

 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101016427

5g-iana.eu

D4.1 First report on 5G-IANA nApp

Toolkit and VNFs Repository

development

 Dissemination level: Public (PU)

 Work package: WP4

 Task: T4.1

 Deliverable lead: NXW

 Version: 1.5

 Submission date: 03/03/2023

 Due date: 28/02/2023

 Partners:

2

Authors

Authors

Name

Organisation Email

Matteo Andolfi NXW m.andolfi@nextworks.it

Manuel Fuentes 5COMM manuel.fuentes@fivecomm.eu

Miriam Ortiz 5COMM miriam.ortiz@fivecomm.eu

David Martín-Sacristán 5COMM david.martin-sacristan@fivecomm.eu

Thanos Xirofotos UBI txirofotos@ubitech.eu

Dimitris Klonidis UBI dklonidis@ubitech.eu

Marios Zinonos HIT m.zinonos@hit-innovations.com

Control sheet

Version History

Version Date Modified by Summary of changes

v0.1 10/11/2022 Matteo Andolfi (NXW) ToC

v0.2 17/01/2023 Marios Zinonos (HIT) First draft for Chapter 5

v0.3 06/02/2023 NXW First draft for Chapter 4

V0.4 10/02/2023 Marios Zinonos (HIT) Second draft for Chapter 5

v0.5 10/02/2023 Matteo Andolfi (NXW), UBI Formatted all the contributions that the

partners provided in the previous version of the

document, UBI provided the first draft for

Chapter 3

v0.6 10/02/2023 Marios Zinonos (HIT) Review and changes on chapter 5

v0.8 16/02/2023 Matteo Andolfi (NXW) First review and formats

V0.9 20/02/2023 Edoardo Bonetto (LINKS) First review

V1.0 22/02/2023 Matteo Andolfi (NXW) Revision and contributions to all sections

v1.1 23/02/2023 Marios Zinonos (HIT) Editorial Review and comments

v1.4 24/02/2024 Matteo Andolfi (NXW) Final Review

v1.5 28/02/2023 Matteo Andolfi (NXW) Additional revisions

Peer review

 Reviewer name Date

Reviewer 1 Edoardo Bonetto (LINKS) 24/02/2023

Reviewer 2 Markus Wimmer (NOKIA) 15/02/2023

Reviewer 3 Dimitris Klonidis (UBI) 28/02/2023

Reviewer 4 Eirini Liotou (ICCS) 02/03/2023

3

Legal disclaimer

The information and views set out in this deliverable are those of the author(s) and do not necessarily

reflect the official opinion of the European Union. The information in this document is provided “as is”, and

no guarantee or warranty is given that the information is fit for any specific purpose. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held responsible for the use

which may be made of the information contained therein. The 5G-IANA Consortium members shall have no

liability for damages of any kind including without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials subject to any liability which is mandatory due to

applicable law.

Copyright © 5G-IANA Consortium, 2023.

4

TABLE OF CONTENTS

TABLE OF CONTENTS .. 4

1. INTRODUCTION ... 11

1.1. Purpose of the deliverable .. 11
1.2. Intended audience .. 11

2. NAPP TOOLKIT ... 12

2.1. High-level architecture ... 14
2.1.1. Vertical App Composition & Customization ... 14
2.1.2. NApp Catalogue .. 15
2.2. Composition of nApps and Vertical Services ... 15
2.2.1. Atomic components chaining and composition of a nApp ... 17
2.2.2. Procedures for nApps DevOps ... 17
2.2.3. DevOps Pipeline ... 20
2.3. Release roadmap ... 23

3. VERTICAL SERVICE COMPOSITION AND CUSTOMIZATION ... 24

3.1. Vertical Service Composition ... 24
3.2. Vertical Service QoS Parameter Definition and Editing .. 25
3.3. Policy Management .. 26
3.4. Software Design ... 27
3.5. Workflows and APIs ... 27
3.5.1. NApp Graph REST Endpoints ... 29
3.5.2. Policies REST Endpoints ... 29
3.5.3. AF/NF Onboarding REST Endpoint ... 30

4. NAPP CATALOGUE .. 32

4.1. NApp Template & Information model .. 32
4.1.1. Extensions from baseline information model ... 34
4.2. Software Design ... 39
4.3. Workflows and APIs ... 40
4.3.1. On-boarding ... 40
4.3.2. Query .. 42
4.3.3. getBlueprint ... 42
4.3.4. GetAllnAppPackages .. 43
4.3.5. Delete .. 43

5

5. APPLICATION AND NETWORK FUNCTIONS DEVELOPMENT .. 44

6. CONCLUSION ... 50

REFERENCES ... 51

ANNEX – NAPP TEMPLATE ... 52

6

List of Figures

Figure 1 5G-IANA AOEP overall architecture .. 12

Figure 2 nApp Toolkit: High Level Architecture... 13

Figure 3 nApp package .. 16

Figure 4 Atomic Component Structure .. 19

Figure 5 An example of Dockerfile for AFs/NFs ... 20

Figure 6 DevOps pipeline ... 21

Figure 7 High-level workflow for onboarding and deploying a nApp ... 22

Figure 8 Vertical App Composition & Customization ... 24

Figure 9 Vertical Service Composition and Customization workflow ... 28

Figure 10 On-boarding workflow ... 41

7

List of Tables

Table 1 nApp Graph REST Endpoints ... 29

Table 2 Policies REST Endpoints .. 29

Table 3 AF/NF Onboarding REST Endpoints ... 30

Table 4 nApp Information Model ... 32

Table 5 ComponentNode information model .. 34

Table 6 LinkNode information model ... 34

Table 7 Link information model.. 35

Table 8 AtomicComponent information model .. 35

Table 9 ExposedInterface information model ... 36

Table 10 RequiredInterface information model .. 37

Table 11 Requirement information model ... 37

Table 12 HealthCheck information model .. 37

Table 13 FiveGServiceSpec information model .. 38

Table 14 SoftwareLicense information model .. 38

Table 15 RequiredEquipment information model .. 39

Table 16 On-board Endpoint .. 40

Table 17 Query Endpoint ... 42

Table 18 getBlueprint Endpoint .. 43

Table 19 GetAll nApp packages Endpoint ... 43

Table 20 Delete Endpoint .. 43

Table 21: Baseline AFs offered by 5G-IANA ... 44

Table 22: Baseline NFs offered by 5G-IANA ... 47

Table 23: 5G or ITS communications related NFs offered by 5G-IANA .. 48

8

ABBREVIATIONS

Abbreviation Definition

5G-IANA 5G Intelligent Automotive Network Applications

5G-PPP 5G Public Private Partnership

AI Artificial Intelligence

AF Application Function

AOEP Automotive Open Experimental Platform

API Application Programming Interface

CE (Gitlab) Community Edition

CI Continuous Integration

CD Continuous Delivery

CPU Central Processing Unit

DL Downlink

DML Decentralized Machine Learning

DoA Description of Action

E2E End-to-End

EC European Commission

FOV Field-of-View

GPS Global Positioning System

HMD Head Mounted Display

IPC Inter-Process Communication

IPS/IDS Intrusion Detection Systems/Intrusion Prevention Systems

KPI Key Performance Indicator

LDM Local Dynamic Map

MANO Management and Orchestration

MEC Multi-access Edge Computing

9

ML Machine Learning

MOS Mean Opinion Score

NF Network Function

NW Network

OS Operating System

PU Public

OBU On-Board Unit

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RTT Round-Trip-Time

SME Small and Medium Sized Enterprise(s)

UC Use Case

UDP User Datagram Protocol

UE User Equipment

UHD Ultra-High Definition

UL Uplink

UPF User Plane Function

VAO Vertical Application Orchestrator

VBT Virtual Bus Tour

VNF Virtual Network Function

WP Work Package

10

Executive Summary

This deliverable has the objective to provide a first report regarding the implementation and the activities

performed in Work Package (WP) 4 “5G-IANA nApps toolkit development”. These activities include the design

and the development of several components which compose the nApp toolkit. The nApp toolkit offers

functionalities to the developers to create, to store and to manage network applications (nApps) inside the

5G-IANA Automotive Open Experimental Platform (AOEP) using a Graphical User Interface (GUI).

