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Abstract 
Context  Forest loss and fragmentation pose extreme 
threats to biodiversity. Their efficient characterization 
from remotely sensed data therefore has strong prac-
tical implications. Data are often separately analyzed 
for spatial fragmentation and disorder, but no existing 
metric simultaneously quantifies both the shape and 
arrangement of fragments.

Objectives  We present a fractal fragmentation and 
disorder index (FFDI), which advances a previously 
developed fractal index by merging it with the Rényi 
information dimension. The FFDI is designed to work 
across spatial scales, and to efficiently report both the 
fragmentation of images and their spatial disorder.
Methods  We validate the FFDI with 12,600 syn-
thetic hierarchically structured random map (HRM) 
multiscale images, as well as several other categories 
of fractal and non-fractal test images (4880 images). 
We then apply the FFDI to satellite imagery of for-
est cover for 10 distinct regions of the Romanian Car-
pathian Mountains from 2000–2021.
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Results  The FFDI outperformed its two individual 
components (fractal fragmentation index and Rényi 
information dimension) in resolving spatial patterns 
of disorder and fragmentation when tested on HRM 
classes and other image types. The FFDI thus offers a 
clear advantage when compared to the individual use 
of fractal fragmentation index and the Information 
Dimension, and provided good classification perfor-
mance in an application to real data.
Conclusions  This work improves on previous char-
acterizations of landscape patterns. With the FFDI, 
scientists will be able to better monitor and under-
stand forest fragmentation from satellite imagery. The 
FFDI may also find wider applicability in biology 
wherever image analysis is used.

Keywords  Forest fragmentation · Hierarchically 
structured random maps · Remote sensing · Rényi 
information dimension · Romanian Carpathian 
Mountains · Spatial disorder

Introduction

Forested landscapes have complex spatial patterns, 
and quantification of those patterns has long been 
of interest for scientists in diverse fields in ecology 
and beyond (Turner et al. 1989; Wu and David 2002; 
Newman et  al. 2019). Forest loss poses an extreme 
threat to biodiversity (Haddad et  al. 2015; Wilson 

et al. 2016; Liu et al. 2019). The resulting forest frag-
mentation produces changes in spatial patterns lead-
ing to isolation of patches, habitat degradation, and 
other ecological processes that further biodiversity 
loss (Fahrig 2003). Forests support human society 
through a wide array of functions and processes, each 
of which may be affected negatively by deforestation, 
habitat loss, and ecological disruption following frag-
mentation of habitat. This includes the maintenance 
of biodiversity (Thompson et  al. 2009), stabilizing 
soils and topography (Mandal and Mondal 2019; 
Song et  al. 2019), regulating stream flows (Cecílio 
et  al. 2019), land surface temperatures (Arroyo-
Rodríguez et  al. 2017), and acting as carbon sinks 
mitigating climate change (Bonan 2008; Thomp-
son et al. 2009). Because of forests’ many functions, 
regional patterns and spatial dynamics of forest dis-
turbance and land-use change have global conserva-
tion relevance.

Forest fragmentation and land-use change are often 
assessed by remote sensing (Wickham and Riitters 
2019; Fischer et al. 2021; Batar et al. 2021). Although 
satellite images can be used to easily track the frac-
tion of land usage conversion over time, there is a 
growing need to quantify temporal and spatial pat-
terns of forest loss. These quantifications are neces-
sary to assess habitat loss and degradation, as well as 
to predict outcomes such as loss of habitat complex-
ity, biodiversity, or carbon stocks. The fraction of for-
est cover is one of the variables that can link spatial 
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patterns of land use to their ecological importance, 
whereas fractal fragmentation analysis and Infor-
mation Dimension are mathematical tools that have 
demonstrated utility in analysis of satellite images at 
multiple spatial scales.

Fractal analysis of fragmentation and information 
dimension measures of disorder

Fractal analysis is a set of methods that quantifies the 
complexity of mathematical or physical objects. Con-
necting ecosystem and biodiversity complexity meas-
ures continues to be challenging (Jin et al. 1995; Loke 
and Chisholm 2022), as is selecting the scale of anal-
ysis, when different scales of forest fragmentation are 
relevant to different organisms and their interactions 
(Kareiva 1987; Wiens et al. 1993; Boyce et al. 2017). 
Fractal metrics have the advantages of ease of calcu-
lation, as well as scale-invariance (Ma et al. 2009).

Some of the earliest studies that quantified land-
scape pattern have used forms of fractal analysis, 
including fractal neutral landscape models (Krummel 
et  al. 1987; Gardner et  al. 1987; Milne 1988; Gard-
ner and O’Neill 1991; With and King 1997, 1999), 
the midpoint displacement method (Barnsley et  al. 
1988), lacunarity (a fractal method that relies on box 
counting at different scales) (Plotnick et  al. 1993, 
1996) and hierarchically structured random maps 
(Plotnick et  al. 1993). Fractal dimension (Mandel-
brot 1982; Gao et al. 2019) of the neutral landscape 
is the foundation of a great variety of models. These 
include models for source-sink relationships (Milne 
1992; With 1997), invasive spread of exotic species 
(Lavorel and Chesson 1995; With 2002, 2004), edge 
effects (With and King 1997), and landscape frag-
mentation and its effects on population and commu-
nity dynamics (With 2002; With and King 2004). 
Fractal dimension has also been useful in identifying 
critical thresholds for correlation of ecological pro-
cesses with landscape models (Homan et  al. 2004; 
Groffman et  al. 2006), characterizing disorder of 
landscapes (Wimberly 2006) and analysis of disper-
sion patterns (Walters 2007), including spatial pat-
terns of disturbance (Coops et al. 2018). As useful as 
fractal analysis has proven, ecological patterns are not 
truly fractal in the mathematical definition, but are 
strictly multiscale (Halley et al. 2004). Furthermore, 
fractal equations tend to be relatively simple and con-
tain very little information about the complex systems 

they model (Halley et al. 2004; Newman et al. 2019). 
While fractals were among the earliest algorithms 
applied in landscape ecology, indices and algorithms 
developed in recent years that have broader applica-
bility to real ecosystems have largely replaced them 
(Gustafson 2019; Gao et al. 2019; Turner and Gard-
ner 2015).

