM)

- HEDM combines imaging and crystallography to characterize polycrystalline microstructure in 3D under various in situ thermomechanical conditions
- Flow
 - Select analysis to run at APS Orthros, ALCF ThetaGPU/Cooley
 - Globus Transfer data
 - Deploy containers with MIDAS software to perform tasks
 - Results assembled and returned to APS user
 - Mechanism for users to run analysis at home institute

Hemant Sharma, et al.

Rapid Training of Deep Neural Networks using Remote Resources

Beamline

- HEDM workflow that deploys BragNN at the edge for real-time diffraction peak analysis (e.g., for experiment steering and anomaly detection)
- Tight coupling with simulation and training with real-time data
- Flow:
 - Globus to rapidly move data for training
 - funcX for simulation and model training
 - Globus to move models to the edge

Zhengchun Liu, Jana Thayar, et al.

17

Production flows linking instruments and computation

https://doi.org/10.1016/j.patter.2022.100606

R. Vescovi et al.,

Flows span spatial and temporal ranges

Reliable flow orchestration across resources

Functions executed in various locations: at a beamline, local server, cluster, cloud

Execution times at the Argonne Leadership Computing Facility

Solution Flows are increasingly critical to APS science

R. Vescovi et al., <u>https://doi.org/10.1016/j.patter.2022.100606</u>

Globus documentation: docs.globus.org YouTube: youtube.com/GlobusOnline Helpdesk: support@globus.org

Patterns

https://doi.org/10.1016/j.patter.2022.100606

Article

Linking scientific instruments and computation: Patterns, technologies, and experiences

Rafael Vescovi,¹ Ryan Chard,¹ Nickolaus D. Saint,⁶ Ben Blaiszik,^{1,6} Jim Pruyne,^{1,6} Tekin Bicer,^{1,3} Alex Lavens,⁴ Zhengchun Liu,¹ Michael E. Papka,^{2,7} Suresh Narayanan,³ Nicholas Schwarz,³ Kyle Chard,^{1,5} and Ian T. Foster^{1,5,*}

