

 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101016427

5g-iana.eu

D3.1 Initial consolidated report on the

5G-IANA architecture elements

 Dissemination level: Public (PU)

 Work package: WP3

 Task: T3.1, T3.2, T3.3, T3.4

 Deliverable lead: UBI

 Version: V1.0

 Submission date: 27/03/2023

 Due date: 28/02/2023

 Partners:

2

Authors
Authors in alphabetical order

Name

Organisation Email

Thanos Xirofotos UBI txirofotos@ubitech.eu

Dimitris Klonidis UBI dklonidis@ubitech.eu

Edoardo Bonetto LINKS edoardo.bonetto@linksfoundation.com

Federico Princiotto LINKS federico.princiotto@linksfoundation.com

Matteo Minotti LINKS matteo.minotti@linksfoundation.com

Konstantinos Katsaros ICCS k.katsaros@iccs.gr

Giorgos Drainakis ICCS giorgos.drainakis@iccs.gr

Gabriele Scivoletto NXW g.scivoletto@nextworks.it

Matteo Andolfi NXW m.andolfi@nextworks.it

Control sheet
Version history

Version Date Modified by Summary of changes

V0.1 23/01/2023 D. Klonidis Deliverable structure and ToC

V0.2 02/02/2023 T. Xirofotos Added Section 2

V0.3 06/02/2023 T. Xirofotos Added Section 3

V0.4 10/02/2023 K. Katsaros Added Section 6

V0.5 13/02/2023 G. Scivoletto Added Section 4

V0.6 16/02/2023 T. Xirofotos, E. Bonetto Figures added and updated, Added Section 5

V0.7 19/02/2023 All Module Interconnections Section added

V0.8 23/02/2023 All Added Section 7

V0.9 27/02/2023 A. Rizk Review 1

V1.0 28/02/2023 All Review comments applied

V1.1 28/02/2023 A. Rizk, E. Bonetto Review 2

V1.2 05/03/2023 K. Katsaros Review 3

V1.3 10/03/2023 T. Xirofotos Review comments applied

V1.4 14/3/2023 E. Liotou Review 4

V1.5 24/3/2023 T. Xirofotos Addressed review 4 and added Annex C

Peer review

 Reviewer name Date

Reviewer 1 Amr Rizk 27/02/2023

Reviewer 2 Edoardo Bonetto 28/02/2023

Reviewer 3 Konstantinos Katsaros 05/03/2023

Reviewer 4 Eirini Liotou 14/3/2023

3

Legal disclaimer

The information and views set out in this deliverable are those of the author(s) and do not necessarily

reflect the official opinion of the European Union. The information in this document is provided “as is”, and

no guarantee or warranty is given that the information is fit for any specific purpose. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held responsible for the use

which may be made of the information contained therein. The 5G-IANA Consortium members shall have no

liability for damages of any kind including without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials subject to any liability which is mandatory due to

applicable law.

Copyright © 5G-IANA Consortium, 2023.

4

TABLE OF CONTENTS

TABLE OF CONTENTS .. 4

EXECUTIVE SUMMARY .. 10

1. INTRODUCTION ... 11

1.1. Purpose of the deliverable.. 11
1.2. Structure of the deliverable ... 12
1.3. Relation with other deliverables and tasks .. 12
1.4. Intended audience ... 13

2. OVERVIEW OF THE 5G-IANA REFERENCE PLATFORM ... 14

3. NETWORK APPLICATION ORCHESTRATION AND DEVELOPMENT

MECHANISMS .. 17

3.1. Design details of the nApp Orchestration and Development layer.. 17
3.1.1. nApp toolkit ... 18
3.1.2. Deployment Management .. 18
3.1.3. Lifecycle Management ... 19
3.1.4. Slice Intent Handler .. 19
3.1.5. Policy Execution ... 20
3.1.6. Application Profiling .. 20
3.2. nApp Orchestration & Development layer developments .. 20
3.2.1. nApp Toolkit Developments ... 20
3.2.2. Deployment Management Developments ... 21
3.2.3. Lifecycle Management Developments .. 22
3.2.4. Slice Intent Handling Developments ... 23
3.2.5. Policy Execution Developments .. 23
3.2.6. Application Profiling Developments ... 24
3.3. Planned extensions in the second development cycle ... 25
3.3.1. Deployment Management planned extensions ... 25
3.3.2. Lifecycle Management planned extensions .. 25
3.3.3. Slice Intent Handling planned extensions ... 25
3.3.4. Policy Execution planned extensions .. 26
3.3.5. Application Profiling planned extensions ... 26

4. SLICE MANAGEMENT AND RESOURCE ORCHESTRATION MECHANISMS 27

4.1. Design details of the Slice Manager and Resource orchestration layer 29
4.1.1. Design details of the E2E Resource Orchestration for Far Edge enabled nApps 29

5

4.1.2. Design details of the OBU/Edge/Cloud Continuum Resource Inventory .. 30
4.1.3. Design details of the Slice Management ... 31
4.2. Slice Manager and multidomain orchestration layer developments 32
4.3. Planned extensions in the second development cycle ... 33

5. VIRTUALISED INFRASTRUCTURE SEGMENTS ... 34

5.1. On-vehicle MANO, Edge and Cloud MANO ... 34
5.2. Information and localization service developments .. 35
5.3. Resource monitoring agent developments... 36
5.4. Far-edge devices developments ... 37
5.5. Future extensions .. 38

6. CROSS LAYER FUNCTIONALITIES .. 39

6.1. Distributed AI/ML framework mechanisms .. 39
6.1.1. AFs and FLOWER integration ... 43
6.1.2. Distributed AI/ML orchestration layer developments .. 45
6.1.3. Planned extensions in the second development cycle ... 45
6.2. Monitoring & Analytics, Distributed Data Collection .. 46
6.2.1. Design Details of Monitoring & Analytics .. 46
6.2.2. Monitoring & Analytics Developments... 47
6.2.3. Planned extensions in the second development cycle ... 47

7. INTERFACES AND WORKFLOWS .. 49

7.1. Design Details of the interfaces .. 49
7.2. Interfacing Developments .. 50
7.2.1. NOD Interface .. 50
7.2.2. NOD-SM Interface .. 50
7.2.3. MANO Interface .. 53
7.2.4. OVMANO Interface .. 56

8. CONCLUSION ... 58

ANNEX A ... 59

ANNEX B ... 61

ANNEX C ... 63

REFERENCES ... 67

6

List of Figures

Figure 1: 5G-IANA Orchestration Layers abstraction .. 14

Figure 2: 5G-IANA Orchestration Layers and the respective internal modules .. 15

Figure 3: nApp Orchestration and Development layer submodules.. 17

Figure 4: High Level functionalities of Slice Management & Resource Orchestration Layer 27

Figure 5: Internal and External interaction of the Slice Management and Resource Orchestration

components ... 28

Figure 6: Internal Architecture of the E2E Resource Orchestration for Far Edge enabled nApps 29

Figure 7: OBU/Edge/Cloud Continuum Resource Inventory internal structure .. 30

Figure 8: Slice Management internal structure .. 31

Figure 9: Localization service workflow.. 36

Figure 10: Resource monitoring agent workflow .. 37

Figure 11: Distributed Machine Learning Orchestration (DMLO): Client Selection operation 43

Figure 12: FLOWER framework component architecture ... 44

Figure 13: AOEP interfaces.. 49

Figure 14: nApp Orchestration & Development – Slice Management & Resource Orchestration

interaction flowchart ... 51

Figure 15: NOD-SM-IF OpenAPI specification ... 52

Figure 16: Resource Orchestration - MANO Interaction to allocate k8s quotas and namespaces 54

Figure 17: Resource Inventory - MANO Interaction to receive information about the availability of the

Edge and Far Edge devices .. 54

Figure 18: NOD - OBU/RSU MANO Interaction to deploy and to verify the status of a deployed service

 ... 56

Figure 19: Visualization of the work done in the NOD layer ... 63

Figure 20: Visualization of the work done in the NOD layer ... 64

7

List of Tables

Table 1, nApp Toolkit interactions ... 21

Table 2, Deployment Manager interactions ... 21

Table 3, Lifecycle Manager interactions .. 22

Table 4, Slice Intent Handling interactions... 23

Table 5, Policy Execution interactions ... 24

Table 6, Application Profiling interactions ... 24

Table 7, E2E Resource Orchestration interactions ... 30

Table 8, OBU/Edge/Cloud Continuum Resource Inventory interactions .. 31

Table 9, Slice Management interactions .. 32

Table 10, DMLO interactions .. 42

Table 11, Monitoring & Analytics interactions ... 47

Table 12, NOD-SM-IF API ... 52

Table 13, Resource Inventory - Kubernetes REST Commands .. 55

Table 14, Resource Inventory - Kubernetes REST Commands .. 55

Table 15, Description of extensions per module of NOD .. 63

Table 16, Description of extensions per module of SM& RO layer ... 65

Table 17: Description of extensions per module of the cross-layer functionalities .. 66

8

ABBREVIATIONS

Abbreviation Definition

ACK Acknowledgement

AF Application Function

AI Artificial Intelligence

AOEP Automotive Open Experimental Platform

API Application Programming Interface

CAN Controller Area Network

CCRI Cloud Continuum Resource Inventory

DML Distributed AI/ML

DMLO Distributed Machine Learning Orchestrator

EMBB Enhanced Mobile Broadband

FL Federated Learning

GNSS Global Navigation Satellite System

gRPC Google’s Remote Procedure Call

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IF Interface

JSON Javascript Object Notation

MANO Management and Orchestration

MEC Multi-Access Edge Computing

ML Machine Learning

NOD nApp Orchestration and Development

NSI Network Slice Instance

OBU On Board Unit

REST Representation State Transfer

9

RI Resource Inventory

RO Resource Orchestration

RTK Real Time Kinetic

RSU Road Side Unit

SDR Software Defined Radio

SDN Software Defined Network

SLA Service Level Agreement

SM Slice Manager

SME Small and Medium Enterprise

URLLC Ultra Reliable Low Latency Communication

10

EXECUTIVE SUMMARY

The 5G-IANA Automotive Open Experimental Platform (AOEP) aims to provide an open and flexible

experimentation platform to third-party developers (e.g., SMEs) that want to develop new 5G-based services

devoted to the Automotive vertical. The developments that are reported here concern the first release of

5G-IANA AOEP modules which are planned to be used in the first round of integrations towards the initial

platform release. These developments follow the layered structural approach of 5G-IANA architecture as

defined in D2.1. Specifically, for each of the two layers comprising the architecture, namely nApp

Orchestration and Development (NOD) layer and the Slice Management and Resource Orchestration layer,

this document reports the design and the developments for each of the functional blocks that are embedded

in each layer. Emphasis is given on describing also the interconnections of all the functional blocks. Thus, for

each of the functional blocks, the document provides a description of the functionality or the functionalities

that are provided or linked with, the baseline technologies for the development, the interconnections with

other functional blocks, as well as the extensions that are planned for the second development cycle that

starts on M25.

The separation of the 5G-IANA orchestration platform functionalities between the two aforementioned

layers serves the need to operate between the two different administrative domains. Each of these layers

has a precise focus in terms of functionalities and supported procedures, implementing a clear separation of

roles and responsibilities across the different platform’s stakeholders. nApp Orchestration and Development

(NOD) Layer covers the Application Domain providing mechanisms and procedures for the deployment and

the real-time management of the application only (covered in Section 3), while the Slice Management and

Resource Orchestration layer covers the interplay with the programmable resources incorporation

mechanisms for registering and deregistering the various edges, either moving (OBU) or static (RSU), and it

also possesses the logic to ensure specific performance requirements (covered in Sections 4, 5).

Complementary, for each layer, a description is provided indicating the integration points and interfaces

between other layers or entities of the platform (covered in Section 7).

The document also covers the developments for the cross-layer functionalities that are provided as feature

of the 5G-IANA Platform, and specifically the Distributed ML/AL framework and the Monitoring and Analytics

accompanied by the Distributed Data Collectors that integrate with the two aforementioned layers as well

as its planned extensions (covered in Section 6).