Information entropy is a non-fractal approach 
to quantify the amount of spatial structure or disor-
der in a matrix of objects. Information entropy has 
also been used widely in landscape ecology (Nowo-
sad and Stepinski 2019), for example in the study of 
landslides (Yufeng and Fengxiang 2009; Park 2015), 
in generating models of species distribution (Phillips 
et al. 2004; Elith and Leathwick 2009), as an indica-
tor of fragmented landscapes (Joshi et  al. 2006), for 
identification of types of mature woody forest eco-
systems (Weber 2011), deriving macroecological pat-
terns (Shipley et al. 2006; Harte and Newman 2014), 
and for quantification of the effects of disturbance on 
biodiversity (Supp and Ernest 2014; Newman et  al. 
2020). The most used form is Shannon information 
entropy, which measures the average information 
content in cases when the value of the random vari-
able is not known (Shannon 1948). In this study, we 
use a generalization of Shannon information called 
the Rényi information dimension (or “Information 
Dimension”) (Rényi 1970). The Information Dimen-
sion is a general way to quantify the diversity, uncer-
tainty, or randomness of a system. The Information 
Dimension, denoted D1, measures the fractal dimen-
sion of a probability distribution, and relates the rate 
of growth of Shannon information to how finely the 
system under study is discretized. This method links 
scale-dependence and fractal structure to information 
entropy metrics.

Previous work and the introduction of the FFDI

In this study, we build on the previously developed 
fractal fragmentation index (FFI) (Andronache et  al. 
2016), by introducing the fractal fragmentation and 
disorder index (FFDI). The FFI is an efficient, fractal-
based index that determines the degree of fragmen-
tation or compaction of objects based on their shape 
(Andronache et  al. 2016), which is not a feature of 
classical fractal analysis. The FFI is simply calculated 
as the dimension of the area minus the dimension of 
the perimeter of a shape, representing a measure of 
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occupancy of space (“area” of a fractal can also be 
called “mass” or “core”). We improved the FFI per-
formance by incorporating the Information Dimen-
sion, which further quantifies the spatial distribution 
of these objects. We observed that FFI does not dif-
ferentiate patterns where the component objects are 
extremely small such that no borders can be extracted, 
or where objects completely fill the space (in which 
case, FFI = 0, because Darea = Dperimeter).  The FFDI 
was also designed to overcome these limitations by 
additionally quantifying informational entropy in 
the image using the Information Dimension (D1; see 
Table 1).

The FFI has previously been applied in the analy-
sis of deforestation effects at the county level, ter-
ritorial administrative units, and mountain groups 
of Romania (Drăghici et  al. 2017; Pintilii et  al. 
2017; Andronache et al. 2017, 2019; Diaconu et al. 
2019), indicating in all cases that fractal fragmen-
tation increases as a result of deforestation. How-
ever, deforestation and total habitat loss is not the 
same as habitat fragmentation per se, so the degree 
of fragmentation of a landscape only measures one 
aspect of remaining habitat on landscapes after 
deforestation (Fahrig 2017). The spatial cluster-
ing and organization of the remaining fragments, 
captured by the Information Dimension, correlates 
with the distance among patches, which in turn cap-
tures ecological processes such as dispersal among 

patches, or patch isolation (Plotnick et  al. 1993). 
The FFI was also previously tested on synthetically 
generated hierarchically structured random map 
(HRM) images, which are characterized by increas-
ing fragmentation and disorder but decreasing aver-
age size over multiple scales.

In this paper, we address the limitations of the 
FFI by developing the fractal fragmentation and dis-
order index (FFDI), which quantifies the organiza-
tion and arrangement of objects, thereby providing 
an estimate of spatial complexity. It can be used for 
the relative categorization of images with the same 
size, that is, extent and resolution. We validated the 
FFDI using several sets of binarized fractal and non-
fractal test images, as well as synthetically gener-
ated hierarchically structured random maps (HRMs), 
which are binary maps with known properties, includ-
ing a specified amount of cover and a hierarchical, 
nested property of patches (Lavorel et al. 1993; Plot-
nick et al. 1993). We show the added value of FFDI 
by demonstrating the complementarity in informa-
tion content between the measures of fragmentation 
and disorder (definitions of abbreviations are pro-
vided in Table  1). We applied the index to images 
of forest cover from the Carpathian Mountains of 
Romania, from the Global Land Analysis and Dis-
covery database (Hansen et  al. 2013) (https://​glad.​
earth​engine.​app/​view/​global-​forest-​change; accessed 
2020–2022). Finally, we discuss the utility of FFDI for 

Table 1   Definitions of terms and abbreviations

Term or abbreviation Meaning Definition

Curdling and random trema From “curdling,” meaning nucleation of mass, 
and “trema” (/ˈtɹɛm.ə/, /ˈtɹiː.mə/), deriving from 
the Greek word τρῆμα, meaning holes or perfo-
rations; in this case, holes of a specified shape 
in a mathematical surface

A fractal geometry method for generating a math-
ematical surface with partial surface occupancy

D1 Rényi information dimension; Information 
Dimension

D1 is a fractal dimension that quantifies the amount 
of spatial structure or disorder in a matrix of 
objects; it measures the growth rate of Shannon 
entropy over increasingly finer discretization of 
space

FFI Fractal fragmentation index FFI is a fractal index that quantifies the degree of 
fragmentation or compaction of an object

FFDI Fractal fragmentation and disorder index FFDI is a new index that quantifies the fragmenta-
tion/compaction and order/disorder of an object

HRM Hierarchically structured random map HRM is a type of image generated by a recursive 
algorithm derived from a curdling and random 
trema process

https://glad.earthengine.app/view/global-forest-change
https://glad.earthengine.app/view/global-forest-change
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quantification of forest patterns, and more objectively 
informing forest conservation and policy efforts.