A network application (nApp) is a composition of atomic components, which are Application and Network

functions (AFs/NFs). A component is a virtualizable function that can be deployed in a container. The use of

a GUI helps the nApp developer to define the requirements and to compose a standalone network application

using the available atomic components which are stored in the toolkit. The functionalities of the nApp toolkit

can be divided in two main functional components: the Vertical App Composition & Customization and the

nApp Catalogue. The Vertical App Composition & Customization offers the functionalities to graphically

compose a network application, while the nApp Catalogue is used to store and manage several network

applications which a nApp developer can use.

Moreover, this deliverable offers a starting point for defining the components used in the 5G-IANA platform,

how they should be composed and how they should be used. A CI/CD pipeline is described, which provides

the developers with the ability to compile the various components to obtain docker images to be pushed on

the 5G-IANA centralized registry. These atomic components can be linked together with the nApp toolkit, to

obtain standalone network applications which can be stored and managed by the nApp catalogue to be

reused or to be shared among different stakeholders. There are several atomic components which will be

made available in the nApp toolkit and will be composed in different network applications to be used as nApp

starter kits from which a stakeholder can start developing his/her vertical service.

11

1. INTRODUCTION

1.1. Purpose of the deliverable

The purpose of this deliverable is to report on the implementation of the 5G-IANA nApp Toolkit and the VNFs

repository.

In Section 2 the nApp toolkit is presented, with the functional components composing it.

Section 3 and Section 4 present the main components of the toolkit, namely, the Vertical Service Composition

and Customization and the nApp catalogue respectively.

Finally, in Section 5 the atomic components are presented which will be available in the AOEP platform to be

used by the nApp developers.

1.2. Intended audience

The dissemination level of this deliverable is “public” (PU)1. It is primarily aimed to be the reference document

to be used by the 5G-IANA Consortium Members during the development and integration phases of the

atomic components and nApps of the 5G-IANA project. Moreover, it will be a useful document (“manual”)

for the third-parties, i.e., SMEs, who will experiment on the 5G-IANA platform during the project’s Open Calls.

1 The dissemination level needs to change from Confidential to Public, as requested by the project interim review.
Here, it is already declared as Public, while an amendment will specify this.

12

2. NAPP TOOLKIT

Orchestration techniques have been developed to meet the requirements of specific industries, specifically

to allow for various services to be provided on a 5G infrastructure that can handle different types of data.

These techniques are designed to simplify the process of providing these services by using information

models and APIs that are oriented towards specific industries, as reported in Section 3.1 of [1]. The

development of 5G technology, particularly in relation to network slicing, has made service deployment

scenarios more complex, highlighting the need for simplified information to be provided to industries so that

they can request services and applications autonomously.

For this reason, the 5G-IANA’s nApp toolkit enables developers to create brand-new network applications

and vertical automotive services which can exploit 5G services with specific requirements and functionalities,

and which can be deployed over a 5G infrastructure. The nApp toolkit is one of the main functional blocks of

the 5G-IANA architecture as depicted in Figure 1.

Figure 1 5G-IANA AOEP overall architecture

13

The goal of the nApp Toolkit, a part of the 5G-IANA nApp Orchestration and Development framework, is to

make it easier to chain together and customize 5G-ready vertical services from vertical service providers with

the functionalities provided by the Vertical App Composition & Customization (as is depicted in Figure 2) as

well as the functionalities provided by the nApp catalogue which enables the on-boarding and updating of

nApps Packages and related components from nApps and AFs/NFs Providers.

Figure 2 nApp Toolkit: High Level Architecture

The Toolkit communicates from one side with the Application Orchestrator which manages the deployment

requests. On the other side, the nApp toolkit exposes its services directly to the nApp and Vertical service

developers providing features to:

• register application and network functions as atomic components,

• compose network applications and vertical services in a graphical, intuitive, and simple way,

• onboard nApps and vertical services for future use.

In addition, it provides several starting points, called “nApp starter kits”, to help developers in the

development of their applications.

14

2.1. High-level architecture

Figure 2 shows the nApp Toolkit's internal functional architecture as well as the primary functional building

blocks and associated features. During the complete Vertical Service and nApps lifetime, the nApp Toolkit is

in charge of creating and exposing the necessary set of features that are connected to the design and

modeling stages. In [1] it is explained where this functional block is placed within the complete 5G-IANA

architecture.

The main functional blocks in the nApp toolkit are the Vertical App Composition & Customization and the

nApp Catalogue.

2.1.1. Vertical App Composition & Customization

The Vertical App Composition & Customization assists the service providers wrapping cloud native nApps in

a proper format, so as to be publishable in the nApp Catalogue. This registration mechanism, called

“onboarding of a nApp” is being provided through a dedicated user interface that offers several features, to

make the overall process less error-prone. Vertical App Composition & Customization provides a graphical

way to create a nApp by specifically selecting atomic components and bundling them together in the form of

a graph (see Section 3.1). Complementary, it enables declaring cloud-related constraints and non-cloud-

related metadata (network requirements - see Section 3.2) that play a significant role in the slice negotiation

process.

Another aspect of the Vertical App Composition & Customization is the enabling of Policy authoring. Every

nApp that is deployed can be subject to runtime changes/reconfiguration. This reconfiguration aims at the

satisfaction of a set of business goals that are bundled in the form of a Service Level Agreement. The Policies’

specific module (also referred to as Policy Management) will be responsible for authoring these instructions

in a formal rules format.

For the sake of reader’ clarity, the functionalities the vertical App Composition and Customization provides

are:

• the Application Function Management which is the onboarding of atomic components and the Vertical

Service Composition which are covered on Section 3.1,

• The vertical Service QoS Parameter Definition and Editing which is covered on Section 3.2,

• The policy management which is covered on Section 3.3.

15

2.1.2. NApp Catalogue

The nApp Catalogue stores and manages the atomic components and the nApps. It is composed of the two

functional blocks described below:

• nApp Package Management

The functionality of nApp Package Management is implemented by the nApp Catalogue component which

implements all the functionalities for managing the nApp packages. A description is available in Section 4.

• Component Registry Management

The functionality of Component Registry Management is implemented by a Centralized Registry. This

component is the repository that stores and makes the AF/NF images available in 5G-IANA. This AFs/NFs

registry will be a docker registry installed and available in the testbed site and accessible via VPN to the nApp

developer, Gitlab platform, and Composer platform to upload and retrieve all the images that are needed to

compose the network applications. These images are made available for use, according to their license

agreements, and can be queried by the composer, so that to be used to graphically compose a network

application.

The nApp developer can query directly the AFs/NFs registry, using the Docker Registry API [3]. The Vertical

Service Composition and Customization provides a unique entry point to the Service provider. The

functionalities supported by this functional block are reported in [1]. More details about this component are

available at Section 4.

2.2. Composition of nApps and Vertical Services

From a network application developer’s point of view, a nApp is a composition of atomic components that

can communicate with each other and can be instantiated separately with different requirements. This

definition leads to a scalable vertical service deployment which takes into consideration the availability of

the processing resources in the Edge/Cloud server(s), slice resources, and the nApp developer requirements.

A nApp is defined with a nApp package, as described in Figure 3.

16

Figure 3 nApp package

A nApp package is composed of several items:

• A set of Application & Network Functions Descriptors/Packages – These describe the atomic

components used in the network application, and which are defined in 4.1.1.

• A nApp Template – A description of the network application, with the information model defined in

4.1.

• A Licenses folder – which contains the licenses of the atomic components used in the nApp package

without a specific format.

• A Documentation folder – which contains the documents of the atomic components used in the nApp

package.

• A Test Cases folder – which contains the test cases of the atomic components, with a specific format,

like for example the OpenAPI Specification v3.1 [9].

Each developer can link together several atomic components, specifying the exposed interfaces used to

communicate. In the same manner, multiple nApps can be chained together to create a standalone end-to-

end vertical service.

An atomic component used in 5G-IANA can be:

• an Application Function (AF): a component that implements the logic of a service,

• a Network Function (NF): a component used for communication and networking tasks.

17

2.2.1. Atomic components chaining and composition of a nApp

In the terminology of 5G-IANA, atomic components are virtualizable functions that are deployable and

operating on top of programmable network infrastructures. They are distinct into two categories, Application

and Network functions.

Application functions are composed of one or typically many software components. These application

components in containerized deployments are becoming the Application Functions. These AFs are typically

developed by vertical service developers for particular vertical use cases and linked together to provide the

required service functionality. Therefore, the AFs have practically the same notion as the application

components.