11

1. INTRODUCTION

1.1. Purpose of the deliverable

This deliverable (D3.1) reports on the outcomes of the design and development activities carried out in the

scope of WP3 and relative to the 5G-IANA Automotive Open Experimental Platform (AOEP). The document

describes the developments that have been carried out from M12-M21 (February 2022) for the building

blocks and interfaces of the 5G-IANA architecture that will comprise the first consolidated version (Version

A) of the Platform (in M24 after finishing the first round of integrations). The reported developments stem

and comply with the 5G-IANA general architecture and requirements, as they have been defined in D2.1.

More in details, with reference to the 5G-IANA overall architecture outlined in D2.1, this deliverable

elaborates on the chosen design and technological solutions for the implementation of the 5G-IANA

Orchestration Platform and their respective building blocks. It provides technical view on the design of each

of the layers that are the: a) nApp Orchestration and Development Layer (excluding the developments of the

nApp Toolkit that are reported extensively in Deliverable 4.1), b) the Slice Management and Resource

Orchestration Layer including the virtualized infrastructure segments as well as c) the Distributed Machine

Learning and the Monitoring and Analytics features of the Platform. To complement the technical view, this

document provides a) the baseline technical description and the implemented extensions for each functional

block of each layer of the architecture, and b) the interconnections between the various software modules

accompanied by the feature they are linked. Descriptions of the interfaces per layer are provided

accompanied by the respective developments. Deliverable 3.3 will provide and complement the technical

description and developments on all the interfaces of the AOEP that are not included in the current

deliverable.

This specific document puts in evidence the developments and extensions that have been introduced during

the First Development Cycle of the project (M12-M21) as well as the delta with regards to the inherited work

from other projects. Additionally, it includes the planned features to be addressed in the following release of

the platform.

12

1.2. Structure of the deliverable

This deliverable follows the next structure:

• Section 2 provides an overview of the 5G-IANA Platform highlighting the Orchestration Layers providing

high level information, and clarifies their respective role in the overall Platform.

• Sections 3, 4, 5, 6 provide technical descriptions with regards to the design, the implementation and the

interactions between the software elements that reside in a particular layer or to others.

• Section 7 provides workflows and technical descriptions of the interfaces.

Annex A exhibits a nApp descriptor as this has been defined and implemented. This is the input that triggers

the orchestration phase that follows the nApp Definition phase. For the sake of clarification, nApp definition

phase is provided by the functionalities offered by the nApp Toolkit (described in D4.1) while orchestration

phase involves all the entities and layers described in this deliverable.

Annex B demonstrates the descriptor that facilitates the slice negotiation phase between the two layers of

the AOEP (NOD-SM&RO) as it has been defined and modelled.

Annex C provides an aggregated picture for all the developments and the work-done per module.

1.3. Relation with other deliverables and tasks

This deliverable reports the developments achieved during the first cycle of development (M12-M21) of the

5G-IANA. This deliverable is mapped and complies with Deliverable 2.1 and the specification of the 5G-IANA

AOEP.

This deliverable collects and reports the activities of WP3 and specifically from:

• T3.1 that leads the developments in the nApp Orchestration Layer (Section 3) including also the

Monitoring and Analytics part (Section 6.2).

• T3.2 & T3.3 that lead the developments in Slice Management and Resource Orchestration Layer including

On-Vehicle and Road-side MANO (Section 4, Section 5).

• T3.4 that leads the developments for the Distributed ML framework that is a feature of the 5G-IANA

AOEP (Section 6.1).

13

In accordance with the implementation strategy and plan described in the project’s DoA and the project’s

workplan described in D5.1, WP3 presents the current developments that will be consolidated in M24 on the

first release (Version A) of the 5G-IANA Orchestration Platform. D3.1 reports the active developments and

the key design features that the upcoming version of the Platform will realize.

The developments of the features of the 5G-IANA Orchestration Platform (and in extension, the first

consolidated version of the Platform), described in D3.1 will foster the advancement of key WP4, WP5 and

WP6 activities, as they:

• provide a consolidated view of current and planned features on WP4 that will lead the aspects and the

new features that the nApp Toolkit can adopt and implement.

• provide guidelines for the integration and the features supported by the overall delivered 5G-IANA AOEP.

On the other hand, the outcomes of the aforementioned activities will drive the planned future development

of the Platform and define the actual content of D3.2, D3.3 and D3.4.

As already stated above, D3.1 is linked to the deliverable D2.1 (from WP2), which defines the requirements

and the general architectural design approach for the 5G-IANA Platform: it is therefore recommended that

the reader goes though D2.1 first, in order to obtain a better overview of the overall design, before going

into the implementation details described herein.

1.4. Intended audience

The dissemination level of this deliverable is “public” (PU). It is primarily aimed to be the reference document

to be used by the 5G-IANA Consortium Members during the development and integration phases of the 5G-

IANA project. Furthermore, this deliverable is addressed to any interested reader (i.e., public dissemination

level) who wants to be informed about the 5G-IANA AOEP architecture. It is expected to be particularly useful

also for the SMEs that will be selected to experiment with 5G-IANA Platform, following the project’s Open

Calls.

REMARK: Deliverable 3.1 is tagged as confidential in the DoA. However, given that there is an upcoming

amendment in order to apply to the following instruction “dissemination level needs to change from

Confidential to Public, as requested by the project interim review." Deliverable 3.1 dissemination level is

public.

14

2. OVERVIEW OF THE 5G-IANA REFERENCE PLATFORM

The 5G-IANA platform is specifically conceived for simplifying and automating the management of Network

Applications - referred as nApps - onto programmable infrastructures, including 5G. At a glance, the proposed

platform aims to mostly hide the complexity of programmable infrastructure and 5G environment to service

developers and providers, and to make the development, deployment and operation of 5G-ready

applications (nApps) similar to the well-known corresponding processes applied to cloud-native applications

in cloud computing environments.

Figure 1: 5G-IANA Orchestration Layers abstraction

Figure 1 shows the 5G-IANA conceptual architecture (Figure 1 is high level view of the 5G-IANA AOEP, as it is

defined in the deliverable D2.1) and highlights the two-layered Orchestration stack, whose features and

implementations are extensively described in the following parts of this deliverable: the nApp Application

Orchestration and Development (NOD) (layer 1), the Slice Management & Multi-Domain Orchestration,

the virtualized infrastructure segments (layer 2) along with the cross layer supported functionalities: The

Distributed AI/ML framework (cross-layer), the Monitoring & Analytics and the Distributed Data Collection

(cross-layer). These are described together in Section 6 for the sake of readability and given the

complementarity of their features.

15

Figure 2 provides an internal view for each layer indicating the modules behind each provided functionality.

Following a top-down layered approach, Section 3 provides the functionalities, the design and the

developments for the nApp Orchestration & Development, while Section 4 and Section 5 provide the

functionalities, the design and the developments for the Slice Management & Resource Orchestration and

the different Virtualized infrastructure segments. Section 6 is dedicated to the cross-layer functionalities

provided by the Distributed AI/ ML framework, and the Monitoring & Analytics including also the

Distributed Data Collectors. Section 7 describes the interactions and the interfaces inside the AOEP. Section

7 starts from the interface which facilitates the communication with the nApp developers (technical details

are excluded because this is in the scope of D4.1) and goes through the details for the communication

between the two layers as well as the virtualized infrastructures. Annex C summarizes and depicts all the

extensions that have been implemented and the planned for implementation with respect to the various

modules at different layers .

Figure 2: 5G-IANA Orchestration Layers and the respective internal modules

The separation of the 5G-IANA orchestration platform functionalities between the two aforementioned

layers serves the need to operate between the two different administrative domains. The two administrative

domains the platform spans are: the Application Domain (in yellow) and the Infrastructure Domain (in

blue). The distinction of layers targets the different “work-burden” that has to be achieved and managed.

This way, the tools of the orchestration are targeting two lifecycles and specifically a) of the application and

b) of the programmable infrastructure and network services. In this sense, the 5G-IANA Platform is

comprised by a set of orchestration tools with each set devoted to its specific (applicative or network)

16

administrative domain. Each administrative domain is operated by a specific stakeholder: for the Application

Domain the stakeholders are nApps developers of various automotive vertical industries, while for the

Infrastructure Domain the stakeholders are Programmable infrastructure owners including 5G network

operators. For the sake of clarity, the reader must know that Slice Management & Resource Orchestration

Layer handles the communication with various edges including the on vehicle MANO. Given that the on-

board units (OBU) and road side units (RSU) are part of the programmable resources, the specific work

described is undertaken by the Slice Management & Resource Orchestration Layer.

The cross-layer functionalities (as Figure 2 shows) are runtime functionalities supported by the 5G-IANA

Platform and they are:

a. the Monitoring which is described in Section 3 and

b. the Distributed AI/ML feature which is described in Section 6.

It is important to mention that the end-to-end deployment of a nApp, including its runtime services,

mandates the orchestrator to programmatically dictate the configuration of computing, storage and network

resources in a continuous and efficient way.

17

3. NETWORK APPLICATION ORCHESTRATION AND DEVELOPMENT
MECHANISMS

This section goes through the design and the functionalities provided for each individual module of the nApp

Orchestration and Development Layer, the developments that took place (Section 3.2) and the planned

extensions for each particular module until the release B of the 5G-IANA platform (Section 3.3).

3.1. Design details of the nApp Orchestration and Development layer

The objective of this layer (as already expressed in Deliverable 2.1) is to undertake the deployment and real-

time management of nApps. Under this scope, this layer interfaces the end user (i.e., the automotive

industry application developer) for managing the deployable applications and their features. It decouples the

application layer management procedures from the network layer management. As such, it interfaces the

underlaying slice creation and management systems, providing compatibility with any network orchestration

solution and their respective slice management subsystems.

Figure 3: nApp Orchestration and Development layer submodules

More specifically, the nApp Orchestration and Development Layer consists of all software modules that are

responsible for registering a nApp and all its components, wrapped with the cloud-related and slice-related

metadata, authoring deployment and runtime policies, negotiating slices and managing the operational state

18

of the nApp within the scope of a materialized slice. Figure 3 provides an overview of the nApp Orchestration

and Development layer architecture including all its modules and the southbound interface. The modules

are described in the following subsection while the interface is described in Section 7.

3.1.1. nApp toolkit

The nApp toolkit is thoroughly described in Deliverable 4.1 and there will be no technical details of it in this

deliverable; however, for the sake of reader’s clarity and to provide the connection with the Orchestration

layers, a description is provided. Thus, the nApp Toolkit offers the abstraction for registering, onboarding

nApp components and composing a nApp without interfering with the infrastructure and network

configuration details (e.g., the application developers tags one container for OBU deployment without the

need to know any technology-specific information like metadata that are required for a deployment in

Kubernetes or in Openstack or through docker-compose or Helm charts [1]). It assists the vertical service

providers to wrap cloud native nApps in a proper format, so as to be publishable in the Container Registry

(see D4.1 - Section 2.1.2). Each nApp consists of multiple containers that are chained in the form of a service

graph (Deliverable 2.1). The nApp Toolkit provides design-time validation in the granularity of component

model and guarantees that required cloud-native properties are maintained through metadata regarding:

a. minimum infrastructural requirements

b. configuration parameters per atomic component

c. mutable configuration parameters during runtime

d. exposed and required interfaces – dependencies for a component to be functional

b. deployment preferences

As it can be seen from Figure 3, the nApp Toolkit is one of the functional blocks provided by the nApp

Orchestration and Development Layer and provides input to the Vertical Deployment & Lifecycle

Management block (see the Annex A).