Methods

Defining the fractal fragmentation and disorder index 
(FFDI)

Because spatial disorder and fragmentation of land-
scape patterns are often correlated but not perfectly 
so, a mixed index can quantify these two character-
istics in a single value. Spatial disorder refers to the 
way in which the objects analyzed are organized in 
space: whether they are arranged with a high level 
of pattern and order, or alternatively show disorder. 
Fragmentation, on the other hand, refers to how much 
the objects analyzed break up a space. If all the space 
is occupied entirely by a single object, then the image 
has no fragmentation at all. However, the objects that 
break up, or “perforate” the image, indicate fragmen-
tation. Fragmentation tends to correlate with cov-
erage (Fig.  1), such that, for example, images with 
10% cover are more fragmented, and images with 
90% cover are more compact. In the case of a single 
object, if it is Euclidean, then it is compact, and the 
more irregular it is, the more fragmented it will be.

The fractal fragmentation and disorder index, 
or FFDI, is derived from both the fractal fragmen-
tation index (FFI) and the information dimension 
(D1) (Fig.  2).  Like the FFI, it  differentiates spatial 
organization patterns for processed images that rep-
resent two categories (target and non-target). Initial 
work and limitations of the FFI led us to the test-
ing of a model which includes both FFI and D1 to 
explain more than one kind of empirical pattern. 
We hypothesized that a functional form of FFI mul-
tiplied by D1 would be better able to differentiate 
compaction/fragmentation and disorder patterns 
than either metric on its own. In ecology, these pat-
terns of compaction, fragmentation, and disorder 
could correspond to, for example, natural patchi-
ness of forest habitat, natural patterns of vegetation 
in response to aridity, or deforested landscapes due 
to road building and resource extraction. A more 
informative metric that contains measures of frag-
mentation and disorder may be better able to quan-
tify these different ecological processes, and be 

applied in areas where on-the-ground information is 
not readily obtained.

The Information Dimension is a measure of the 
amount of “disorder” presented in the image (Bian-
ciardi et al. 2014; de Souza Lins Borba et al. 2016; 
Borowska et al. 2017). Here, D1 is derived from the 
multiscale Rényi entropies. The calculation of the 
Information Dimension (D1) is efficiently estimated 
with a box counting method (Loke and Chisholm 
2022), and is initialized with the information 
entropy (Fig. 2).

The information entropy I(�) for a set of N(�) 
boxes of linear size ε is defined as:

The variable m
i
 is defined as

where Mi is the number of points in the ith box, and 
M  is the total number of points in the fractal object. 
Following from these definitions, D1 is given by the 
equation (from Baker and Gollub 1996):

(1)I(�) = −

N(�)
∑

i=1

m
i
(�)log

(

m
i
(�)

)

.

(2)m
i
=

M
i

M
,

Fig. 1   Schematic of the correlation between disorder and 
fragmentation. Increasing fragmentation is shown from left 
to right, and increasing disorder is shown from top to bottom. 
Black indicates objects, and white indicates background
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D1 is measured by overlaying the image with 
mi boxes of linear size ε (and area ε2).

If we consider a set of points distributed evenly in 
the two-dimensional plane, we will have approximately 
N number of points:

The area is normalized to unity. Equation (1) there-
fore becomes:

For a set of points situated along a smooth line, we 
get

And finally, the information dimension can be 
defined in relation to information entropy as:

(3)D1 = lim
�→0

N(�)
∑

i=1

m
i
(�)log

(

m
i
(�)

)

log(�)
.

(4)N(�) ≈
1

�
2
and m

i
≈ �

2.

(5)I(�) ≈ −
1

�
2

[

2�2log(�)
]

= −2log(�).

(6)I(�) ≈ −log(�).

(7)I(�) ≈ −D1log(�).

Information entropy I(ε) is calculated using Eq. (7). 
If the set is fractal, then the plot I(ε) versus log(ε) 
will follow a straight line with a negative slope equal 
to − D1. The information dimension differs from the 
box-counting dimension in that it weights the boxes 
according to the number of points in the boxes, accord-
ing to Eqs. (1) and (8).

The information dimension effectively assigns 
greater weights if a greater number of points are pre-
sent (Kunicki et al. 2009).

The FFI is an index that describes the degree 
of fragmentation of objects, but can also be used 
as a compaction index (Andronache et  al. 2016). 
A smaller FFI indicates more fragmentation and 
a larger FFI indicates more compaction. The FFI 
derives from the box-counting fractal analysis for 
the area of the analyzed objects and perimeter of the 
same objects, and is calculated:

(8)N(�) =
∑

i

m
i
(�)

(9)

FFI = D
A
− D

P
= lim

�→0

(

logN(�)

log
1

�

)

− lim
�→0

(

logN�(�)

log
1

�

)

,

Fig. 2   Workflow dia-
gram for producing both 
the fractal fragmentation 
index (FFI) and the fractal 
fragmentation and disorder 
index (FFDI)
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where FFI is the fractal fragmentation index; DA is 
the fractal dimension of the summed areas and DP 
is the fractal dimension of the summed perimeters; 
ε represents the size of the box; N(�) represents the 
number of contiguous and non-overlapping boxes 
necessary to cover the area of the object; and N�(�) 
represents the number of contiguous and non-overlap-
ping boxes needed to cover only the perimeter of the 
object (Andronache et al. 2016).