Network functions is an umbrella term of the vastly used term VNFs. There are two types of VNFs:

1. The Network Service and Resource-facing Virtualizable Functions, denoted commonly in standards as

Virtual Network Functions or VNFs, which refer to the standardised functions provided by the network

operator and infrastructure owner for fulfilling the networking and connectivity services (e.g.: User Plane

Function (UPF), Access and Mobility Function (AMF), Session Management Functions (SMF), etc.).

2. The Value-added (middleware) VNFs or Non-standardised VNFs, which refer to network-level functions

that are added in support of the networking operations and services either to satisfy specific end user

network function requests (i.e., intermediately on demand) or as a response to network changes (i.e.,

automatically). Examples may include encryption and decryption VNFs for secure communications, video

processing VNFs, and so on.

In 5G-IANA, the Network Functions are realizing the network and communication requirements of an

application and are all belonging to the second type. So, these virtualizable functions are eligible for

deployment on top of programmable infrastructures in an identical way as the Application Functions.

Inside the scope of 5G-IANA, a nApp is a mixture of AFs and NFs linked together into a form of graph.

Furthermore, a nApp is a cloud native application that uses several AFs/NFs as part of its data plane in a

seamless way, encapsulating this way the layer-7 business logic in container format (AFs) accompanied by

network requirements that may need to be satisfied (NFs). Once the nApp is deployed, the linked and

deployed AFs/NFs are becoming the nApp components.

2.2.2. Procedures for nApps DevOps

18

The 5G-IANA project uses Gitlab as a DevOps platform. GitLab is an open-source code repository and

collaborative software development platform which offers a location for online code storage and capabilities

for issue tracking and CI/CD, and it is used by the developer to store and upload the atomic components and

the network applications inside the nApp toolkit.

A nApp developer will use several types of components to build network applications. The components' types

that can be used in the platform are the following, which can be mapped with the licenses reported in [2]:

• Open-Source atomic components (Open-source). These components are open-source, and thus, the

source code of each component is available on the 5G-IANA Gitlab platform and can be used free. A

developer can access the source code and some Continuous Integration (CI) metrics, like compilation

logs, the number of bugs found analysing the code, etc. The packaged component then, is stored as a

Docker image in a shared registry to use. Other developers can get the source code of this type of

components and change it to match their requirements. For example, an external component

developer can use an open-source component, changing the input and output interfaces to match the

other components interfaces in the nApp.

• Protected atomic components (Open-use-NDA, Open-use-platform, Open-use-partners). These

components are not open-source. Instead, the binary of each component, built as a Docker image, is

available to be used by the stakeholders with licenses limitations. An Open-use-NDA component is

used after the interested party and the owner of the AF/NF sign an NDA, and Open-use-platform

component can be used only within the 5G-IANA AOEP, and an Open-use-partners component can be

used only from the 5G-IANA consortium partners. A nApp developer can use these components as-is

and for this reason, he/she has to match the input and output interfaces of each component.

• Private atomic components. These components are private and are not usable by other stakeholders.

The platform provides a way to unify the atomic components’ development, in which every atomic

component is developed to be used as a Docker image. With this methodology, the Gitlab platform can host

every open-source project, developed with the most useful code language and paradigm. The CI pipeline will

get a project and will build it using the Dockerfile provided in the root folder.

With this procedure it is possible to upload a stable version on the 5G-IANA shared registry that can be

accessed by the Composer to retrieve the list of atomic components to be used for creating a nApp.

• A private atomic component's image can be uploaded on a private registry, using its Dockerfile,

preventing the component to be used from external stakeholders

19

• The protected atomic components are a particular type of components. The source code can be

committed on the 5G-IANA Version Control System as a private project, with an access control

mechanism to hide source code from other developers. Otherwise, a component developer can push

component’s docker images on the 5G-IANA registry from a private repository.

In Figure 4 it is possible to view a generic code structure that is used by the 5G-IANA Gitlab CI pipeline. The

Dockerfile must include several steps to be accepted and executed by the platform.

Figure 4 Atomic Component Structure

The steps, called stages, included in the Dockerfile are like the ones shown in Figure 5 and are described as:

• Build stage. Where the code is compiled with specific tools

• Analysis stage. Where the code is analyzed

• Package stage. Where the component is packaged and the entry points are defined

• Deploy stage. Where the container is finally uploaded to the registry

The required steps are the Build and the Deploy stages. The Analysis and the Package stages are not

mandatory but should be included to provide a stable and self-contained component.

20

Figure 5 An example of Dockerfile for AFs/NFs

2.2.3. DevOps Pipeline

As stated in the previous Section, every component/nApp that is open-source should be stored in the 5G-

IANA GitLab platform. If the atomic components are not open-source, a developer can upload directly the

images on the Centralized Registry, which has an access control mechanism to prevent from showing private

images to other developers.

In addition, the composer has an access control mechanism to let the developers use only the intended

atomic components. The private images uploaded in the centralized registry are retrieved by the composer

only for specific developer profiles. In this way, protected and private atomic components can be stored in

the nApp catalogue without being shared to other stakeholders.

The open-source components instead, are stored in the Gitlab platform to be available for use and

deployment with the help of two different pipelines that are developed ad-hoc for the project. A DevOps

pipeline is a collection of automated procedures and technologies that enables actors to collaborate

effectively while creating and deploying code in a test bed.

Figure 6 graphically describes the whole DevOps pipeline for the 5G-IANA project.

As stated in 2.2.1, a nApp developer creates a network application, chaining together several Application and

Network functions. After the composition is finished, the nApp is saved in the Vertical Service Composition

21

and Customization (described below, in Section 3) and the nApp template is committed on the Gitlab

repository. This operation triggers a DevOps pipeline that reads the nApp Template, retrieves all the

components from the testbed registry and onboards the nApp Template on the Toolkit located in the target

testbed.

Figure 6 DevOps pipeline

If an atomic component in not present in the testbed registry, the DevOps pipeline will retrieve the source

code of the component from its repository, compile it, test it, and publish the image to make it available for

the next pipelines. These operations are made using Kaniko [4], a tool to build container images from a

Dockerfile, inside a container or Kubernetes cluster. In this way an atomic component is built in a completely

standalone container, without the possibility to interact with the 5G-IANA environment, which is secured

from malicious actions and from unexpected behavior during the compiling and onboarding operation.

The whole workflow for onboarding a network application is depicted in Figure 7. The component developer

develops the AFs and NFs and commits the source code on the Gitlab repository. This action triggers a CI/CD

pipeline (Figure 6, atomicComponent pipeline) that compiles and analyzes the code and pushes the images

on the Centralized Registry of the nApp catalogue with the other images already provided by the 5G-IANA

nApp toolkit.

22

The nApp developer, from the composer GUI, queries the Centralized Registry to obtain the list of

components available in the Registry with their documentation.

With the help of the documentation, and with the list of available components, a nApp developer creates a

network application and stores it both on the local database of the composer (for future use) and on the

Gitlab repository, that triggers the pipeline in Figure 6.

Figure 7 High-level workflow for onboarding and deploying a nApp

The network application is now available on the nApp catalogue, and it can be instantiated and deployed.

From the composer GUI, the nApp developer requests a new instantiation, and after the requirements were

specified for his/her use case, the application orchestrator requests deployment on the 5G-IANA testbed.

This high-level workflow is intended to be used with open-source atomic components, which can be

committed on the Gitlab repository of 5G-IANA.

23

2.3. Release roadmap

The first release of the vertical composer and the catalogue has been tested and is going to be deployed on

the NOKIA testbed. Future development, provided by M33, will involve the integration with the Gitlab

repository to deliver the onboarding mechanism of a network application as a continuous flow of actions,

from the composition of a network application to the deployment of the vertical service.

24

3. VERTICAL SERVICE COMPOSITION AND CUSTOMIZATION

The purpose of the Vertical Service Composition and Customization module is to assist and guide the

composition and onboarding of a network application with specific methodology and targeted Graphical User

Interfaces. To this end, it provides an interfacing layer to the end user (i.e., the vertical service owner and the

nApp developer) for constructing, managing the deployable applications and their features, without

interfering with the network level functions and processes managed by the involved telecom operators and

infrastructure owners. All of the functionalities provided (depicted in Figure 8) by this block are analysed in

the rest of this section.