3.1.2. Deployment Management

The Deployment Manager is the software module that carries out the task to realise the initial actual

deployment of a nApp Graph on top of programmable resources by undertaking the task of communication

19

with the underlaying registered infrastructure. To do so, the Deployment Manager has to be fully aware of

the available resources, their state and directive-indications (declared through the 5G-IANA specific

metadata) for the actual deployment. The knowledge of the resource-state derives from the interaction of

the Deployment Manager with the Resource Inventory (see Section 4.1.2). It is important to state that the

ability of this module to perform deployments in various virtualization environments derives from a built-in

capability to interact with various virtualization endpoints. Hence, the Deployment Manager provides an

abstract interface for basic management virtualization operations (e.g., select/create tenant,

create/modify namespaces, etc.) by incorporating some of the industry-dominant virtualization

technologies (Openstack [2], Kubernetes [3], Openshift[4]) and their respective APIs.

3.1.3. Lifecycle Management

The Lifecycle Manager is a closed control loop that assesses continuously the existing resources, the

deployment requests and the reconfiguration requests of the already deployed nApps. This software module

encapsulates the orchestration business logic and can be seen as a centralized logical entity that affects the

“scheduling” of nApp components that are distributed at various virtualizations levels i.e., at the cloud-edge-

OBU level. In a nutshell, the Lifecycle Manager is responsible to maintain the operational state of the nApp.

The state is mapped to an amount of resources that are allocated per component of the nApp, the slice

parameters that have been selected, the geographical constraints of the deployment, etc. Any change on

these aspects has to be handled by the control plane that the Lifecycle Manager oversees.

3.1.4. Slice Intent Handler

The purpose of the Slice Intent Handler module is to handle the complete lifecycle of the Network Slice

creation process. The conceptual flow of this module includes a) the slice request phase, b) the slice

instantiation, c) the slice operation and d) the slice deprovision. During the instantiation phase, the creation

and verification of the necessary virtualized environment is performed. This process programmatically

allocates and assigns resources to virtualized environments to host the lifecycle of the nApp. These

environments will be adopted to satisfy the nApp requirements coming from the Service Composition

module (which belongs to the nApp Toolkit). The translation of the requirements to a proper slice

configuration plan is a primary objective of the Slice Intent Handler (see a formalized slice intent expressing

the user-defined requirements in json in the Annex B). Upon completion of the instantiation phase, all

resources shared/dedicated to the slice should have been created and configured.

20

3.1.5. Policy Execution

As previously stated, the Lifecycle Manager is responsible to maintain the operational state of all nApp

components and to deal with any fluctuations on the different aspects (changes in the operational state that

Lifecycle Manager stores – see Section 3.1.3) of an “operational” state that are: the amount of resources that

are allocated per component of the nApp, the slice parameters that have been selected, the geographical

constraints of the deployment, etc. Some of these aspects can be deliberately amended by policies. Policies

are instructions regarding how the overall nApp should behave prior to the deployment and during runtime.

Policies are based on their property to affect the initial deployment or the overall runtime behaviour. In

5G-IANA the Policies are covering only the runtime phase (not the prior to deployment phase) and are

expressed as a set of rules and actions. Each rule is defined as Service Level Agreement (SLA) expressions

(formally SLOs [5]) that conceptualize the desired state at the nApp graph-level or at the nApp component-

level. In a nutshell, policies are realized through a rule-based framework that attempts to derive execution

instructions based on the current set of data and the active rules; rules associated with the deployed service

graphs at each point of time. The SLAs can be authored through the Policy Editor as rules (which belongs to

the functionalities provided by nApp Toolkit described in D4.1) and the data is fed to the Policy Execution

through the Monitoring module that is responsible to collect data based on a set of active monitoring probes.

The evaluation of the rules according to incoming monitoring data takes places in the Policy Execution as

well as the triggering of specific actions that the Lifecycle Manager will need to realize.

3.1.6. Application Profiling

The Application Profiling is designed for supporting various profiling aspects at nApp component and nApp

graph level. The scope of this software entity is the examination of the behaviour of the application

characteristics (e.g., resources’ usage efficiency, scaling or potential scaling actions and profiles,

identification of bottlenecks, identification of capacity limits and breaking points upon stressing the software

processes, reliability aspects taking into account time series data with identified problems and failures) under

various conditions. Application Profiling consumes monitoring metrics by the Monitoring & Analytics with

specific criteria e.g., fetching nApp ID or nApp component monitoring data, historical data timeslot and more.

3.2. nApp Orchestration & Development layer developments

3.2.1. nApp Toolkit Developments

21

NApp Toolkit Developments are thoroughly described in Deliverable 4.1. However, for a nApp deployment,

the starting point is when a nApp descriptor is being sent from the nApp Toolkit to the Deployment

Manager. During the first development cycle (M12-M21) of the project the development activities focused

on the respective integration of the nApp Toolkit with the Deployment Manager. In particular, the

definition of the descriptor of a nApp (see in the Annex) and the modelling in order to proceed to

implementation accompanied with front-end extensions of these features is what mainly took place over the

first development phase.

Given that the nApp Toolkit is the persistency layer for: a) the registered nApps, b) the deployment and

slice constraints and c) the authored policies, there will be no technical descriptions for these

functionalities on this Deliverable but in D4.1.

Module’s Interactions

The nApp Toolkit interacts with the following software modules.

Table 1, nApp Toolkit interactions

Interacting Module Description

Deployment Manager
Exposed API for retrieval (POST) of the nApp

Descriptor before proceeding for an actual deployment

3.2.2. Deployment Management Developments

The Deployment Manager is being developed as a microservice[6] mainly in Spring framework [7] and partially

in Quarkus framework [8], for optimizing the memory footprint and the spin-up times (of the microservices

that runs inside containers). Since the Deployment Manager will operate on top of Kubernetes (including all

the flavors that are described in Section 5.1) it is implemented as a Kubernetes controller responsible for

service graphs. All the microservices are developed in Java 11 [9] and many aspects of development, like the

development of RESTful interfaces [10], concurrency on service multiple requests, uniform reporting and

analytics during operation, among others, are considered granted. Besides REST, the communication among

some of the microservices happens through a Kafka [11] bus.

Module’s Interactions

The Deployment Manager interacts with the following software modules.

Table 2, Deployment Manager interactions

22

Interacting Module Description

Lifecycle Manager

Receives from the Deployment Manager all the

necessary data and settings for the nApp deployment.

The data regard the current and previous

orchestration loop states and are stored internally.

nApp Toolkit
Connects to the Deployment Manager for sending the

nApp descriptor before a deployment.

Slice Intent Handling

After the selection of a nApp, through this interface the

Deployment Manager propagates three distinct ‘sets’

of information, i.e. cloud constraints, network

constraints and location of the deployment of that

particular nApp. After that, the slice negotiation

process with the Slice Manager takes places.

3.2.3. Lifecycle Management Developments

Lifecycle Manager developments are on the same track of work with Deployment Manager. These two are

tied together with the only exception that Lifecycle Manager executes the policies. It is important to note

here that, service instances management is provided natively by Kubernetes. Lifecycle Manager integrates

the Kubernetes API for programmatically triggering actions under the actions inferred by the Policy module.

Module’s Interactions

The Lifecycle Manager interacts with the following software modules.

Table 3, Lifecycle Manager interactions

Interacting Module Description

Deployment Manager The Deployment Manager triggers a new instance

deployment. The Lifecycle Manager implements the

orchestrator loop, supervising all the steps and

continuously checking the operational state of all the

deployments and notifies the Deployment Manager for

a re-deployment and maintenance procedure.

Policies Execution Consumes the actions produced by the Policy

Execution module and triggers the Deployment

Manager (e.g., scaling action).

23

3.2.4. Slice Intent Handling Developments

Slice Intent Handling is a Quarkus [6] microservice purely developed in Java 11 with sole purpose to support

the complete lifecycle of Network Slice creation for the nApp Orchestration layer (see Section 3.1.4). It is

also responsible for parsing and evaluating the realised slice (sent back by the Slice Manager) before signalling

the Deployment Manager to start the deployment (see section 7.2.2). Slice instantiation and slice operation

phases are totally controlled by the Slice Manager and Resource Orchestration Layer. Currently, there are

ongoing developments for realizing the explicit Edge selection given by the end-user i.e., tag a nApp

component to be deployed on top of a moving Edge. This type of information has to be reflected inside the

resource metamodel (communication details for connecting on the specific Edge, virtualization technology

e.g. microk8s, etc.), formulated and communicating to the underlaying layer (the E2E Resource Orchestration

for Far Edge enabled nApps).

Module’s Interactions

The Slice Intent Handling interacts with the following software modules.

Table 4, Slice Intent Handling interactions

Interacting Module Description

Deployment Manager

Deployment Manager’s interface is used to obtain the

set of information, i.e. cloud constraints, network

constraints, location for the deployment of that

particular nApp in order to formulate that into a

specific format.

Through different resource of the same interface, it

signals the Deployment Manager to start deployment

of nApp after slice reply has been sent by the Slice

Manager (see cell below).

E2E Resource Orchestration for Far Edge

enabled nApps (SLICE MANAGEMENT &

RESOURCE ORCHESTRATION layer)

The slice negotiation signalling is performed through a

Northbound interface of the Slice Manager (see NOD-

SM-IF section 7). This is the connection point with

the underlying layer for exchanging slice requests.

3.2.5. Policy Execution Developments

Policies are developed in plain Java code and the policy creation is based on Drools [12]. Policies are realized

through a rule-based framework that attempts to derive execution instructions based on the current set of

24

data and the active rules; rules are associated with the deployed application graphs at each point in time.

Drools Engine faces a problem with regards to the bottleneck of performance when rule analysis takes

places[13]. During the usage of Drools in 5G-IANA project the aforementioned problem was identified and in

order to overcome this an optimization technique has been implemented. Specifically, to minimize the

execution time the optimization was to translate the Drools Flow process straight into Java code and

executing that Java code instead. With that, and as confirmed by discussion threads in the KIA community

[14], Drools are performing adequately fast. Policies are not new. In 5G-IANA the developments regard the

extensions on the optimization to deal with the scalability and the performance bottleneck of Drools.

Module’s Interactions

The Policy Execution interacts with the following software modules:

Table 5, Policy Execution interactions

Interacting Module Description

Monitoring
Monitoring is publishing alerts while the Policy

Execution consumes them to evaluate a policy

Lifecycle Manager
It concurrently executes activated policies to infer

corrective actions

3.2.6. Application Profiling Developments

The baseline technologies used for the development of the profiler are Python 3.8, Kafka [9] (for streaming

data pipelines) and OpenCPU (for data analysis) [15] and Tensorflow (for machine learning) [16]. Application

profiling is not new. Extensions for the profiling are not started yet (See the Planned extensions section).

Module’s Interactions

The Profiling interacts with the following software modules:

Table 6, Application Profiling interactions

Interacting Module Description

Monitoring
Profiler consumes specific timeseries metrics by

applying filtering queries to the Monitoring

25

3.3. Planned extensions in the second development cycle

This section goes through the planned developments and extensions as identified and validated by the

project’s objectives.

3.3.1. Deployment Management planned extensions

Currently the Deployment Manager is refactored in order to be generic, with the right levels of abstraction

to support both OpenStack and K8s APIs, while there are still features in the K8s API that will be implemented

next. Specifically, in the second development circle, there will be extensions to enable support for Kubernetes

Configmaps[17]. Given that, Configmaps are a way to store configuration data in Kubernetes they can be used

to decouple Kubernetes configuration from application code, making it easier to manage and update

application configurations without changing the underlying code. Thus, this can be used to provide elevated

reconfigurability taking into account application-specific configuration properties for a nApp graph.

3.3.2. Lifecycle Management planned extensions

The planned extensions relate with scaling strategies of a nApp and the migration strategy that will realize

the process of moving services from one node to another. Another extension is the integration with the

DMLO. Specifically, the definition and incorporation of specific rules that will produce an action, as instructed

by the DMLO (see Section 5) is currently under investigation.

