On the relationship between Singularity Exponents and Finite Size Lyapunov Exponents in remote sensed images of the ocean

Lluïsa Puig Moner Iluisapuigmoner@gmail.com

GHRSST Talks 20th April 2023, online

Estrella Olmedo Antonio Turiel

On the relationship between Singularity Exponents and Finite Size Lyapunov Exponents in remote sensed images of the ocean

Universitat Autònoma de Barcelona

$$F_{t_0}^t : x_0 \to x(t_0 + t, t_0, x_0)$$

$$Lagrangian coherent structure$$

$$\mathcal{E}_{t_0}^t(x_0) = \max_{|e|=1} |(\nabla_{x_0} F_{t_0}^t) e_{t_0}| \equiv \left\| (\nabla_{x_0} F_{t_0}^t) \right\| = \sqrt{\lambda_{max} \left((\nabla_{x_0} F_{t_0}^t)^T (\nabla_{x_0} F_{t_0}^t) \right)} \right.$$

$$\int \left(t, t_0, x_0 \right) = \frac{1}{2(t - t_0)} log_e \left(\lambda_{max} \left((\nabla_{x_0} F_{t_0}^t)^T (\nabla_{x_0} F_{t_0}^t) \right) \right) \right)$$

$$\mathcal{E}_{t_0}^t(x_0) = e^{\Lambda(t, t_0, x_0)(t - t_0)}$$

$$\dot{x}(t) = \Lambda x(t)$$

$$x(t) = x(t_0)e^{\Lambda(t - t_0)} = x(t_0)\mathcal{E}_{t_0}^t(x_0)$$

Finite-size Lyapunov Exponents (FSLE)

$$oldsymbol{\lambda}(oldsymbol{x_0},t_0,oldsymbol{\delta_0},\delta_f) = rac{1}{ au} log \Big(rac{\delta_f}{|oldsymbol{\delta_0}|} \Big) rac{oldsymbol{\delta_0}}{|oldsymbol{\delta_0}|}$$

- Negative exponents
- Transport barriers

SOURCE: AVISO+ [4] <<Backward-in-time, Finite Size Lyapunov Exponents and orientations of associated eigenvector>> Units of day–1 Results for January 25th, 2022 0.25^o

On the relationship between Singularity Exponents and Finite Size $\overline{Lyapunov}$ Exponents in remote sensed images of the ocean

Universitat Autònoma de Barcelona Finite Time Lyapunov exponents (FTLE)

$$\begin{split} & \Lambda(t, t_0, \boldsymbol{x_0}) = \\ & \frac{1}{2(t-t_0)} log_e \Big(\lambda_{max} \Big((\boldsymbol{\nabla_{x_0}} \boldsymbol{F_{t_0}^t})^T (\boldsymbol{\nabla_{x_0}} \boldsymbol{F_{t_0}^t}) \Big) \Big) \end{split}$$

Fixing t to find r

Finite Size Lyapunov Exponents (FSLE)

$$\Pi(r, t_0, \boldsymbol{x_0}) = \frac{\log_e(r)}{2(t - t_0)}$$
$$r = \lambda_{max} \left((\boldsymbol{\nabla_{x_0}} \boldsymbol{F_{t_0}^t})^T (\boldsymbol{\nabla_{x_0}} \boldsymbol{F_{t_0}^t}) \right)$$

Fixing r to find t

$$\boldsymbol{\lambda}(\boldsymbol{x_0}, t_0, \boldsymbol{\delta_0}, \boldsymbol{\delta_f}) = \frac{1}{\tau} log \Big(\frac{\delta_f}{|\boldsymbol{\delta_0}|} \Big) \frac{\boldsymbol{\delta_0}}{|\boldsymbol{\delta_0}|}$$

Singularity exponents

The ocean, a turbulent environment with multifractal structure, Leonardo da Vinci

$$s(\boldsymbol{x} + \boldsymbol{r}) - s(\boldsymbol{x}) = \alpha(\boldsymbol{x})r^{h(\boldsymbol{x})} + \mathcal{O}(r^{h(\boldsymbol{x})}), \quad r \to 0$$

Fractal components

$$F_h = \{ \boldsymbol{x} \text{ such that } h(\boldsymbol{x}) = h \}$$

"Equation of the singularity exponents"

$$s(\boldsymbol{x} + \boldsymbol{r}) - s(\boldsymbol{x}) = \alpha(\boldsymbol{x})r^{H(\boldsymbol{x})} + \mathcal{O}(r^{H(\boldsymbol{x})}), \quad r \to 0$$

Wavelet transform

$$\mathcal{T}_{\psi}s(\boldsymbol{x},r) = \int ds(\boldsymbol{y}) \frac{1}{r^d} \psi\left(\frac{\boldsymbol{x}-\boldsymbol{y}}{r}\right)$$

"Singularity exponents equation for the wavelet transformation" (invariant)

$$\mathcal{T}_{\psi}s(\boldsymbol{x},r) = \alpha_{\psi}(\boldsymbol{x})r^{H(\boldsymbol{x})} + \mathcal{O}(r^{H(\boldsymbol{x})}), \quad r \to 0$$