Figure 8 Vertical App Composition & Customization

3.1. Vertical Service Composition

The primary goal of the Vertical Service Composition is to provide the means for the authoring of abstracted

representations of cloud-native applications that may be accompanied by several requirements in the form

of constraints. To this end, the service providers wrap the microservices that implement the business logic

of a service in a proper format, so as to be publishable in the nApp Catalogue. Each nApp consists of multiple

containers (each container is an AF or an NF) that are chained in the form of a nApp graph. Every cloud-native

component has to comply with a specific metamodel which is called the 12-factor metamodel [7]. 12-factor

compliance provides a proper guarantee that a component will be able to be managed/orchestrated during

its deployment. The registration process of a nApp component provides design-time validation as far as a

component model is concerned. The same process shall guarantee that all cloud-native properties are

maintained, specifically:

• metadata regarding minimum infrastructural requirements,

• metadata regarding deployment preferences,

• metadata regarding configuration parameters during component initialization,

25

• mutable configuration parameters during runtime,

• exposed and required interfaces,

• exposed metrics, link metrics, etc. [see section 4.1].

All the previous will be performed through a specific user interface which offers several design-time features,

to make the overall process less error-sensitive.

3.2. Vertical Service QoS Parameter Definition and Editing

Vertical Service Composition and Customization offers a range of functions; one of these functionalities is

the Vertical Service QoS Parameter Definition and Editing which allows service providers to create constraints

that must be met to ensure that a nApp operates as intended. There are various types of constraints, and the

aim of Vertical Composition and Customization is to define and formalize them. Typically, these constraints

can be categorized as cloud-related or non-cloud-related.

- The cloud related constraints are split to deployment constraints and resource constraints.

o Resource constraints may refer to amount of memory, CPUs, storage, and IO throughput

required

o Deployment constraints may refer to location requirements, device characteristics (i.e.:

FPGA, GPU related).

- The non-cloud-related constraints are:

o the network & operational constraints which refer to minimum or maximum thresholds from

network and operational view (e.g.: e2e latency or deployment time) or desired QoS

classifiers that are dependent on the performance of the programmable resources

possessed.

The cloud-related constraints are authored through the Vertical Service Composition process described

above. However, there are some non-cloud-related metadata that play a significant role in the slice

negotiation process. These metadata are taken in consideration by the Slice Manager and Multi-Domain

Orchestrator and refer to:

• the required slice capabilities (eMBB (enhanced Mobile Broadband), URLLC (Ultra Reliable Low Latency

Communications), mMTC (massive Machine Type Communications))

• the QoS Class Identifier classification

26

• the guaranteed bit rate and

• the selection of specific location for the deployment (while the actual location of all the deployments

will take place inside the domain of the two testbeds involved; these metadata will be used to point

to specific OBU / RSU inside each testbed).

This type of constraint will be provided in a formal way through a specified editor. It should be noted that all

the previous constraints are expressed in a “as much as possible” user friendly manner and without prior

interaction with the Slicing Manager and Multi-Domain Orchestrator of the 5G-IANA Platform [1]. However,

for the selection of specific location, an interaction with Resource Inventory module is required (part of

Slicing Manager and Multi-Domain Orchestrator layer of the architecture). It is important to note here that

since the constraints are declared without the prior interaction there might be the case that these constraints

cannot be satisfied. All these situations are handled through the slice intent and slice reply exchange [1].

3.3. Policy Management

Policy Management is a functionality provided by the nApp Toolkit. In the frame of 5G-IANA every nApp that

is deployed can be also included to runtime reconfiguration. Every nApp that is deployed can be subject to

runtime changes/reconfiguration. In 5G-IANA context, a Policy is this reconfiguration that aims to the

satisfaction of a set of business goals that are bundled in the form of a Service Level Agreement [1]. To satisfy

these goals, these are “actions” that may need to intervene with the control plane. Indicative actions include

allocating more resources, spawning new instances of cloud-native components, migrating live instances, the

complete renegotiating of the entire slice, or others.

All these actions are triggered by proper rules that on the one end, take under consideration monitoring

aspects and on the other end, produce actions that are offered by the orchestration loop. The actions

supported are a compound of:

• the programmability that the virtualized programmable infrastructure can offer and

• the integration of these supported actions in the orchestration’s control plane.

Policies inside 5G-IANA are provided in a prescriptive manner, so as to be executed upon instantiation of a

slice. A specific module, namely the Policy Editor, is responsible for authoring these instructions in a formal

rules format (i.e., a set of rules). Complementary to composition of rules is the validation of them as well as

to approve the applicability or not. The applicability is performed by examining the existence of proper

“enablers” that will facilitate the execution of a rule.

27

Currently, the supported actions that the orchestration loop will support are under definition, so further

information will be given in future Deliverable 3.3.

3.4. Software Design

Vertical Service Composition and Customization projects the functionalities of the Vertical Service

Composition, the Policy Editing and the QoS Parameters editing through dedicated Editors as Graphical User

Interfaces. It is important to note that, these functionalities that are provided through GUIs are accompanied

with the respective repositories to exploit persistency. There is also a generic entry GUI that integrates a

dashboard for nApps components that provides intelligent application-level analytics and visualisation tools

for both application-level and infrastructure-level analytics and monitoring.

The technology behind all the views and the GUIs is React.js and there is also usage of VivaGraph.js (for the

graph composition). To validate the nApp graph composition java-based routines are used. For the policies,

the back-end services are developed in plain Java code and the policy creation is based on Drools. All the

back-end services are implemented in plain Java 11 as Quarkus projects [8].

The Vertical Service Editor along with the QoS Parameter editor is packaged as a Docker container along with

their respective backend. Another container is used by the Policy Editor functionality with its respective

backend and database.

The software base is coming from Int5Gent Project. The extensions that are built on top of this baseline area

are a) the nApp catalogue implementation and integration and b) the resource inventory implementation

and integration for registration and selection of available edges (including OBU/RSU programmable

resources see [1] on section 3.4).

3.5. Workflows and APIs

The workflow depicted in Figure 9, visualizes the process of onboarding and constructing a nApp from the

Service Provider perspective.

28

Figure 9 Vertical Service Composition and Customization workflow

For the whole process the service provider is interacting with a series of graphical interfaces that are built to

collect specific information. This process is stepwise starting from the uploading of each application function

as a docker image into the Centralized Registry of the nApp Catalogue. For the 5G-IANA AOEP the service

component (or atomic component) model consists of the image accompanied by the metamodel for its

execution. Specifically, the metamodel is comprised by application specific variables (i.e., environmental

variables required to be known to the execution environment) and resource constraints for the optimal

operation of the component.

Next, the Service provider with the nApp Toolkit GUI’s help, retrieves the list of atomic components uploaded

and composes a nApp dragging and dropping the components in a canvas and links them together to form a

connected graph. Per graph, the service provider can declare constraints regarding the desired state of the

deployed graph throughout its lifetime. This is done through QoS identifiers that are translated into KPIs

(including network & performance KPIs) that will be requested from the programmable infrastructure

provider (see Section 3.2) through the slice negotiation process. Last, the service provider can author custom

policies per graph, that based on a threshold for a specific-by-the-service-provider metric or a combination

of metrics that are coming from the monitoring engine, will trigger an action for the operational state of the

graph or a component of the graph.

29

3.5.1. NApp Graph REST Endpoints

The Vertical Service Composition and Customization module provides its capabilities through REST interface,

listed in Table 1. These capabilities support the four basic operations of persistent storage: Create, Read,

Update and Delete (CRUD) operations and specifically the creation of a new nApp graph, the update or

deletion of existing ones as well as information retrieval related to one or more graphs, searching capabilities

based on specific searching criteria (names, ID etc).

 Table 1 nApp Graph REST Endpoints

API Type Brief Description

/api/v1/application POST

Creates an application, if the given

field values are valid.

The input parameters are:

Application Name

List of the Atomic Components

/api/v1/application PUT
Updates an existing application, only if

the new values are valid

/api/v1/application/count GET
Shows the total count of Applications

on the Dashboard

/api/v1/application/fetchByInstance GET
Fetches all applications by instance, to

be used for Application filtering field

/api/v1/application/list POST

Fetches all the applications in

pageable format, if the user is

authorized

/api/v1/application/search/{name} GET
Checks if the application name already

exists

/api/v1/application/{id} GET Fetches application by id

/api/v1/application/{id} DELETE
Delete an application if the given id is

valid

3.5.2. Policies REST Endpoints

This API (listed in Table 2) provides the creation, the modification and deletion of runtime policies.