3.3.3. Slice Intent Handling planned extensions

Extensions on adaptive slices (i.e., with inflated/deflated cloud) through a “sliceUpdate” resource in the Slice

Intent Handling-Slice Manager API is being examined. The sliceUpdate will take place after the initial

deployment of the nApp and will cover changes on the already allocated and provisioned slice. Specifically,

the requirements for implementing a slice update are currently under investigation, focusing on updates

which:

a. will pro-grammatically increase/decrease the computing resources needed for the application during

runtime.

b. will handle a request for transferring an already deployed nApp component from one (edge)

cluster/node to another.

26

3.3.4. Policy Execution planned extensions

Policies will be updated and integrated with the rest of the platform in order to be able to insert more rules

that will trigger actions on other software modules and specifically the DMLO.

3.3.5. Application Profiling planned extensions

The Profiler is planned to introduce its function during the second cycle of development after the monitoring

engine is fully integrated in the 5G-IANA Platform. The developments will be mainly the integration with the

Overall platform.

27

4. SLICE MANAGEMENT AND RESOURCE ORCHESTRATION MECHANISMS

The Slice Manager and Resource Orchestration layer (introduced in Section 2 and depicted in Figure 1, Figure

2) implements the mechanisms to manage and orchestrate the available Edge and Far-Edge resources,

along with the (Network Slice Instances (NSIs) that can be used to support the system.

Figure 4: High Level functionalities of Slice Management & Resource Orchestration Layer

The layer is composed of three main functionalities implemented by its subcomponents:

• The E2E Resource Orchestration for Far Edge enabled nApps: it provides the functionalities to manage

and coordinate the resource quotas at the target host, considering the received provisioning requests.

• OBU/Edge/Cloud Continuum Resource Inventory (CCRI): it implements a continuously updated

inventory of available Edge and Far Edge computing resources to be targeted when a service provisioning

action is addressed by the Slice Intent Handler (see Figure 3). It exposes an interface to retrieve the

current list of the available Edge and Far Edge devices, along with their static capabilities (computing

resources, presence of GPUs, etc.). Moreover, it can rely on external platforms (monitoring platforms,

information services) to query its internal device registry based on filtering criteria (for instance, location-

based queries): the Far Edge Resources Information Service internal component is able to periodically

query an external monitoring entity (like a Prometheus-based monitoring platform) to hold dynamic

information (like the location of a device) to enrich its internal registry and expose an interface to be

queried based on filtering criteria.

• Slice Management: It provides the functionalities to map the Service Intent request (provided by the

Slice Intent Handler component that is part of the nApp Orchestration and Development layer) with the

most suitable NEST [18] according to a set of translation rules. It relies on a set of pre-defined 5G Network

Slice instances to be chosen according to the requested QoS indicator.

28

An overall picture of the internal and external interactions of the Slice Management & Resource

Orchestration Layer software components is depicted in Figure 5 and described in the sections following.

Figure 5: Internal and External interaction of the Slice Management and Resource Orchestration
components

Figure 5 shows how the Slice Management & Resource Orchestration layer requests information from the

external components.

• A “slice intent” request from the nApp Orchestration and Development Layer triggers the slice selection

and quota allocation functions described above, through the internal mechanisms to select the most

suitable Network Slice Template from the NEST catalogue implemented in the E2E Resource

Orchestration for Far Edge Enabled nApps.

• The integration with the MANO Layer is implemented through the combination of the node availability

notification (to keep track of the devices that can be used to instantiate the services) and the quota and

namespace allocation when a slice intent request contains a set of computing constraints.

29

4.1. Design details of the Slice Manager and Resource orchestration layer

4.1.1. Design details of the E2E Resource Orchestration for Far Edge enabled nApps

The E2E Resource Orchestration for Far Edge enabled nApps (RO) takes care of the resource allocation across

the Far Edge to Cloud continuum. It is fed with the Service Intent request from the Slice Intent Handler (see

Figure 5) and it manages the request by allocating the most appropriate namespaces and quotas to the Far

Edge devices according also to the resource availabilities provided by the OBU/Edge/Cloud Continuum

Resource Inventory (CCRI or RI). It works in conjunction with the Slice Manager to return to the nApp

Orchestrator & Development layer (NOD) a full description of the computing and networking resources to be

used to instantiate the service on the target segment and host.

Figure 6: Internal Architecture of the E2E Resource Orchestration for Far Edge enabled nApps

The E2E Resource Orchestration for Far Edge enabled nApps is comprised of two software submodules:

• Multi-segment Resource Arbitration: This function is responsible to coordinate the provisioning of

computing resources by translating the information received from the nApp Orchestrator &

Development Layer (specifically from the Slice Intent) into a set of computing constraints. Starting from

the computing requirements and combining this information with the set of available Edge and Far Edge

resources obtained from the CCRI, the Multi-segment Resource Arbitration is able to build a “Quota

Reservation Request” to the Tenant Management & Quota Reservation component to apply the

operation to the actual devices.

• Tenant Management & Quota Reservation: It is responsible to implement the client interface to the

MANO layer and then to apply the action produced by the Multi-segment Resource Arbitration.

Multitenancy allows to deploy multi-vendor services to the same Edge and Far Edge resources, enabling

the possibility to exploit the platform by multiple automotive vendors.

30

Module’s Interactions

Table 7, E2E Resource Orchestration interactions

Interacting Module Description

Slice Intent Handler (nApp

Orchestration and Development Layer)

Translation of Intent high-level QoS requirements and

constraints into the most suitable 5G Service Profile

MANO 
Instantiation of the quotas and namespaces on the Far

Edge devices cluster

4.1.2. Design details of the OBU/Edge/Cloud Continuum Resource Inventory

Figure 7: OBU/Edge/Cloud Continuum Resource Inventory internal structure

The OBU/Edge/Cloud Continuum Resource Inventory (CCRI or RI) internal structure is reported in Figure 7. It

is based on three internal software modules, whose main functionalities can be explained as follows:

• Far Edge/Edge/Cloud Resource Inventory: These two components which implements a continuously

updated registry of the available resources (from the Far Edge to the Cloud) and their static capabilities.

It could be queried by the components who aim to receive a complete view of the status of the 5G-IANA

devices ready to host nApp or vertical services. Moreover, it could work in conjunction with the Far Edge

Resource Information services to enrich the device information with dynamic data (like the location of

the device itself or the remaining computing resources). This enrichment makes the Resource Inventory

able to expose filtering mechanisms to the query received by the external components.

• Far Edge Resource Information Service: It relies on external monitoring platforms to enrich the

information exposed by the Far Edge/Edge/Cloud Resource Inventory with dynamic data. The component

acts as a client for the Monitoring Service (described in Section 3.1.6) to correlate the availability

information stored in the Resource Inventory with dynamic information (like the location of the Far Edge

31

resource) to expose to the external components (mostly the DMLO) a filtering-based interface for the

Far Edge Resources. This could be used to select the most appropriate OBUs based on some refined

criteria (for instance, location based or computing resource available based criteria).

Module’s Interactions

Table 8, OBU/Edge/Cloud Continuum Resource Inventory interactions

Interacting Module Description

Monitoring & Analytics
To constantly be updated about dynamic Far Edge

Resource’s information (like the location)

MANO
To receive notifications about the availability of the

Edge and Far Edge resources over the time

DMLO

Periodically responding with information about the

candidate node set for the next Federated Learning

client selection process (see Section 6).

4.1.3. Design details of the Slice Management

Figure 8: Slice Management internal structure

The Slice Management component implements the functionalities for storing the available Network Slice

Instances (NSIs) and validating Service Provider requests for Vertical Services in terms of compatible 5G

service profiles. According to Figure 8 it is composed of four internal functions:

32

• Application Intent to Network Slice QoS Mapping: It receives the Slice Intent from the Slice Intent

Handler (depicted in Figure 5) and, relying on a set of translation rules, it is able to convert this

information to some recommendations about the most suitable Network Slice Instance available on the

system. This module, in particular, uses the Networking Constraints specified in the intent-based request

to select the most appropriate NEST for the instantiation of the 5G Network Slice, through the 5G

Network Slice Management Function, for the requested Vertical Application Slice. To select the NEST, the

module interacts with the NEST catalogue of the 5G Network Slice Management Function module to get

the NEST available and then maps the Networking Constraints to retrieved NESTs to select the most

appropriate one.

• Network Slice Verification, Selection & Application Coordination: It is able to choose the 5G Network

Slice from the Network Slice Management & Inventory based on the set of recommendations received

by the Application Slice Intent to Network Slice QoS Mapping component. Verification is performed based

on the networking requirements received by the Slice Intent Management module: the module verifies

whether there exists an appropriate Network Slice Template that is able to meet all the requirements.

• Network Slice Template Catalogue: The component which contains a static inventory with the Network

Slice Templates available on the system.

• Network Slice Management & Inventory: It implements a static database with a set of static 5G Network

Slice Instances to be selected for the instantiation of the Network Services.

Module’s Interactions

Table 9, Slice Management interactions

Interacting Module Description

E2E Resource Orchestration for Far

Edge Enabled nApps

Translation of Intent high-level QoS requirements and

constraints into the most suitable 5G Slice Instance

4.2. Slice Manager and multidomain orchestration layer developments

The E2E Resource Orchestration for Far Edge enabled nApps and the Slice Management components have

been developed and extended from the Slice Inventory & Resource Orchestrator module developed during

the Int5Gent EU Project. The component is a python-based software application that leverages the Flask

framework to implement a REST-full web server in order to expose all the endpoints needed by the nApp

33

Orchestration and Development (NOD) and implements the logic to manage the lifecycle management of

Vertical Application Slices and so to manage the lifecycle management of 5G Network Slices through the 5G

Network Slice Management Function module and to manage the resource quotas in various Kubernetes

clusters/VIMs for the Vertical Application components. The modules have been extended to be compliant

with a new set of requirements of the 5G-IANA platform. Planned extensions involve:

• the enhancement of the mapping mechanism to support additional QoS parameters, the implementation

of a verification mechanism to assess the presence of a suitable running NSI that matches the selected

NEST,

• the implementation of a RESTful interface to enable the management of NSIs by the Network Operator

• the modelling of tenants’ SLAs and profiles to accommodate constraints related to the usage of Far-edge

resources (i.e., OBUs, RSUs).

The OBU/Edge/Cloud Continuum Resource Inventory, instead, has been developed from scratch to fulfil the

5G-IANA requirements. The first release of the components implements all the main functionalities exposed

above except the mechanisms to query the inventory based on some filtering rules, that are yet to be defined

according to the requirements collected from the other platform components (see Section 6).

4.3. Planned extensions in the second development cycle

The OBU/Edge/Cloud Continuum Resource Inventory will be extended according to the requirements that

will be collected during the development and implementation of the monitoring mechanisms in conjunction

with the ones related to the Distributed Machine Learning Orchestrator. The main extensions will be related

to the implementation of filtering mechanisms on the Resource Inventory query interface, as well as the

internal communication with the Monitoring & Analytics (Table 7) to keep the Far Edge Resource Information

Service updated over the time.

34

5. VIRTUALISED INFRASTRUCTURE SEGMENTS

5.1. On-vehicle MANO, Edge and Cloud MANO

The use of Kubernetes has been judged the most suited for the orchestration of virtualized applications in

the far-edge segment (i.e., OBU, RSU) and the edge and cloud segments. This choice satisfies the On-vehicle

MANO (OVM) requirements (from SFR-OVM-1 to SFR-OVM-7) and Edge and Cloud MANO requirements

(from SFR-EAC-1 to SFR-EAC-5) that have been introduced in the 5G-IANA deliverable D2.1 “Specifications of

the 5G-IANA architecture”.

Kubernetes provides several features, such as scalability, resilience and portability, that match with the

requirements of the 5G-IANA context. Kubernetes grants scalability to applications, allowing them to scale

up or down the number of working nodes (i.e., the number of container’s replica) based on the runtime

requirements (e.g., CPU load). This allows to never lose performances or waste resources allocating more

working nodes than needed. The far-edge devices are hardware-constrained devices that require a

lightweight solution to be capable to work in a distributed architecture. Another key feature of Kubernetes

is the resilience that permits the applications, that have been deployed in a far-edge device, to keep running

even if the device experiences a failure in the network connection. Furthermore, the portability of

Kubernetes allows to use it in different environments such as far-edge and edge/cloud segments. This aspect

can simplify the management as just one MANO solution can be used.