The FFI has the following properties: (1) FFI = 0 
is the case when the analyzed objects are very small 
(in the 1–4-pixel range), such that their contour can-
not be extracted, such that DA = DP = 0; (2) FFI = 1 
is calculated when analyzing a 100% compact 
Euclidean object, without any discontinuity (DP = 1 
and DA = 2); (3) when the objects are compact, the 
FFI value approaches 1, and when they are more 
fragmented, the FFI value approaches 0. Therefore, 
the new index FFDI is defined by:

where m
i=

M
i

M
 as defined above, and ε is the size of the 

box. The slope of the log–log relationship provides 
the fractal dimension. In this definition, 1-FFI is used 
because FFI = 0 indicates fragmentation and FFI = 1 
indicates lack of fragmentation (Andronache et  al. 
2016).

While the 1–FFI values range between 0 and 1 
and D1 between 1 and 2, the FFDI range is between 
0 and 2, thus allowing a clearer differentiation than 
the FFI. The maximum value of FFDI approaches 2 
when objects are strongly disordered and fragmented, 
whereas the lowest value approaches 0 when objects 
are weakly disordered and compact.

To calculate D1 for the mass of objects, we used 
built-in tools for the extraction of the primary objects, 
i.e., the boundary image and mass of the object in 
the image (Fig. 1). We then employed a built-in algo-
rithm for measuring the global Information Dimen-
sion from the Rényi family of fractal dimensions 

(10)
FFDI = D1(1 − FFI) =

(

lim
�→0

N(�)
∑

i=1

mi(�)log
(

mi(�)
)

log(�)

)

(

1 −

(

lim
�→0

(

logN(�)
log 1

�

)

− lim
�→0

(

logN′(�)
log 1

�

)))

,

Fig. 3   Examples of hierarchically structured random map 
(HRM) images generated: a high s1 set (p1 = 0.5 and p3 = p2 = 1), 
b middle s2 set (p2 = 0.5 and p1 = p3 = 1), c low s3 set (p3 = 0.5 
and p1 = p2 = 1), and several combined sets: d mixed s4 set 
(p1 = p2 = p3 = 0.5), e high + middle  s1 + s2 set (p1 = p2 = 0.5 and 
p3 = 1), f high + low s1 + s3 set (p1 = p3 = 0.5 and p2 = 1) and g mid-
dle + low s1 + s3 set (p2 = p3 = 0.5 and p1 = 1). For the s1 images 
with p2 = p3 = 1 and p1 = 0.5, 50% of the space is randomly occu-
pied by HRM objects sized 100 × 100 pixels. For the s2 images 

with p1 = p3 = 1 and p2 = 0.5, 50% of the space is randomly occu-
pied by HRM objects sized 10 × 10 pixels. For the s3 images 
with p1 = p2 = 1 and p3 = 0.5, 50% of the space is randomly occu-
pied by HRM objects sized 1 × 1 pixel. In the case of s4 images, 
p1 = p2 = p3 = 0.5, which represent images where 50% of the space 
contains HRM objects sized 100 × 100 pixels (s1), 10 × 10 pixels 
(s2), and 1 × 1 pixel (s3)
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available in the open-source plugin ComsystanJ 2.0.1 
(Ahammer 2011) for the Java-based open-source soft-
ware Fiji. The ComsystanJ box-counting dimension 
method was used to calculate both the FFDI and FFI.

Generation of hierarchically structured random map 
images for testing FFDI

HRMs are maps of pixels that are randomly set to 1 
or 0, with probability distributions of 1’s and 0’s that 
vary by region. HRMs can simulate landscapes that 
have different levels of clustering and fragmentation, 
which is accomplished by curdling and random trema. 
Two surfaces can have the same total amount of filled 
space, but differ in their level of curdling, that is, the 
clustering or nucleation of the filled space. The non-
filled space is generated by random trema, or ran-
domly placed holes of a given shape in the mathemat-
ical surface (Mandelbrot 1982; Gardner et  al. 1987; 
Milne 1992). For this study, HRM images were gen-
erated by the Fiji plugin ComsystanJ using a recur-
sive algorithm derived from the curdling and ran-
dom trema generation method employed by Plotnick 
(Mandelbrot 1982; Plotnick et al. 1993). Note that for 
studies that compare images, all images should have 
the same resolution (pixel size) and extent, in order 
to avoid introducing bias from automatic resizing and 
other sources of error (Loke and Chisholm 2022). 
This applies both to images generated algorithmically 
and to images processed from empirical data.

The HRM images were generated for our tests 
with numbers of rows and columns (M) fixed at 
1000 (1,000,000 pixels; or 1000 × 1000-pixel resolu-
tion). Variables p1, p2 and p3 represent the percentage 
of space occupied by the HRM objects at different 
grain sizes (e.g. 0.5 = 50%). These were generated by 
creating arrays with L rows and L columns and ran-
domly setting the L2 elements to 1 with a probabil-
ity p′, with p1, p2 and p3, representing the percentage 
of space occupied by the HRM objects at different 
scales. For p1, the size of the generated HRM objects 
is at 100 × 100 pixels grain; for p2 it is 10 × 10 pix-
els; and for p3 it is 1 × 1 pixel. In each case, p′, the 
total filled area of the image, is 0.5 (i.e. 50%) for each 
type of HRM object generated. Due to their random 

distribution, the images are evenly occupied by HRM 
objects (Fig. 3).

We generated seven sets of 2D HRMs synthetic 
images with different values of p1, p2 and p3, labeled 
s1, s2, s3, s4, s5 = s1+2, s6 = s1+3 and s7 = s2+3. Follow-
ing the p1–p3 designations, the s1–s3 sets are each 
characterized by a single “grain size”: s1 being the 
“high” set of 100 × 100 pixels grain size, s2  being the 
“medium” set of 10 × 10 pixels, and s3 being the 
“low” set of 1 × 1 pixel grain size. The remaining 
s4–s7 sets were “mixed” sets with combinations of the 
high, medium, and low sets. We then calculated the 
FFI, D1, and FFDI for these images to compare the 
performance of the different metrics.