"Singularity exponents equation for the gradient"

$$\mathcal{T}_{\psi} \nabla s(\boldsymbol{x}, r) = \alpha_{\psi}(\boldsymbol{x}) r^{h(\boldsymbol{x})} + \mathcal{O}(r^{h(\boldsymbol{x})}), \quad r \to 0 \qquad h(\boldsymbol{x}) = H(\boldsymbol{x}) - 1$$

Singularity exponents from SST and ADT

SST

SOURCE: SST global images from [5] Global Ocean OSTIA Sea Surface Temperature and Sea Ice Analysis Results for January 25th, 2022. 0.25^o spatial resolution SST SE

The curvilinear shape of the negative fractal components -> Fractal dimension: $D(h) \approx 1$

Positive fractal components with unclear shape -> Maxim fractal dimension: D(h)pprox 2

On the relationship between Singularity Exponents and Finite Size Lyapunov Exponents in remote sensed images of the ocean

7

FSLE

On the relationship between Singularity Exponents and Finite Size Lyapunov Exponents in remote sensed images of the ocean

(Global)

Reconstruction of FSLE via SST SE

Reconstructed FSLE via SST SE

(Global)

70% of the pixels with an accuracy of 0.05

Singularity exponents from ADT

10

Altimetry SE

(Global analysis)

FSLE vs ADT SE

Regional analysis

On the relationship between Singularity Exponents and Finite Size Lyapunov Exponents in remote sensed images of the ocean Universitat Autònoma de Barcelona

Institut de Ciències

del Mar

South America – Brazil-Malvinas Confluence (BMC) [75W, 30W] lon, [60S, 30S] lat

On the relationship between Singularity Exponents and Finite Size Lyapunov Exponents in remote sensed images of the ocean

del Mar

Universitat Autònoma

de Barcelona

Further work

- Use of extended temporal series of satellite images
- Combination of different advected variables (SST, ADT, SSS) to produce singularity exponents
- Establishment of a finer functional relation (higher order polynomial, DL algorithm, ...)
- Geometrical study on the coincidence of the tracks or streams
- Consideration of repealing LCS also
- Is the equivalence also holding in the areas with fractal dimension 2?
- Should we consider both attractive and repulsive LCS?

- Temporal stability of the relationship (using correlation coefficient)
- More robust relationship

References

[1]: D'Ovidio F., C. Lopez, E. Hernandez-Garcia, V. Fernandez, 2004, "Mixing structures in the Mediterranean sea from Finite-Size Lyapunov Exponents", Geophys. Res. Lett., 31, L17203.

[2]: Pujol M.-I., Y. Faugere, O. Titaud, F.Briol, F. d'Ovidio, R. Morrow, E. Bronner, N. Picot, "20 years of reprocessed Lyapunov Exponents from altimetry available on AVISO+", Poster EGU2015-4542,

EGU12 17 April 2015, Vienna Australia

[3]: Oriol Pont, Antonio Turiel & Hussein Yahia (2013) Singularity analysis of digital signals through the evaluation of their unpredictable point manifold, International Journal of Computer

Mathematics, 90:8, 1693-1707, DOI: 10.1080/00207160.2012.748895.

[4]: FSLE description: Aviso+. (n.d.). AVISO+. Retrieved March 22, 2022, from

https://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-lyapunov-exponents/fsle-description.html

[5]: Data | Copernicus Marine. (n.d.). Copernicus.Eu. Retrieved March 22, 2022, from

https://resources.marine.copernicus.eu/product-

detail/SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001/INFORMATION

[6]:J. Isern-Fontanet, X. Capet, A. Turiel, E. Olmedo, C. González-Haro, 2022, "On the Seasonal Cycle of the Statistical Properties of Sea Surface Temperature", Geophys. Res., 49, e2022GL0980

A summary of the presentation can be found in poster format in

Link to the poster

Regional analysis

Gulf Stream [75W, 30W] lon, [30N, 60N] lat

Singularity exponents

The ocean, a turbulent environment with multifractal structure, Leonardo da Vinci

$$s(\boldsymbol{x} + \boldsymbol{r}) - s(\boldsymbol{x}) = \alpha(\boldsymbol{x})r^{h(\boldsymbol{x})} + \mathcal{O}(r^{h(\boldsymbol{x})}), \quad r \to 0$$

Fractal components $F_h = \{ \boldsymbol{x} \text{ such that } h(\boldsymbol{x}) = h \}$

Most Singular Component (MSC)

 $F_{\infty} = \{ x \text{ such that } h(x) \in]h_{\infty} - \Delta, h_{\infty} + \Delta[] \} \quad h_{\infty} \equiv \text{ Smallest exponent}$

- SST global images from [5] Global Ocean OSTIA Sea Surface Temperature and Sea Ice Analysis Results for January 25th, 2022.
- ADT global images from [5]. NRT merged all satellites Global Ocean Gridded SSALTO/DUACS Sea Surface Height L4 product and derived variables. Results for January 25th, 2022.
- FSLE used in this project are <<Backward-in-time, Finite Size Lyapunov Exponents and orientations of associated eigenvector>> provided by AVISO+ (Archiving, Validation and Interpretation of Satellite Oceanographic data) [4]
 Units of day–1
 Results for January 25th, 2022
 0.25^o (720X1440)