Kubernetes is available in several distributions. In 5G-IANA, the MicroK8s distribution,[19]which is a

Kubernetes distribution certified by Canonical, has been selected. It provides the main features of Kubernetes

and it is designed to be lightweight and easy to install. These specific characteristics made MicroK8s the

optimal choice for the MANO in 5G-IANA as devices with limited hardware capabilities (e.g., ARM-based) are

the main target of the project. It is indeed preferable to have a solution that does not exhaust the available

computational resources.

The main Kubernetes distribution was not selected since its implementation is expected to require more

hardware resources with respect to MicroK8s. Other distributions of Kubernetes are minikube [20] and K3s

[21]. Both of them have been analysed, but they have been reputed as less suitable with respect to MicroK8s.

Minikube was discarded because it is designed to be used mainly for testing/developing purposes and is not

a complete product. K3s could be a valid alternative. It is very similar to Microk8s in terms of computational

35

resource requirements and features exposed. Microk8s was preferred over K3s because it seems to provide

more mature and complete software.

The deployment of MicroK8s on the devices needs to perform some preliminary steps before installing the

MicroK8s that can be done following the available documentation. The MicroK8s, and in general Kubernetes,

orchestrates containers, thus the far-edge device needs to be configured to support containerized

applications. In the case that the far-edge device is provided with a GPU, both the container engine and

MicroK8s need to be configured for the use of the GPU.

The deployment and the management of the deployed services on the onboard / roadside units is handled

by the nApp Orchestration & Development layer through its built-in ability to perform deployments in various

virtualization environments. Hence, the Deployment Manager relies on an abstract interface for basic

management operations for the Microk8s APIs.

5.2. Information and localization service developments

The information and localization service provides far-edge device's hardware capabilities and its current

position to the 5G-IANA platform (addresses SFR-GVI-3).

The information about the hardware capabilities (e.g., total CPU, total memory, GPU availability) of the far-

edge device is retrieved by the 5G-IANA platform from the APIs that MicroK8s makes available. This solution

is then to rely on the already available interfaces of MicroK8s. The far-edge device and the Resource

Inventory interact by exploiting these interfaces.

The position of the far-edge device is provided to the 5G-IANA platform from a service that has been

developed within the project that is named localization service. Figure 9 illustrates the workflow of this

service.

The localization service interacts with the GNSS receiver of the OBU for retrieving the current vehicle’s

position, while this information on the RSU is given as an input parameter based on the RSU installation

position. The localization service provides the position information to a Prometheus instance on the edge

server. The Resource Inventory retrieves the position information of far-edge devices by using the interfaces

that are made available by the Prometheus instance on the edge server.

36

Figure 9: Localization service workflow

The interaction of the localization service with the GNSS receiver is performed using the GPSd service [22].

The localization service is deployed as a system Linux service on the far edge devices. The localization service

retrieves the position from the GPSd using a TCP socket. GPSd supports two different operating modes. The

monitor mode exploits the GNSS receiver for providing real data, while the simulated mode uses pre-

recorded or manually crafted tracks saved in NMEA files. By default, if a GNSS receiver is plugged in and

available, the localization service retrieves the true position information. The simulated mode is also made

available to third-party experimenters thanks to an interface implemented with RESTful APIs. The third-party

experimenters can exploit these APIs for configuring the simulated mode of GPSd and uploading, deleting,

starting, or stopping the simulations of vehicle movement. The localization service provides the simulated

position when the GPSd service is activated in the simulated mode. This mode can be used on the physical

OBUs for testing some nApp without requiring having a real vehicle to drive around.

5.3. Resource monitoring agent developments

The Resource Monitoring Agent (SFR-GVI-3) has been implemented to collect and provide the information

about the status of virtualized resources in the far-edge devices. The Resource Monitoring Agent is made of

two software modules: the Hardware Monitoring Agent and the Data and Metrics Exporter. The workflow of

the Resource Monitoring agent is depicted in Figure 10.

37

Figure 10: Resource monitoring agent workflow

The Hardware Monitoring Agent is a software component that periodically checks in runtime the utilization

of the far-edge resources (e.g., CPU utilization, memory usage, storage used). Different versions of this agent

can be used depending on the hardware of the far-edge devices. The main difference is the presence of a

GPU on the far-edge device. If a GPU is present, specific commands need to be used for retrieving metrics

that are related to the GPU utilization. This software agent provides the collected information using a JSON

formatted message to the Data and Metrics Exporter using a RESTful APIs that has been implemented.

The Data and Metrics Exporter is in charge of processing the received metrics and providing them to a

Prometheus instance running on the edge server. This software module makes also available the RESTful APIs

to AFs that want to collect data through the monitoring platform of 5G-IANA. The Exporter sends the AFs

data and metrics to the Prometheus instance on the edge server that forwards them to the monitoring

platform in the cloud. The Resource Monitoring Agent interacts in particular with the Distributed Data

Collection component of the 5G-IANA platform through the interfaces that Prometheus makes available.

5.4. Far-edge devices developments

The far-edge devices (i.e., the OBUs and the RSUs), that have been developed in the 5G-IANA project, are

based on embedded devices (i.e., ARM-based) hardware. These devices have been equipped with an

Operating System (OS) that supports virtualization technology and GPU abstraction. The virtualization

support makes feasible containerization approach that is essential for the orchestration operations based on

Kubernetes.

38

The boards have been selected (addressing SRNF-GVI-1) to provide an amount of resources (e.g., availability

of GPU, storage) that satisfies the needs of the use cases to be demonstrated within 5G-IANA. In particular,

a GPU is available on OBU, RSU and at the edge server. The GPU availability makes feasible to process sensors’

data.

The far-edge devices can provide a network communication channel (requirement SFR-GVI-4, SFR-OBU-1 and

SFR-RSU-1) since both OBUs and RSUs are equipped with a 5G modem providing the Uu network interface.

The OBUs and RSUs boards are provided with a set of external physical interfaces to support external sensors

as required by the 5G-IANA use cases (i.e., SFR-OBU-7 and SFR-RSU-2 requirements). The RSU provides three

Ethernet interfaces and a USB interface. The OBU provides an Ethernet interface for connecting with the

vehicle network (requirement SFR-OBU-5) and it is equipped with a Wi-Fi interface that can create a Wi-Fi

hotspot to be used by mobile devices of the vehicle occupants (requirement SFR-OBU-3). The OBU does not

provide a Bluetooth interface (requirement SFR-OBU-4) and it does not currently have a CAN-bus interface

(requirement SFR-OBU-6) as it is not required by the available vehicles in the 5G-IANA project. A CAN-bus

interface can be added in the future if needed. Furthermore, the OBU is equipped with a GNSS RTK receiver

(requirement SFR-OBU-2) for retrieving an accurate vehicle position.

5.5. Future extensions

Further extensions of the modules, which have been introduced in the current section, have to be defined

after the integration and testing phases. Possible extensions will also address needs that will arise during the

experimentation of the platform. For example, a possible extension of the Information and Localization

service could be to provide additional metrics such as the speed and the heading of the vehicle.

39

6. CROSS LAYER FUNCTIONALITIES

6.1. Distributed AI/ML framework mechanisms

The design and development activities for the Distributed AI/ML orchestration layer have focused on the

support of a multi-criteria client selection operation, for the particular case of Federated Learning workloads.

As described in D2.1, this corresponds to the support of FL applications in dynamically adapting the working

set of training nodes i.e., OBUs, subject to a series of dynamically varying parameters including

compute/storage resource availability, energy availability, location, data availability and quality. The delivery

of this functionality has the following main targets. First, the acquisition of application-agnostic selection

criteria information is decoupled from the application at hand, and instead supported by the 5G-IANA

platform. This in turn renders the 5G-IANA platform as a FL application enabler, substantially simplifying and

therefore facilitating application development. Second, the client selection decisions are realized through

life-cycle management and orchestration primitives, essentially allowing OBU resources to be reserved and

consumed only when necessary, i.e., a federated learning client AF is not instantiated unless it is selected for

the current pool of FL clients. This comes in sharp contrast with the current state of affairs, where a FL client

is constantly up and running, regardless of its inclusion in the current pool of FL clients. It is noted that this

benefit stems directly from the translation of AI/ML pipelines into nApp service chains (D2.1).

Figure 11 presents the overall process for the support of the Client Selection functionality. The overall

functionality is supported through: (i) the Distributed Machine Layer Orchestrator (DMLO): this is a

component of the 5G-IANA platform presenting a DML-service specific user interface to the platform user,

along with a backend component for the interaction with the various other components of the architecture,

as well as the corresponding Application Functions (AFs); (ii) the involved AFs, namely: the AggrNode AF,

which presents the FL aggregation node functionality; the Training Node AF, which presents the FL client

functionality; and the Data Collection AF, which is responsible for the collection of data to be used for training

purposes[23] The AggrNode and Training Node AFs are containerized versions of the aggregator server and

training client components of the FLOWER framework[24] These AFs are provided by the platform, which will

further offer the ability to vertical service providers to customize e.g., by uploading their ML model,

configuring the overall service (see next, as well as Section 6.1. and Section 6.3).

In all, the set of OBU devices that corresponds to the current set of FL training clients is identified based on

the following distinct categories of criteria / characteristics:

40

Static criteria: this category refers to non-varying characteristics of the candidate OBU/devices namely: (i)

access rights, that essentially identify the rights of the vertical service provide on the device e.g., vehicle is

part of an OEM fleet; (ii) Hardware capabilities, which refers to both processing capabilities e.g., GPU

availability, CPU/RAM/Storage capacity, and sensing capabilities i.e., LIDAR availability, access to CAN bus

information, etc. As discussed in the following, these selection criteria are applied at the preliminary (AI/ML-

agnostic) deployment (placement) face of the overall orchestration process.

Dynamic ML-agnostic criteria: this category refers to dynamically varying status information of the device at

hand, namely: (i) utilization of CPU/GPU, RAM, storage; (ii) energy availability[25]; (iii) location information.

This information is not directly related to the ML-nature of the orchestrated services and it is collected and

managed mainly by the Monitoring and Analytics component of the platform, directly from the UEs (OBUs).

The Compute Continuum Resource Inventory (CCRI) is responsible for retrieving all monitoring information

related to the OBUs at hand, as described below.

Dynamic ML-specific criteria: this category refers to criteria expressing the likelihood of the device at hand

to efficiently contribute to the ML training process. This corresponds to two types of information:

Dynamic ML-specific (Data) criteria: data availability information, expressing the volume of data available at

the node for training purposes; optionally this can be augmented with data quality information, expressing

the completeness of the (often poly-parametric) training data records i.e., availability of all desired training

features;

Dynamic ML-specific (KPI) criteria: ML-performance information, expressing ML KPIs such as observed

convergence rate, achieved (local) accuracy, etc. Data availability information is collected and maintained by

the DMLO, since, as explained above, service chaining allows the decoupling from the training operation. ML-

performance information is maintained and used by the AggrNode, as this is tightly related to the

application/training task at hand (see also next).

The first step (Step 1), corresponds to the initial configuration and deployment of the main AFs of the FL

service. The DMLO user interface is employed to collect ML-specific configuration information and artefacts

including the ML model, training scheme i.e., synchronous vs. asynchronous, number of clients per training

round. In this step, the baseline (ML-agnostic) functionality of the platform is employed to deploy the

AggrNode and Data Collection AFs. The placement of these AFs follows general placement capabilities (see

section 6.1) i.e., it is not associated with client selection. In practice, this means that the AggrNode is

41

instantiated at a (server) node with suitable resource availability, while the Data Collection AF is instantiated

at the set of vehicles designated through the Static criteria. Step 1 completes with the configuration of the

AggrNode AF, using the input provided to the DMLO (see above). It is noted that no Training Node AF is

instantiated at this stage.