Table 2 Policies REST Endpoints

API Type Brief Description

/runtime POST

Create a runtime policy

Parameters expected:

"name": "name of policy",

30

"policy": "type of policy",

"policyExpression": "expression

that will be validated before

triggering an action",

"policyPeriod": "time to disable

the policy",

"inertiaPeriod": "waiting time

before validating the expression

for activation of the policy",

"actions": "what is the output

when the policy is triggered"

/runtime/{id} PUT Update runtime policy by id

runtime/{id}/check GET Check if a runtime policy exists

runtime/{id} DELETE Delete runtime policy by id

3.5.3. AF/NF Onboarding REST Endpoint

The endpoints described in Table 3 support the CRUD operations regarding the AF/NF onboarding.

Specifically, they support the creation, the update, and the deletion of an existing Application or Network

function.

Additionally, they support information retrieval related to one or more entities, as well as filtering capabilities

upon provided criteria.

Table 3 AF/NF Onboarding REST Endpoints

API Type Brief Description

/api/v1/component POST
Creates a new AF/NF, if it does not

exist

/api/v1/component PUT
Updates an existing AF/NF, only if

the new values are valid

/api/v1/component/count GET
Shows the total count of AF/NF on

the Dashboard

/api/v1/component/filtered POST
Filters out traffic and fetches the

AF/NF, if the user is authorized

/api/v1/component/list POST

Fetches all the AFs/NFs in a

pageable format, if user is

authorized

/api/v1/component/list/all POST
Fetches all the AFs/NFs, if the user

is authorized

31

/api/v1/component/{id} GET
Filters out AF/NF by id and fetches

them, if user is authorized

/api/v1/component/{id}

DELETE Delete an AF/NF only if it exists

/api/v1/component/{id}/candi

date/{interfaceID}
GET

Filters out candidate AF/NF by

interfaceID and fetches them

32

4. NAPP CATALOGUE

This section presents the nApp Catalogue, a component in the nApp toolkit that offers a set of functionalities

for storing and managing nApp packages. The catalogue provides the whole set of operations to store, update

and delete 5G-IANA network applications. This way, the application packages can be reused several times in

different context with different requirements. The following sections present the nApp Template information

model used to describe and store in a unified manner a network application in 5G-IANA, the software

implementation of the nApp catalogue and the APIs which are exposed by the catalogue.

4.1. NApp Template & Information model

The nApp template is the entry point of the nApp package, providing the mappings between the vertical

service and the software documentation and software licenses.

An example of nApp template can be found in the [Annex – nApp Template].

The nApp template is a JSON file with the structure depicted in Table 4.

Table 4 nApp Information Model

Name Type Mandatory
Brief

Description

name String Yes
The nApp

Package name

description String No

A human

readable

description of

the package

version String Yes

The version of

the nApp

package

publicApplication Boolean Yes

This identifies if

an app is visible

to all users or

not

hexID String No

Internal ID for

storing

purposes (ID for

fast access to

specific data)

33

componentNodes ComponentNode Yes

Atomic

components of

the nApp (see

Table 5)

LinkNodes LinkNode[] No

The ID of a

connection

between two

components

(see Table 6)

type ENUM (SERVICE, COMPONENT) Yes
The type of the

nApp

specLevel
ENUM (VERTICAL_SPECIFIC,

VERTICAL_AGNOSTIC)
Yes

Determines if

the nApp is

vertical specific

or vertical

agnostic

accessLevel
ENUM (PRIVATE, RESTRICTED,

PUBLIC)
Yes

Determines how

this nApp is

shared with

other

stakeholders.

PRIVATE nApps

are only visible

to the account

of the nApp

developer,

RESTRICTED

shall only be

available to

other certain

accounts, while

PUBLIC ones

are available for

everyone to see.

requiredEquipments RequiredEquipment No

The devices

used by the

nApp to work

useCase String No

The use case to

which the nApp

is mapped.

testbed ENUM(NOKIA, TS) No

The targeted

5G-IANA

testbed

34

softwareLicenses SoftwareLicense No

The license

terms and

attached filed

organization String No

Label for a

nApp. It is used

for searching

criteria based

on who possess

this nApp

serviceCategory

ENUM(HAZARD_NOTIFICATION,

VEHICLE_MOVEMENT,

SMART_TRAFFIC_PLANNING,

INFOTAINMENT)

No

Determines the

category of the

nApp, based on

the service that

offers

Required5GCoreService FiveGServiceSpec No

The 5G services

required by the

nApp

4.1.1. Extensions from baseline information model

Inside the nApp information model, there are several complex types which are used to define the Cloud

Application Function and Cloud Network Function descriptors which have the information model showed in

Table 5 to Table 15. Each table describes a subcomponent (a child) of the nApp information model.

Table 5 ComponentNode information model

Name Type Mandatory Brief Description

componentNodeID Long Yes
An identifier for the

componentNode

hexID String No

Internal ID for storing

purposes (ID for fast

access to specific data)

name String Yes
The name of the

component

component AtomicComponent Yes

The object which

represents the

component

Table 6 LinkNode information model

Name Type Mandatory Brief Description

35

LinkNodeID Long Yes
An identifier for the

linkNode

componentNodeFrom ComponentNode Yes

The source

componentNode of the

link

componentNodeTo ComponentNode Yes

The destination

componentNode of the

link

graphLink Link Yes
The link between the 2

components

Table 7 Link information model

Name Type Mandatory Brief Description

LinkID Long Yes
An identifier for the

Link

friendlyName String No
A link’s human-

readable name

interfaceObj ExposedInterface Yes
The interface used by

the link

Table 8 AtomicComponent information model

Name Type Mandatory Brief Description

Id Long No
An identifier for the

atomicComponent

name String Yes
Name of the Component

defined by the end user

hexID String No

Internal ID for storing

purposes (ID for fast

access to specific data)

publicComponent Boolean Yes

This identifies if an

atomic component can be

visible to all users or not

architecture String No

Defines the supported

system that the Atomic

Component can be

deployed. This is an

Optional field

iconBase64 String No
Icon transformation with

Base 64 algorithm

36

dockerImage String Yes
The name of the Docker

Image to be referred

dockerRegistry String Yes

The URL of the Docker

Registry where the

Docker Image of the

component is uploaded

dockerCredentialUsing Boolean Yes
If the Docker Registry

needs and authentication

dockerCustomRegistry Boolean Yes

If the registry that stores

the Docker images is the

5G-IANA registry or a

custom Registry

dockerUsername String Yes
The Username to access

the Docker registry

dockerPassword String Yes
The Password to access

the Docker registry

exposedInterfaces ExposedInterface No

Services that are being

exposed inside the

container

requiredInterfaces RequiredInterface No

Services that are

required for the

container to be functional

requirement Requirement No

Resource requirements

for the container to be

operational

healthCheck HealthCheck No

Endpoint for checking the

container lifecycle during

runtime. This endpoint id

being visited by the

orchestrator to validate if

the container is running

or not

Table 9 ExposedInterface information model

Name Type Mandatory Brief Description

interfaceID Long No
An identifier of the

interface

name String Yes
Name of the interface in

a human readable format

port String Yes
Specific port the

interface exposes

37

interfaceType String Yes

String used from the

orchestrator to identify

the connectivity

requirements of each

Atomic Component. It is

metadata used to point

an EDGE or CORE

deployment.

transmissionProtocol String Yes UDP / TCP

Table 10 RequiredInterface information model

Name Type Mandatory Brief Description

graphLinkId Long No An identifier of the interface

friendlyName String Yes
Name of the interface in a

human readable format

intefaceId Long Yes
Points to an ID of an

Exposed Interface

Table 11 Requirement information model

Name Type Mandatory Brief Description

requirementId Long No
An identifier for the

Requirement

CPU Integer No
Required Number of CPUs

(either physical or virtual)