For each of the seven sets of images, we generated 
200 images at each level of coverage that was varied 
for that set. This resulted in 12,600 HRMs (Supple-
mentary Information 1), including nine classes for 
the “high” set of images (s1) with p1 = 0.1, 0.2, …, 
0.9 and p2 = p3 = 1; nine classes for the “middle” set 
(s2) with p1 = p3 = 1 and p2 = 0.1, 0.2, …, 0.9; nine 
classes for the “low” set (s3) with p1 = p2 = 1  and 
p3 = 0.1, 0.2, …, 0.9; and nine classes for a “mixed” 
set (s4) with p1 = p2 = p3 = 0.1, 0.2, …, 0.9. Similarly, 
we generated nine classes for the “high-middle” set 
(s1 + s2) with p1 = p2 = 0.1, 0.2, …, 0.9 and p3 = 1, 
nine classes for the “high-low” set (s1+s3) with p2 = 1 
and p1 = p3 = 0.1, 0.2, …, 0.9, and nine classes for the 
“middle-low” set (s3) with p1 = 1  and p2 = p3 = 0.1, 
0.2, …, 0.9 (Fig. 3).

Although the exact levels of fragmentation and 
disorder vary, even among images with the same lev-
els of p1, p2 and p3, we can say general things about 
the image classes before analyzing them, based on 
the definitions of fragmentation and disorder. Images 
in the s1 class are characterized by large, compact 
HRM objects with less disordered spatial distribu-
tion; s2  and s1 + s2 images by medium-sized HRM 
objects with moderate fragmentation and spatial dis-
order; while images in the s3 set are very fragmented 
and their distribution highly disordered. The s4 set 
images include s1, s2, and s3 HRM objects and are 
obtained by filling the space with HRM objects from 
the s1 and s2 image sets and fractal spaces from the 
s2 with s3 HRM objects. Therefore, s4 is fragmented 
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and disordered. The most fragmented and disordered 
images are the s1 + s3 and s2 + s3 sets of images.

Generation of fractal and non‑fractal validation 
images

Using the ComsystanJ plugin, we also generated 
24 × 200-image sets of gray-scale images for vali-
dating the FFDI (4800 images in total). We gener-
ated eleven sets of images with midpoint displace-
ment (MDP) with fractal dimension FD = 2.0, 
FD = 2.1, ..., FD = 3.0. We also generated eleven sets 
of fast Fourier transform (FFT) images: FD = 2.0, 
2.1,  ...,  3.0; random images; and Gaussian algo-
rithms. All images were binarized using ImageJ 1.5.2 
software (Schneider et al. 2012; Kainz et al. 2015).

For FFDI validation, we generated 20 horizontal 
sinusoidal images with an increasing number of itera-
tions, from 1–20; 20 vertical sinusoidal images gener-
ated with 1–20 iterations; 20 radial sinusoidal images 
generated with 1–20 iterations; 10 IFS Sierpiński 
Gasket images generated with 0–9 iterations; and 10 
IFS Menger Carpet images generated with 0–9 itera-
tions (80 images total). All testing and validation 
images generated for this study are provided in the 
Supplementary Information 1–4.

Case study: dynamics of forest loss in the Romanian 
Carpathians

To test the proposed FFDI in a real-world setting, we 
analyzed the dynamics of forest loss and the impact 

Fig. 4   The geographic location of the study area, indicating 
a Northern group of Oriental Carpathians; b Central group of 
Oriental Carpathians; c Southern group of Oriental Carpathi-
ans; d Bucegi Mountains Group; e Făgăraș Mountains Group; 

f Parâng Mountains Group; g Retezat–Godeanu Mountains 
Group; h Banat Mountains; i Poiana Ruscă Mountains and j 
Apuseni Mountains. Compass points are approximate over the 
regional extent given the map projection
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of forest dynamics in the Romanian Carpathian 
Mountains. The study area constitutes a major land-
scape unit with mountainous features, which forms a 
circular arc from the border with Ukraine in the north 
of the country to the border with Serbia in the south 
(Fig. 4).

Geological and geomorphological features divide 
the Carpathians into three major sectors (the East-
ern Carpathians, the Southern Carpathians and the 
Western Carpathians). Each sector is divided into 10 
more-or-less coherent mountain groups, depending 
on the degree of forest fragmentation, controlled by 
the geology and the cross-sectional valley corridors 
(Fig. 4). The Eastern Carpathians include the North-
ern, Central and Curvatures Groups. The Bucegi, 
Făgăraș, Parâng and Retezat-Godeanu Mountains 
belong to the Southern Carpathians, whereas the 
Apuseni, Poiana Ruscă and Banat Mountains are a 
part of the Western Carpathians. Their average eleva-
tion is ~ 2000 m, and the absolute maximum elevation 
is the Moldoveanu Peak in the Făgăraș Mountains 
(2544 m) (Balteanu et al. 1998).

In comparison to the situation at the global level 
(Song et  al. 2018), the deforestation in Romania 

shows continuous growth (Andronache et  al. 2019). 
The 2017 Report on the State of the Forests of Roma-
nia states that in that year, forests of Romania occu-
pied an area of 6,565,000 ha, or 27.5% of the coun-
try’s land area. Although deforestation has increased 
in total during recent decades, areas of forest loss 
have been partly compensated for by forest regenera-
tion, reforestation, refurbishment of forested pastures 
and the inclusion of degraded lands in  afforesta-
tion efforts, aligned with the provisions of Law no. 
46/2008 (Ministry of Water and Forests 2017).

Forest image preprocessing

The Global Forest Change database used in the cur-
rent research is based on Landsat satellite time series 
data, provided by the Geographical Sciences Depart-
ment at the University of Maryland, College Park. 
The data set provided is based on a change detection 
analysis, which highlights year-to-year forest dynam-
ics since the year 2000 CE. We therefore chose the 
year 2000 to be used as the base year for which the 
rest of the analysis is reported.