In Step 2, the DMLO communicates with all deployed Data Collection AFs in order to collect Dynamic ML-

specific criteria information. Currently, the design of this step foresees periodic, blocking requests from the

DMLO to the individual Data Collection AFs. It must be noted that this information is currently collected by

the DMLO itself, since it is related to ML-specific workloads i.e., it is not expected to be generated by non-

ML-related applications, and as such the project does not currently foresee the integration of such training

data monitoring functionality in the broader monitoring capabilities of the platform.

In Step 3, the DMLO contacts the CCRI so as to request the current set of suitable nodes/devices according

to the Dynamic ML-agnostic criteria. The CCRI is then responsible to match these criteria against the

continuously updating monitoring information, which is retrieved from the Monitoring & Analytics

component, as shown in Figure 11. Again, the current default operation involves a periodic pull operation of

the updated node set currently matching the selection criteria. With the completion of Step 3, the DMLO

holds up to date information regarding suitable nodes with respect to non-ML-specific criteria.

Step 4 is responsible for the joint node/device filtering subject to both ML-agnostic and ML-specific criteria

i.e., by combining the collected information, the DMLO identifies the set of nodes fulfilling all client selection

criteria. This step follows each update of the information received in steps 2 and 3.

The following steps correspond to the synchronous operation mode of FL, where the training process

proceeds in iterations, as described in D2.1. In Step 5, the AggrNode contacts the DMLO so as to retrieve the

most up-to-date set of nodes fulfilling the Static criteria, the Dynamic ML-agnostic criteria and the Dynamic

ML-specific (Data) criteria. Using potentially available information regarding Dynamic ML-specific (KPI)

criteria, the AggrNode makes the final selection in Step 6. The selected set of nodes is communicated to the

Policy Execution (through the DMLO), which is responsible for instantiating the corresponding Training Node

AFs at the selected OBUs. At this stage, and upon confirmation of the successful completion of this step, Step

7 commences, which corresponds to the default training round of FL i.e., the model is dispatched to all

(selected and instantiated) clients, trained locally and finally collected back and aggregated at the AggrNode.

Step 8 focuses on visualizing status reports at the DMLO user interface level, by collecting statistics related

42

to the ML process i.e., achieved accuracy/convergence rate, number of completed epochs, etc. (retrieved

from the Aggr Node), as well as to the node resource utilization e.g., CPU/GPU utilization (retrieved from the

Monitoring & Analytics). At the end of each round the AggrNode checks whether it should terminate the

training process, subject to application-specific criteria e.g., convergence rate/ training accuracy achieved.

Service termination is notified to the DMLO (Step 9), which propagates it to the Slice Manager (not shown).

Module’s Interactions

The Distributed Machine Learning Orchestration module interacts with the following software modules of

the 5G-IANA platform.

Table 10, DMLO interactions

Interacting Module Description

Slice Manager

Notified that ML-specific configuration information

has been collected by the DMLO and the service can be

deployed.

Compute Continuum Resource Inventory

Periodically contacted by the DMLO to provide

information about the candidate node set for the next

client selection process.

Policy Manager
Instructed by the DMLO to instantiate a Training Node

AF at the designated OBUs.

Monitoring & Analytics

Contacted to provide resource consumption

monitoring information for display purposes

(combined with ML-level statistics)

43

Figure 11: Distributed Machine Learning Orchestration (DMLO): Client Selection operation

6.1.1. AFs and FLOWER integration

The FLOWER framework handles all FL task specific operations included in FL aggregation node i.e., the

FLOWER server (implemented in the AggrNode AF) and the FLOWER client (implemented in the Training Node

AF), along with their communication (functions marked with black in Figure 11).

44

Figure 12: FLOWER framework component architecture

The FLOWER server consists of the following components (see Figure 12) the FLOWER strategy, which is an

abstraction that allows for full customization of the ML process i.e., configuring the respective FL-related

parameters e.g., client selection method, number of per round participating clients, model aggregation

method, accuracy evaluation metric, etc. 2) the FLOWER client manager, responsible for monitoring the

FLOWER clients at all times and 3) the FLOWER RPC server that handles server-client communication using

Google’s Remote Process Calls framework (gRPC) over Hyper Text Transfer Protocol (HTTP). These

components are instantiated and configured in the FLOWER server during FL-task configuration (see step 1,

Figure 11), according to the configuration file (see config_ml.json Figure 11) of the DMLO request.

Upon configuration, the FLOWER initiates the training process. In each training round, the FLOWER server

queries the DMLO (via a REST API) in regards to the available nodes/devices (see Step 5, Figure 11). Note that

the DMLO keeps track of the nodes, according to dynamic ML-agnostic criteria, as described in Sec. 6.1. The

DMLO’s (REST) response is a list of node IPs. The FLOWER server performs client selection thereafter (see

Step 6, Figure 11). Client selection is an operation that is internal to the FLOWER framework, which is

controlled by ML-specific criteria, set during the configuration phase, described above. The selected clients

list is sent back to the DMLO (see Step 6, Figure 11) via another REST call, so that the respective FLOWER

45

clients (implemented in the Training Node AF) can be activated via the Policy Manager. During that phase,

the FLOWER server is waiting for an acknowledgment. Upon receiving the acknowledgment (API response)

from the DMLO, the FLOWER server activates the training process in the clients (see Step 7, Figure 11). The

activation of the training process is an internal FLOWER process, which only requires the list of the involved

client IPs. Server-client communication is handled by the FLOWER RPC server, control of the process by the

FLOWER strategy and finally local client training by the FLOWER client component.

The FLOWER client (referred as Edge Client in FLOWER – see Figure 12) includes: 1) the training pipeline,

which accounts for the (local) model training in each client, 2) the data used for training and 3) the RPC client-

side, to communicate with the FLOWER server. These components are set during service deployment in the

respective Training Node AF (see function “deploy_service” in Figure 11). Note that in our case, data does

not reside in the FLOWER client; it is acquired in a real-time manner from the Data Collection AF in each OBU

(see Figure 11).

FLOWER provides a baseline FL framework but does not implement the involved FL functionalities e.g.,

training, aggregation, model monitoring, etc. It is rather used as a facilitator, allowing for flexible

development and integration (dockerization in our case) thereafter. Specifically, FLOWER implements a wide

array of wrappers that control the above-mentioned functionalities as well as the underlying communication

medium between FLOWER server and the respective clients. By adjusting, configuring (or even overriding)

these wrappers, we are able to control the respective training process, according to the DMLO’s input. It is

worth mentioning that FLOWER operations are limited to ML-specific tasks such as training and does not

account for more generic tasks such as client connectivity, client data availability, etc., which are performed

by the DMLO.

6.1.2. Distributed AI/ML orchestration layer developments

The development of the DMLO component and corresponding functionality have been planned for Release

2 of the 5G-IANA platform. As such, development is currently in progress.

6.1.3. Planned extensions in the second development cycle

The functionality described in Section 6.1 constitutes the baseline for the Distributed AI/ML framework. A

series of extensions are planned on top of this baseline, as described in the following.

46

Asynchronous operation: currently Steps 2 and 3 are performed with blocking, pull-based calls performed

by the DMLO. The project considers the refactoring of this operation to an asynchronous mode realized by a

Pub/Sub (push-based) interface. This would allow the CCRI and Data Collection components to provide their

information subject to actual updates matching the selection criteria, triggered by the actual change of the

monitored state, rather than the call by the DMLO (non-blocking). This can include notifications regarding

specific events e.g., suitable OBU entering a designated area, in a fashion similar to 3GPP SEAL26.In a similar

fashion, considered extensions further include the support if asynchronous FL operation (see also D2.1).

ML-scheme/topology selection: as investigated in [23],[24],[25], the selection of the ML training scheme

e.g., centralized training vs. federated learning, is a multifaceted task associated with aspects such as

resource/energy consumption, training performance (achieved accuracy), privacy constraints. While strict

privacy constraints dictate a federated learning approach, privacy elasticity may leave room for other

schemes e.g., centralized learning, where all data is aggregated at a central location where training takes

place. Based on recent work [27], the project will explore the possibility of providing decision support in what

concerns ML-scheme/topology selection.

6.2. Monitoring & Analytics, Distributed Data Collection

This section describes the design behind the Monitoring & Analytics including also data collectors that are

used to extract and report metrics from the different hardware and the virtualization technologies used.

Furthermore, Monitoring & Analytics section includes the Distributed Data Collection design and

development details.

6.2.1. Design Details of Monitoring & Analytics

The aim of Monitoring & Analytics is to collect and make readily available monitoring data regarding resource

utilization from the underlying virtualized infrastructure including the on-vehicle MANO (e.g., compute,

memory, network - see Section 5.3) and deployed nApp’s behaviour from tailored application-level metrics

(e.g., throughput, active users). The Monitoring & Analytics enables core services (e.g., Orchestration,

Policies, Profiling) and is responsible to collect data based on a set of active monitoring probes, as well as to

support a set of data management operations (e.g., calculation of average values in specific time windows).

It also provides access to historic and real-time monitoring data that can be centrally accessible by tenants

through the 5G-IANA Dashboard, and subsequently through the respective API (Prometheus-API [28]). The

47

"metrics collection" model of Monitoring Engine follows a distributed approach by fetching and processing

monitoring data/requests regarding a specific deployed nApp over the overlay mesh network that

interconnects the respected nodes of the running nApp.

6.2.2. Monitoring & Analytics Developments

The monitoring engine relies on an industry-grade telemetry system: Prometheus [28]. To populate the

Prometheus database with monitoring metrics, Netdata [29] is used as a monitoring agent. Netdata provides

real-time streams that are collected and managed by the Prometheus monitoring engine.

The reported developments concern the different monitoring instances (cloud, edge) for collecting both

on-vehicle MANO metrics (see section 5.3) as well as application metrics. The far-edge devices interact

with the Prometheus instance at the edge server. Further details about development of the monitoring at

the far edge are provided in Section 5.3.

Module’s Interactions

The Monitoring & Analytics interacts with the following software modules.

Table 11, Monitoring & Analytics interactions

Interacting Module Description

Policies

Consumes the Monitoring HTTP API for collecting

specific metrics under the user selection and uses

them to construct rules.

Profiling
Consumes application-related data acquiring specific

timeseries by applying filtering queries

Resource Monitoring Agent (on-vehicle

see section 5.3)

Pulls metrics from two sources included in the

OBU/RSU Monitoring Agent: a. the Hardware

Monitoring Agent and b. Data and Metrics Exporter.

Resource Inventory

Resource Inventory scrapes metrics from Monitoring

reported by the Resource Monitoring Agent (see

above)

Distributed AI/ML Framework Consumes resource monitoring information

6.2.3. Planned extensions in the second development cycle

48

Monitoring & Analytics hosts a) application metrics and is extended to also host b) infrastructure metrics

(including also OBU/RSU related metrics, see Section 5.3). This extension will likely imply an enlargement of

monitored data set that can be correlated with specific policies. As it is now, Monitoring & Analytics is mostly

limited to cloud-based parameters (such as the usage of virtual computing and storage resources), while until

the second release of 5G-IANA developments it is expected to host cloud-based, custom use case specific as

well as infrastructure-based parameters (e.g., actual QoS measures on networking services, mobility).

49

7. INTERFACES AND WORKFLOWS

The integration of the overall AOEP requires a number of interfaces between the layers described in the

previous sections. These interfaces are described in the following section.

7.1. Design Details of the interfaces

Figure 13 depicts the interfaces between each particular layer. The functionality of each interface is described

below.

Figure 13: AOEP interfaces

NOD-IF: the interface between the end users of the platform and the nApp Toolkit.

NOD-SM-IF: the interface between the nApp Orchestration & Development layer and the Slice Management

& Resource Orchestration and describes the programmatic actions supported between these two layers.

ONMANO-IF: describes the interface that is used to access the services deployed on the on-board / roadside

units from the nApp Orchestration & Development layer.