Ram Float No Required RAM

Storage Float No Required Storage

gpuRequired Boolean no
Identifies the deployment

requires GPU

Table 12 HealthCheck information model

Name Type Mandatory Brief Description

healthCheckID Long No
An identifier for the

HealthCheck

name String No
Name of the interface in a

human readable format

httpURL String No
The Endpoint the

healthcheck exposes. This is

38

being visited in intervals by

the orchestrator to verify the

operational state of each

atomic component

args String No
This field complements the

httpURL field

interval Float No

The time interval of the

heartbeat, i.e.: querying the

endpoint

Table 13 FiveGServiceSpec information model

Name Type Mandatory Brief Description

fiveGServiceSpecId String No
An identifier for the 5G

service

Version String No
The version of the 5G

service

function ENUM(NWDAF, LCS) No
The 5G service

description

mandatory Boolean No

Tells if the 5G service

described is mandatory

for the nApp

name String No
The name of the 5G

Service

Table 14 SoftwareLicense information model

Name Type Mandatory Brief Description

id Long No

An identifier for the

software license

record on the DB

softwareLicenseId String Yes

The software license

identifier in the nApp

package

openLicense boolean Yes
If the License is open

or not

licenseFile String Yes
The path to the

license file

validationURL String No

An external URL to be

used while validating

the license during the

39

service instantiation

(if required)

type

ENUM(APPLICATION_P

ROPRIETARY,

INSTANCE_BASED,

TIME_BASED, FLAT)

No

Determines the

general licensing

terms of the license

Table 15 RequiredEquipment information model

Name Type Mandatory Brief Description

requirementEquipmentId Long No
An identifier for the

Requirement

Type

ENUM(SENSOR,

IOT_GW, ACTUTOR,

OTHER)

Yes

The type of the

Equipment that is

required by the

nApp

Protocol String Yes

The protocol used

to exchange

message with the

equipment

accessLevel
ENUM(READ,

READ_WRITE, WRITE)
No

The type of access

required to the

hardware device.

Location String No

A geographical

identifier of the

place where the

equipment should

be placed i.e.: the

position of the OBU

Description String No
A brief description

of the hardware

Mandatory Boolean Yes

If the hardware is

required for the

execution of the

nApp

4.2. Software Design

The nApp catalogue is a Java application created with Spring Boot, an open-source framework used to build

standalone and production ready applications. The catalogue will interact with two components:

40

• the Vertical Service Composition and Customization to compose a new network application or to update

and existing network application,

• the Gitlab platform to store and onboard a stable network application.

The catalogue exposes several APIs to perform all operations to the nApp package management from the

two platforms already mentioned.

The software baseline is derived by the nApp catalogue of VITAL-5G [5], but in this version we enhance the

information model to describe more in details an atomic component, and the links between them. In

addition, the 5G-IANA nApp catalogue can upload atomic components without the needs to be encapsulated

in a nApp template. Finally, the 5G-IANA nApp catalogue includes customized management operations like

the retrieve and deletion of atomic components, queried specifically, like for example.

4.3. Workflows and APIs

The following section explains the operations made available to the user, i.e.: a developer, a composer GUI

or a Gitlab platform.

4.3.1. On-boarding

The on-board operation, in Table 16, is used to store a network application to be reused in the future, and to

be deployed on the 5G-IANA environment.

The network application is uploaded as a .zip file with the following information:

• Blueprint.json, the template to be onboarded on the catalogue, with all the information regarding the

components and the links between them referred in the Section 4.1.

• Licenses folder, which contains all the licenses for the components used in the network application

defined by the nApp package.

• Documentation folder, which contains all the documentation for using the network application like all

the component’s documentation.

• Test Cases folder, a folder containing the test cases to be executed to be completely sure that the

network application is stable and works perfectly.

Table 16 On-board Endpoint

API Type Brief Description

41

/portal/catalogue/netapppacka

ges
POST

Onboard a new nApp template

with licenses folder,

documentations folder and test

cases folder. All this information is

packaged in a .zip file and passed

as an argument to the REST

Endpoint

Depending on the development cycle, the on-boarding REST API is used by the nApp developer, the Vertical

Service Composition and Customization or from the Gitlab platform. In the first development cycle, a nApp

is onboarded directly from the Vertical Service Composition and Customization, using the REST API provided

by the catalogue.

Figure 10 On-boarding workflow

After calling the POST REST API, the catalogue verifies that the nApp information is correct. If anything in the

template or in the folder structure, is not correct, the catalogue terminates the operation and notifies the

caller with an error message. If the template is correct, the catalogue starts storing the blueprint information

42

in its relational database and the licenses, the documents and the test cases in its object storage, to be

retrieved by the other components of the platform (Figure 10).

The API response, could be one of the following:

• 201 – Created - onboarded of new nApp package with ID=<UUID>

• 400 – Malformed request - The request contains elements impossible to process

• 409 – nApp package already existing - There is a conflict with the request

• 500 – Internal exception - Status 500.

4.3.2. Query

The query REST API, in Table 17, is used by the Vertical Service Composition and Customization and by the

nApp developer for searching the catalogue for applicable network applications or atomic components.

Table 17 Query Endpoint

API Type Brief Description

portal/catalogue/netapppackag

es/blueprint?parameter={PARA

METER}

GET

Return a list of blueprints which

match the query parameters

reported below

A list of parameters is provided to the query method to be used as a filter on the catalogue. The method

should return either an atomic component template or a network application template, depending on the

nature of the argument supplied as a filter.

The list of parameters included in the method are:

• Testbed: For retrieving nApps and components that reside in a particular testbed.

• AccessLevel: For retrieving specific nApps and components based on the Access Level.

• SpecLevel: For retrieving specific nApps and components based on the Spec Level.

• UseCase: For retrieving specific nApps and components based on the Use case where they are used.

• ServiceCategory: For retrieving nApps and components that are used for a particular service category.

• DockerRegistry: For retrieving nApps and components that are stored in a specific centralized registry.

• DockerCustomRegistry: For retrieving nApps and components from the 5G-IANA centralized registry,

or, in case of private nApps and components, for retrieving them from a private registry.

4.3.3. getBlueprint

43

This REST API Endpoint depicted in Table 18, returns a JSON which identifies and describes the nApp Template

stored in the catalogue for the nApp Package Id passed as parameter.

Table 18 getBlueprint Endpoint

API Type Brief Description

portal/catalogue/netapppacka

ges/{nAppPackageId}/bluepri

nt

GET Return a specific blueprint

4.3.4. GetAllnAppPackages

The getAllnAppPackages action, in Table 19, is another way to query the catalogue. There are no parameters

required for this operation, which simply searches the catalogue for every template that has been uploaded.

Table 19 GetAll nApp packages Endpoint

API Type Brief Description

portal/catalogue/netapppacka

ges
GET

Return all the blueprints stored in

the catalogue

A list of templates with some unique information, such as the Identifier, the name, and the version of each

template contained in the catalogue, are returned by this REST API.

4.3.5. Delete

This operation in Table 20, deletes a network application package from the catalogue and must be used with

a nApp package id as parameter for deleting the right package from the catalogue. The nApp package id could

be retrieved by query methods. The operation deletes the onboarded nApp template from the catalogue

which can no longer be used. Vertical services that used the deleted template need to be updated with new

templates or components.

 Table 20 Delete Endpoint

API Type Brief Description

portal/catalogue/netapppacka

ges/{nAppPackageId}
DELETE

Delete the blueprint from the

catalogue

44

5. APPLICATION AND NETWORK FUNCTIONS DEVELOPMENT

As defined in Section 2.2, a nApp is structured by a number of AF and NF components that can communicate

with each other and can be instantiated separately with different requirements. The ensuing nApp can enable

scalable vertical service deployment while taking into account predefined requirements and resource

availability. Furthermore, in the context of the project we distinguish the NF and AF in three different

categories: The baseline AF and NF, shown in Table 21 and Table 22 respectively, and the communication NF

shown in Table 23. Baseline components are the AF and NF that compose the 5G-IANA nApp Starter Kits i.e.,

the different nApps offered by the project that third parties can use as a baseline to develop their own nApps.

Communication NF are used by multiple nApps to handle either 5G or Cooperative Intelligent Transport

Systems (C-ITS) communications.

The following section presents the AF and NF that will be available in the 5G-IANA registry, as an initial point

of reference that could be used by third party experimenters. Additional details such as the progress of the

development, interfaces offered by each VNF, details on their inputs and outputs will be available in the

deliverable D4.2 ‘First report on intelligent nApps and 5G-IANA UCs development’ due in M25.

Table 21: Baseline AFs offered by 5G-IANA

VNF id VNF name Description

B-

VNF01

Manoeuvre Planning

Gets configuration data from the Subscription Service (B-VNF02) and

receives poses and trajectories from the Vehicle Interface (C-VNF04).