Fig. 5   Examples of tree cover binary images (from 2000 CE): 
a Northern group of Oriental Carpathians; b Central group 
of Oriental Carpathians; c Southern group of Oriental Car-
pathians; d Bucegi Mountains Group; e Făgăraș Mountains 
Group; f Parâng Mountains Group; g Retezat–Godeanu Moun-

tains Group; h Banat Mountains; i Poiana Ruscă Mountains 
and j Apuseni Mountains. The dimensions of  all images are 
1000 × 1000 pixels. White pixels correspond to forest cover 
and black pixels correspond to non-forest cover



Landsc Ecol	

1 3
Vol.: (0123456789)

Forest cover images for Romania were downloaded 
with 30 m spatial resolution in GeoTIFF format from 
the Global Forest Change database. Total tree cover 
for the year 2000 was used as a baseline comparison 
for forest loss for each year from 2001 to 2021. Sub-
sets of forest loss area images for each of the 21 years 
were generated for each of the mountain groups, for 
subsequent binarization and analysis.

We calculated differences among the images of 
tree cover for the year of interest and the base year, 
2000, to determine area of forest loss for individual 
years and the cumulative forest loss (using the ImageJ 
1.52 Process and Image Calculator functions). Sub-
sequent processing of satellite imagery for extrac-
tion of annual images and preparation for the fractal 
analysis was performed with ArcGIS software (ESRI 
2020) (Fig. 5). The grayscale GeoTIFF images were 
converted to 8-bit TIFF binary images, compatible 
with binary fractal analysis. Binarization was done 

using the Threshold operator in the Image-Adjust 
menu in ImageJ, with the thresholds being 1 and 255. 
Two classes of pixels resulted: black pixels, with 
value 0 representing the background and white pixels 
with value 255, representing the foreground and the 
objects to be analyzed respectively. In our case, these 
correspond to patches of forest and deforested areas.

Statistics for images and metrics

In order to apply the FFDI, we first took into account 
the sample size and the general rule that box counting 
using at least ten box sizes should be obtained over 
the scaling range (Kenkel 2013), where the number of 
boxes was the number of distinct scales of pixels dif-
fering by a power of 2 (because “fractal analysis” for 
empirical images is technically multiscale analysis). 
Thus, for our fractal analysis, the image resolution 

Fig. 6   Statistical analysis of discrimination among HRM 
images for seven test image sets s1–s7, across three metrics: a 
the Fractal Fragmentation and Disorder Index (FFDI); b Rényi 
information dimension (D1) (note: x-axis does not cross at 0); 
and c 1-the Fractal Fragmentation Index (1-FFI). Values on 

y-axis are dimensionless. The sample size for each of the HRM 
image sets is n=1800. Also shown: the p < 0.01 Kruskal–Wal-
lis test significance matrices for: d the FFDI, e D1, and f 1-FFI. 
Pairwise post-hoc tests are Bonferroni corrected (*p < 0.05, 
**p < 0.001) in all cases
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allowed us to set the number of boxes to 11, with the 
regression ranging from 1 (min) to 11 (max).

Second, we checked that the images were suffi-
ciently fractal-like that we could calculate the met-
rics DA, DP, and D1. According to Benguigui et al. 
(2000), the quality of the fractal dimension estima-
tion is controlled by using the Pearson correlation 
coefficient r, and estimations can be accepted when 
r exceeds the value of 0.99. If the fit between the 
empirical curve and the estimated curve is low, it 
can be concluded that either the pattern being stud-
ied is not fractal, or that it is multi-fractal (Tannier 
and Pumain 2005). For the images of the Romanian 
Carpathians as well as all the test images, we per-
formed preliminary analyses (in ComsystanJ) and 
found that the coefficient of determination, R2, was 
greater than 0.99, and in the case of a linear regres-
sion, R2 = r2. This constrains the Pearson correlation 
coefficient to be greater than 0.99, so we were able 
to perform the fractal analyses on the images.

We note that high R2 values do not always and 
in general correspond to high linearity. We there-
fore tested the linear regressions for several box 
size ranges, from 20–26 up to 20–210 (measured in 
pixels), and compared the gained results to each 
other. This was done for all images s1, s2, s3, s4, 
s1 + s2, s1 + s3, s2 + s3, Gaussian, Random, FFT, 
and MPD (with FD ranging from 2.0 to 3.0). The 
correlations between these results were very high 
(e.g. R2 = 0.996 between 20–29 and 20–211, and 
R2 = 0.958 between 20–26 and 20–211), with only 
the absolute values deceasing slightly for smaller 
box size ranges. This decrease was negligible and 
did not affect the outcome of this study. Differences 
between HRM, FFT and MPD images were main-
tained. Final results were obtained with a range of 
20–211, although a smaller range would have been 
acceptable as well.

Statistical analyses were carried out with SPSS 27 
(IBM Corp 2017). Data distributions were tested for 
normality using Shapiro–Wilk tests (p < 0.05). Not all 
distributions were normally distributed. Thus, non-
parametric Kruskal–Wallis tests including Bonferroni 
corrected post hoc tests were applied.

Results

Evaluation of the FFDI using HRM images

We calculated the FFDI, 1-FFI, and D1 for all the 
HRM image groups to compare the outcomes of 
each metric, and their ability to differentiate among 
image classes. Objects that have high fragmentation 
are usually spatially disordered, and the most com-
pact objects are usually uniformly spatially distrib-
uted. Moreover, when fragmentation is very high, 
FFI cannot identify patterns (Andronache et al. 2016, 
2017). As stated previously, a very high level of frag-
mentation (FFI near 0) is achieved when images have 
objects of size 1, or they have very few pixels such 
that no border can be extracted. In the first stage of 
fractal analysis, the three algorithms used (1-FFI, D1 
and FFDI) were tested in the three-level HRM images 
(Fig. 3).