50

MANO-IF: describes the programmatic actions supported between Slice Management & Resource

Orchestration layer and the control plane of Kubernetes running on cloud and edge static (static refers to

location static i.e., not moving) servers.

7.2. Interfacing Developments

7.2.1. NOD Interface

NOD-IF: This interface is hosting the actions supported by the nApp Toolkit with the end-user and they are

described in Deliverable 4.1.

7.2.2. NOD-SM Interface

NOD-SM-IF: This interface hosts the Slice Negotiation phase (described in Section 3.2.1.4) between the nApp

Orchestration – Slice Management and Resource Orchestration layers whose purpose is to handle the

complete lifecycle of Network Slice creation. As described in Section 3.1.4, the lifecycle of a slice includes a)

the slice request phase, b) the slice instantiation, c) the slice operation and d) the slice deprovision. Initially,

the Slice request phase is triggered from the NOD layer in the form of a Slice Intent. As already mentioned,

the Slice Intent is a metamodel for transferring information such as the set of declared computational,

networking (in terms of network services) and QoS requirements per nApp on behalf of the nApp provider.

The aforementioned set of requirements have to be fulfilled by the infrastructure in order to guarantee

specific KPIs. During the instantiation phase, the creation and verification of the “proper” environment is

performed, which will be used to support the lifecycle of the nApp. The term “proper” is defined as the tuning

of the programmable resources both computational and networking (access or transport network, SDR,

FPGAs, SDN switches) in order to accommodate the user-given QoS values. The translation of the

requirements to a proper slice configuration plan is a primary objective of the Slice Negotiation. During the

instantiation phase, all resources shared/dedicated to the slice should have been created and configured.

7.2.2.1 Slice Negotiation Workflow

The slice negotiation phase is depicted in the following flow diagram. It is important to state that the process

only focuses on the communication between the two layers and not in intra-layer communications.

51

Figure 14: nApp Orchestration & Development – Slice Management & Resource Orchestration interaction
flowchart

The nApp Orchestration layer is totally unaware and beyond its programmatic scope to find new

programmable resources; it operates only on programmable infrastructure resources allocated and exposed

by the Slice Manager (SM) & Resource Orchestration Layer. Moreover, NOD is responsible to gather (from

the end user) and handover to the SM the computational and network requirements and the network

constraints in the form of Slice Intent. When the SM receives an application slice intent it replies with an

assigned ID for the slice that it not yet ready to be used. The reason behind this provide-ID-before-it-is-ready

is to handle non-blocking requests by the NOD and serve parallel requests. In the process of realization of a

slice, the SM determines the network services required for that nApp graph and asks the Resource inventory

for the corresponding resources. Upon a successful creation of the required network slice, the Slice Manager

& Resource Orchestration collects all the information related with the allocated computational and network

resources for both the application and network functions. Then the slice with the same ID that has been

assigned is returned to the NOD (Slice Handler) in the form of a candidate materialized slice.

The Slice Handler receives the realized slice and checks the mapped Slice Intent to this ID. After the evaluation

of the received slice, it forwards the deployment metadata (connection details, certificates) to the

Deployment Manager and the nApp Deployment is about to begin.

52

The process above describes the action on a successful realization and evaluation of a slice. In case of failure,

there is only one action and that is to notify the end user.

7.2.2.2 API Specification

The current version of NOD-SM interface comprises an API supporting the following actions:

1) Creation of a network slice based on the slice intent: this request is released by the Slice Handler

(NOD) to the SM, in order to start a process of slice creation and proceed with the deployment of the nApp

graph when the network slice is available.

2) Provision of a network slice instance: this notification is sent by the SM to the Slice Handler (NOD)

when the requested network slice is ready; then, the Deployment Manager (NOD) may initiate a deployment

request.

3) Deprovision of a network slice: this request is released by the Slice Handler (NOD) to the SM in case

that the created network slice is no longer required (e.g., no further nApp graph is going to be deployed over

it); based on the request, the allocated resources are released, and the network slice instance is deactivated.

Figure 15 shows the NOD-SM-IF interface that has been formally defined using the OpenAPI specification.

Figure 15: NOD-SM-IF OpenAPI specification

In 5G-IANA the programmability of this API will be extended with more actions and more attributes per action

as stated in 3.2.1.4.

Table 12, NOD-SM-IF API

53

API Method Description

Resource:

SM-IP>:<SM-PORT>/lcm/instances

POST

Send a slice(*) intent to the SM with the specific

requirements as parameters:

A. Computing Constraints: for expressing the

computational requirements of the nApp

graph

B. Networking Constraints: for expressing the

network high level requirements as type of

slice (EMBB, URLLC, MIoT) and related values

like latency for an URLLC or bandwidth for an

EMBB type, isolation (boolean)

C. Location constraints: for indication of a

deployment over specific edge resources

OBU/CORE.

(*) A sample of a slice intent can be found in

Annex B

Resource: <SM-IP>:<SM-

PORT>/lcm/instances

GET

Returns all the active slices i.e. slices that have been

allocated and assigned resources to be used

Resource: <SM-IP>:<SM-

PORT>/lcm/instances/{ID}/terminate

Resource: <SM-IP>:<SM-

PORT>/lcm/instances/{ID}

POST

DELETE

• Request to deprovision a requested by ID

slice. This is a graceful termination request.

• Request to delete a slice instance by ID. This

is a deletion request.

7.2.3. MANO Interface

MANO-IF exposes to the upper-level components (mainly the Slice Manager & Resource Orchestration layer

and the nApp Orchestration and Development layer) an interface to interact with the distributed MANO

Control plane. This integration can be explained through the following workflows:

• E2E Resource Orchestration for Far Edge enabled nApps (RO) – MANO Integration: The RO consumes

the MANO-IF interface to allocate k8s quotas and namespaces in reaction once a slice intent request is

received from the Slice Intent Handler (see Figure 16).

54

Figure 16: Resource Orchestration - MANO Interaction to allocate k8s quotas and namespaces

• OBU/EDGE/Cloud Continuum Resource Inventory (RI) – MANO Integration: The RI interacts with the

MANO layer (through the MANO-IF interface) to constantly have an updated snapshot of the availability

of the Edge and Far Edge resources, leveraging on the subscribe/notify interface provided by k8s (see

Figure 17).

Figure 17: Resource Inventory - MANO Interaction to receive information about the availability of the
Edge and Far Edge devices

55

Table 13, Table 14 shows the MANO-IF REST APIs used to implement the functions described in the

integration workflows explained above.

• Namespace API: Used by the Resource Orchestration module to create/update/delete a K8s namespace

and to allocate computing quotas for a service to be instantiated from the Vertical Application

Orchestrator.

Table 13, Resource Inventory - Kubernetes REST Commands

API Methods Description

/api/v1/namespaces GET, POST

Create and get

information about

the allocated

namespaces

/api/v1/namespaces/{name}
GET, PUT,

DELETE

Create, update, and

get information

about a namespace

/api/v1/namespaces/{namespace}/resourcequotas
GET, POST,

DELETE

Create, delete, and

get information

about the quotas

allocated for a

namespace

/api/v1/namespaces/{namespace}/resourcequotas/{name}
GET, PUT,

DELETE

Create, delete, and

get information

about a quota

allocated for a

namespace

• Node API: Used by the resource inventory to get information about the available Edge and Far Edge

resource available on the system.

Table 14, Resource Inventory - Kubernetes REST Commands

API Methods Description

/api/v1/nodes GET, POST, DELETE

Create delete, and get

information about the

available nodes for a given

k8s cluster

56

/api/v1/nodes/{name} GET, PUT, DELETE

Create delete, and get

information about an

available node for a given

k8s cluster

/api/v1/watch/events GET

Subscribe to the events for

getting notifications once a

node joins/leaves a k8s

cluster

7.2.4. OVMANO Interface

The OVMANO-IF describes the interactions of on-vehicle and road side unit with the following components:

• the NOD: the interaction is in between the Deployment and the Lifecycle Manager for a) the first

deployment of the service in the cluster running on-top of the OBU/RSU and b) for the lifecycle

operations. Both (a) and (b) are realized through the programmatic interface of MicroK8s that is

responsible.

• the Monitoring & Analytics (Cross layer) and with the Quota Manager of the Slice Manager and Multi-

segment Orchestrator using the MicroK8s available interfaces for the needed OVM operations.

Figure 18: NOD - OBU/RSU MANO Interaction to deploy and to verify the status of a deployed service

57

• the NOD and the RO for the Information and Localization service; the interaction with the information

service is based on the APIs made available from MicroK8s that provide information about the static

hardware characteristics of the far-edge nodes; the localization service interacts with a Prometheus

instance on the edge server as described in Section 5.2; the Prometheus instance scrapes the

localization service for position information that is then provided to it.

• the Distributed Data collection for collecting data and metrics; a module named Data and Metrics

Exporter is in charge of collecting data and metrics on the OBU; this module interacts with a

Prometheus instance on the edge server as described in Section 5.3; the Prometheus instance scrapes

this module for retrieving the available information.

58

8. CONCLUSION

This deliverable summarizes the developments of the 5G-IANA AOEP that have been carried out from M12

of the project until M21 which marks the completion of the developments for the first development cycle.

The developments are being reported in a layered approach and specifically each section presents the

developments and the extensions for a particular layer of the 5G-IANA AOEP. In addition, every development

or extension described is accompanied by the feature that is linked as well as the interconnection with the

other entities of the Platform. Furthermore, for each functional block of each layer of the architecture, an

overview of the baseline technical description and the implemented extensions and enhancements are

provided excluding only the nApp Toolkit technical description which is provided in Deliverable 4.1.

The description of the layers of the 5G-IANA AOEP starts with the nApp Orchestration and Development

mechanisms, which supports the key features for the registration, deployment and management of the

lifecycle of a nApp. The description of the developments per functional block (excluding nApp Toolkit) inside

nApp Orchestration and Development includes also a nApp descriptor (see Annex A) as it has been agreed.

This nApp descriptor shows the metamodel for declaring adequate resources for a nApp deployment.

Similarly for the Slice Manager and Resource Orchestration layer, it describes the extensions in order to

support new features like the registration of on-vehicle MANO on a resource inventory.

Following are the cross-layer functionalities:

a. The Distributed AI/ML mechanism goes through its software architecture and the functionalities that it

empowers, such as the support of a multi-criteria client selection operation and provides links to the other

elements of the Platform like cross-layer functionalities (e.g. monitoring).

b. Monitoring and Analytics includes also the Distributed Data Collections, provide insights about the whole

monitoring process as well as the mechanics behind that and the integration points with the other layers.

Finally, particular attention is given to specify how the different layers interact to achieve a nApp Deployment

as well as the integration and exposure of the different registered edges through the Resource Inventory

(Section 7). However, it is important to underline that this deliverable provides the description for some of

the interfaces and not all of them (as described in D2.1). Extended description for the other interfaces will

be provided in D3.3.

59

ANNEX A

Below is a sample of a nApp Descriptor as has been defined and modelled by 5G-IANA.