Then, it issues manoeuvre coordination replies after having calculated the

best trajectories every vehicle should follow for a safe and efficient travel.

B-

VNF02

Vehicle Subscription

Service

The service enables the enrolling of vehicles to the Manoeuvres

Coordination for Autonomous Driving nApp to let them participate to the

manoeuvre coordination

B-

VNF03
AR content repository A storage for AR objects that can be retrieved by B-VNF04

B-

VNF04

AR Media Access

Function

The AR media access function is an AR streaming application that relies on

buffering and multi-threading techniques to give access to multi users to

different AR content such as 3D objects. This AF provides the access to the

AR content stored in B-VNF03.

B-

VNF05

Video

Encoding/Decoding

This AF encodes video so it can be transmitted through the 5G network. It

is also responsible for decoding and playing the received video on a web

application.

B-

VNF06
Sensors' data analysis

Processes the information from vehicle sensors and takes decisions

regarding its' movement

45

B-

VNF07

Remote Driving

Module

This AF receives the control orders (direction, angle, and speed) from the

actuator and moves the vehicle accordingly

B-

VNF08

Remote Driving

Central Control

This AF is the responsible of collecting the information from the driver.

For this purpose, a steering wheel is used. The movement data from this

peripheral is sent to the server to be processed by the actuator

B-

VNF09

Object Detection with

Deep Learning

Video captured is processed on the edge to detect pedestrians, cars,

and/or road elements such as traffic signals

B-

VNF10

Vehicle Condition

Warnings Service
Representation of warning signals and alerts in the GUI of a WebApp

B-

VNF11

360° Video Stream

Endpoint

This NF facilitates sending the 360° Video Stream from the Far Edge to

Edge Cloud

B-

VNF12

Foveated Rendering

Sink

This VNF receives foveatic data (i.e., “fixation points”) from B-VNF21 and

provides it to B-VNF18

B-

VNF13

360° Video Stream

Cache

This VNF handles 360° Video Stream and acts as a buffering mechanism

that can be employed to maintain video fidelity to the end users, even in

no network service availability scenarios

B-

VNF14

Foveated Rendering

Data Broker

This VNF is a data broker that receives foveatic data (i.e., point of view)

from the VR users and acts as a broker for modules that consume this

data, located in the Far Edge

B-

VNF15
VR Server Module

An authoritative Unity server that is the backbone the VR application

facilitating the Virtual Bus Tour presented in UC3

B-

VNF16

Log Reporting Service

Data Broker

A network function that exposes Use Case specific data e.g., location-based

data stored in the B-VNF22. This data can be used either for UC specific

functionalities and for debugging/monitoring purposes

B-

VNF17

Active Network

Monitoring Module

This NF provides a mechanism that will estimate the available network

bandwidth utilizing active probing. This estimation will be used as input

to B-VNF20

B-

VNF18
360o video slicer

This AF masks a 360o video stream so that the parts where the users focus

have high resolution while the remaining parts have low resolution

B-

VNF19

Privacy Masking

Module

This AF applies privacy masking to a 360o video stream, meaning that

footage of pedestrians passing by, car plates etc. is blurred for

anonymization

B-

VNF20
Live Stream Encoder

This AF the video encoding i.e., compressions and re-encoding tasks. The

anonymized stream is split into tiles and encoded into MPEG-DASH and

HLS stream i.e., use of chunks at different qualities. It receives information

from the B-VNF17 to decide if compression is needed

B-

VNF21
Field of View Predictor

This AF utilizes Deep Learning AI techniques to predict the future Points-

of-View of VR users

B-

VNF22

UC-Specific Log

Reporting Service

A network function that exposes UC related data e.g., location-based data

stored in B-VNF16. This data is used either for UC specific functionalities

and for debugging/monitoring purposes

46

B-

VNF23
Monitoring VNF

Collecting data from the field (e.g., sensors, cameras), or services such as

the cooperative awareness service (B-VNF28) and storing them. Also

distributing data (including video streams) to 3rd parties, e.g., other VNFs

B-

VNF24
Streaming VNF

Streaming VNF is a video proxy component receiving video stream from

cameras and forwarding it to the end users

B-

VNF25
Analytics VNF

Analytics VNF serves for data visualization and reports creation. Data

visualization and report structure is based on customer requirements

B-

VNF26
Multi-object tracking

This VNF has the functionality of detecting and tracking objects from a

video stream

B-

VNF39
vDNS

The vDNS is based on the open-source BIND9 software. The DNS is

packaged with a RESTful server to enable its run-time configuration

(Day1/Day2)

B-

VNF40
Virtual FW

The vFW is based on the open-source VyOS software. The vFW can be also

used to perform an ad-hoc traffic steering using the routing functionalities

B-

VNF41
virtual IDS/vIPS

Virtualized IPS/IDS that detects and prevents the attacks based on

Network Monitoring VNFs data collected

B-

VNF42

Virtualized Cache -

vCache

This AF is the cache on the Edge Server. The Virtualized Cache is based on

the Apache Traffic Server (ATS) open-source software, which can be

configured to act as a reverse proxy. The function currently offers also an

embedded RESTful server that enables its run-time configuration

(Day1/Day2). In addition, it embeds also a Telegraf agent to export

metrics

B-

VNF43

UHD Origin Streaming

Server

The UHD Origin Streaming Server is based on the PLEX community

version. It’s an UHD-capable Origin Server that performs adaptive

streaming using MPEG-DASH

B-

VNF44
Load Balancer

The Load Balancer is based on the open-source HAPROXY software. It

provides load balancing functionalities for applications based on

HTTP/TCP, basically performing HTTP redirects towards application

servers. The Load Balancer can be configured to apply different policies

and offers a RESTful server for its run-time configuration (Day1/Day2),

e.g., to add a new application server to its farm. Load balancing between

cloud and edge

B-

VNF45

Elasticsearch (incl.

Kibana and Logtash)

Implements the Elasticsearch stack (Logstash, Elasticsearch and Kibana)

for monitored data management, analysis and storage and for processing

applications’ data and logs’ events. The Elasticsearch Stack is a monitoring

framework composed by different tools with different functionalities.

Beats are data/log/event collector, Logstash is a data aggregator and

Elasticsearch is time-series DB

B-

VNF46
Telegraf

Telegraf is a monitoring agent to export data/metrics/statistics through

the usage of plugins

B-

VNF47

Hazardous event

receiver and display

This VNF is responsible for receiving information on road risk level

change and display a relevant warning to the driver

47

B-

VNF48

Hazardous driving

behaviour detection

This VNF will be responsible for detecting and evaluating hazardous

driving events (harsh braking, harsh acceleration, speeding, mobile use)

B-

VNF49

DML Aggregation Node

(AggN)

This VNF: (A) interacts with the DMLO so as to perform client selection

(see D3.1); (B) dispatches (at each round) the global ML model to the

currently selected clients I.e., instances of ML node –Training Agent (MLN)

(B-VNF50) at participating OBUs; (C) receives locally trained models and

aggregates them into a global model (at each round); (D) delivers statistics

to the DMLO

B-

VNF50

ML node -Training

Agent (MLN)

This VNF: at each training round (A) receives the current version of the

global ML model from the DML Aggregation Node (AggN) (B-VNF49); (B)

receives training data from the ML pre-processing node (B-VNF51); (C)

trains a ML model using training data obtained; (D) forwards the locally

trained model to the Aggregation node (B-VNF49)

B-

VNF51
ML Preprocessing

The VNF transforms the acquired raw data into an ML-specific dataset e.g.,

for predictive QoS into a spatio-temporal network latency data-set

Table 22: Baseline NFs offered by 5G-IANA

VNF id VNF name Description

B-

VNF27

ETSI Decentralized

Environmental

Notification Service

This NF is in charge to manage in input and in output the Decentralized

Environmental Notification Messages (DENMs) that provide alerts about

possible hazards and events

B-

VNF28

ETSI Cooperative

Awareness Basic

Service

This NF is in charge to manage in input and in output the Cooperative

Awareness Messages (CAMs) that provide information about the vehicle

status, its position and dynamics

B-

VNF29

ETSI Collective

Perception Service

This NF is in charge to manage in input and in output the Collective

Perception Messages (CPMs) that provide information retrieved from the

processing of raw sensors data (e.g., object type, object dynamics, free

spaces)