The distributions of 1-FFI, D1 and FFDI val-
ues were compared for each of the 9 × 200 gener-
ated images in the high, medium, low, mixed, high-
medium, high-low and medium–low HRM sets 
(Fig. 6). In each case, every metric yields a clear dif-
ferentiation among the distinct HRM image sets with 
a sample size of n = 1800, with FFDI offering the best 
differentiation when considering all comparisons, as 
assessed by Bonferroni-corrected Kruskal–Wallis 
significance tests. The number of statistically differ-
ent pairs varied for each of the three metrics. From 21 
possible pairs, the FFDI yielded 20 highly significant 
pairs and one significant pair (Fig. 6a, d). D1 yielded 
19 highly significant pairs and one significant pair 
(Fig. 6b, e). 1-FFI yielded 14 highly significant pairs 
and again one significant pair (Fig. 6c, f).

Along with the highest number of statistically 
significant test results, the FFDI also had the high-
est value variabilities, of 4795%, 81.3%,  15.5%, 
139.3%, 65.4%, 46.4% and 60.1%, among  syn-
thetic images in s1, s2, s3, s4, s1+2, s1+3, and s2+3, 
respectively, while 1-FFI achieved 3354%, 116%, 
7.7%, 7.1%, 108,6%, 7.6% and 7.1%. Informa-
tion Dimension D1 was the poorest discriminator 
by relative value distances of 23%, 34.3%,  15.5%, 
149.7%, 89.8%, 48.2% and 65.4% for image sets. 
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Fig. 7   Statistical analysis of discrimination among binarized 
test images generated by Midpoint displacement (MPD), fast 
Fourier transform (FFT), Random, and Gaussian algorithms, 
with a range of fractal dimensions (FD), for the fractal frag-
mentation and disorder index (FFDI). a For FFDI, values on 

the y-axis are dimensionless. b Comparisons are demonstrated 
with the p < 0.01 Kruskal–Wallis test significance matrix, 
with Bonferroni corrected pairwise post hoc tests (*p < 0.05, 
**p < 0.001)
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As expected, D1 differentiated the four classes of 
image sets with different amounts of disorder, and 
identified an increasing disorder progressively from 
s1 (1.89) to s3 (1.98). 1-FFI identified the fragmen-
tation differences, indicating that fractal fragmenta-
tion decreases when comparing the s1 set of images 
(0.24) to the s3 and s4 sets of images (0.999). FFDI 
values increased by 342.9% from the compact and 
less disordered s1 set (FFDI = 0.45) to the highly 
fragmented and more pronouncedly disordered s3 
image set (1.98).

A linear regression with all 12,600 HRM images 
shows a very low correlation between disorder and 
fragmentation (R2 = 0.075) in the synthetic images. 
The FFDI shows a very low correlation with D1 of 
R2 = 0.017 and a strong correlation with 1-FFI of 
R2 = 0.837 in the synthetic images. Due to higher 
overall discrimination ability, FFDI is expected to 
work better than the comparison metrics at lower 
sample sizes.

Evaluation of the FFDI using non‑fractal test images

Additional test images were generated by Mid-
point displacement (MPD), fast Fourier transform 
(FFT), Random, and Gaussian algorithms, with 
different fractal dimensions (FD). As expected, the 
midpoint displacement and fast Fourier transform 
algorithms yielded nearly identical images, and 
thus showed high correlation. On the other hand, 
the random and Gaussian images had substantially 
different patterns, without significant correlation. 
Statistical analyses of discrimination among test 
images yield very high significances between the 
distinct fractal dimensions of MPD and FFT gen-
erated and binarized images. From 276 possible 
pairs, the FFDI yields 212 highly significant pairs 
and 17 significant pairs (Fig.  7). D1 yields 174 
highly significant pairs and 20 significant pairs 
(Fig.  8). 1-FFI yields 213 highly significant pairs 

and again 12 significant pairs (Fig. 9). Thus, there 
are again more significant pairs for FFDI com-
pared to D1 and 1-FFI.  

Several other sets of test images were analyzed as 
well: horizontal sinusoidal, vertical sinusoidal and 
radial sinusoidal images with 1–20 iterations; and 
Menger Carpet and Sierpiński Gasket images with 
0–9 iterations. For these images, the value of the 
FFDI generally increased with the number of itera-
tions, indicating that both the resolution and depth 
of scale affected the calculated FFDI values (Supple-
mentary Information 5).

Using FFDI to analyze tree cover and forest loss in 
the Romanian Carpathians

As a practical application, we analyzed and differ-
entiated forest characteristics concerning disorder, 
and fragmentation of forest cover area  (Fig. 10a), 
total area of loss in the year analyzed  (Fig.  10b), 
and for the cumulative loss area in the Roma-
nian Carpathian Mountains from 2000 to 2021 
(Fig.  10c). The FFDI differentiated among three 
patterns of mountain groups, based on their frag-
mentation and disorder: the highest values of FFDI 
(Central, Northern, and Parâng mountain groups) 
coincided with high fragmentation in the images, 
which also corresponded to areas of intense defor-
estation (Fig. 10a). The natural fragmentation and 
compaction of this landscape lead to the construc-
tion of access roads into the forest for resources, 
which intensifies deforestation pressures. These 
characteristics and values of fractal measures were 
very similar to the s4 set of HRM generated images 
(Fig.  3). Intermediate values of FFDI (Apuseni, 
Bucegi, Făgăraș, Poiana Ruscă, and Godeanu 
mountain groups) were specific for mountain 
groups with moderate fragmentation and disorder. 
The lower values of FFDI (Banat, Retezat-Gode-
anu, and Southern Group mountains) were spe-
cific to mountain groups characterized by a higher 
degree of mountain terrain continuity and lower 
fragmentation of terrain (relief), implicitly favor-
ing a stronger compaction of forests. This pattern 
resembled the s2 “middle” set of HRM images. 
These patterns agree with previously described 
patterns of deforestation and fragmentation (And-
ronache et al. 2019).