{

 "name": "string",

 "description": "string",

 "version": "string",

 "publicApplication": "boolean",

 "hexID": "string",

 "organization": "string",

 "type": ["SERVICE","COMPONENT"],

 "serviceCategory": ["HAZARD_NOTIFICATION","VEHICLE_MOVEMENT",

"SMART_TRAFFIC_PLANNING", "INFOTAINMENT",],

 "packageType": ["HELM"],

 "specLevel": ["VERTICAL_AGNOSTIC","VERTICAL_SPECIFIC"],

 "accessLevel": ["PRIVATE","RESTRICTED","PUBLIC"],

 "useCase": "string",

 "testbed": ["NOKIA","TS"],

 "softwareLicenses": [{

 }],

 "componentNode":[{

 "componentNodeID": "long",

 "hexID": "string",

 "name": "string",

 "component": [{

 "id": "long",

 "name": "string",

 "hexID": "string",

 "publicComponent": "boolean",

 "architecture": "string",

 "iconBase64": "string",

 "dockerImage": "string",

 "dockerRegistry": "string",

 "dockerCredentialUsing": "boolean",

 "dockerCustomRegistry": "boolean",

 "dockerUsername": "string",

 "dockerPassword": "string",

 "exposedInterfaces": [{

 "interfaceID": "long",

 "name": "string",

 "port": "string",

60

 "interfaceType": "string",

 "transmissionProtocol": "string"

 }],

 "requiredInterfaces": [{

 "graphLinkID": "long",

 "friendlyName": "string",

 "interfaceId": "long",

 }],

 "requirement": [{

 "requirementId": "long",

 "CPU": "Integer",

 "Ram": "Float",

 }],

 "healthCheck": [{

 }],

 }]

 }],

 "LinkNodes":[{

 "linkNodeID": "long",

 "componentNodeFrom": "ComponentNode",

 "componentNodeTo": "ComponentNode",

 "graphLink": {

 "linkID": "long",

 "friendlyName": "string",

 "interfaceObj": {

 "interfaceId": "long",

 "name": "string",

 "port": "string",

 "interfaceType": "string",

 "transmissionProtocol": "string"

 }

 },

 }],

 "required5GCoreService":[{

 "fiveGServiceSpecid": "string",

 "version": "string",

 "function": ["NWDAF","LCS"],

 "mandatory": "boolean",

 "name": "string"

 }]

}

61

ANNEX B

Slice Intent Descriptor with comments.

{

 "callbackUrl": "URL-where-the-slice-will-be-sent",

 "locationConstraints": [

 {

 "applicationComponentId": "15",

 "geographicalAreaId": "athens-dc1" //Placement Constraint for a specific

component

 },

 {

 "applicationComponentId": "16",

 "geographicalAreaId": "athens-dc1" //Placement Constraint for a specific

component

 }

],

 "computingConstraints": [

 {

 "applicationComponentId": "15",

 "ram": "2Gi",

 "cpu": "1",

 "storage": "20Gi"

 },

 {

 "applicationComponentId": "16",

 "ram": "2Gi",

 "cpu": "1",

 "storage": "20Gi"

 }

],

 "networkingConstraints": [

 {

 "applicationComponentId": "15",

 "applicationComponentEndpointId": "15",

 "sliceProfiles": [

 {

 "sliceType": "EMBB",

 "profileParams": {

 "isolationLevel": "NO_ISOLATION",

 "dlThroughput": 150000.0, // Required Bandwidth - downlink

 "ulThroughput": 1000000.0 // Required Bandwidth - uplink

62

 }

 }

]

 }

]

}

63

ANNEX C

In this section we refer to Table 13: “Reused Software and Extensions” of Deliverable 2.1 (Specifications of

the 5G-IANA architecture, revised version) and we present the specific extensions that are already

implemented with respect to the various modules at different layers. Moreover, for each layer, the main

developments/extensions are indicated with the dashed boxes.

nApp Orchestration & Development layer developments

Figure 19: Visualization of the work done in the NOD layer

Figure 19 depicts and Table 15 summarizes the extensions for the nApp Orchestration and Development layer

and the work that is planned for Phase B of the project.

Table 15, Description of extensions per module of NOD

nApp Orchestration and Development Layer

Functionalities Origin
Implemented Extensions for the

phase A

Planned Extensions

for the phase B

Responsible

Partner

Deployment and

Lifecycle

Management

H2020 5G-PPP phase

II MATILDA

Completed transformed for

Openstack based to be fully

compatible with the Kubernetes

environment and MicroK8s. Both

Deployment Manager Microservice

and the Lifecycle Manager

microservice have been

implemented as a Kubernetes

controller responsible for service

graphs deployments and lifecycle

and status operations. Also, the

Deployment Manager is integrated

with the nApp Toolkit through the

NT-DM-IF. The extract of this

integration is the nApp Descriptor

(see Annex A).

Extensions to support

more Kubernetes

resources. Kubernetes

resources are

extensions of the

Kubernetes API.

Specifically, there will

be extensions to

support for

Kubernetes

Configmaps

UBI

64

Slice Management and Resource Orchestration Layer

Figure 20: Visualization of the work done in the NOD layer

Slice Intent

Handler

H2020 5G-PPP phase

III Int5Gent project

Heavily extended so to support

OBU/RSU deployments.

Specifically, the Slice Intent

metamodel has been extended to

support edge deployment

selection. This functionality for

retrieving the edges and the

deployment locations has been

implemented as a new

microservice.

New API function will

be implemented.

Specifically,

“sliceUpdate” function

will facilitate adaptive

slices (i.e., with

inflated/deflated

cloud). The

sliceUpdate will take

place after the initial

deployment of the

nApp and will cover

changes on the

already allocated and

provisioned slice (see

section 3.3.3)

UBI

Application

Profiling

Maestro®

(Commercial Product

by UBI)

No

The developments

concern the

integration with the

overall platform

UBI

Policy Execution
H2020 5G-PPP phase

II MATILDA

Slightly extended. The extensions

concern the optimizations to deal

with the scalability and the

performance bottleneck of Drools.

Policies execution will

integrate with the 5G-

IANA AOEP and

further extensions

with regards to the

integration with the

DMLO are examined.

UBI

65

Figure 20 depicts and Table 16 summarizes the extensions for the Slice Management & Resource

Orchestration layer and the work that is planned for Phase B of the project.

Table 16, Description of extensions per module of SM& RO layer

Slice Management and Resource Orchestration

Functionalities Origin
Implemented Extensions for the

phase A

Planned Extensions

for the phase B

Responsible

Partner

SM – Application

Intent to Slice

QoS Mapping

H2020 5G-PPP phase

III Int5Gent project

This component maps the intent

QoS parameters into a suitable

NEST. Planned extensions relate to

the enhancement of the mapping

mechanism to support additional

QoS parameters

Phase B will deliver all

the functionalities

presented in section

4.1.3

NXW

SM – Network

Slice Verification,

Selection &

Application

Coordination

H2020 5G-PPP phase

III Int5Gent project

This component coordinates the

selection of the NSI and the

provisioning of the compute

quotas. Planned extensions relate

to the implementation of a

verification mechanism to assess

the presence of a suitable running

NSI that matches the selected

NEST

Phase B will involve

the development of

new mechanisms to

properly assign a

suitable NSI that

matches with the

selected NEST.

NXW

SM – Network

Slice

Management &

Inventory

H2020 5G-PPP phase

III Int5Gent project

This component is an inventory of

available NSIs. Planned extensions

relate to the implementation of a

RESTful interface to enable the

management of NSIs by the

Network Operator.

Phase B will deliver

the all the

functionalities

described in section

4.1.3, including

mechanisms to select

the proper Far Edge

device based on some

dynamic filtering

information (location,

resources available

etc.)

NXW

SM – Network

Slice Template

Catalogue

H2020 5G-PPP phase

III Int5Gent project

This component catalogues the

available Network Slice Templates

(i.e., NEST and 3GPP-based ones).

The component can be eventually

extended to update the

implemented data models

Phase B will involve a

continuous update of

the NEST data model

according to the

evolution of the 3GPP

standards

NXW

66

Cross Layer Functionalities

Table 17 summarizes the extensions for the cross-layer functionalities and the work that is planned for Phase

B of the project.

Table 17: Description of extensions per module of the cross-layer functionalities

according to the evolution of the

related standard specification

Cross Layer Functionalities

Functionalities Origin
Implemented Extensions for the

phase A

Planned Extensions

for the phase B

Responsible

Partner

DMLO None

DMLO planned for Release B.

Developments ongoing according

to detailed specifications

presented in Section 6. Completed

AF and FLOWER integration

(Section 6.1.1) and ongoing

developments regarding the RI

and retrieval of monitoring

aspects.

Phase B will deliver

the entire

functionality

described in Section

6.1.

ICCS, UULM

Monitoring &

Analytics

Maestro®

(Commercial Product

by UBI)

The reported developments

concern, the different monitoring

instances (cloud, edge) for

collecting both on-vehicle MANO

metrics as well as application

metrics.

Extensions concern

the addition of use

case application

specific metrics. Also

the infrastructure -

based metrics will be

enhanced (e.g. actual

QoS measures on

networking services,

mobility)

UBI/NXW/LINKS

67

REFERENCES

1 Helm Package Management System for using resources in Kubernetes :
https://helm.sh/docs/topics/charts/
2 Openstack Infrastructure as A service : https://www.openstack.org/
3 Kubernetes Container Orchestrator : https://kubernetes.io/
4 Openshift Container Orchestrator: https://www.redhat.com/en/technologies/cloud-
computing/openshift
5 Atlassian, “SLA vs. SLO vs. SLI - differences,” Atlassian. [Online]. Available:

https://www.atlassian.com/incident-management/kpis/sla-vs-slo-vs-sli.
6 “Microservices Pattern: Microservice architecture pattern,” microservices.io. [Online]. Available:
https://microservices.io/patterns/microservices.html.
7 Spring Boot Framework: Used for building web applications - https://spring.io/
8 Quarkus Framework: Used for building microservices - https://quarkus.io/
9 Java Programming language: https://www.oracle.com/in/java/technologies/javase/jdk11-archive-
downloads.html
10 Representation State Transfer -API: https://restfulapi.net/
11 Kafka event streaming technology: https://kafka.apache.org/
12 Drools Rule Composition and Management System : https://www.drools.org/
13 T. Kobayashi, “How to find a bottle-neck in your rule for performance analysis,” KIE Community, 27-
Jul-2021. [Online]. Available: https://blog.kie.org/2021/07/how-to-find-a-bottle-neck-in-your-rules-
for-performance-analysis.html.
14 https://blog.kie.org/
15 Framework for Scientific Computations: https://www.opencpu.org/
16 Framework for creating ML models : https://www.tensorflow.org/
17 Kubernetes ConfigMap data structure :
https://kubernetes.io/docs/concepts/configuration/configmap/
18 “Generic Network Slice Template 25 November 2021 - GSMA.” [Online]. Available:
https://www.gsma.com/newsroom/wp-content/uploads/NG.116-v6.0.pdf.
19 Minimized flavor of Kubernetes : https://microk8s.io/
20 https://minikube.sigs.k8s.io/docs/start/
21 https://docs.k3s.io/
22 https://gpsd.gitlab.io/gpsd/
23 Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., & Amditis, A. (2021, July) On the Resource

Consumption of Distributed ML. In The IEEE International Symposium on Local and Metropolitan Area

Networks (LANMAN 2021). IEEE
24 Georgios Drainakis, Panagiotis Pantazopoulos, Konstantinos V. Katsaros, Vasilis Sourlas and Angelos

Amditis, " On the distribution of ML workloads to the network edge and beyond," in Proc. of the First

International INFOCOM Workshop on Distributed Machine Learning and Fog Networks (INFOCOM

WKSHPS FOGML) 2021

68

25 Georgios Drainakis, Konstantinos V. Katsaros, Panagiotis Pantazopoulos, Vasilis Sourlas and Angelos

Amditis, "Federated vs. Centralized Machine Learning under Privacy-elastic Users: A Comparative

Analysis," in Proc. of 19th IEEE International Symposium on Network Computing and Applications, 2020

(IEEE NCA 2020)
26 https://www.3gpp.org/news-events/3gpp-news/sa6-verticals
27 Ippokratis Sartzetakis, Polyzois Soumplis, Panagiotis Pantazopoulos and, Konstantinos V. Katsaros,

Vasilis Sourlas and Emmanouel Varvarigos, "Resource Allocation for Distributed Machine Learning at

the (Edge-Cloud) Continuum", IEEE International Conference on Communications (ICC):

Communication, QoS, Reliability and Modeling Symposium (IEEE ICC'22 - CQRM Symposium)", Seoul,

Korea (South), May, 2022
28 Prometheus Communication API : https://prometheus.io/docs/prometheus/latest/querying/api/
29 Netdata- Infrastructure Monitoring Metric exporter : https://www.netdata.cloud/