B-

VNF30

ETSI Manoeuvre

Coordination Service

This NF is in charge to manage in input and in output the Manoeuvre

Coordination Messages (MCMs) that are used by vehicles to share their

intentions about manoeuvres and to coordinate manoeuvres

B-

VNF31

ETSI Traffic Light

Manoeuvre Service

This NF is in charge to manage in input and in output the Signal Phase And

Timing Extended Messages (SPATEMs) that provide information related to

the traffic light controller of a specific intersection

B-

VNF32

ETSI Road and Lane

Topology Service

This NF is in charge to manage in input and in output the MAP Extended

Messages (MAPEMs) that provide information related to the geometry of a

given intersection and the topology of related lanes

B-

VNF33

ETSI Infrastructure to

Vehicle Information

Service

This NF is in charge to manage in input and in output the Infrastructure to

Vehicle Information Messages (IVIMs) that provide information about road

signage

48

B-

VNF34

Position and Time

Service

This NF implements a Position and Time Service to offer similar

functionalities to the ETSI Position and Time (PoTi) service specified in

ETSI EN 302890-2. On the OBU the VNF provides time and position

retrieved from a GNSS RTK receiver

B-

VNF35

Enhanced Local

Dynamic Map Service

This NF implements a Local Dynamic Map (LDM) Service that provides

information to applications about local events, real time dynamic object

information and other nearby connected vehicles

B-

VNF36

Events Relevance

Service

This NF selects the events that are relevant to a vehicle according to its

trajectory

B-

VNF37

OBU Localization

Service

This NF is to be deployed at the edge server and it provides the OBUs

position information to AF/NF running at the edge server using an

approach compliant to the MEC Location API as defined by the ETSI GS MEC

013

B-

VNF38

Simulator of ETSI

Cooperative

Awareness Basic

Service

This NF simulates the same functionalities of B-VNF28 “ETSI Cooperative

Awareness Basic Service”

B-

VNF52
Network Monitoring

The Network Monitoring analyses and records all the network traffic on the

network and provide a single point of access to the data stored. The VNF

monitors the network behaviour passively and actively from the edge. It

sniffs the application packets received by the edge and calculates network-

based metrics (such as data rate and latency)

B-

VNF53
QoS prediction

This VNF is based on the trained Distributed ML model present at the Edge

node. An LSTM prediction model is trained on each edge node and

aggregated at the DML server. This aggregated global model is then

transmitted to all the Edge nodes for training and inference

B-

VNF54

Network (NW)

monitoring

The VNF monitors the network behaviour passively and actively from the

edge. It sniffs the application packets received by the edge and calculates

network-based metrics (such as data rate and latency)

B-

VNF55

Vehicle Abstraction

Service

This VNF guarantees protocol compatibility between vehicle and the

Vehicle Interface (C-VNF04)

Table 23: 5G or ITS communications related NFs offered by 5G-IANA

VNF id VNF name Description

C-VNF01 Uu data communication

This NF is in charge to exchange data among AFs on the far-edge and

AFs on edge and cloud segments. The NF transmits and receives data

on behalf of an AF over the Uu interface using the demanded

application layer protocol

C-VNF02 Free5Gcore

Free5GC is an open-source 5G Core Network that can be orchestrated

and allows to perform network slicing by deploying multiple AMFs

and UPFs

49

C-VNF05 Sensors’ data capturing
Collects data related to the distance and angle of a vehicle to near

obstacles from sensors

C-VNF06 Actuators Interface

Receives the movement commands from the user and generates the

control order (direction, angle, and speed) in a language understood

by the vehicle

C-VNF07
Uu C-ITS messages

communication

This NF implements the communication of C-ITS messages over the

Uu interface. This NF follows the same approach used in the 5G-

CARMEN project for the communications among vehicles via network

(i.e., V2N2V) and between vehicles and the network (i.e., V2N)

C-VNF09 Vehicle interface
This NF is in charge of interacting with the vehicle network to

exchange information between the vehicle and the OBU

C-VNF10 Sensor Awareness Service
This NF is in charge of receiving data from available connected

sensors and to provide the retrieved information to other NFs

C-
VNF11

Long-distance data
communication

This NF is in charge to transmit and to receive data for other VNFs for
long-distance 5G communication channel to specific edge/cloud

service. It can be used by third party developers that do not want to
implement any specific protocol at the application layer of the

communication.

50

6. CONCLUSION

In this document we present the initial release of the 5G-IANA toolkit which includes the Vertical Service

Composition and Customization and the nApp catalogue components. It defines an information model in

Section 4.1, for modelling a nApp, which is provided by the Vertical Application Composition and

Customization and onboarded on the nApp catalogue.

In Section 2.2.2 the template to use to create an atomic component in a standardised way is specified. With

this structure, the developer is guided in the implementation of AFs/NFs by using a CI/CD approach.

The nApp toolkit provides a list of nApp starter kits which are available to familiarize with the platform and

which do not require a high level of proficiency to be used. A nApp developer can use a nApp and can exploit

the 5G services made available by the 5G infrastructure where this application is deployed.

Next steps, that will be reported on the next WP4’s deliverable, are the composition of Vertical service,

intended as concatenation of multiple nApps and the enhancement of the GUI for a more user-friendly use.

This deliverable will be used from WP3-4-5 as a starting point to compose, deploy and test a network

application or a vertical service exploiting the testbed’s 5G services.

51

REFERENCES

1. 5G-IANA - D2.1 - Specifications of the 5G-IANA architecture

2. 5G-IANA - D7.7 - Exploitation plan

3. https://docs.docker.com/registry/spec/api/

4. https://docs.gitlab.com/ee/ci/docker/using_kaniko.html

5. VITAL5G - D2.1 Initial NetApps blueprints and Open Repository design

6. 5G ERA, “D4.1: 5G-ERA Middleware initial version”, June 2022

7. https://12factor.net/

8. https://quarkus.io/

9. https://spec.openapis.org/oas/v3.0.1

https://12factor.net/
https://quarkus.io/

52

ANNEX – NAPP TEMPLATE

{
 "name": "string",
 "description": "string",
 "version": "string",
 "publicApplication": "boolean",
 "hexID": "string",
 "organization": "string",
 "type": ["SERVICE","COMPONENT"],
 "serviceCategory": ["HAZARD_NOTIFICATION","VEHICLE_MOVEMENT",
"SMART_TRAFFIC_PLANNING", "INFOTAINMENT",],
 "packageType": ["HELM"],
 "specLevel": ["VERTICAL_AGNOSTIC","VERTICAL_SPECIFIC"],
 "accessLevel": ["PRIVATE","RESTRICTED","PUBLIC"],
 "useCase": "string",
 "testbed": ["NOKIA","TS"],
 "softwareLicenses": [{

 }],

 "componentNode":[{
 "componentNodeID": "long",
 "hexID": "string",
 "name": "string",
 "component": [{
 "id": "long",
 "name": "string",
 "hexID": "string",
 "publicComponent": "boolean",
 "architecture": "string",
 "iconBase64": "string",
 "dockerImage": "string",
 "dockerRegistry": "string",
 "dockerCredentialUsing": "boolean",
 "dockerCustomRegistry": "boolean",
 "dockerUsername": "string",
 "dockerPassword": "string",
 "exposedInterfaces": [{
 "interfaceID": "long",
 "name": "string",
 "port": "string",
 "interfaceType": "string",
 "transmissionProtocol": "string"
 }],
 "requiredInterfaces": [{

53

 "graphLinkID": "long",
 "friendlyName": "string",
 "interfaceId": "long",
 }],
 "requirement": [{
 "requirementId": "long",
 "CPU": "Integer",
 "Ram": "Float",

 }],
 "healthCheck": [{
 }],
 }]
 }],
 "LinkNodes":[{
 "linkNodeID": "long",
 "componentNodeFrom": "ComponentNode",
 "componentNodeTo": "ComponentNode",
 "graphLink": {
 "linkID": "long",
 "friendlyName": "string",
 "interfaceObj": {
 "interfaceId": "long",
 "name": "string",
 "port": "string",
 "interfaceType": "string",
 "transmissionProtocol": "string"
 }
 },

 }],
 "required5GCoreService":[{
 "fiveGServiceSpecid": "string",
 "version": "string",
 "function": ["NWDAF","LCS"],
 "mandatory": "boolean",
 "name": "string"
 }]
}