Fig. 8   Statistical analysis of discrimination among binarized 
test images generated by Midpoint displacement (MPD), fast 
Fourier transform (FFT), Random, and Gaussian algorithms, 
with different fractal dimensions (FD), for the Rényi informa-
tion dimension (D1) (note: x-axis does not cross at 0). a For 
D1, values on y-axis are dimensionless. b Comparisons are 
demonstrated with the p < 0.01 Kruskal–Wallis test signifi-
cance matrix, with Bonferroni corrected pairwise post hoc tests 
(*p < 0.05, **p < 0.001)

◂
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Fig. 9   Statistical analysis of discrimination among binarized 
test images generated by Midpoint displacement (MPD), fast 
Fourier transform (FFT), Random, and Gaussian algorithms, 
with different fractal dimensions (FD), for 1-the fractal frag-

mentation index (1-FFI). a For 1-FFI, values on y-axis are 
dimensionless. b Comparisons are demonstrated with the 
p < 0.01 Kruskal–Wallis test significance matrix, with Bonfer-
roni corrected pairwise post hoc tests (*p < 0.05, **p < 0.001)
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Figure 10c shows a clear increase in FFDI values 
associated with the areas of cumulative loss over 
time, which is reflected in the different range of val-
ues for the ten mountain groups. In these cases, FFDI 
increased with increasing loss of forests, because the 
cumulative loss areas became fragmented and disor-
dered as they expand. We note that for the Făgăraș 
and Parâng Mountains Groups the cumulative forest 
loss is increasingly disordered, even though the forest 
loss areas are not as naturally fragmented as the other 
three mountain groups from the highly fragmented 
pattern. Low FFDI values were found for the third 
pattern of cumulative loss areas due to deforestation 
patches being very small but numerous, with less dis-
ordered spatial distribution (Ciobotaru et al. 2019).

Interestingly, due to very low FFDI values and 
similar fragmentation of forest loss areas in all 10 
mountain groups (Fig.  5), Information Dimension 
was found to be the measure that could differenti-
ate among these three structural types of mountain 
groups, similar to the s4 and s3 sets of HRM images. 
With further investigation, the influence of FFI on the 
FFDI was very small when similar images of moun-
tain groups or structural types are analyzed, similar to 
s3 or s4 HRM images when FFI < 0.006, but becomes 
important when FFI exceeds 0.1, as is the case for s1 
and s2 HRM images.

Discussion

Quantifying the spatial structure of landscapes is the 
key to understanding the ecological effects of land-
scape patterns and habitat fragmentation (Costanza 
et  al. 2019). Metrics based on fractal analysis are 
commonly used because of ease of their calculation 
and multiscale properties. However, another ecologi-
cally relevant pattern of the arrangement of habitat 
fragments, or “landscape disorder,” had not been pre-
viously measured in fractal-based landscape metrics. 
Consequently, we formulated a new metric called the 
Fractal Fragmentation and Disorder Index, or FFDI, 
that can identify and also classify patterns and sub-
patterns of image spatial fragmentation and disorder.

In this study, we showed that FFDI outperforms 
various other metrics in quantifying both fragmen-
tation and disorder of images and solves a previous 
limitation of the FFI specific to images with highly 
fragmented, spatially distributed objects. We demon-
strated the ability of FFDI to better differentiate and 
classify HRM patterns compared to fractal fragmen-
tation or Information Dimension, and that this index 
could be used in the future as a versatile and accurate 
tool for pattern differentiation and sub-patterns in any 
field that uses binary imaging. The FFDI performed 
well in the classification of spatial characteristics 
of artificially synthesized HRM objects as well as 
images of real forest patches.

Fig. 10   The compaction and disorder patterns of forest cover 
and loss in the Romanian Carpathians as represented by the 
fractal fragmentation and disorder index (FFDI): a forest cover 
areas, b forest loss areas, and c cumulative loss areas. The 
highly fragmented and disordered patterns are depicted with 
dashed lines (Central, Northern, and Parâng mountain groups); 
the moderately fragmented and disordered patterns are rep-

resented with solid lines (Apuseni, Bucegi, Făgăraș, Poiana 
Ruscă, and Godeanu mountain groups), and the images with 
lowest fragmentation and disorder are represented with dotted 
lines (Banat, Retezat-Godeanu, and Southern Group moun-
tains). These patterns agree with some previously described 
patterns of deforestation and fragmentation (Andronache et al. 
2019)
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We recognize a limitation in the method applied 
here that arises as a result of binarization of images 
to be analyzed with the FFDI. Depending on the cho-
sen threshold, binarization may introduce analytical 
bias (Eguiraun et  al. 2014); however, this effect can 
be investigated further and might be rectified with the 
incorporation of a scaling relationship, or use of the 
FFDI as a relative index for comparison of different 
system states, rather than as an absolute measure of 
fragmentation and disorder. Even with this limitation, 
FFDI offers a clearer differentiation in categorizing 
synthetic images and in real applications.

Compared to D1 and FFI, the FFDI achieved a 
clearer differentiation of forest tree cover, cumulative 
forest loss and annual forest loss patterns for the 10 
mountain groups in the Romanian Carpathians. It is 
therefore a promising approach for differentiating pat-
terns of deforestation and regrowth and will be useful 
in environmental monitoring and protection.

In conclusion, although FFDI was developed 
with the aim to improve the understanding of forest 
fragmentation, it might be applied generally to land-
scape fragmentation resulting from urban develop-
ment, wildfires, and other natural and anthropogenic 
phenomena. FFDI can also be used for comparative 
analyses across different regions. We demonstrated 
the use of the FFDI in estimation fractal dimension as 
a tool for relative classification of images of the same 
size and resolution, based on their fragmentation and 
disorder.

We expect a broad applicability of the FFDI in 
various disciplines of medicine or biology. For exam-
ple, in histological slides, the distribution of cells or 
cell nuclei shows a fragmented pattern which is often 
irregular or random due to the underlying nonlinear 
dynamics of gene regulation and cell differentiation 
(Fabrizii et al. 2014). Improved quantification of such 
patterns could improve diagnosis, prognosis and pre-
diction in cancer patients. (Macaluso et al. 2015).
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